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Abstract. We study a parameter (σ) dependent relaxation of the Travelling Salesman Problem on R
2.

The relaxed problem is reduced to the Travelling Salesman Problem as σ → 0. For increasing σ it is
also an ordered clustering algorithm for a set of points in R

2. A dual formulation is introduced, which
reduces the problem to a convex optimization, provided the minimizer is in the domain of convexity of
the relaxed functional. It is shown that this last condition is generically satisfied, provided σ is large
enough.
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1. Introduction

The object of this paper is to investigate an optimization problem which we name “The Lazy Travelling
Salesman Problem” (LTSP). As the name suggests, it is closely related to the classical Problem of Travelling
Salesman (TSP).

The version of the LTSP we have in mind is as follows: let V be a set of n points v1, . . . , vn ∈ R
2. Let σ > 0.

Given a closed, Jordan curve Γ ⊂ R2, let L(Γ) be the length of this curve and Dist(v, Γ) the distance of a point
v ∈ R2 to Γ. The object is to find such a closed curve Γ which minimize

Fσ(Γ) :=
1
n

n∑
i=1

dist2(vi, Γ) + σL2(Γ). (1)

It is easily seen that a minimal curve Γ must be a polygonal, closed curve, of at most n vertices (and edges).
Given this fact, we can restrict Fσ to the set of closed polygons of (at most) n vertices and represent it as a
function of �u ∈ Rn × Rn, �u = (u1, . . . , un) where uj ∈ R2, via

Gσ,n(�u) :=
1
n

n∑
j=1

min
1≤i≤n

|ui − vj |2 + σL2(�u) (2)
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where

L(�u) :=

√√√√[ n∑
1

|ui+1 − ui|
]2

. (3)

Here, the closed polygon Γ is represented by an ordered set of the (not necessarily distinct) vertices u1, . . . , un,
where we identify un+1 with u1.

Note that Fσ is a relaxation of a version of the TSP defined as:
TSP: Find the shortest possible closed path in R2 which contains all the points {v1, . . . , vn} := V .

Indeed, TSP is the limit of the LTSP where σ → 0. Intuitively, this follows from the observation that, in
this limit, the first term of Fσ must be very small for the minimizer, so the optimal curve Γ corresponding to
small σ > 0 must be very close to any point v ∈ V . Hence the optimal Γ is a polygon of n vertices, where each
vertex is very close (in fact, O(σ1/2) close) to a corresponding v ∈ V . Once the set of vertices u1, . . . , un ∈ R2

of Γ is determined, their ordering should minimize the second part of Fσ, namely, the polygonal curve Γ is the
solution of TSP corresponding to the points u1, . . . , un ≈ v1, . . . , vn in the optimal order.

The LTSP can be seen in a broader context of snakes, elastic networks and Kohonen maps.
The snake was proposed in 1987 [13] as an active contour algorithm for edge linking. This is a basic operation

in image analysis whose goal is as follows: For a given set of n points representing an edge of an image, find
an ordered set (usually large) of m points which approximates a continuous boundary. It is formulated as a
nonlinear optimization problem for the cost function (see [2])

J(�u) = −
m∑

i=1

n∑
j=1

φβ

(|ui − vj |2
)

+ σ�utA�u (4)

where φβ(d) = exp(−d/2β2), A is a symmetric, 2m × 2m Toeplitz matrix, and σ > 0 a fixed parameter (which
may depend on m).

Elastic networks were proposed by Durbin and Willshaw [3], (see also [9]) for the purpose of finding the
shorts routes of the TSP. It was also suggested as a tool for image analysis [12]. It’s objective, similar to this of
the snake, is to order the set of detected points along a continuous curve. However, there is a difference between
the two methods, as an edge detector (such as the snake) is designed to disregard spurious edge points and, in
addition, to penalize curves of large curvature. The elastic network, on the other hand, is proposed to take into
account all the points in the data base and penalize long curves. The cost function for an elastic network is of
the form

J(�u) = −2
β2

n

n∑
i=1

log

⎛
⎝ m∑

j=1

φβ

(|uj − vi|2
)⎞⎠+ m σ �utA�u (5)

where A is a regularization matrix, e.g.

�utA�u =
m∑

j=1

|uj+1 − uj |2; un+1 = u1 (6)

and the scaling factor m of the second term of (5) is determined so that it’s stationary value is an approximation
of the square of the path’s length 1 as m → ∞. Note also that the first term in (5) tends to the first term of (2),
as β → 0.

The Kohonen map [7] is another algorithm of objects linking. Like (4) and (5), it contains an external
potential term and a regularization term. A unified approach of snakes, elastic nets and Kohonen maps is
described in [1]. For comparison of all these methods and the Burr’s modified elastic net (which is very similar
to our approach), see [4].

1The function (6) is an approximation for the square length if m � ∆/δ, where ∆ (respectively δ) is the maximal (respectively
minimal) distance between two “cities” in V .
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Figure 1. Typical solution of the LTSP when σ is large enough: the optimal polygon is convex
and each input point belongs to a normal cone on one of the vertices (marked by the dash
lines).

The LTSP can also be seen as a particular case of this unified approach. The difference between the LTSP
and the elastic net (in the limit β = 0) is the form of the regularizing term. In LTSP the regularizing term (3) is
given by the exact length square of the orbit while in elastic nets the regularizing term (6) is the sum of squares
of the distances between consecutive points. The relation m�utA�u ≈ L(�u) is valid only for optimal solutions in
the limit of large m.

The main advantage of the LTSP is, therefore, that it represents a continuous algorithm for the TSP without
the need to increase the number of test points (m) above the number of “cities” (n). The disadvantage is that
the path length (3) is not a quadratic function as in (6). As such, it is harder to calculate numerically (since
it involves the evaluation of the quare-root), and turns out to be non-smooth at points where two (or more) of
the vertices coincide. This last point, however, makes it also more interesting, as explained below.

The interest we have in the LTSP is not only due to its relation to the TSP. As σ is increased, the optimal
polygonal solutions Γσ may undergo a “phase change”, where two, or more of its vertices may coincide. The
number of vertices k of the optimal polygons my satisfy k < n for sufficiently large σ – see Figure 1.

This leads to an, apparently, new version of a clustering problem, where the given set V ⊂ R2 is clustered
into k disjoint subsets of “mutually closed” points. Unlike other clustering algorithms, the number of clusters
k is not determined a priori, but depends on the parameter σ. For a related method, see [5]. Application of
clustering induced by TSP in biology can be found in [10].

In this paper we apply a dual formulation for the cost function (3) of the TSP, as well as to the LTSP (2).
This dual formulation enables us to calculate the convexification of these problems in an efficient2 way. This
yields an efficient computation of lower bound of the optimal solution. In addition, we show that, for sufficiently
large σ, the LTSP is convex near the optimal solution. In particular, it is possible to calculate efficiently the
optimal solution for the clustering problem associated with the LTSP of sufficiently large σ.

1.1. Layout

In Section 2 we establish some notations and formulate the LTSP. We also study some properties of its
minimizers. In Section 3 we consider the TSP as a limit σ = 0 of the LTSP as formulated in Section 2 and

2That is, in time which is polynomial in the number of “cities” n.
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introduce its dual formulation. The dual problem is convex and can be computed efficiently. However, the
optimality of this estimate, as well as the validity of the dual formulation, is conditioned on the assumption
that the minimizer is in the domain of convexity of the TSP.

In Section 4 we extend the dual formulation to the LTSP. In addition, we introduce the analog of the results
of Section 3 for this case.

Finally, in Section 5 we show the optimality of the main results of Section 4 for almost all distributions of
points (v1, . . . , vn) if the relaxation parameter σ is large enough.

2. Formulation of the LTSP

Let {vi}n
i=1 be a set of points in C ≡ R2 . We define an order on this set by representing it as an element

�v ∈ C
n in the following way

�v = (v1, . . . , vn).

Remark 2.1. We always identify vn+1 with v1.

Notations. Let Sn be the group of permutations on {1, . . . , n}, τ any permutation in Sn, τc the cyclic
permutation τc(i) = i + 1 and �u = (u1, . . . , un) ∈ Cn,

(i) �uτ := (uτ1 , . . . , uτn);
(ii) �δu := �uτc − �u ∈ Cn;
(iii) for u, v ∈ C, [u, v] := ∪0≤t≤1 {tu + (1 − t)v} ⊂ C;
(iv) the closed polygon p�δu := ∪n

1 [ui+1 − ui] ⊂ C;
(v) the length of this path is Ln(�u) := L

(
p�δu

)
:=
∑n

i=1 |ui+1 − ui|;
(vi) ‖�u − �v‖ :=

√∑n
1 |ui − vi|2 stands for the Euclidean norm in Cn.

Definition 2.2. Let Gσ,n : C
n × C

n → R
+ given by

Gσ,n(�u,�v) :=
1
n
‖�u − �v‖2 + σL2

n(�u).

Clearly, Ln is a coercive, convex function. If we fix �v ∈ Cn then Gσ,n(·, �v) is a strictly convex, coercive and
continuous function of the first variable. Hence

Lemma 2.3. For every n ∈ N, σ > 0 and �v ∈ C
n, Gσ,n(·, �v) has a unique minimizer.

Another definition we need is:

Definition 2.4. Gτ
σ,n(�u,�v) := Gσ,n(�u,�vτ ) ∀�u, �v ∈ Cn.

The last definition provides us with new function on C2n.

Definition 2.5. Gσ,n(�u,�v) := minτ∈Sn Gτ
σ,n(�u,�v).

The observation that a minimizer Γ of the functional Fσ given by (1) is a polygon of at most n vertices
implies that Γ = p�δu where �u is a minimizer of Gσ,n(·, �v). In particular, some of the coordinates of �u may
coincide, if the number of the vertices of the optimal polygon Γ is smaller than n.

By Lemma 2.3 we get:

Proposition 2.6. For any �v, Gσ,n(·, �v) has a (possibly nonunique) global minimizer.

We next investigate properties of the minimizer of Gτ
σ,n(·, �v) for prescribed τ and �v. By Definition 2.4 we

may take τ to be the identity permutation and replace Gτ
σ,n by Gσ,n. Let �u0 be a minimizer of Gσ,n(�u,�v) of

the form
�u0 = (u0

1, . . . , u
0
1︸ ︷︷ ︸

m1

, . . . , u0
k, . . . , u0

k︸ ︷︷ ︸
mk

), with u0
i 
= u0

j for i 
= j (7)
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σ=0.0001

σ=0.05
cities

Figure 2. The orbit of the LTSP for small σ (solid line) and larger σ (dashed line). Note that
the number of vertices reduced from 5 points for small σ to 4 points for larger σ.

with
∑k

j=1 mj = n. Define Ml = m1+. . .+ml−1, (m0 = 0) for l = 1, . . . , k. We cluster the set V := {v1, . . . , vn}
into k disjoint subsets as follows:

Vl :=
{
vMl+1, . . . , vMl+1

}
; l = 1, . . . , k.

Define also
�u1 :=

(
u0

1, . . . , u
0
k

) ∈ C
k.

Lemma 2.7. A minimizer �u0 of Gσ,n of the form (7) satisfies, for l = 1, . . . , k:

u0
l −

1
ml

ml∑
j=1

vl,j =
n

ml
σLn(�u0)(el − el+1) (8)

where

el =
u0

l − u0
l−1

|u0
l − u0

l−1|
· (9)

The geometrical meaning is that the center of mass of the points in Vl lies on the bisection of the normal cone
at ul (see Fig. 1).

Proof. Let

hσ(�u) =
1
n

k∑
l=1

∑
v∈Vl

|ul − v|2 + σL2
k(�u) (10)

be a function hσ : C
k × C

n → R
+. Evidently, hσ(�u1) = Gσ,n(�u0) and �u1 is a minimizer of hσ on C

k if and
only if �u0 is a minimizer of Gσ,n on Cn. Note that, in contrast to Gσ,n at �u0, hσ is differentiable at �u1. The
equality (8) follows by equating its derivative to zero. �

We immediately get

Corollary 2.8. The center of mass of a minimizer �u0 of Gσ,n coincides with the center of mass of �v, namely

u0,cm :=
1
n

n∑
i=1

u0
i =

1
n

n∑
i=1

vi := vcm.
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3. Dual problem for the TSP

The inner product in Cn is defined as

〈�u,�v〉 :=
n∑
1


e(viui),

with u stands for the complex conjugate of u ∈ C.
We recall some basic definitions:
Let f : Cn → R. The subdifferential of f at �u is given by

∂�uf := {�s ∈ C
n; f(�y) ≥ f(�u) + 〈�s, �y − �u〉, ∀�y ∈ C

n} .

Below we list some properties of ∂f :

Lemma 3.1.

(1) If f is a convex function on Cn then ∂�uf 
= ∅ for any �u ∈ Cn.
(2) If f is differentiable at �u ∈ Cn then either ∂�uf = ∅ or ∂�uf is a singleton, given by the gradient {∇�uf}

of f at �u.
(3) If f is homogeneous of degree k then f(�u) = k−1〈�u, �y〉 ∀�y ∈ ∂�uf .
(4) If g(�y) ≥ f(�y) ∀�y ∈ Cn and g(�u) = f(�u), then ∂�uf ⊂ ∂�ug.

Recall the definition of the length function Ln (notation (v)). The following lemma follows from Lemma 3.1.

Lemma 3.2. For �u = (u1, . . . , un) ∈ Cn, set u0 = un, u1 = un+1. For i = 1, . . . , n+1 define ei = ui−ui−1
|ui−ui−1| ∈ C

if ui 
= ui−1, while |ei| � 1 , if ui = ui−1. Then

∂�uLn = {�s ∈ C
n; �s = (s1, . . . , sn) where si = ei − ei+1} .

Let

W0 =

{
�u = (u1, . . . , un) ∈ C

n, ui ∈ C,

n∑
1

ui = 0

}
.

We obtain, in particular,

Corollary 3.3. If �s ∈ ∂�uLn, then �s ∈ W0. If uj 
= uj for i 
= j and n > 1, then ∂�uLn is a singleton, that is,
the gradient of Ln exists at �u and ∂�uLn = {∇�uLn}.

We can identify, therefore, �s ∈ ∂�uLn with a closed polygon p�s whose vertices are given in terms of the
corresponding ordered sequence �s = �δe. Here, si = ei+1 − ei where ei are given, in terms of �u, by (9) (see
notation (iv)).

For any such polygon p, consider the minimal circle which bound p (M.B.C.). Let ρ(p) be the radius of this
circle.

Definition 3.4. The function R : Cn → R+ ∪ {∞} is

R(�s) =
{

ρ(p�s); if �s ∈ W0

+∞; if �s 
∈ W0.

Proposition 3.5. Let �s ∈ ∂�uLn where �u = {u1, . . . , un}. Assume ui 
= uj for some i, j ∈ {1, . . . , n}. Then
R(�s) = 1.
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Proof. First note that �s ∈ W0 hence R(�s) < ∞. By definition of p�s, the vertices of this polygon are given by
the vectors ei, which are contained in the unit disk. Hence the unit circle contains this polygon. We now show
that this is the minimal circle. Consider the set I := {i1, . . . , im} ⊂ {1, . . . , n}, im+1 ≡ i1, such that |eik

| = 1.
All we have to show now is that any π-arc of the unit circle contains at least one of the vectors eik

. Assume
the contrary. Then there exists l ∈ C for which 〈l, eik

〉 > 0 for k = {1, . . . , m}. Hence 〈uik
− uik−1 , l〉 > 0. It

follows that
∑m

k=1〈uik+1 − uik
, l〉 > 0. However,

∑m
k=1(uik+1 − uik

) =
∑n

k=1(uk+1 − uk) = 0. �

Corollary 3.6. If �s ∈ ∂�u[L2
n/2] = Ln(�u)∂�uLn then Ln(�u) = R(�s).

Using the 1-homogeneity of L with Lemma 3.1-(3) we also have:

〈�u,�s〉 = Ln(�u) ∀�s ∈ ∂�uLn. (11)

Similarly, L2
n/2 is 2-homogeneous, hence

〈�u,�s〉 = L2
n(�u) ∀�s ∈ ∂�uL2

n/2. (12)

Let us recall the definition of the Legendre-Fenchel transform f∗ of a function f : Cn → R:

f∗(�s) = sup {〈�s,�v〉 − f(�v) ; �v ∈ C
n} . (13)

Recall also the convex hull of a function f : Cn → R:

f c(�s) = sup
h

{h(�v) ; h convex and h ≤ f on C
n } . (14)

We summarize below the main properties of f∗. Most of the proofs can be found in [6], Chapter X.

Lemma 3.7. Suppose f is bounded from below by some affine function. Then
(1) f∗ is a convex function;
(2) f∗∗ = f c;
(3) ∂�vf 
= ∅ ⇐⇒ f c(�v) = f(�v);
(4) �s ∈ ∂�vf =⇒ �v ∈ ∂�sf

∗;
(5) Given �v ∈ Cn, if there exists �s such that f(�v) + f∗(�s) = 〈�v,�s〉 then f(�v) = f c(�v) = f∗∗(�v). Moreover,

�v ∈ ∂�sf
∗ and �s ∈ ∂�vf .

Lemma 3.8. The Legendre-Fenchel transform of L2
n/2 is given by[

1
2
L2

n

]∗
(�s) =

[
1
2
L2

n

]
(�u) =

1
2
R2(�s)

for any �u ∈ ∂�s

[
R2/2

]
.

Proof. First we note that ∂�uLn ⊂ W0. By (12), the convexity of L2
n and Lemma 3.7-(3) we obtain, for

�s ∈ ∂�u[L2
n/2], [

L2
n/2

]∗
(�s) = 〈�s, �u〉 − L2

n(�u)/2 = L2
n(�u)/2.

By Corollary 3.6 we get the desired result for s ∈ W0.
Next we observe that Ln(�w) = 0 for any �w ∈ W⊥

0 . If �s 
∈ W0 let �w ∈ W⊥
0 for which 〈�s, �w〉 = δ > 0. Then,

by (13), [
1
2
L2

n

]∗
(�s) ≥ 〈�s, α�w〉 − 1

2
L2

n(α�w) = α〈�s, �w〉 = αδ

for any α > 0. Letting α → ∞ we obtain [L2
n]∗(�s) = ∞ for �s 
∈ W0. �
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Next define
T (�u) = min

(
L2

n(�uτ )/2 ; τ ∈ Sn

)
.

Evidently, T is not, in general, a convex function on Cn, since a minimum of a family of convex functions is
not necessarily convex. However, T ∗ is defined and convex (by Lem. 3.7 (1)). In Lemma 3.9 below we state
that T ∗(�s) can be interpreted in terms of the maximal radius of the minimal circles which bound all polygons
obtained by permutations of the components of �s.

Lemma 3.9. The Legendre-Fenchel transform of T is a convex function, given by

T ∗(�s) =
1
2

max
τ∈Sn

R2(�sτ ).

Proof. By definition:

T ∗(�s) = sup
�u

{
〈�s, �u〉 − min

τ

[
L2

n(�uτ )/2
]}

= max
τ∈Sn

sup
�u

{〈�s, �u〉 − [L2
n(�uτ )/2

]}
.

Now we use 〈�s, �u〉 = 〈�sτ , �uτ 〉 for any τ ∈ Sn to obtain:

T ∗(�s) = max
τ∈Sn

sup
�u

{〈�sτ , �uτ 〉 −
[
L2

n(�uτ )/2
]}

= max
τ∈Sn

sup
�u

{〈�sτ , �u〉 − [L2
n(�u)/2

]}

= max
τ

[
1
2
L2

n

]∗
(�sτ )

and the result follows from Lemma 3.8. �

We turn now to the dual representation of the TSP. Let T c be the convex hull of T . Note that T c(�u) ≤ T (�u)
for any �u ∈ Rn. Define:

D0 = {�u ∈ C
n ; T c(�u) = T (�u)} . (15)

Next, define
H(�s,�v) = 〈�s,�v〉 − T ∗(�s). (16)

Evidently, H is a concave and coercive function of the first argument. Hence, for any fixed �v ∈ Cn, a maximizer
�s ∈ W0 of H exists.

Definition 3.10. Given �v ∈ Cn, a permutation τ ∈ Sn is ordered well for �v if T (�v) = L2
n(�vτ )/2. The vector

�v ∈ Cn is ordered if T (�v) = L2
n(�v)/2.

Similarly, τ is a cyclic order for �s ∈ W0 if T ∗(�s) = R2(�sτ )/2, and �s ∈ W0 is ∗−ordered if R2(�s)/2 = T ∗(�s).

From Lemma 3.1-(4), the convexity of Ln and Definition 3.10 we obtain

Lemma 3.11. If �v is ordered then ∂�vT ⊂ ∂�vL2
n/2.

Recall that ∂�vT can be an empty set (even though ∂�vLn is never empty). By Lemmas 3.11 and 3.7 we obtain

Corollary 3.12. �v ∈ D0 if and only if ∂�vT 
= ∅. In this case, the following claims are equivalent:
(i) �s ∈ ∂�vT ;
(ii) �v ∈ ∂�sT

∗;
(iii) T (�v) + T ∗(�s) = 〈�s,�v〉;
(iv) �s is a maximizer of H(·, �v) on W0;
(v) H(�s,�v) = T (�v).

The main theorems of this section are:

Theorem 3.13. If �v ∈ D0 is ordered then there exists �s ∈ ∂�vT which is ∗−ordered.
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An interesting conclusion is the following:

Theorem 3.14. Let �v = (v1, . . . , vn) ∈ D0 satisfy vi 
= vj for i 
= j. Then there is a unique maximizer �s0 of
H(·, �v) (16). Moreover, if τ is ordered well for �v then it is also a cyclic order for �s0.

The next theorem provides us with a natural lower bound for the optimal solution of the TSP:

Theorem 3.15. Given �v ∈ Cn, then for any �s ∈ W0:

T (�v) ≥ 〈�s,�v〉2
4T ∗(�s)

· (17)

Moreover, this is a sharp estimate if �v ∈ D0.

Proof of Theorem 3.13. By definition of the Legendre-Fenchel transform, Lemma 3.7-(2), the convexity of L2
n

and Lemma 3.8, for any �s′ ∈ W0:

〈�s′, �v〉 − R2(�s′)/2 ≤ [
L2

n/2
]∗∗

(�v) = L2
n(�v)/2.

Since T ∗ ≥ R2/2 by definition, it follows that

〈�s′, �v〉 − R2(�s′)/2 ≥ H(�s′, �v), (18)

so
L2

n(�v)/2 ≥ H(�s′, �v) (19)
holds for any �s′ ∈ W0. On the other hand, �s ∈ ∂�vT implies, via Corollary 3.12, that the right hand side of (19)
is maximized at �s′ = �s, and H(�s,�v) = T ∗∗(�v). Since �v ∈ D0 then T ∗∗(�v) ≡ T c(�v) = T (�v). Since �v is ordered,
L2

n(�v)/2 = T (�v). As a result, there is an equality in (19) for �s′ = �s. In particular, it follows that there must be
an equality in (18) for �s′ = �s as well, so

〈�s,�v〉 − R2(�s)/2 = H(�s,�v),

so T ∗(�s) = R2(�s)/2 by (16), which implies that �s is ∗−ordered by definition. �

Proof of Theorem 3.14. By definition, T ∗∗ ≤ T ≤ L2
n/2. Assume first �v is ordered. Then, by assumptions,

T ∗∗(�v) = T (�v) = L2
n(�v)/2. By Lemma 3.1-(4) it follows that ∂�vT

∗∗ ⊂ ∂�vT ⊂ ∂�vL2
2/2. However, by Lemma 3.7

and convexity of T ∗∗ it follows that ∂�vT
∗∗ 
= ∅. In addition, by Corollary 3.3, ∂�vL2

n/2 =
{∇�vL2

n/2
}

is a
singleton. Hence ∂�vT

∗∗ is singleton as well. It follows that the maximizer �s0 ∈ ∂�vT ∗∗ of H(·, �v) is singleton as
well.

Now, if �v is not ordered, let τ be an ordered well permutation for �v, so �vτ is ordered by definition. Since
H(�s,�vτ ) = H(�sτ , �v), it follows that �s0 is a maximizer of H(·, �vτ ) if and only if �s0,τ is a maximizer of H(·, �v).
By Theorem 3.13 it follows that �s0,τ is ∗−ordered, hence τ is a cyclic order. �

Proof of Theorem 3.15. First, note that

T (�v) ≥ T ∗∗(�v) ≥ H(�s,�v)

for any �s ∈ W0. So

T (�v) ≥ max
λ∈R

H(λ�s,�v) = max
λ∈R

[
λ〈�v,�s〉 − λ2T ∗(�s)

]
=

〈�s,�v〉2
4T ∗(�s)

·
Finally, we already know that the equality is achieved for �s ∈ ∂�vT , if �v ∈ D0. �
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Figure 3. The minimal circle of the polygon in the figure is increased when reordering the
edges and getting a convex polygon.

The significance of Theorems 3.14 and 3.15 is originated from the fact that the computation of T ∗, in contrast
to the computation of T , is efficient.

To compute T ∗(�s) it is necessary to compute the radius of the minimal bounding circle (M.B.C) R(�sτ ) for
all the polygons obtained by permutations τ ∈ Sn of the edges (v1, . . . , vn). It is known (see [8]) that, for a
given n−gon in the plane, the radius of its M.B.C. can be computed by O(n log n) calculations. Recently, it
was improved to O(n) [11]. So, the apparent difficulty in the computation of T ∗ seems to be originated from
the necessity to perform all permutations, which is, of course, an exponentially large set.

However, the computational cost of T ∗ is only linear! This is the result of the following:

Proposition 3.16. Given �s = (s1, . . . , sn) ∈ W0, there exists a unique convex n−gon whose edges are composed
of the coordinates sj of �s. The maximal bounding circle corresponding to this polygon is the maximal possible
one within all rearrangements of the coordinates of �s.

There is a simple way to construct this convex polygon. Let �s =
(|s1|eiθ1 , . . . , |sn|eiθn

)
. Then all we have to

do is just to permute the coordinates i → τ(i) so that 0 ≤ θτ(i) ≤ θτ(i+1) < 2π, i = 1, . . . , n − 1. The polygon
corresponding to �sτ is the required convex one.

It should be emphasized, however, that the above convex polygon is not, in general, the only one corresponding
to a maximal M.B.R (see Fig. 3 below). Nevertheless, since vi 
= vj for all components of �v, it follows that the
maximizer �s of H(·.�v) is the gradient of L2

n/2 at the ordered well rearrangement of �v, and all the vertices of the
corresponding polygon are on a circle by Lemma 3.2.

Proof. 3 Let p be the optimal polygon (of maximal radius of the minimal bounding circle C). Let p1, . . . , pk,
k ≤ n, be the vertices of p on C. Let D be the closed disk bounded by C. Evidently, D is also the minimal disk
which contains the points p1, . . . , pk. Moreover, if we add a point pk+1 
∈ D then the minimal disk containing
p1, . . . , pk+1 is of radius larger than D.

For any i ∈ {1, . . . , k − 1}, let Vi be the set of indices j such that

pi+1 − pi =
∑
j∈Vi

sj .

Evidently, ∪k
i=1Vi = {1, . . . , n} and Vi ∩ Vj = ∅ for i 
= j. We note two facts:

(i) A permutation within each of the sets Vi preserves the points p1, . . . , pk. It follows that such permu-
tations do not decrease the radius of the bounding circle C. Since C is the maximal bounding circle

3We are thankful to Prof. A. Leizerowitz for helping us with this proof.
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by assumption, then any such permutation leaves C invariant. In particular, we can arrange the in-
dices within each Vi such that the corresponding directions of sj , j ∈ Vi are in cyclic order without
changing C.

(ii) If the directions of sj , j ∈ Vi are so ordered, then the argument of the first vector s ∈ Vi+1 is larger
that the argument of the last vector s

′
in Vi. For otherwise we have that pi + s 
∈ D, hence C is not the

maximal bounding circle, contradicting the assumption.
From the above we see that the optimal arrangement of si can be made in cyclic order. It is easy to see that
such an arrangement yields, necessarily, a convex polygon (in fact, the only possible one). �

4. Dual representation of the LTSP

We turn now to the LTSP. First, recall the definition of ε – Moreau-Yosida regularization [6], Chapter X of
a convex function f on, say, Cn:

fε(�v) := inf
�u

[
1
2ε

‖�u − �v‖2 + f(�u)
]

.

Below we list some of the properties of fε:

Lemma 4.1.

(i) If f is convex then fε is convex and differentiable with a continuous derivative.
(ii) Let �u(�v) given by fε(�u) = 1

2ε‖�u(�v) − �v‖2 + f(�u(�v)). Then ∇fε(�v) = ε−1(�v − �u) ∈ ∂�uf .
(iii) The Legendre-Fenchel transform of fε is f∗

ε (�s) = ε
2 |�s|2 + f∗(�s).

Recall now Definitions 2.2 and 2.4. For convenience we divide Gτ
σ,n by 2σ:

(2σ)−1Gσ,n(�u,�v) :=
1

2σn
‖�u − �v‖2 +

1
2
L2

n(�u).

Then
Ξσ(�v) := (2σ)−1 inf

�u∈Cn
Gσ,n(�u,�v)

is, in fact, the Moreau-Yosida regularization of L2
n(·)/2 with respect to the parameter ε = nσ. From Lemmas 3.8

and 4.1-(iii) we have:

Ξσ,∗(�s) =
nσ

2
‖�s‖2 +

1
2
R2(�s). (20)

Likewise, by Definition 2.4,

Ξσ
τ (�v) := (2σ)−1 inf

�u∈Cn
Gτ

σ,n(�u,�v); Ξσ,∗
τ (�s) = sup

�v∈Cn

[〈�s,�v〉 − Ξσ
τ (�v)] , (21)

and
Ξ

σ
(�v) := min

τ∈Sn

Ξσ
τ (�v); Ξ

σ,∗
(�s) = sup

�v∈Cn

[
〈�s,�v〉 − Ξ

σ
(�v)
]

= max
τ∈Sn

Ξσ,∗
τ (�s). (22)

Note that Ξ
σ
(�v) is also the Moreau-Yosida regularization of T , given by

Ξ
σ
(�v) = (2σ)−1 min

�u∈Cn
Gσ,n(�u,�v). (23)

By Lemma 3.9, (22) and (20):

Lemma 4.2. Ξ
σ,∗

(�s) = nσ
2 ‖�s‖2 + T ∗(�s) is a strictly convex function on Cn.
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The following definition is analogous to (part of) Definition 3.10:

Definition 4.3. �v ∈ Cn is called σ–ordered if Ξσ(�v) = Ξ
σ
(�v). That is, Ξσ(�v) ≤ Ξσ

τ (�v) for all τ ∈ Sn.

We now describe the dual version of the LTSP. Let

Dσ =
{
�u ∈ C

n; Ξ
σ,c

(�u) = Ξ
σ
(�u)
}

.

and
Hσ(�s,�v) = 〈�s,�v〉 −

[nσ

2
|�s|2 + T ∗(�s)

]
. (24)

Note that this functional is strictly concave with respect to �s ∈ C
n for any �v ∈ C

n. Moreover, Hσ > −∞ if
�s ∈ W0. It follows that the problem

max
�s∈W0

Hσ(�s,�v) = Ξ
σ,∗∗

(�v) (25)

admits a unique solution �s0 ∈ W0 for any �v ∈ Cn. The analog of Theorem 3.13 is

Theorem 4.4. Assume �v ∈ Dσ is σ−ordered, then the unique maximizer �s of Hσ(·, �v) is ∗−ordered, and the
(unique) minimizer of Gσ,n(·, �v) is given by

(u1, . . . , un) = �u := �v − σn�s. (26)

Proof. Following the line of the proof of Theorem 3.13 we have

〈�s′, �v〉 − Ξσ,∗(�s′) ≤ Ξσ,∗∗(�v) = Ξσ(�v) = Ξ
σ
(�v) = Ξ

σ,∗∗
(�v) (27)

where the first equality follows from convexity of Ξσ, the second from the σ−order of �v and the third one from
the assumption �v ∈ Dσ. In addition, it follows from (22)

〈�v,�s′〉 − Ξσ,∗(�s′) ≥ Hσ(�s′, �v).

Hence,
Hσ(�s′, �v) ≤ Ξ

σ,∗∗
(�v).

Again, we know that the equality above holds for an unique �s. Hence, the equality holds for (27) where �s′ = �s
as well. In particular

〈�s,�v〉 − Ξσ,∗(�s) = 〈�s,�v〉 −
(

nσ

2
‖�s‖2 +

1
2
R2(�s)

)
= Ξ

σ,∗∗
(�v) = 〈�s,�v〉 −

(nσ

2
‖�s‖2 + T ∗(�s)

)
where the first equality follows from (20), the second from the equality in (27) with �s′ = �s and the third equality
from Lemma 4.2. Thus, 1

2R2(�s) = T ∗(�s) and �s is ∗−ordered.
Now, Lemma 4.1-(ii), with f = L2

n/2, fε = Ξσ and ε = nσ implies that

�v = σn∇�vΞ
σ

+ �u, (28)

where �u is the minimizer of Gσ,n(·, �v) (see (23)). But �s = ∇�vΞσ = ∇�vΞ
σ
, so our claim follows. �

Evidently, the condition that �v is σ−ordered is not known a priori. However, if �v ∈ Cn is given, and τ ∈ Sn

a permutation such that �vτ is σ−ordered, then, by definition,

sup
�s′∈Cn

H(�s′, �v) = sup
�s′∈Cn

H(�s′, �vτ )

and the maximizer of the right hand side is given by �sτ , if �s is the maximizer of the left hand side. We obtain
the analog of Theorem 3.14:
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Theorem 4.5. Let �v = (v1, . . . , vn) ∈ Dσ. Let �s be the (unique) maximizer of the concave function Hσ(�s′, �v) (24).
Then there exists a cyclic order τ on �s such that the minimizer of Gσ,n is given by (26) where �v and �s are
replaced by �vτ and �sτ .

The analog of Theorem 3.15 also holds for a lower estimate on the minimum value of the LTSP. It is proved
in, essentially, the same way:

Theorem 4.6. Given �v ∈ Cn, then for any �s ∈ W0:

Ξ
σ
(�v) ≥ 〈�s,�v〉2

4T ∗(�s) + 2σn‖�s‖2
·

Moreover, this is a sharp estimate if �v ∈ Dσ.

5. Optimality conditions

In this section we investigate sufficient conditions for �v ∈ Cn to be in Dσ. The first result is:

Lemma 5.1. For σ > 0, let �u be a minimizer of Gσ,n(·, �v). Suppose its components are the vertices of a convex
polygon in C. Then �v ∈ Dσ.

Proof. From Lemma 3.7-(5), it is enough to prove the existence of such �s for which

Ξ
σ
(�v) + Ξ

σ,∗
(�s) = 〈�v,�s〉. (29)

We may assume, without limitation to generality, that �v is σ−ordered. Indeed, recall that �v ∈ Dσ if and only
if �vτ ∈ Dσ for all τ ∈ Sn, and we can always permute the components of �v to make it σ−ordered. Then
Ξσ(�v) = Ξ

σ
(�v). Since Ξσ is both convex and continuously differentiable (see Lem. 4.1-i), then

Ξσ(�v) + Ξσ,∗(�s) = 〈�v,�s〉 (30)

holds for �s = ∇�vΞ. However, Lemma 4.1-ii with f = L2
n/2 and ε = σn implies, in addition, that

�s = ∇�vΞσ =
�v − �u

nσ
∈ ∂�u

(
L2

n/2
)

(31)

where �u is the minimizer of Gσ,n(·, �v). We claim that �s is ∗−ordered, hence Ξ
σ,∗

(�s) = Ξσ,∗(�s) by Definition 3.10,
(20) and Lemma 4.2, so (29) follows from (30).

The claim that, indeed, �s is ∗−ordered follows from the assumption that the components of �u constitute the
vertices of a convex polygon, (31), Lemma 2.7 and Proposition 3.16. �

If we return to the TSP (Sect. 3), the analogous result holds also for D0 with respect to T = T (�v), namely:

Claim. If the components of �v ∈ Cn constitute the vertices of a convex polygon in C, then �v ∈ D0.
Evidently, the case where all points vi constitute vertices of a convex polygon is a trivial one for the Travelling

Salesman Problem. So, the above sufficient condition for the validity of the dual formulation in Theorems 3.13
and 3.14, and the optimality of the estimate of Theorem 3.15 is not very useful.
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However, in the case of the Lazy Travelling Salesman, the result of Lemma 5.1 is applied for the following:

Theorem 5.2. Let �v = (v1, . . . , vn) ∈ Cn such that no point vi ∈ C is in the center of mass of all other points.
Then for σ sufficiently large, �v ∈ Dσ.

In particular, we conclude that Theorems 4.4 and 4.5 can be applied, and Theorem 4.6 is optimal for almost
all distributions of the points vj , provided σ is large enough.

The proof of Theorem 5.2 is obtained from Lemma 5.1 and the following:

Proposition 5.3. Assume that the set {vi} satisfies

|vj − vc.m|2 >
1

nσ

n∑
i=1

|vi − vc.m|2, ∀j = 1, . . . , n (32)

where

vc.m =
1
n

n∑
i=1

vi.

If �u0 is a minimizer of Gσ,n(·, �v), then u0
i are the vertices of a convex polygon.

Proof. Since �u0 is a minimizer it follows that

Gσ,n(�u0, �v) ≤ Gσ,n(�ucm, �v) =
1
n

n∑
i=1

|vi − vc.m|2.

where �ucm := (vcm, . . . , vcm).
In particular, there exists a permutation τ (which we can take, with no loss of generality, as the identity

τ = I) such that

min
�u∈Cn

Gσ,n(�u,�v) = GI
σ,n(�u0, �v) ≤ 1

n
|�v − �uc.m|2. (33)

In particular

σL2(�u0) ≤ 1
n
|�v − �uc.m|2

and
r2(�u0) := max

1≤i<j≤n
|u0

i − u0
j |2 ≤ 1

nσ
|�v − �uc.m|2 =: M1. (34)

By Corollary 2.8 and (34) we obtain that

|u0
i − vc.m|2 ≤ r2(�u0) ≤ 1

nσ
|�v − �uc.m|2, ∀i = 1, . . . , n. (35)

By (35) and the assumption of the proposition we obtain that there exists a disk B ⊂ C which contains all the
points u0

i , i = 1, . . . , n, and non of the points vj , j = 1, . . . , n.
Now, let C0 ⊂ C be the convex hull of {u0

1, . . . , u
0
n}. Evidently,

Ln(�u0) ≥ L
(
C0
)

(36)

where L(C0) is the perimeter of C0. Let wi be the closest point to vi in C0, that is, wi ∈ C0 satisfies

|vi − wi| ≤ |vi − w| ∀w ∈ C0. (37)

Let �w := (w1, . . . , wn). Then
|�v − �w| ≤ |�v − �u0|, so |�vτ − �wτ | ≤ |�vτ − �u0

τ | (38)
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for any permutation τ of {1, . . . , n}. So let τ be such a permutation which arrange wj := rj eiθj , θj ∈ [0, 2π) in
a cyclical order θτ(j) ≤ θτ(j+1), j = 1, . . . , n − 1. Thus

Ln(�wτ ) ≤ L
(
C0
)
, (39)

so, from (36, 38, 39) we obtain

Gτ
σ,n(�w,�v) ≡ GI

σ,n(�wτ , �vτ ) ≤ GI
σ,n(�u0, �v) ≡ Gσ,n(�u0, �v). (40)

Since �u0 is a minimizer of Gσ,n(·, �v) by assumption, it follows that there is an equality in (40). This implies an
equality in (36). But, since C0 is a convex set, it follows that �w = �u0. As a result, the points u0

i are on the
boundary of a convex set (since, evidently, wi are). �
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