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SECOND-ORDER SUFFICIENT OPTIMALITY CONDITIONS
FOR A SEMILINEAR OPTIMAL CONTROL PROBLEM WITH NONLOCAL

RADIATION INTERFACE CONDITIONS ∗

Christian Meyer
1

Abstract. We consider a control constrained optimal control problem governed by a semilinear elliptic
equation with nonlocal interface conditions. These conditions occur during the modeling of diffuse-
gray conductive-radiative heat transfer. After stating first-order necessary conditions, second-order
sufficient conditions are derived that account for strongly active sets. These conditions ensure local
optimality in an Ls-neighborhood of a reference function whereby the underlying analysis allows to use
weaker norms than L∞.

Mathematics Subject Classification. 49K20, 35J65, 80M50.

Received April 27, 2005. Revised May 2, 2006.
Published online July 20, 2007.

1. Introduction

In this paper, we investigate an optimal control problem that arises from the sublimation growth of semi-
conductor single crystals by the physical vapor transport (PVT) method. Possible semiconductor materials,
produced with this method, are silicon carbide (SiC) or aluminum nitrite (AlN). They are used in numerous
industrial applications, e.g. the production of optoelectronic devices such as blue and green LEDs and lasers.
For the PVT method, polycrystalline powder is placed under a low-pressure inert gas atmosphere at the bottom
of a cavity inside a crucible. The crucible is heated up to 2000 till 3000 K by induction. Due to the high
temperatures and the low pressure, the powder sublimates and crystallizes at a single-crystalline seed located
at the cooled top of the cavity, such that the desired single crystal grows into the reaction chamber. See [6] for
more details.

Here, we focus on the conductive-radiative heat transfer in the growth apparatus. Therefore, we consider a
simplified setup of the growth apparatus, shown in Figure 1, where Ωs denotes the domain of the solid graphite
crucible, whereas Ωg is the domain of gas phase inside. A very important determining factor for the crystal’s
quality and growth rate is the temperature gradient inside the gas phase [9]. Since we do not consider the
electromagnetic induction, we will optimize the temperature gradient in the gas phase Ωg by directly controlling
the heat source u in Ωs.

Keywords and phrases. Optimal control, semilinear elliptic equations, nonlocal interface conditions, second-order sufficient
optimality conditions.
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Figure 1. Exemplary domain for nonlocal radiative heat transfer.

The temperature y inside the growth apparatus arises as the solution of the conductive-radiative heat trans-
fer problem in the growth apparatus. Accounting for radiative contributions is essential owing to the high
temperatures. Thus, the problem is described by the stationary heat equation with radiation interface and
boundary conditions on Γr and Γ0, respectively. We take Ωs to be entirely opaque, whereas Ωg represents a
transparent medium which does not interact with radiation. Furthermore, the radiative surfaces Γ0 := ∂Ω and
Γr := Ωs ∩ Ωg are presumed to be diffuse-gray, i.e. the emissivity ε is independent of both the direction and
the wavelength of the radiation. In particular, the local radiative heat exchange on Γ0 can be modeled by the
Boltzmann radiation condition with an external temperature y0. Due to the heat exchange between points
on Γr, we obtain an additional radiative heat flux on Γr, denoted by qr.

In addition to the stationary semilinear heat equation with radiation interface and boundary conditions, we
consider box constraints for the control function u. Thus, the optimal control problem, considered here, reads
as follows:

(P)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minimize J(y, u) :=
1
2

∫
Ωg

|∇y − z|2 dx+
ν

2

∫
Ωs

u2 dx

subject to −div(κs ∇y) = u in Ωs

−div(κg ∇y) = 0 in Ωg

κg

(
∂y

∂nr

)
g

− κs

(
∂y

∂nr

)
s

= qr on Γr

κs
∂y

∂n0
+ εσ |y|3y = εσ y4

0 on Γ0

and ua ≤ u(x) ≤ ub a.e. in Ωs,

where n0 is the outward unit normal on Γ0, and nr is the unit normal on Γr facing outward with respect to Ωs

(cf. Fig. 1). Furthermore, z denotes the desired temperature gradient and ν > 0 is a Tikhonov regularization
parameter. In the state equation, σ represents the Boltzmann radiation constant, and κs, κg denote the thermal
conductivities in Ωs, Ωg, respectively.

In contrast to the boundary condition on Γ0, the radiative heat transfer on Γr is nonlocal. The corresponding
mathematical model used here is described in detail in [10]. It provides the additional radiative heat flux qr
on Γr given by

qr = (I −K)(I − (1 − ε)K)−1ε σ|y|3y := Gσ|y|3y, (1.1)

where K is an integral operator representing the irradiation on Γr. The nonlocal operators K and G will be
specified in Section 3. The nonlocal radiation on Γr represents the main characteristic of the problem, since the
nonlinearity in the state equation in (P) is in general not monotone due to nonpositivity of G (see [10]).

Problem (P) has already been investigated by Meyer, Philip and Tröltzsch in [8], where first-order necessary
conditions are proved. Based on these results, we establish second-order sufficient optimality conditions for (P).
Due to the nonlinear interface and boundary conditions on Γr and Γ0, (P) belongs to the class of semilinear
elliptic optimal control problems. There are numerous publications which address second-order conditions
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for problems of such type. We only mention Casas, Tröltzsch and Unger [4], Bonnans [1], and Casas and
Mateos [3]. Here, we consider conditions that are sufficient for local optimality of a reference function in an
Ls-neighborhood, where s is not necessarily equal to ∞. To that end, we use a technique, introduced for the
Navier-Stokes equations by Tröltzsch and Wachsmuth [12]. In case of the Navier-Stokes equations, the situation
is, in some sense, easier, since the nonlinearity in the state equation is only of quadratic type. Hence, under
certain assumptions on the objective functional, it is possible to avoid the well-known two-norm discrepancy
(see [12] for details). This is even valid, if one allows for strongly active sets as introduced by Dontchev et al. [5].
However, in our case, one has to deal with a two-norm discrepancy when using strongly active control constraints.
Therefore, we modify the proof of Tröltzsch and Wachsmuth and follow an approach by Casas, Tröltzsch and
Unger [4], who consider a more general setting. This covers a class of optimal control problems with a semilinear
elliptic state equation whose nonlinearity is monotone. However, although this is not the case here, main parts
of the corresponding theory for second-order conditions can also be applied to (P).

The paper is organized as follows: After stating the mathematical setting in Section 2, we recall some results
of [7, 8, 10], concerning the semilinear state equation and first-order conditions for (P), see Sections 3 and 4.
Then, in Section 5, our main result, i.e. the second-order sufficient conditions, are stated. Section 6 is devoted
to some auxiliary results that are needed for the proof of the second order-conditions, that is presented in
Section 7.

2. The mathematical setting

Throughout this paper, we assume the following conditions on the domain Ω and on the quantities and
functions occurring in (P):

Assumption 1. We assume that Ω ⊂ R
3 is a bounded simply connected domain with Lipschitz boundary Γ0.

The boundary of the simply connected subdomain Ωg ⊂ Ω, denoted by Γr, is assumed to be a closed Lipschitz
surface that is piecewise C1,δ. Notice that the distance of Γr to Γ0 is positive. Then, Ωs is defined by Ωs = Ω\Ωg.
The Boltzmann radiation constant is assumed to be positive, i.e. σ ∈ R

+. For the thermal conductivity, we
assume κ ∈ L∞(Ω) with

κ(x) =
{
κs(x) in Ωs

κg(x) in Ωg

and κ(x) ≥ κmin > 0 a.e. on Ω. Furthermore, the emissivity ε ∈ L∞(Γ0 ∪ Γr) is bounded by 1 ≥ ε ≥ εmin > 0
a.e. on Γ0 ∪ Γr.

Assumption 2. The desired temperature gradient z is given in L2(Ωg) and ν is a positive constant. For the
box constraints, we assume ua, ub ∈ Lt(Ωs), where t is a positive real number with t ≥ q′ and some q′ ∈ [2, 4]
that will be precised later in Section 5. Moreover, the bounds fulfill 0 ≤ ua(x) < ub(x) a.e. in Ωs. The external
temperature y0 is a function in L16(Γ0) and fulfills y0 ≥ ϑ a.e. on Γ0 with a positive constant ϑ.

Notice that, in this context, the assumption ua(x) ≥ 0 a.e. in Ωs does not represent an additional restriction,
since the heat sources in the application are always non-negative, as the crucible cannot be cooled. Throughout
this article, we use the following notations:

Notation. We introduce the set of admissible controls by

Uad := {u ∈ Lt(Ωs) |ua(x) ≤ u(x) ≤ ub(x) a.e. in Ωs}.

The identity operator in the respective function spaces is denoted by I. Moreover, τr is the trace operator
on Γr, whereas τ0 denotes the trace on Γ0. Throughout this paper, c is a generic constant and ψ denotes a
generic function. Let W be a Banach space with its dual space W ∗. Then, for f ∈ W and g ∈ W ∗, 〈f , g〉
denotes the associated pairing. Furthermore, for a given functional j : W → R that is twice continuously
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Fréchet differentiable, we denote the second derivative at u ∈ W in the directions h1, h2 ∈ W by j′′(u)[h1, h2].
If h1 = h2 = h, then we write j′′(u)h2.

3. The semilinear state equations

In this section, we recall some results of Laitinen and Tiihonen [7], Tiihonen [10, 11], and Meyer, Philip
and Tröltzsch [8]. First, we present some properties of the nonlocal radiation operator G and the integral
operator K.

Definition 3.1. The integral operator K, representing the irradiation on Γr, is given by

(K y)(x) =
∫
Γr

ω(x, z) y(z) dsz, (3.1)

where the kernel ω is defined by

ω(x, z) =

⎧⎪⎪⎨
⎪⎪⎩

Ξ(x, z)
[nr(z) · (x− z)][nr(x) · (z − x)]

2|z − x|3 , for n = 2

Ξ(x, z)
[nr(z) · (x− z)][nr(x) · (z − x)]

π|z − x|4 , for n = 3.

In this definition, x, z denote two points on Γr, and nr(x) is the unit normal at x facing outward with respect
to Ωs. Here, Ξ represents the visibility factor which is given by

Ξ(x, z) =
{

0 if xz ∩ Ωg �= ∅,
1 if xz ∩ Ωg = ∅,

with xz denotes the line segment between x and z.

In [11], it is proven that ω(x, z) has a singularity at x of type |x − z|−(1−δ) in the two-dimensional and
|x − z|−2(1−δ) in the three-dimensional case, which is, in both cases, integrable. This is the key point to the
following lemma derived in [11].

Lemma 3.2.
(i) K maps Lp(Γr) to Lp(Γr) for all 1 ≤ p ≤ ∞.
(ii) The operator I − (1 − ε)K: Lp(Γr) → Lp(Γr) is continuously invertible.

With the help of Lemma 3.2, Tiihonen and Laitinen proved the following property of G = (I −K)(I − (1 −
ε)K)−1ε (cf. [10], Lem. 6 and [7], Lem. 8).

Lemma 3.3. G is a bounded linear operator from Lp(Γr) to itself for all 1 ≤ p ≤ ∞.

Notice that the kernel ω is symmetric and hence, K is formally self-adjoint. Therefore, we obtain that
G∗ = ε(I − (1 − ε)K)−1(I −K) is also linear and bounded from Lp(Γr) to Lp(Γr) for all 1 ≤ p ≤ ∞.

With these results at hand, Laitinen and Tiihonen derived the existence of solutions to the state equation
in (P) that is given by

−div(κs ∇y) = u in Ωs

−div(κg ∇y) = 0 in Ωg

κg

(
∂y

∂nr

)
g

− κs

(
∂y

∂nr

)
s

= Gσ|y|3y on Γr

κs
∂y

∂n0
+ εσ |y|3y = εσ y4

0 on Γ0.

(3.2)



754 C. MEYER

Notice that, G is in general non-positive, i.e. v(x) ≥ 0 a.e. on Γr does not imply (Gv)(x) ≥ 0 a.e. on Γr,
and hence, the nonlinearity in (3.2) is not monotone. Therefore, Laitinen and Tiihonen used Brezis’ existence
theorem on the solution of equations with pseudomonotone operators to show the existence of solutions (see [7]
for details). In the following, we consider y in the state space V that is defined by

V := {v ∈ H1(Ω) | τr v ∈ L5(Γr), τ0 v ∈ L5(Γ0)}

where τr denotes the trace operator on Γr, whereas τ0 is the trace on Γ0. The space V is equipped with the
norm

‖v‖V = ‖v‖H1(Ω) + ‖v‖L5(Γr) + ‖v‖L5(Γ0).

Theorem 3.4 ([7], Th. 2). Under Assumption 1, the semilinear equation (3.2) admits a unique solution in V
for every u ∈ H1(Ωs)∗ and y0 ∈ L5(Γ0).

In [8], it is shown that, if the right-hand side is sufficiently regular, solutions to (3.2) belong to the following
function space

V∞ := H1(Ω) ∩ L∞(Ω), (3.3)
equipped with the norm

‖v‖V ∞ = ‖v‖H1(Ω) + ‖v‖L∞(Ω).

Notice that y ∈ V∞ implies τry ∈ L∞(Γr) and τ0y ∈ L∞(Γ0) (see [8], Rem. 3.5).

Theorem 3.5 ([8], Th. 4.2). Suppose that Assumption 1 is fulfilled and u ∈ L2(Ωs) and y0 ∈ L16(Γ0). Then,
there exists a constant c only depending on Ω such that the solution of (3.2) fulfills

‖y‖L∞(Ω) + ‖y‖L∞(Γr∪Γ0) ≤ c(1 + ‖u‖L2(Ωs) + ‖y0‖4
L16(Γ0) ). (3.4)

For a fixed y0 ∈ L16(Γ0), we introduce the control-to-state operator S : L2(Ωs) → V∞ that assigns y to u.
The positivity of S is covered by the following maximum principle.

Theorem 3.6 ([8], Th. 4.3). Suppose that Assumption 1 is fulfilled and u(x) ≥ 0 a.e. in Ωs and y0(x) ≥ ϑ > 0
a.e. on Γ0. If y is the solution of (3.2), then y(x) ≥ ϑ holds a.e. on Ω and a.e. on Γr ∪ Γ0.

The next theorem states the existence of an optimal solution for (P). It is also proven in [8] by rather standard
arguments.

Theorem 3.7 ([8], Th. 5.2). Under the Assumptions 1 and 2, there exists an optimal control ū ∈ L∞(Ωs) with
associated state ȳ ∈ V∞.

4. First-order necessary optimality conditions

The key point in the proof of first-order necessary optimality conditions is to show the differentiability of
the control-to-state operator S : u �→ y. In preparation of a corresponding theorem, we consider the following
linear equation We start with the following linear equation∫

Ω

κ∇y · ∇v dx+ 4
∫
Γ0

εσ |ȳ|3y v ds = 〈ϕ , v〉H1(Ω)∗,H1(Ω) ∀ v ∈ H1(Ω) (4.1)

with a given ϕ ∈ H1(Ω)∗ and a fixed ȳ ∈ V∞ with ȳ > 0 a.e. in Ω. Notice that, in this section, the notation ȳ
does not necessarily refer to the optimal state, but to fixed, non negative, but otherwise arbitrary function
in V∞. It is easy to verify that the bilinear form in (4.1) is bounded and coercive in H1(Ω). Therefore, the
Lax-Milgram lemma implies that (4.1) admits solutions in H1(Ω) for every right-hand side in ϕ ∈ H1(Ω)∗.
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Thus, there exists a linear continuous operator Bd(ȳ) : H1(Ω)∗ → H1(Ω), mapping ϕ to y, such that the
solution of (4.1) can be expressed as

y = Bd(ȳ)ϕ. (4.2)

Next, we consider a slightly different equation:

ā[y, v] :=
∫
Ω

κ∇y · ∇v dx+ 4
∫
Γr

(Gσ|ȳ|3y) v ds+ 4
∫
Γ0

εσ |ȳ|3y v ds

= 〈ϕ , v〉H1(Ω)∗,H1(Ω) ∀ v ∈ H1(Ω). (4.3)

Since G is not positive, the bilinear form ā is in general not coercive. Thus, the Lax-Milgram lemma cannot be
applied. However, under a certain regularity assumption, one can employ the Fredholm alternative to show the
unique existence of solutions to (4.3). To this aim, we transform (4.3) into∫

Ω

κ∇y · ∇v dx+ 4
∫
Γ0

εσ |ȳ|3y v ds = 〈ϕ , v〉H1(Ω)∗,H1(Ω) − 4
∫
Γr

(Gσ|ȳ|3y)v ds.

Moreover, analogously to Bd, we introduce the linear and continuous operator Br(ȳ) : L2(Γr) → H1(Ω) as
solution operator to (4.1) if ϕ can be expressed by

〈ϕ , v〉H1(Ω)∗,H1(Ω) =
∫
Γr

fr v ds

with a function fr ∈ L2(Γr). Hence, (4.3) is equivalent to

y = Bd(ȳ)ϕ−Br(ȳ) 4Gσ|ȳ|3τry. (4.4)

Notice that it would be more appropriate to write (Gσ|τrȳ|3 τry) instead of (Gσ|ȳ|3τry) in this context. However,
for the purpose of readability, in all what follows, we suppress the trace in connection with ȳ since it represents
a fixed reference state. Applying the trace operator to (4.4) yields

τry + 4 τrBr(ȳ)Gσ|ȳ|3τry = τrBd(ȳ)ϕ. (4.5)

To show the existence of solutions of this equation, we rely on the following assumption.

Assumption 3. λ = −1 is not an eigenvalue of

B(ȳ)( · ) := 4 τrBr(ȳ)Gσ|ȳ|3( · ), (4.6)

with B(ȳ) : L2(Γr) → L2(Γr).

Since Br(ȳ) : L2(Γr) → H1(Ω), we have that τr Br(ȳ) : L2(Γr) → H1/2(Γr). Therefore, due to the compact
embedding of L2(Γr) inH1/2(Γr), B(ȳ) : L2(Γr) → L2(Γr) is a compact operator. Thus, thanks to Assumption 3,
the theory of Fredholm operators ensures that (I + B(ȳ)) has a continuous inverse operator. Therefore, (4.5)
admits a solution in L2(Γr), giving in turn the existence of solutions to (4.3) and thus the following result
(cf. [8]).
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Lemma 4.1. Suppose that Assumption 3 is fulfilled and ȳ ∈ V∞, ȳ ≥ ϑ > 0. Then, to every ϕ ∈ H1(Ω)∗,
there exists a unique solution y of (4.3) in H1(Ω) that satisfies

‖y‖H1(Ω) ≤ c ‖ϕ‖H1(Ω)∗ (4.7)

with a positive constant c. Moreover, if the inhomogeneity ϕ is sufficiently smooth such that it can be expressed
by

〈ϕ , v〉H1(Ω)∗,H1(Ω) =
∫
Ω

fΩ v dx+
∫
Γr

fr v ds+
∫
Γ0

f0 v ds

with some functions fΩ ∈ L2(Ω), fr ∈ L4(Γr), and f0 ∈ L4(Γr), then (4.3) admits a unique solution in V∞ and
the the following estimate

‖y‖L∞(Ω) + ‖y‖L∞(Γr∪Γ0) ≤ c
(‖fΩ‖L2(Ω) + ‖fr‖L4(Γr) + ‖f0‖L4(Γ0)

)
(4.8)

holds true with a constant c only depending on Ω.

Notice that we used the boundedness of ȳ in V∞ for (4.7), i.e. ‖ȳ‖V ∞ ≤ c with a constant only depending
on Ω, which is guaranteed by Theorem 3.5 and [8], Lemma 5.1. In all what follows, we denote the solution
operator associated to (4.3), mapping ϕ to y, by S̃(ȳ) : H1(Ω)∗ → H1(Ω). An immediate consequence of Lemma
4.1 is the following theorem.

Theorem 4.2. Under Assumptions 1–3, S : L2(Ωs) → V∞ is twice continuously Fréchet-differenntiable at
(ȳ, ū). Its first derivative, denoted by y = S′(ū)h, h ∈ L2(Ωs), is given by

−div(κs ∇y) = h in Ωs

−div(κg ∇y) = 0 in Ωg

κs

(
∂y

∂nr

)
s

− κg

(
∂y

∂nr

)
g

+ 4G(σ|ȳ|3y) = 0 on Γr

κs
∂y

∂n0
+ 4 εσ|ȳ|3y = 0 on Γ0.

(4.9)

Moreover, the second derivative w = S′′(ū)[h1, h2] solves the equation

−div(κs ∇w) = 0 in Ωs

−div(κg ∇w) = 0 in Ωg

κs

(
∂w

∂nr

)
s

− κg

(
∂w

∂nr

)
g

+ 4G(σ|ȳ|3w) = −12G(σ|ȳ|ȳ y1y2) on Γr

κs
∂w

∂n0
+ 4 εσ|ȳ|3w = −12 εσ|ȳ|ȳ y1y2 on Γ0

(4.10)

with yi = S′(ū)hi, i = 1, 2.

Proof. We follow the lines of [8], Theorem 7.1, where the Fréchet-differentiability of S is shown in detail.
However, here we also need the second derivative of S, hence we shortly sketch the proof for convenience of the
reader.



SECOND-ORDER SUFFICIENT CONDITIONS 757

We reformulate (3.2) as

−div(κs ∇ȳ) = ū in Ωs

−div(κg ∇ȳ) = 0 in Ωg

κg

(
∂ȳ

∂nr

)
g

− κs

(
∂ȳ

∂nr

)
s

= Gσ|ȳ|3ȳ on Γr

κs
∂ȳ

∂n0
+ λ ȳ = εσ(y4

0 − |ȳ|3ȳ) + λ ȳ on Γ0,

(4.11)

with some λ > 0 such that the bilinear form associated to the left-hand side in (4.11) is bounded an coercive
in H1(Ω). Thus, the Lax-Milgram lemma yields that (4.11) admits a solution in H1(Ω) for every right-hand side
in H1(Ω)∗. Moreover, in [8] it is shown that, if the right-hand side is sufficiently regular, i.e. in L2(Ωs)×L4(Γr)×
L4(Γ0), the solution is bounded in Ω and on Γr ∪ Γ0. Thus, linear continuous operators B̃Ω : L2(Ω) → V∞,
B̃r : L4(Γr) → V∞, and B̃0 : L4(Γ0) → V∞ exist such that (4.11) is equivalent to

0 = ȳ − B̃Ωs ū+ B̃r (G(σ|ȳ|3ȳ)) − B̃0 (λ ȳ + εσ y4
0 − εσ |ȳ|3ȳ) =: T (ȳ, ū), (4.12)

with T : V∞ ×L2(Ωs) → V∞. Notice that, within this proof, we suppress the traces in arguments of operators
with domain in L2(Γr) and L2(Γ0), respectively, to improve the readability. Since Φ(y) = |y|3y is twice Fréchet-
differentiable in L∞(Γr ∪ Γ0) and B̃Ω, B̃r, and B̃0 are linear continuous operators, the chain rule gives that T
is twice continously differentiable from V∞ × L2(Ωs) to V∞. Moreover, in [8] it is shown that, the equation
∂T
∂y (ȳ, ū)y = f with some f ∈ V∞ corresponds to a linear PDE with the same bilinear form as in (4.3). Hence,
under Assumption 3, ∂T

∂y (ȳ, ū) is continuously invertible in V∞. Therefore, the implicit function theorem gives
that S is as smooth as T and hence, y = S(u) is twice continuously differentiable at ū.

It remains to derive the particular form of S′(ū) and S′′(ū). Substituting ȳ = S(ū) in (4.12) and differentiating
in direction h yield

S′(ū)h = B̃Ωs h− B̃r (G(4σ|S(ū)|3S′(ū)h)) + B̃0 (λS′(ū)h− 4εσ |S(ū)|3S′(ū)h). (4.13)

Now we replace y = S′(ū)h and ȳ = S(ū). Then, with the definitions of B̃Ω, B̃r, and B̃0, (4.13) is equivalent
to the linearized equation (4.9). For the second derivative, we rename h1 = h in (4.13) and differentiate both
sides in direction h2

S′′(ū)[h1, h2] = − B̃r (G(12σ|S(ū)|S(ū) [S′(ū)h1, S
′(ū)h2]))

− B̃r (G(4σ|S(ū)|3 S′′(ū)[h1, h2]))

+ B̃0 (λS′′(ū)[h1, h2] − 12εσ |S(ū)|S(ū) [S′(ū)h1, S
′(ū)h2])

− B̃0 (4εσ |S(ū)|3 S′′(ū)[h1, h2]).

By setting ȳ = S(ū), yi = S′(ū)hi, i = 1, 2, and w = S′′(ū)[h1, h2], the definitions of B̃Ω, B̃r, and B̃0

imply (4.10). �
Remark 4.3. Clearly, the implicit function theorem also gives that S : L2(Ωs) → V∞ is twice continuously
Fréchet differentiable in a neighborhood of ū.

Next we derive first-order necessary optimaliy conditions to (P). To that end, we introduce the reduced
objective functional by

j(u) := J(S(u), u) =
1
2
‖∇S(u) − z‖2

L2(Ωg) +
ν

2
‖u‖2

L2(Ωs)
. (4.14)
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Furthermore, we define the set of admissible controls by

Uad := {u ∈ L2(Ω) |ua(x) ≤ u(x) ≤ ub(x) a.e. in Ωs}.

Due to Theorem 4.2 and the chain rule, we know that j is twice continuously Fréchet-differentiable from L2(Ωs)
to R. Thus, by standard arguments, an optimal solution ū of (P) must satisfy the following variational inequality

j′(ū)(u− ū) ≥ 0 ∀u ∈ Uad. (4.15)

For the derivative of j, one obtains

j′(ū)h = (∇ȳ − z , ∇y)L2(Ωg) + ν(ū , h)L2(Ωs), (4.16)

with ȳ = S(ū) and y = S′(ū)h. Now, let us transform (4.15) by introducing the adjoint state. Clearly, for every
fixed y ∈ H1(Ω), the bilinear form ā in (4.3) can be seen as a linear and bounded functional on H1(Ω). Thus,
there is an operator A ∈ L(H1(Ω), H1(Ω)∗) with

ā[y, v] = 〈Ay , v〉 = 〈ϕ , v〉 ∀ v ∈ H1(Ω) ⇔ Ay = ϕ in H1(Ω)∗.

The associated adjoint equation is given by A∗ p = g with some g ∈ H1(Ω)∗. Lemma 4.1 implies the existence of
A−1 ∈ L(H1(Ω)∗, H1(Ω)), giving in turn that A∗ is continously invertible. Hence, it follows that the equation

〈v , A∗ p〉 = 〈Av , p〉 = ā[v, p]

=
∫
Ω

κ∇p · ∇v dx + 4
∫
Γr

σ |ȳ|3 (G∗p) v ds+ 4
∫
Γ0

εσ |ȳ|3 p v ds

= 〈g, v〉H1(Ω)∗,H1(Ω) ∀ v ∈ H1(Ω) (4.17)

admits a unique solution p ∈ H1(Ω) for every g ∈ H1(Ω)∗.

Lemma 4.4. Suppose that Assumption 3 is fulfilled and let ȳ ∈ V∞ with ȳ ≥ ϑ > 0 be given. Then, to every
g ∈ H1(Ω)∗, there exists a unique solution p of (4.17) in H1(Ω).

Now, let us choose a special inhomogeneity in (4.17) given by 〈g , v〉 = (∇ȳ − z , ∇v)L2(Ωg) such that we
obtain the adjoint equation associated to the state equation:∫

Ω

κ∇p · ∇v dx + 4
∫
Γr

σ |ȳ|3 (G∗p) v ds+ 4
∫
Γ0

εσ |ȳ|3 p v ds =
∫
Ωg

(∇ȳ − z) · ∇v dx ∀ v ∈ H1(Ω). (4.18)

Note that, thanks to ȳ ∈ V∞ and z ∈ L2(Ωg) by Assumption 2, the right-hand side indeed defines an element
of H1(Ω)∗. Formal integration by parts yields the PDE corresponding to (4.18):

div(κg ∇p) = ∆ȳ − div z in Ωg

div(κs ∇p) = 0 in Ωs

κs

(
∂p

∂nr

)
s

− κg

(
∂p

∂nr

)
g

+ 4σ |ȳ|3G∗p = − ∂ȳ

∂nr
+ z · nr on Γr

κs
∂p

∂n0
+ 4εσ |ȳ|3p = 0 on Γ0.

(4.19)
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Consider now the variational formulation associated to y = S′(ū)(u− ū) with some u ∈ L2(Ωs), that is given by

ā[y, v] = (u − ū , v)L2(Ωs) ∀ v ∈ H1(Ω).

If we insert p, i.e. the solution of (4.18), as test function, then we obtain

(u − ū , p)L2(Ωs) = ā[y, p] = 〈Ay , p〉 = 〈y , A∗ p〉 = (∇ȳ − z , ∇y)L2(Ωg).

Inserting this into (4.16) and (4.15) gives

(p+ ν ū , u− ū)L2(Ωs) ≥ 0 ∀u ∈ Uad. (4.20)

By standard arguments, a pointwise discussion of this inequality implies

ū(x) = Pad

{
−1
ν
p(x)

}
, (4.21)

where Pad(x) denotes the pointwise projection operator on [ua(x), ub(x)]. In this way, we have derived first-order
necessary conditions to (P):

Theorem 4.5. Suppose that Assumptions 1–3 are fulfilled and ū is a locally optimal solution of (P) with
associated state ȳ. Then, there exists an adjoint state p ∈ H1(Ω) such that the adjoint equation (4.19) and the
projection formula (4.21) are satisfied.

5. Second-order sufficient conditions

This section is devoted to our main result, second-order sufficient optimality conditions for (P). First, we
establish second-order conditions that require a rather large subspace where the second derivative of j must be
positive definite. These conditions are very easy to prove. Then, we shrink this subspace and formulate another
sufficient condition that is less restrictive than the first one. The associated proof is performed in Section 7.

In the following, the subspace, where j′′(ū) is assumed to be positive definite, is called critical cone. The
“large” critical cone is defined by

C̃(ū) :=
{
u ∈ L2(Ωs)

∣∣∣∣ u(x) ≥ 0, where ū(x) = ua(x)
u(x) ≤ 0, where ū(x) = ub(x)

}
,

and hence does not account for strongly active sets.

Theorem 5.1. Suppose that Assumptions 1–3 are fulfilled and that (ȳ, ū) satisfy the first-order necessary opti-
mality conditions. Assume further that a constant δ̃ > 0 exists such that

j′′(ū)u2 ≥ δ̃ ‖u‖2
L2(Ωs)

(5.1)

is satisfied for all u ∈ C̃(ū). Then positive constants ε̃ > 0 and σ̃ > 0 exist, such that the quadratic growth
condition

j(u) ≥ j(ū) + σ̃ ‖u− ū‖2
L2(Ωs)

(5.2)

holds true for all u ∈ Uad with ‖u− ū‖L2(Ωs) ≤ ε̃.
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Proof. The proof follows standard arguments. A Taylor expansion of j at ū yields for an arbitrary u ∈ Uad

j(u) = j(ū) + j′(ū)(u− ū) +
1
2
j′′(ū)(u − ū)2 + r

(2)
j (5.3)

≥ j(ū) +
δ̃

2
‖u− ū‖2

L2(Ωs)
− |r(2)j | (5.4)

where we used the variational inequality (4.15). Moreover, u ∈ Uad implies (u− ū) ∈ C̃(ū), hence (5.1) applies
to j′′(ū)(u− ū)2. Since j is twice continuously Fréchet-differentiable from L2(Ωs) to R, we have that

|r(2)j |
‖u− ū‖2

L2(Ωs)

→ 0 , if ‖u− ū‖L2(Ωs) → 0. (5.5)

Thus a constant ε̃ exists with |r(2)j | ≤ δ̃/4 ‖u− ū‖2
L2(Ωs)

for all ‖u− ū‖L2(Ωs) ≤ ε̃. Therefore, with σ̃ = δ̃/4, (5.4)
implies (5.2). �

Next, we formulate less restrictive second-order sufficient conditions that consider strongly active sets. As
mentioned in Section 1, in this case, we have to deal with a two-norm discrepancy. We establish a condition that
gives local optimality in an Ls-neighborhood of a reference function, where s is not necessarily equal to ∞, but
can be chosen smaller. This gives some flexibility in the choice of the neighborhood where local optimality of a
reference function is obtained. However, a “larger” neighborhood corresponds to a “weaker” growth condition
(see Th. 5.5).

We introduce the strongly active set as follows:

Definition 5.2. Let τ > 0 be given. Then the strongly active set Aτ is defined by

Aτ := {x ∈ Ω | |p(x) + ν ū(x)| ≥ τ},

where p is the adjoint state associated to ū, i.e. the solution of (4.19) with ȳ = S(ū).

Definition 5.3. Let a real number s be given with 2 ≤ s ≤ ∞. Then, q is defined by

q :=
{

2s/(s+ 1), for 2 ≤ s <∞
2, for s = ∞,

(5.6)

i.e. q ∈ [4/3, 2], and q′ is the corresponding conjugate exponent, i.e.

q′ :=
q

q − 1
=
{

2s/(s− 1), for 2 ≤ s <∞
2, for s = ∞.

(5.7)

Notice that the definition of q′ implies q′ ∈ [2, 4] according to the condition on Uad in Assumption 2. Moreover,
(5.6) yields q ∈ [4/3, 2]. The corresponding “small” τ-critical cone is defined in a standard way (cf. Dontchev
et al. [5]).

Definition 5.4. The critical cone belonging to (P) is given by

Cτ (ū) :=

⎧⎨
⎩u ∈ Lt(Ωs)

∣∣∣∣∣∣
u(x) = 0, a.e. in Aτ

u(x) ≥ 0, where ū(x) = ua(x) and x /∈ Aτ

u(x) ≤ 0, where ū(x) = ub(x) and x /∈ Aτ

⎫⎬
⎭ . (5.8)
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Recall that t is the exponent in the regularity assumption on Uad and satisfies t ≥ q′ (cf. Assumption 2). Now,
we are in the position to state second order sufficient conditions for (P) with respect to the reduced critical cone
Cτ (ū).

(SSC)

{
Let δ > 0 exist such that

j′′(ū)u2 ≥ δ ‖u‖2
Lq(Ωs)

for all u ∈ Cτ (ū).

Notice that, by the definition of q, j′′(ū)u2 ≥ δ ‖u‖2
L2(Ωs)

for all u ∈ Cτ (ū) immediately implies (SSC). In
Section 7, we show that (SSC) is indeed sufficient for local optimality of ū.

Theorem 5.5. Suppose that Assumptions 1–3 are fulfilled and that s ∈ [2,∞] is given. Moreover, let (ȳ, ū)
satisfy the first-order necessary optimality conditions for problem (P) and assume that condition (SSC) is fulfilled
with some δ > 0, τ > 0. Then, there exist ε̄ > 0 and σ̄ > 0 such that

j(u) ≥ j(ū) + σ̄ ‖u− ū‖2
Lq(Ωs)

, (5.9)

with q as defined in (5.6), holds for all u ∈ Uad with ‖u− ū‖Ls(Ωs) ≤ ε̄.

Remark 5.6. Setting s = ∞, we obtain q = 2, and hence Theorem 5.5 gives an L2-quadratic growth condition
in an L∞-neighborhood of ū. Choosing s = 2 and thus q = 4/3, we obtain L4/3-quadratic growth of j in
an L2-neighborhood of ū. Therefore, in this case, an L∞-neighborhood is not required for local optimality.
As second-order sufficient conditions are important for the convergence theory of higher order optimization
methods, as e.g. sequential quadratic programming methods, this can be used to guarantee convergence if
numerical schemes do not provide a sufficient accuracy with respect to the L∞-norm, which may happen for
instance if the optimal control is discontinuous.

6. Auxiliary results

Before we are in the position to prove Theorem 5.5, we have to investigate the neighborhood of a stationary
point, i.e. a fixed reference solution of (P). Based on these findings, we derive some results concerning the second
derivative of j in Section 6.2 also needed for the proof of Theorem 5.5. Throughout this section, we assume that
(ȳ, ū) is a fixed stationary point of problem (P). Therefore, we have that ū ∈ Uad and (ȳ, ū) satisfy the state
equation (3.2). As before, this implies that ‖ȳ‖V ∞ is bounded by a constant because of Theorem 3.5 and [8]
Lemma 5.1. This property is used several times in the proofs presented above. Notice that Lemma 3.3 implies
the boundedness of G and G∗ from Lp(Γr) to Lp(Γr) for all 1 ≤ p ≤ ∞, what is also used in the subsequent
proofs.

6.1. The neighborhood of a stationary point

In all what follows, we denote by û an admissible control in a neighborhood of ū, i.e.. û ∈ Bρ(ū)∩Uad, where
Bρ(ū) denotes an open ball in L2(Ωs) of radius ρ around ū. Furthermore, we define ŷ = S(û). Analogously to
ȳ, we have the boundedness of ‖ŷ‖V ∞ and ŷ(x) ≥ ϑ > 0 a.e. in Ω and a.e. on Γr ∪Γ0 (cf. Ths. 3.5 and 3.6, and
[8], Lem. 5.1). Now, given some ϕ ∈ H1(Ω)∗, we consider the following linear equation∫

Ω

κ∇y · ∇v dx+ 4
∫
Γr

(Gσ|ŷ|3y)v ds+ 4
∫
Γ0

εσ |ŷ|3y v ds = 〈ϕ , v〉H1(Ω)∗,H1(Ω) ∀ v ∈ H1(Ω), (6.1)

which is equivalent to (4.3) with ŷ instead of ȳ. Naturally, Assumption 3 does in general not imply that a similar
conditions holds with ŷ such that the existence of solutions to (6.1) is not immediately guaranteed. Notice further
that the Fréchet differentiability of S from L2(Ωs) to V∞ only gives the existence of S′(û) : L2(Ωs) → V∞ but
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does not imply that S̃(ŷ) : H1(Ω)∗ → H1(Ω), i.e. the solution operator to (6.1), is well defined. To overcome
these problems, let us consider the operator A(ȳ) : L2(Γr) → L2(Γr) defined by

A(ȳ) := I +B(ȳ) = I + τrBr(ȳ)Gσ|ȳ|3

with B(ȳ) as defined in Assumption 3 and Br(ȳ) as introduced before (4.4). Moreover, we set ŷ = S(û) and
define A(ŷ) analogously to A(ȳ). Due to Assumption 3, it is clear that A(ȳ) is continuously invertible. In the
following, we will show that the same holds for A(ŷ) presumed that ‖ū− û‖L2(Ωs) is sufficiently small. Then one
can argue as in Section 4 to obtain the existence of solutions to (6.1) giving in turn the existence of an adjoint
state in the neighborhood of a stationary point.

Lemma 6.1. Let the Assumptions 1–3 be fulfilled. Assume further that û ∈ Bρ(ū) ∩ Uad. If ρ is chosen
sufficiently small, then S̃(ŷ) exists as a linear and continuous operator from H1(Ω)∗ to H1(Ω), i.e. equation (6.1)
admits a unique solution in H1(Ω) for every ϕ ∈ H1(Ω)∗ that can be estimated by

‖y‖H1(Ω) ≤ c ‖ϕ‖H1(Ω)∗ (6.2)

with a constant c only depending on Ω.

Proof. We start with the definition

δA := A(ŷ) −A(ȳ). (6.3)

Applying both sides in (6.3) to an arbitrary g ∈ L2(Γr) yields

δA g = A(ŷ) g −A(ȳ) g

= τr
(
Br(ŷ)Gσ|ŷ|3 g −Br(ȳ)Gσ|ȳ|3 g

)
. (6.4)

Next, we set y1 := Br(ŷ)Gσ|ŷ|3 g and y2 := Br(ȳ)Gσ|ȳ|3 g. The definition of Br(.) : L2(Γr) → H1(Ω) implies
that y1 solves ∫

Ω

κ∇y1 · ∇v dx+ 4
∫
Γ0

εσ |ŷ|3y1 v ds =
∫
Γr

(Gσ|ŷ|3g) v ds ∀ v ∈ H1(Ω). (6.5)

Note that the bilinear from in this equation is bounded and coercive because of ŷ ∈ V∞, ŷ(x) ≥ ϑ > 0 a.e. on Γ0.
Clearly, y2 satisfies an analogous equation with ȳ instead of ŷ such that the difference y2 − y1 solves∫

Ω

κ∇(y2 − y1) · ∇v dx+ 4
∫
Γ0

εσ |ȳ|3(y2 − y1) v ds

= 4
∫
Γ0

εσ
(|ŷ|3 − |ȳ|3) y1 v ds+

∫
Γr

(
Gσ
(|ȳ|3 − |ŷ|3)g) v ds ∀ v ∈ H1(Ω).

Because of the coercivity of the bilinear form, we can estimate

‖y2 − y1‖2
H1(Ω) ≤ c

(∫
Γ0

εσ
(|ŷ|3 − |ȳ|3) y1 (y2 − y1) ds

+
∫
Γr

(
Gσ
(|ȳ|3 − |ŷ|3)g) (y2 − y1) ds

)
=: I1 + I2. (6.6)
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For I1, one obtains

I1 ≤ c ‖ |ŷ|3 − |ȳ|3‖L∞(Γ0) ‖y1‖L2(Γ0) ‖y2 − y1‖L2(Γ0).

Thanks to the boundedness of ȳ and ŷ, we can continue with

‖ |ŷ|3 − |ȳ|3‖L∞(Γ0) = ‖(ŷ2 + |ŷ| |ȳ| + ȳ2)(|ŷ| − |ȳ|)‖L∞(Γ0)

≤ c ‖ŷ − ȳ‖L∞(Γ0). (6.7)

Moreover, since y1 is the solution of (6.5), it is easy to see that ‖y1‖L2(Γ0) ≤ c ‖g‖L2(Γr). Hence, it follows

I1 ≤ c ‖ŷ − ȳ‖V ∞ ‖g‖L2(Γr) ‖y2 − y1‖H1(Ω).

A similar discussion yields

I2 ≤ c ‖ŷ − ȳ‖V ∞ ‖g‖L2(Γr) ‖y2 − y1‖H1(Ω),

such that (6.6) gives

‖y2 − y1‖H1(Ω) ≤ c ‖ŷ − ȳ‖V ∞ ‖g‖L2(Γr).

Now, the definitions of y1 and y2 imply

‖A(ŷ) g −A(ȳ) g‖L2(Γr) = ‖y2 − y1‖L2(Γr) ≤ c ‖ŷ − ȳ‖V ∞ ‖g‖L2(Γr)

for all g ∈ L2(Γr). In view of (6.4), this gives

‖δA‖L(L2(Γr)) ≤ c ‖ŷ − ȳ‖V ∞ . (6.8)

Next, we consider the equation

A(ŷ)g = f ⇔ (
I −A(ȳ)−1(−δA)︸ ︷︷ ︸

=: T

)
g = A(ȳ)−1f,

with some f ∈ L2(Γr). Here, we used that A(ȳ) is continuously invertible by Assumption 3. With (6.8), one
obtains

‖T ‖L(L2(Γr)) ≤ ‖A(ȳ)−1‖L(L2(Γr)) ‖δA‖L(L2(Γr))

≤ c ‖ŷ − ȳ‖V ∞ .

If ‖û− ū‖L2(Ωs) is chosen sufficiently small, then the continuity of S implies ‖ŷ − ȳ‖V ∞ < 1/c and hence

‖T ‖L(L2(Γr)) < 1.

Then, the theory of Neumann series yields that I − T is continuously invertible giving in turn that A(ŷ)g = f
admits a unique solution in L2(Γr) for all f ∈ L2(Γr). Now, together with the definition of A(ŷ), this implies
the continuous invertibility of I +B(ŷ) = I + τrBr(ŷ)Gσ|ŷ|3 such that a condition analogous to Assumption 3
holds with ŷ. Then, an analogous discussion as before Lemma 4.1 gives the unique existence of solutions to
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(6.1), i.e. S̃(ŷ) : H1(Ω)∗ → H1(Ω) is well defined, provided that ‖û − ū‖L2(Ωs) is sufficiently small. Finally,
(6.2) follows from the boundedness of ‖ŷ‖V ∞ . �

Lemma 6.1 immediately implies the existence of S̃(ŷ)∗ : H1(Ω)∗ → H1(Ω). Then, by the same arguments
leading to Lemma 4.4, the following result is obtained.

Lemma 6.2. Under the assumptions of Lemma 6.1, the equation∫
Ω

κ∇p̂ · ∇v dx + 4
∫
Γr

σ |ŷ|3 (G∗p̂) v ds+ 4
∫
Γ0

εσ |ŷ|3 p̂ v ds = 〈g, v〉H1(Ω)∗,H1(Ω) ∀ v ∈ H1(Ω) (6.9)

admits a unique solution p̂ ∈ H1(Ω) for every g ∈ H1(Ω)∗. Moreover, the estimate

‖p̂‖H1(Ω) ≤ c ‖g‖H1(Ω)∗

holds true with a constant c only depending on Ω.

With the previous results at hand, embedding theorems for dim(Ω) ≤ 3 immediately give the follwoing
lemma.

Lemma 6.3. Suppose that Assumptions of Lemma 6.1 are fulfilled. Let p̂ denote the solution of the adjoint
equation (6.9) with

〈g , v〉 =
∫
Ωg

(∇ŷ − z) · ∇v dx

as inhomogeneity. Then, there exists a positive constant c such that

‖p̂‖L4(Γr∪Γ0) ≤ c

holds true.

Remark 6.4. Clearly, the same holds for the adjoint state associated to ȳ, i.e. the solution of (4.18) such that
we have ‖p‖L4(Γr∪Γ0) ≤ c.

Now, let h ∈ Lt(Ωs) be given such that ū+ h ∈ Uad and define

û := ū+ θ h (6.10)

with a fixed, but arbitrary θ ∈ (0, 1). Clearly, if ‖h‖L2(Ωs) is sufficiently small, then û as defined in (6.10)
satisfies the assumptions of Lemma 6.1. Moreover, we define

y := S′(ū)h, and η := S′(û)h.

Then, the Taylor expansion for ŷ = S(û) = S(ū+ θ h) is given by

ŷ = S(ū) + θ S′(ū)h+ r
(1)
S = ȳ + θ y + r

(1)
S , (6.11)

where the remainder term satisfies

‖r(1)S ‖H1(Ω) ≤ ψ(‖h‖L2(Ωs)) ‖h‖L2(Ωs) (6.12)
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due to the Fréchet diffrentiability of S. Here and in the following, ψ : R
+ → R

+ denotes a generic function with
ψ(x) → 0 for every x ↓ 0. In addition to (6.11), we have

S′(ū+ θ h) = S′(ū) + θ S′′(ū)h+ r
(1)
S′ (6.13)

with a remainder term r
(1)
S′ . If one applies both sides of (6.13) to h, then

η = S′(ū+ θ h)h = S′(ū)h+ θ S′′(ū)h2 + r
(1)
S′ h = y + θ w + r̃

(2)
S (6.14)

is obtained, where w is defined by w = S′′(ū)h2, i.e. the solution of (4.10) with h1 = h2 = h. Moreover, r̃(2)S is
defined by r̃(2)S := r

(1)
S′ h.

Lemma 6.5. Assume that q is a fixed real number, chosen according to Definition 5.3, i.e. q ∈ [4/3, 2]. Then,
if ū+ h ∈ Uad and ‖h‖L2(Ωs) is sufficiently small,

‖r̃(2)S ‖H1(Ω) ≤ ψ(‖h‖L2(Ωs)) ‖h‖Lq(Ωs)

holds true.

Proof. Since S is twice Fréchet differentiable, we have

‖r(1)S′ ‖L(L2(Ωs),V ∞) ≤ ψ(‖h‖L2(Ωs)) ‖h‖L2(Ωs).

Therefore, we obtain

‖r̃(2)S ‖H1(Ω) ≤ ‖r(1)S′ ‖L(L2(Ωs),V ∞) ‖h‖L2(Ωs) ≤ ψ(‖h‖L2(Ωs)) ‖h‖2
L2(Ωs)

≤ ψ(‖h‖L2(Ωs)) ‖h‖Lq′(Ωs)
‖h‖Lq(Ωs) ≤ c ψ(‖h‖L2(Ωs)) ‖h‖Lq(Ωs),

since ‖h‖Lq′(Ωs)
≤ c ‖h‖Lt(Ωs) ≤ c ‖ub − ua‖Lt(Ωs) because of ū+ h ∈ Uad and q′ ≤ t by Assumption 2. �

If we consider y as a function in H1(Ω), it can be treated as the solution of (4.3) with

〈ϕ , v〉 =
∫
Ωs

h v dx

on the right-hand side. Moreover, embedding theorems for dim(Ω) ≤ 3 give that, h ∈ Lr(Ωs) can be identified
with an element of H1(Ω)∗, if r ≥ 6/5. In this way, estimate (4.7) in Lemma 4.1 yields the following result.

Lemma 6.6. Let the Assumptions 1–3 be fulfilled and q be given according to Definition 5.3 such that q ∈ [4/3, 2].
Then, the solution of (4.9) is estimated by

‖y‖H1(Ω) ≤ c ‖h‖Lq(Ωs) (6.15)

with a constant c only depending on Ω.

Remark 6.7. Notice that Lemma 6.6 is also valid if q ≥ 6/5. However, as we will see in Section 7, it is not
necessary to consider the case q < 4/3 here (cf. (7.8)). The same also holds for the following results in this and
the next section.

Similarly to Lemma 6.6, if we consider w = S′′(ū)h2 as solution of (4.3) with

〈ϕ , v〉 = −12
∫
Γr

(Gσ |ȳ|ȳ y2) v ds− 12
∫
Γ0

εσ |ȳ|ȳ y2 v ds,
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we obtain:

Lemma 6.8. Suppose that Assumptions 1–3 are fulfilled and q is given according to Definition 5.3. Then the
solution of (4.10) with h1 = h2 = h satisfies

‖w‖H1(Ω) ≤ c ‖h‖2
Lq(Ωs)

, (6.16)

with a constant c only depending on Ω.

Proof. In this case, (4.7) implies

‖w‖H1(Ω) ≤ c ‖ϕ‖H1(Ω)∗ ≤ c (‖Gσ |ȳ|ȳ y2‖L2(Γr) + ‖εσ |ȳ|ȳ y2‖L2(Γ0)), (6.17)

where y is as above defined by y = S′(ū)h. The first addend on the right-hand side is estimated by

‖Gσ |ȳ|ȳ y2‖L2(Γr) ≤ c ‖G‖L(L2(Γr))‖ȳ‖2
L∞(Γr)

‖y2‖L2(Γr).

Due to dim (Ω) ≤ 3, the embedding theorems imply for two arbitrary functions v1, v2 ∈ H1(Ω):

‖v1 v2‖L2(Γr) ≤ ( ‖v2
1‖L2(Γr) ‖v2

2‖L2(Γr) )1/2 = ‖v1‖L4(Γr) ‖v2‖L4(Γr)

≤ c ‖v1‖H1(Ω) ‖v2‖H1(Ω). (6.18)

Thus, with v1 v2 = y2, (6.15) yields

‖Gσ |ȳ|ȳ y2‖L2(Γr) ≤ c ‖h‖2
Lq(Ωs)

. (6.19)

Analogously, we obtain for the second addend in (6.17)

‖εσ |ȳ|ȳ y2‖L2(Γ0) ≤ c ‖h‖2
Lq(Ωs)

. (6.20)

Inserting (6.19) and (6.20) in (6.17) finally gives the assertion. �
With the previous findings, we can derive an estimation for the difference between p and p̂, i.e. the solutions

of (4.17) and (6.9) with the special inhomogeneities∫
Ωg

(∇ȳ − z) · ∇v dx and
∫
Ωg

(∇ŷ − z) · ∇v dx,

respectively.

Lemma 6.9. Let the assumptions of Lemma 6.1 be fulfilled and p and p̂ be the adjoint states associated to ȳ
and ŷ respectively. Then

‖p̂− p‖H1(Ω) ≤ ψ(‖h‖L2(Ωs))

holds true.

Proof. According to the definition of p and p̂, the difference of both solves equation (4.17) with the following
right-hand side

〈g , v〉 =
∫
Ωg

∇(ŷ − ȳ) · ∇v dx+ 4
∫
Γr

σ(|ȳ|3 − |ŷ|3)(G∗p̂) v ds+ 4
∫
Γ0

ε σ(|ȳ|3 − |ŷ|3) p̂ v ds.
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This inhomogeneity is estimated as follows: thanks to (6.18), one obtains for the L2-norm of the second addend

‖(|ȳ|3 − |ŷ|3)(G∗p̂)‖L2(Γr) ≤ ‖(G∗p̂)‖L4(Γr) ‖ |ȳ|3 − |ŷ|3 ‖L4(Γr)

≤ c ‖ |ȳ|3 − |ŷ|3 ‖L4(Γr), (6.21)

where Lemma 6.3 was used for the boundedness of G∗p̂. Arguing as in (6.7), we arrive at

‖|ȳ|3 − |ŷ|3‖L4(Γr) ≤ ‖ȳ2 + |ȳ| |ŷ| + ŷ2‖L∞(Γr)‖ȳ − ŷ‖L4(Γr) ≤ c ‖θ y + r
(1)
S ‖L4(Γr),

since ȳ and ŷ are bounded in V∞ as mentioned before. With θ ≤ 1, inserting this into (6.21) yields

‖(|ȳ|3 − |ŷ|3)(G∗p̂)‖L2(Γr) ≤ c ‖y‖L4(Γr) + ‖r(1)S ‖L4(Γr)

≤ c
(
1 + ψ(‖h‖L2(Ωs))

)‖h‖L2(Ωs) = ψ(‖h‖L2(Ωs)) (6.22)

thanks to (6.15) and (6.12). Analogously, ‖εσ(|ȳ|3 − |ŷ|3)p̂‖L2(Γ0) is estimated. For the remaining part of the
inhomogeneity, it follows

‖ŷ − ȳ‖H1(Ωg) ≤ ‖y‖H1(Ω) + ‖r(1)S ‖H1(Ω)

≤ c ‖h‖Lq(Ωs) + ψ(‖h‖L2(Ωs))‖h‖L2(Ωs) = ψ(‖h‖L2(Ωs)). (6.23)

Since Lemma 6.2 implies

‖p̂− p‖H1(Ω) ≤ c ‖g‖H1(Ω)∗ ≤ c
(‖ŷ − ȳ‖H1(Ωg) + ‖(|ȳ|3 − |ŷ|3)(G∗p̂)‖L2(Γr) + ‖(|ȳ|3 − |ŷ|3) p̂)‖L2(Γ0)

)
,

inserting (6.23) together with (6.22) into this estimate gives the assertion. �

6.2. The second derivative of j

Now, we turn to the second derivative of the reduced objective functional. Due to the chain rule, the second
derivative is given by

j′′(ū)[h1 , h2] = (∇y1 , ∇y2)L2(Ωg) + (∇ȳ − z , ∇w)L2(Ωg) + ν(h1 , h2)L2(Ωs),

with yi = S′(ū)hi, i = 1, 2, and w = S′′(ū)[h1, h2] defined by (4.10). Now inserting p as test function in the
weak formulation of (4.10) and, on the other hand, choosing w as test function in the variational formulation
of (4.17) with (∇ȳ − z , ∇v)L2(Ωg) and then subtracting both equations yield

(∇ȳ − z , ∇w)L2(Ωg) = − 12
∫
Γr

(Gσ |ȳ|ȳ y1 y2)p ds− 12
∫
Γ0

εσ |ȳ|ȳ y1 y2 p ds.

Hence, one obtains

j′′(ū)[h1 , h2] = (∇y1 , ∇y2)L2(Ωg) + ν(h1 , h2)L2(Ωs) − 12
(∫

Γr

(Gσ |ȳ|ȳ y1y2)p ds+
∫
Γ0

εσ |ȳ|ȳ y1 y2 p ds
)
. (6.24)

Lemma 6.10. Let the Assumptions 1–3 be fulfilled and y be defined by y = S′(ū)h. Then∣∣∣ ∫
Γr

(Gσ |ȳ|ȳ y2)p ds
∣∣∣+ ∣∣∣ ∫

Γ0

εσ |ȳ|ȳ y2 p ds
∣∣∣ ≤ c ‖h‖2

Lq(Ωs)
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holds true with a positive constant c independent of h and a fixed but arbitrary q ∈ [4/3, 2].

Proof. The Γr-integral is estimated as follows∣∣∣ ∫
Γr

(Gσ |ȳ|ȳ y2)p ds
∣∣∣ ≤ ‖p‖L2(Γr) ‖Gσ |ȳ|ȳ y2‖L2(Γr)

≤ c ‖y‖2
L2(Γr)

≤ c ‖h‖2
Lq(Ωs)

, (6.25)

where we used Remark 6.4, (6.18), (6.15), and the boundedness of ȳ in V∞. Analogously, we obtain for the
integral over Γ0: ∣∣∣ ∫

Γ0

εσ |ȳ|ȳ y2 p ds
∣∣∣ ≤ c ‖h‖2

Lq(Ωs)
.

Together with (6.25), this yields the assertion. �
Based on the previous results, we are now able to show the desired property of the second order remainder

term of j. We recall the Taylor expansion of j given by

j(ū+ h) = j(ū) + j′(ū)h+
1
2
j′′(ū)h2 + r

(2)
j , (6.26)

where the remainder term fulfills (5.5) since j is twice Fréchet differentiable from L2(Ωs) to R. Using the results
of Section 6.1, we show the following lemma that includes (5.5) as a special case.

Lemma 6.11. Let Assumptions 1–3 be fulfilled and q be given according to Definition 5.3, i.e. q ≥ 4/3. Then,
the remainder term r

(2)
j satisfies

|r(2)j |
‖h‖2

Lq(Ωs)

→ 0 (6.27)

for all h with ū+ h ∈ Uad and ‖h‖L2(Ωs) → 0.

Proof. This rather technical essentially benefits from the fact that the control appears only linearly in the
state equation and quadratically in the objective functional. Consequently, it vanishes in the expression for the
remainder term r

(2)
j as we will see below. Thus, r(2)j only depends on the solutions of the state equation, its

linearization and the adjoint equation. Consequently, one can employ the smoothing properties of the respective
PDE solution operators to estimate r(2)j , especially Lemmas 6.6 and 6.8 of the previous section. First, we prove
the assertion for 4/3 ≤ q ≤ 2. At the end we show, that (6.27) also holds for every q ≥ 2.

(i) Taylor expansion of j:
With (6.26) at hand, one obtains for r(2)j

r
(2)
j = j(ū+ h) − j(ū) − j′(ū)h− 1

2
j′′(ū)h2

=

1∫
0

j′(ū+ β h)h dβ − j′(ū)h− 1
2
j′′(ū)h2

=

1∫
0

β∫
0

(
j′′(ū+ θ h)h2 − j′′(ū)h2

)
dθ dβ =

1∫
0

β∫
0

ρj dθ dβ. (6.28)
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with ρj := j′′(ū+ θ h)h2 − j′′(ū)h2. Notice that j′(ū+ β h) and j′′(ū+ θ h) are well defined thanks to the chain
rule and Remark 4.3. Inserting (6.24) in the definition of ρj yields

ρj =‖∇η‖2
L2(Ωg) − ‖∇y‖2

L2(Ωg)

− 12
∫
Γr

(Gσ |ŷ|ŷ η2)p̂ ds+ 12
∫
Γr

(Gσ |ȳ|ȳ y2)p ds

− 12
∫
Γ0

εσ |ŷ|ŷ η2 p̂ds+ 12
∫
Γ0

εσ |ȳ|ȳ y2 p ds, (6.29)

where ŷ, p̂, y, and η are defined as in Section 6.1, i.e. in particular ŷ = S(û) = S(u+ θ h) and η = S′(u+ θ h)h.
Notice that, as indicated above, h does not directly appear in (6.29). Hence, ρj only depends on “smooth” PDE
solutions. Straightforward computation shows that the first addend in (6.29) can be expressed as

‖∇η‖2
L2(Ωg) − ‖∇y‖2

L2(Ωg) = J ′′(ŷ, û)(η, h)2 − J ′′(ȳ, ū)(y, h)2 =: ρJ .

(ii) Estimation of ρJ :
With (6.14) and θ ≤ 1, we find for ρJ

|ρJ | =
∣∣ ‖∇η‖2

L2(Ωg) − ‖∇y‖2
L2(Ωg)

∣∣ ≤ ∣∣ ‖η‖2
H1(Ω) − ‖y‖2

H1(Ω)

∣∣
≤ ∣∣ ‖y + θ w + r̃

(2)
S ‖2

H1(Ω) − ‖y‖2
H1(Ω)

∣∣
≤ 2 ‖w‖H1(Ω)‖y‖H1(Ω) + 2 ‖r̃(2)S ‖H1(Ω)‖y‖H1(Ω)

+ 2 ‖w‖H1(Ω)‖r̃(2)S ‖H1(Ω) + ‖r̃(2)S ‖2
H1(Ω) + ‖w‖2

H1(Ω),

(6.30)

where Lemma 6.5 holds for ‖r̃(2)S ‖H1(Ω). Moreover, Lemmas 6.6 and 6.8 give

‖y‖H1(Ω) ≤ c ‖h‖Lq(Ωs) and ‖w‖H1(Ω) ≤ c ‖h‖2
Lq(Ωs)

.

Therefore, (6.30) results in

|ρJ | ≤ ψ(‖h‖L2(Ωs)) ‖h‖2
Lq(Ωs)

, (6.31)

where ψ : R → R again denotes a generic function with ψ(x) → 0 for every x ↓ 0. Notice that the as-
sumption q ≤ 2 implies ‖h‖Lq(Ωs) ≤ c ‖h‖L2(Ωs). This is used for instance in the estimate ‖w‖H1(Ω) ≤
ϕ(‖h‖L2(Ωs)) ‖h‖Lq(Ωs).

(iii) Estimation of the boundary integrals:
Next, we estimate the difference of the integrals over Γr in (6.29):

∣∣∣ ∫
Γr

(Gσ |ŷ|ŷ η2)p̂ ds−
∫
Γr

(Gσ |ȳ|ȳ y2)p ds
∣∣∣

≤
∣∣∣ ∫
Γr

(
Gσ (|ŷ|ŷ η2 − |ȳ|ȳ y2)

)
p̂ ds

∣∣∣+ ∣∣∣ ∫
Γr

(Gσ |ȳ|ȳ y2)(p̂− p) ds
∣∣∣ =: J1 + J2. (6.32)
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Together with (6.18), Lemma 6.6 and 6.9 yield for the second addend

J2 ≤ ‖Gσ|ȳ|ȳ y2‖L2(Γr) ‖p̂− p‖L2(Γr)

≤ σ ‖G‖L(L2(Γr)) ‖ȳ‖2
L∞(Γr)

‖y2‖L2(Γr) ‖p̂− p‖H1(Ω)

≤ c ψ(‖h‖L2(Ωs)) ‖y‖2
H1(Ω) ≤ c ψ(‖h‖L2(Ωs)) ‖h‖2

Lq(Ωs)
. (6.33)

Notice that the additional assumption in Lemma 6.9, i.e. û ∈ Bρ(ū) with sufficiently small ρ, is automatically
fulfilled if ‖h‖L2(Ωs) tends to zero. Using the Taylor expansion (6.14), the first addend is transformed into

J1 =
∣∣∣ ∫
Γr

(
Gσ (|ŷ|ŷ (y + θ w + r̃

(2)
S )2 − |ȳ|ȳ y2)

)
p̂ds

∣∣∣ ≤ I1 + I2

with

I1 :=
∣∣∣ ∫
Γr

σ (|ŷ|ŷ − |ȳ|ȳ)y2 (G∗p̂) ds
∣∣∣

and

I2 :=
∣∣∣ ∫
Γr

σ |ŷ|ŷ (G∗p̂)
(
2θ y w + 2 r̃(2)S y + 2θ w r̃(2)S + (r̃(2)S )2 + θ2 w2

)
ds
∣∣∣.

We continue with

I1 ≤ σ ‖y2‖L2(Γr) ‖(|ŷh|ŷ − |ȳ|ȳ)G∗p̂‖L2(Γr)

≤ σ ‖y2‖L2(Γr) ‖G∗‖L(L4(Γr)) ‖p̂‖L4(Γr)‖ |ŷ|ŷ − |ȳ|ȳ ‖L4(Γr), (6.34)

where we used (6.18) for the last inequality. Now, we argue similarly to the derivation of (6.22): thanks to
ū, û ∈ Uad, the maximum principle in Theorem 3.6 implies ȳ, ŷ ≥ ϑ > 0. Thus, together with the Taylor
expansion (6.11)

|ŷ|ŷ − |ȳ|ȳ = ŷ2 − ȳ2 = (ŷ + ȳ)(ŷ − ȳ) = (ŷ + ȳ)(θ y + r
(1)
S )

holds true. Hence, Lemma 6.6 and (6.12) yield

‖ |ŷ|ŷ − |ȳ|ȳ ‖L4(Γr) ≤ ‖ŷ + ȳ‖L∞(Γr) (‖y‖L4(Γr) + ‖r(1)S ‖L4(Γr))

≤ c (1 + ψ(‖h‖L2(Ωs)))‖h‖L2(Ωs) = ψ(‖h‖L2(Ωs)).

Therefore, by applying Lemma 6.6 to ‖y‖2
L2(Γr)

and Lemma 6.3 to ‖p̂‖L4(Γr), (6.34) results in

I1 ≤ ψ(‖h‖L2(Ωs)) ‖h‖2
Lq(Ωs)

. (6.35)
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Using again (6.18) and Lemma 6.3, the integral I2 is estimated as follows:

I2 ≤ ‖σ |ŷ|ŷ G∗ p̂‖L2(Γr)

(
2‖yw‖L2(Γr) + 2‖r̃(2)S y‖L2(Γr) + 2‖wr̃(2)S ‖L2(Γr)

+ ‖(r̃(2)S )2‖L2(Γr) + ‖w2‖L2(Γr)

)
≤ σ‖ŷ‖2

L∞(Ωs)
‖G∗‖L(L2(Γr))‖p̂‖L2(Γr)(

2 ‖w‖L4(Γr)‖y‖L4(Γr) + 2 ‖r̃(2)S ‖L4(Γr)‖y‖L4(Γr) + 2 ‖w‖L4(Γr)‖r̃(2)S ‖L4(Γr)

+ ‖r̃(2)S ‖2
L4(Γr)

+ ‖w‖2
L4(Γr)

)
≤ c

(
2 ‖w‖H1(Ω)‖y‖H1(Ω) + 2 ‖r̃(2)S ‖H1(Ω)‖y‖H1(Ω) + 2 ‖w‖H1(Ω)‖r̃(2)S ‖H1(Ω)

+ ‖r̃(2)S ‖2
H1(Ω) + ‖w‖2

H1(Ω)

)
.

The expression on the right-hand side in the last inequality is the same as in (6.30). Hence, we argue as before
and obtain

I2 ≤ ψ(‖h‖L2(Ωs)) ‖h‖2
Lq(Ωs)

.

Together with (6.35), this implies J1 ≤ ψ(‖h‖L2(Ωs)) ‖h‖2
Lq(Ωs)

. If we insert this and (6.33) in (6.32), then

∣∣∣ ∫
Γr

(Gσ |ŷ|ŷ η2)p̂ ds−
∫
Γr

(Gσ |ȳ|ȳ y2)p ds
∣∣∣ ≤ ψ(‖h‖L2(Ωs)) ‖h‖2

Lq(Ωs)
(6.36)

is obtained. An analogous discussion for the difference of the integrals over Γ0 in (6.29) gives∣∣∣ ∫
Γ0

(εσ |ŷ|ŷ η2)p̂ ds−
∫
Γ0

(εσ |ȳ|ȳ y2)p ds
∣∣∣ ≤ ψ(‖h‖L2(Ωs)) ‖h‖2

Lq(Ωs)
.

Hence, by inserting this estimate together with (6.36) and (6.31) in (6.29), we end up with

|ρj | ≤ ψ(‖h‖L2(Ωs)) ‖h‖2
Lq(Ωs)

.

For the remainder term r
(2)
j , we finally obtain

∣∣∣r(2)j

∣∣∣ ≤ 1∫
0

β∫
0

|ρj | dθ dβ ≤ ψ(‖h‖L2(Ωs)) ‖h‖2
Lq(Ωs)

1∫
0

β∫
0

dθ dβ

≤ ψ(‖h‖L2(Ωs)) ‖h‖2
Lq(Ωs)

, (6.37)

with 4/3 ≤ q ≤ 2. Due to ‖h‖2
Lq(Ωs)

≤ c ‖h‖2
Lr(Ωs)

for every r ≥ q, (6.37) clearly holds for every q ≥ 4/3. �

Remark 6.12. As already indicated in Remark 6.7, if we assume that t ≥ 6, i.e. ua, ub ∈ L6(Ωs), then
Lemma 6.11 would also hold for 6/5 ≤ q < 4/3. However, in view of the interpolation inequality (7.8), it is
meaningless to consider the case q ∈ [6/5, 4/3) here.

7. Proof of Theorem 5.5

With the results of Section 6 at hand, it is straightforward to apply the theory developed by Casas, Tröltzsch,
and Unger in [4] to proof the main result. For convenience of the reader, we present the rather technical
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arguments. As in the proof of Theorem 5.1, we start with the Taylor expansion of the reduced objective
functional

j(u) = j(ū) + j′(ū)(u− ū) +
1
2
j′′(ū)(u − ū)2 + r

(2)
j (7.1)

with u ∈ Uad.

(i) Estimation of the first derivative j′(ū)(u − ū)
A pointwise evaluation of the necessary conditions in (4.20) yields

j′(ū)(x)
(
u(x) − ū(x)

)
=
(
p(x) + νū(x)

)(
u(x) − ū(x)

) ≥ 0 a.e. in Ωs, ∀ u ∈ Uad.

This implies (p(x) + νū(x))(u(x) − ū(x)) = |p(x) + νū(x)| |u(x) − ū(x)|. Hence, with Definition 5.2, we obtain
for the first derivative of j

j′(ū)(u− ū) =
∫

Aτ

∣∣p(x) + νū(x)
∣∣∣∣u(x) − ū(x)

∣∣ dx+
∫

Ωs\Aτ

∣∣p(x) + νū(x)
∣∣∣∣u(x) − ū(x)

∣∣ dx
≥
∫

Aτ

τ |u(x) − ū(x)| dx = τ ‖u− ū‖L1(Aτ ). (7.2)

(ii) Estimation of the second derivative j′′(ū)(u − ū)2

Let ũ be defined by

ũ(x) =
{
ū(x), for x ∈ Aτ

u(x), for x /∈ Aτ ,

and thus (ũ− ū) ∈ Cτ (ū), thanks to Definition 5.4. We continue with

j′′(ū)(u − ū)2 = j′′(u− ũ+ ũ− ū)

= j′′(ū)(u − ũ)2 + 2 j′′(ū)[u− ũ, ũ− ū] + j′′(ū)(ũ− ū)2. (7.3)

In the following, we estimate the three addends on the right-hand side of (7.3) separately. To that end, define
y = S′(ū)u and ỹ = S′(ū)ũ. Then, with (6.24) and Lemma 6.10, one obtains

j′′(ū)(u− ũ)2 = ‖∇(y − ỹ)‖L2(Ωg) + ν‖u− ũ‖L2(Ωs)

− 12
∫
Γr

G
(
σ |ȳ|ȳ (y − ỹ)2

)
p ds− 12

∫
Γ0

εσ |ȳ|ȳ (y − ỹ)2 p ds

≥ −12
∣∣∣ ∫
Γr

G
(
σ |ȳ|ȳ (y − ỹ)2

)
p ds+

∫
Γ0

εσ |ȳ|ȳ (y − ỹ)2 p ds)
∣∣∣

≥ −c1 ‖u− ũ‖2
Lq(Ωs)

, (7.4)

where c1 denotes a positive generic constant. Moreover, here and in the following, q is as before given by
Definition 5.3 such that q ∈ [4/3, 2]. The second addend is transformed into

j′′(ū)[u− ũ, ũ− ū] =
(∇(y − ỹ) , ∇(ỹ − η)

)
L2(Ωg)

+ ν
(
u− ũ , ũ− ū

)
L2(Ωs)

−12
∫
Γr

G
(
σ |ȳ|ȳ (y − ỹ) (ỹ − η)

)
p ds− 12

∫
Γ0

εσ |ȳ|ȳ (y − ỹ) (ỹ − η) p ds,
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where y and ỹ are defined as above and η is given by η = S′(ū)ū. By the definition of ũ, we have (ũ− ū)(x) = 0,
if x ∈ Aτ , and (u− ũ)(x) = 0, if x ∈ Ωs\Aτ , and hence (u− ũ , ũ− ū)L2(Ωs) = 0. Moreover, Lemma 6.6 implies

−∣∣(∇(y − ỹ) , ∇(ỹ − η)
)

L2(Ωg)

∣∣ ≥ −‖y − ỹ‖H1(Ω) ‖ỹ − η‖H1(Ω)

≥ −c ‖u− ũ‖Lq(Ωs) ‖ũ− ū‖Lq(Ωs).

The boundary integrals are again estimated with Lemma 6.10, and hence it follows that

j′′(ū)[u− ũ, ũ− ū] ≥ −c2 ‖u− ũ‖Lq(Ωs) ‖ũ− ū‖Lq(Ωs)

with a positive generic constant c2. Due to (ũ− ū) ∈ Cτ (ū), condition (SSC) yields for the last addend in (7.3)

j′′(ū)(ũ − ū)2 ≥ δ ‖ũ− ū‖2
Lq(Ωs)

. (7.5)

In view of

‖u− ū‖2
Lq(Ωs)

= ‖u− ũ+ ũ− ū‖2
Lq(Ωs)

≤ ‖u− ũ‖2
Lq(Ωs)

+ 2 ‖u− ũ‖Lq(Ωs) ‖ũ− ū‖Lq(Ωs) + ‖ũ− ū‖2
Lq(Ωs)

,

this, together with (7.4) and (7.5), implies

j′′(ū)(u− ū)2 ≥ δ ‖u− ū‖2
Lq(Ωs)

− (δ + c1) ‖u− ũ‖2
Lq(Ωs)

− (2δ + c2) ‖u− ũ‖Lq(Ωs) ‖ũ− ū‖Lq(Ωs).

By applying Young’s inequality, we obtain

j′′(ū)(u − ū)2 ≥ δ ‖u− ū‖2
Lq(Ωs)

−
(
δ + c1 +

2δ + c2
κ

)
‖u− ū‖2

Lq(Aτ ) − (2δ + c2)κ ‖u− ū‖2
Lq(Ωs)

, (7.6)

with an arbitrary κ > 0. Here, we used that

‖u− ũ‖Lq(Ωs) = ‖u− ū‖Lq(Aτ )

and

‖ũ− ū‖Lq(Ωs) = ‖u− ū‖Lq(Ω\Aτ ) ≤ ‖u− ū‖Lq(Ωs)

hold true thanks to the definition of ũ.

(iii) The quadratic growth condition
Next, we insert (7.2) and (7.6) in the Taylor expansion (7.1) and obtain

j(u) ≥ j(ū) + τ ‖u− ū‖L1(Aτ ) − 1
2

(
δ + c1 +

2δ + c2
κ

)
‖u− ū‖2

Lq(Aτ )

+
1
2

(
δ − (2δ + c2)κ− 2

|r(2)j |
‖u− ū‖2

Lq(Ωs)

)
‖u− ū‖2

Lq(Ωs)
. (7.7)

The well-known interpolation inequality (cf. Brezis [2]) implies

‖u− ū‖2
Lq(Aτ ) ≤ ‖u− ū‖L1(Aτ )‖u− ū‖Ls(Aτ )

≤ ‖u− ū‖L1(Aτ )‖u− ū‖Ls(Ωs), (7.8)
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with s and q according to Definition 5.3. Then (7.7) results in

j(u) ≥ j(ū) + a1 ‖u− ū‖L1(Aτ ) +
1
2
a2 ‖u− ū‖2

Lq(Ωs)
, (7.9)

with

a1 = τ − 1
2

(
δ + c1 +

2δ + c2
κ

)
‖u− ū‖Ls(Ωs)

and

a2 = δ − (2δ + c2)κ− 2
|r(2)j |

‖u− ū‖2
Lq(Ωs)

·

To derive the quadratic growth condition (5.9), we show that a1 and a2 are non negative, if ‖u − ū‖Ls(Ωs) is
sufficiently small. We start with a2 and define εr := |r(2)j |/‖u− ū‖2

Lq(Ωs)
. Due to Lemma 6.11, i.e. the property

of the second-order remainder term, εr tends to zero if ε1 := ‖u−ū‖L2(Ωs) is chosen sufficiently small. Therefore,
if we also set κ sufficiently small, there exists a constant σ̄ such that

a2 = δ − (2δ + c2)κ− 2 εr ≥ 2 σ̄ > 0. (7.10)

Furthermore, a1 is non negative, if ε2 := ‖u− ū‖Ls(Ωs) is sufficiently small, i.e.

ε2 ≤ 2 τ
δ + c1 + (2δ + c2)/κ

·

By assumption, we have s ≥ 2 and therefore,

‖u− ū‖L2(Ωs) ≤ cs ‖u− ū‖Ls(Ωs) ≤ cs ε2

follows. Thus, if we set ε̄ = min{ε2 ; ε1/cs}, then (7.10) is satisfied and a1 is non negative. Therefore, for every
u ∈ Uad with ‖u− ū‖Ls(Ωs) ≤ ε̄,

j(u) ≥ j(ū) +
1
2

(δ − (2δ + c)κ− 2 εr) ‖u− ū‖2
Lq(Ωs)

≥ j(ū) + σ̄ ‖u− ū‖2
Lq(Ωs)

holds true. �

Remark 7.1. The analysis, presented above, is mainly based on the fact that the control only appears linearly
in the state equation and quadratically in the objective functional. According to this, it is easy to see that the
presented theory also holds for a general class of semilinear elliptic control problems, namely

(P)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minimize J(y, u) =
∫
Ω

fΩ(y,∇y) dx+
∫
Γ

fΓ(y) ds+
ν

2

∫
Ω

u2 dx

subject to Ay(x) + d(x, y(x)) = u(x) + gΩ(x) in Ω
∂y

∂n
+ b(x, y(x)) = gΓ(x) on Γ

and ua ≤ u(x) ≤ ub a.e. in Ω,
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with functions fΩ and fΓ of class C2,1. Furthermore, it has to be verified that the state equation admits
a solution in H1(Ω) ∩ L∞(Ω) and that the corresponding linearized equation admits solutions in H1(Ω) for
inhomogeneities in H1(Ω)∗. This is for instance the case if A is a second order elliptic operator with coefficients
in L∞(Ω), d and b are of class C2,1 with respect to both arguments and monotone increasing with respect to
the second variable, and gΩ and gΓ are given functions in L2(Ω) and L4(Γ), respectively. Finally, for ua and ub,
one has to assume ua, ub ∈ Lt(Ω) as required in Assumption 2.
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