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STABILIZATION OF SCHRÖDINGER EQUATION IN EXTERIOR DOMAINS ∗
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Abstract. We prove uniform local energy estimates of solutions to the damped Schrödinger equation
in exterior domains under the hypothesis of the Exterior Geometric Control. These estimates are
derived from the resolvent properties.
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Introduction

Let Ω be the exterior domain of a compact set in Rd(d ≥ 2) with smooth boundary ∂Ω. Let R > 0 such that
∂Ω ⊂ BR =

{
x ∈ Rd; |x| < R

}
. For r > R, we denote Ωr = Ω ∩ Br.

We consider the following Schrödinger equation on Ω⎧⎪⎪⎨
⎪⎪⎩

i∂tu − ∆u = 0 in R × Ω,

u(0, .) = f ∈ L2(Ω) in Ω,

u/R×∂Ω = 0.

(0.1)

It is well known that the equation (0.1) has a unique global solution u ∈ C(R, L2(Ω)). Moreover, the total
energy E(t) of the solution is conserved i.e.

E(t) := ‖u(t, .)‖L2(Ω) = ‖f‖L2(Ω) , ∀t ∈ R. (0.2)

In the free case (Ω = Rd), we have the following dispersive property

‖u(t, .)‖L∞ ≤ c

td/2
‖f‖L1 , ∀t > 0, (0.3)
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from which we deduce the uniform decay (polynomial) of the local energy:

Er(t) := ‖u(t, .)‖L2(Br) ≤
c

td/2
‖f‖L2 , ∀t > 0 (0.4)

for all f ∈ L2 supported in BR.
When Ω is a non-trapping domain1, Vainberg [12–15] proved that the local energy of solutions of (0.1) decay

like 1
t as t → +∞ if d is even and decay like 1

t3/2 as t → +∞ if d is odd. Translating his resolvent estimates for
(λ2 + ∆)−1 into estimates for (iτ + ∆)−1, Tsutsumi [11] improved this result and showed that the decay rate
is O( 1

td/2 ).
The study of the resolvent (λ2 + ∆)−1 often enables to establish the local energy decay of solutions of the

wave equations. More precisely, the decay is uniform if and only if the resolvent (λ2 + ∆)−1 is bounded as an
operator from L2

comp(Ω) to L2
loc(Ω) on a strip of the shape {Im λ < c1, |λ| > c2 ; c1, c2 > 0}. For more details,

see [16].
It is known that, in the case of non-trapping geometries, (λ2 + ∆)−1 is bounded on the set {Imλ <

c1 log(|Reλ|), |λ| > c2} (see [6]). This implies the uniform local energy decay of solutions of the wave equa-
tions.

In the trapping case, Ralston [8] shows that there is no uniform decay rate for the wave equation. Furthermore
he gives an example with a sequence of poles of (λ2 + ∆)−1 converging exponentially to the real axis.

Finally, we would like to note the large litterature investigating the spectral properties of various perturbations
of −∆ (like metric perturbations, Schrödinger operator with potential −∆+V, or combination of such problems)
and giving local energy decay results for Schrödinger and wave equations (see for example, [4, 9]).

Now we come back to the principal goal of the present paper: stabilization of equation (0.1). Roughly
speaking, in the case of a trapping obstacle, this problem consists in acting on the system in order to obtain a
uniform decay of the local energy (0.1).

For the wave equation in odd space dimension, Aloui and Khenissi [1] introduce a damping term of type
a(x)∂tu (a ≥ 0); assuming then the E.G.C. (Exterior Geometric Control) condition on the couple (ω =
{a(x) > 0} , T ) for some T > 0, they prove a stabilization result. In the same framework, Khenissi [5] proves that
the resolvent (λ2+∆−ia(x)λ)−1 is bounded from L2

comp(Ω) to L2
loc(Ω) in a strip of the shape {Im λ < c1, |λ| > c2,

with c1, c2 > 0} and he thus deduces the uniform decay of the local energy in any space dimension.
In this paper, we consider the following stabilization problem of the Schrödinger equation

⎧⎪⎪⎨
⎪⎪⎩

i∂tu − ∆u + ia(x)u = 0 in R × Ω

u(0, .) = f in Ω

u/R×∂Ω = 0

(0.5)

where a ∈ C∞
0 (Ω) is non-negative and f ∈ L2

R(Ω) =
{
g ∈ L2(Ω) / Supp g ⊂ B(0, R)

}
.

Consider the operator Aa = −i∆ − aI defined on L2(Ω) with domain

D(Aa) =
{
f ∈ L2(Ω)/∆f ∈ L2(Ω) and f/∂Ω = 0

}
.

One can easily show that Aa is maximal dissipative (same proof as [1], Prop. 4.1); according then to the
Hille-Yoshida theorem, it generates a semi group of contractions U(t) such that for f ∈ L2(Ω), U(t)f ∈
C([0, +∞[, L2(Ω)) is the unique solution of (0.5).

1Starting at a point x in Ω̄R draw a ray in some direction ξ and reflect it according to the classical law of geometric optics every
time it hits the obstacle . Denote by l(x, ξ) the total length (possibly infinity) of that ray within Ω̄R and by l(R) the supermum of
l(x, ξ) for all such x, ξ. If l(R) < ∞ then Ω is said to be non-trapping.
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On the other hand, it is well known that for Schrödinger type equations, the speed of propagation is infinite,
(contrary to that of the waves); for it, we go to weaken the E.G.C. condition used for waves [1] in the following
way:

Definition 1 (E.G.C.). We say that the subset ω of Ω satisfies the Exterior Geometric Control (E.G.C.) if any
trapped ray2 meets ω.

For τ ∈ {
Re τ < 0, Im

√
iτ ≥ 0

}
,we denote by R(τ)f = (−iτ − ∆ + ia)−1f the unique finite energy solution

of the following system ⎧⎨
⎩

(−iτ − ∆ + ia)v = f in Ω,
v/∂Ω = 0,
v outgoing.

R(τ) is known as the outgoing resolvent associated to the problem (0.5). It is easy to see that

R(τ)f = i

∫ +∞

0

eτtu(t)dt (0.6)

with u(t) solution of (0.5). It is also clear that the relation (0.6) defines a family of bounded operators from
L2(Ω) to L2(Ω), holomorphic on {Re τ < 0}.

Let χ ∈ C∞
0 (Rd), χ = 1 on Br, χ = 0 on Rd\Br′ where r′ > r > R. The cut-off resolvent

Rχ(τ) = χR(τ)χ

considered as operator from L2(Ω) to L2(Ω), holomorphic on {Re τ < 0} extends to a meromorphic operator on
the logarithmic plane in even space dimension and on the τ2-plane (the two sheeted Riemann surface for

√
iτ ,

see [17 ]) in odd space dimension. And we have the following theorem.

Theorem 1. Suppose that ω = {x ∈ Ω, a(x) > 0} satisfies the E.G.C., then there exist positive constants α and
β such that Rχ(τ) has no pole in the region

Λα,β = {τ ∈ C / Re τ ≤ α; |Im τ | ≥ β} .

Furthermore, there exists c > 0 such that for any τ ∈ Λα,β

‖Rχ(τ)‖L2(Ω)→L2(Ω) ≤ c.

From this, we deduce the following stabilization result:

Theorem 2. Under the hypotheses of the Theorem 1, there exists c > 0 such that for all f ∈ L2
r(Ω) (r > R)

‖u(t, .)‖L2(Ωr) ≤
c

td/2
‖f‖L2(Ω) , ∀t > 1,

with u solution of (0.5).

Remark 1. For the proof of Theorem 1, we choose R large enough (in particular Supp a(x) ⊂ BR) but the
results remain true for all R such that ∂Ω ⊂ BR.

This paper is organized as follows.
Section 1 is devoted to the proof of Theorem 1. First we verify that the behavior of the resolvent R(τ) near 0

(low frequencies) is like the free case. The rest of the proof is inspired from [3]; it consists on a contradiction
argument and is essentially based on properties of semiclassical measures. Finally, in the second section, using
the results of Theorem 1 and classical arguments (see [5,7,11]), we obtain the desired energy decay of Theorem 2.

2A trapped ray is a ray which can not leave BR.
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1. Cut-off resolvent

We denote by C̃ the logarithmic plane in even space dimension and the τ2-plane in odd dimension. For two
Banach spaces X and Y we denote by Hom(X, Y ) the Banach space consisting of all bounded linear operators
from X to Y.

First, for r′ > r > R, we prove that the resolvent R(τ) = (−iτ−∆+ia)−1, defined as a Hom(L2
r(Ω), L2(Ωr′))-

valued holomorphic function with respect to τ ∈ C̃ ∩{Re τ < 0} , admits a meromorphic extension to C̃.
As in [11], we consider α1, α2 the following step functions

α1(x) =

{
0 if |x| > R + 1

2

1 otherwise,
α2(x) = 1 − α1(x)

and β1(x), β2(x) two real valued C∞ functions such that

β1(x) =

{
0 if |x| > R + 1

1 if |x| < R + 2
3 ,

β2(x) =

{
0 if |x| < R

1 if |x| > R + 1
3 ·

We denote Lτ0 the operator which maps a function f ∈ L2
r(Ω) into the solution u(x) ∈ H2(Ωr) of the problem{

(−∆ − iτ0)u = f x ∈ Ωr

u/∂Ωr
= 0

(1.1)

where r > R + 1 and τ0 chosen in C̃ such that the problem (1.1) is well posed. We define the operator Gτ from
L2

r(Ω) to H2(Ωr′) by
Gτg = β1(x)Lτ0(α1(x)g) + β2(x)R0(τ)α2(x)g

for all g ∈ L2
r(Ω), with r′ > r and R0(τ) is the analytic extension of (−∆− iτ)−1 on C̃ for Ω = Rd. R0(τ) maps

a function f ∈ L2
r(R

d) into the solution w ∈ H2(Ωr′) of the following problem{
(−∆ − iτ)w = f, x ∈ Rd

w outgoing.

Note that Gτ is a bounded operator from L2
r(Ω) to H2(Ωr′) and holomorphic in C̃, so aGτ is a compact operator

from L2
r(Ω) to L2(Ωr′) for all τ ∈ C̃.

Consider the operator

Sa(τ) = (−∆ − iτ + ia)Gτ − I (1.2)
= (−∆ − iτ)Gτ − I + iaGτ

= S(τ) + iaGτ .

It is known, from [11], that S(τ) is a compact operator from L2
r(Ω) to L2

r(Ω) for all τ ∈ C̃. Then we deduce
that Sa(τ) is a compact operator from L2

r(Ω) to L2
r(Ω) for all τ ∈ C̃.

Let us prove that the operator Sa(τ) + I has a bounded inverse. From the Fredholm theory, it is sufficient
to show that Sa(0) + I is one to one.

Let g ∈ L2
r(Ω) such that

(Sa(0) + I)g = 0.
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We have
(Sa(0) + I) = (−∆ + ia)G0

and
G0g −→

|x|→∞
0.

So u ≡ G0g satisfies ⎧⎨
⎩

(−∆ + ia)u = 0, x ∈ Ω

u/∂Ω = 0 , u −→
|x|→+∞

0.
(1.3)

Multiplying the equation in (1.3) by ū, integrating over Ω and taking the real part, we deduce that the null
function is the unique solution of this system. From [11], G0 is one to one, then g = 0.

Now, according to the Fredholm’s theory [10], Theorem VI.14, and (1.2), (I + Sa(τ)) has a meromorphic
inverse and

R(τ) = (−∆ − iτ + ia)−1 = Gτ (I + Sa(τ))−1.

We deduce that R(τ) has a meromorphic extension on C̃.

1.1. Low frequencies

We are going to show that R(τ) has the same behavior as the free resolvent R0(τ) near τ = 0 . More precisely
we have

Lemma 1. Let d ≥ 2, r′ > r > R. There exists ε > 0 such that
(1) If d is odd, the operator R(τ) has no poles in the domain {τ : τ ∈ C̃ / |τ | < ε} and can be represented in the
form

R(τ) = B1(τ) + τ
d−2
2 B2(τ) (1.4)

where B1(τ) and B2(τ) are a Hom(L2
r(Ω), H2(Ωr′))-valued holomorphic function.

(2) If d is even, the operator R(τ) has no poles in the domain {τ ∈ C̃ / |τ | < ε;−π < arg τ < 3π} and can be
represented in the form

R(τ) = B3(τ) + τ
d−2
2 log

√
iτB4 + τ

d−2
2 B5(τ) (1.5)

where B3(τ) is a Hom(L2
r(Ω), H2(Ωr′))-valued holomorphic function on {τ ∈ C̃ / |τ | < ε}, B4 is a bounded

operator from L2
r(Ω) to H2(Ωr′), and B5(τ) is a Hom(L2

r(Ω), H2(Ωr′))-valued bounded continuous function.

Proof. According to the previous section, I + Sa(0) is invertible, then we have

(I + Sa(τ))−1 = (I + Sa(0) + Sa(τ) − Sa(0))−1

=
(
I + (I + Sa(0))−1(Sa(τ) − Sa(0))

)−1
(I + Sa(0))−1.

So for τ small enough

(I + Sa(τ))−1 =

⎛
⎝∑

k≥0

(−1)k
(
(I + Sa(0))−1(Sa(τ) − Sa(0))

)k

⎞
⎠ (I + Sa(0))−1.

Since the expansion of the types (1.4), (1.5) holds for R0(τ), we obtain the expansion of the types (1.4 ), (1.5)
for Gτ and Sa(τ). From (1.2) we have

R(τ) = Gτ (I + Sa(τ))−1 (1.6)

thus R(τ) satisfies (1.4) and (1.5). �
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1.2. High frequencies

In this section, we will prove the estimate of Theorem 1 by contradiction. We refer to [3] for the definition
and properties of semiclassical measures.

Since Rχ(τ) considered as operator in L2(Ω), is meromorphic in C̃, it is sufficient to prove the estimate of
Theorem 1 for τ belonging to the resolvent set and Λα,β [5].

By contradiction, we may assume the existence of two sequences (fn) ∈ L2
r(Ω) and (τn) ∈ C such that

|Im τn| ≥ n, 0 < Re τn < 1
n and

‖Rχ(τn)fn‖L2(Ω) ≥ n ‖fn‖L2(Ω) .

We denote un = R(τn)fn, and we normalize it by ‖χun‖L2(Ω). This gives

⎧⎪⎪⎨
⎪⎪⎩

(−iτ − ∆ + ia)un = fn in Ω

un/∂Ω = 0

un outgoing

‖χun‖L2(Ω) = 1, ‖fn‖L2 −→ 0. (1.7)

We distinguish two cases:

1st case (where Aa is coercive). There exists a subsequence of (τn), still denoted by (τn), such that

Im τn ≥ n.

Set hn = 1√
Im τn

; we have [−h2
n∆ + 1 + ih2

n(a(x) − Re τn)
]
un = h2

nfn. (1.8)

We multiply the equation (1.8) by ūn and integrate by parts, we obtain

h2
n ‖∇un‖2

L2 + ‖un‖2
L2 = h2

nRe
(∫

fnūn

)
−→
n→∞ 0

which contradicts

‖χun‖L2(Ω) = 1. (1.9)

2nd case. There exists a subsequence of (τn), still denoted by (τn), such that

Im τn ≤ −n.

Set hn = 1√−Imτn
, then un satisfy

[−h2
n∆ − 1 + ih2

n(a(x) − Re τn)
]
un = h2

nfn (1.10)

We study now the sequence (un)n∈N.

Lemma 2. The sequence (un)n∈N is bounded in L2
loc(Ω).

Proof. Let ϕ ∈ C∞
0 equal to 1 near ∂Ω and in a neighborhood of the support of a(x) and such that

Supp (ϕ) ⊂ BR (see Rem. 1).
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Let ωn = (1 − ϕ)un. We have

(−h2
n∆ − 1 − ih2

n Re τn)ωn = h2
nfn(1 − ϕ) − [∆, ϕ] h2

nun.

This equation has the following form
(−h2

n∆ − zn)ωn = gn in R
d (1.11)

where zn = 1 + ih2
n Re τn and gn = h2

nfn(1 − ϕ) − [∆, ϕ] h2
nun.

Hence
ωn = R0(hn, zn)gn

where R0(h, z) = (−h2∆ − z)−1 is the free resolvent of the semi-classical Laplace operator −h2∆. Since
Supp gn ⊂ Br, ‖gn‖L2 is bounded (we use that hn∇un is bounded in L2 near the support of ∇ϕ). Then
we deduce from [3] that ωn is bounded in L2

loc. According to (1.9), un is bounded in L2
loc(Ω). �

Now, we are able to associate to the sequence (un) a semiclassical measure in L2
loc(Ω) (a positive Radon

measure in Melrose’s compressed bundle [3]) denoted by µ. This measure satisfies the two following microlocal
properties.

Lemma 3. We have Supp µ ∩ {(x, ξ), x.ξ ≤ 0, |x| ≥ R} = ∅.
This result is a consequence of (1.11) and the Proposition 2.2 of [3] (see also [5]) which is a microlocal

interpretation of the outgoing behavior of the free cut-off resolvent.
Moreover, recalling that ω = {x ∈ Ω / a(x) > 0} , we have

Lemma 4. Supp µ ∩ T ∗ω = ∅.
Proof. We multiply (1.10) by ūn, integrate over Ωr and take the imaginary part. We obtain

∫
ΩR

a(x) |un|2 dx = Re τn

∫
Ωr

|un|2 dx + Im
(∫

ΩR

fnūn

)
dx + Im

∫
|x|=r

∂un

∂r
ūn dσ.

Now we use the following

Proposition 1 (see Burq [2]). For any r > R > 0, there exist C1, C2, η, λ0 > 0 such that for any outgoing
solution of (∆ + z)u = 0 outside a ball B(0, R1) and any z ∈ C : |Im√

z| ≤ 1, |√z| ≥ λ0, we have

−Im
∫
|x|=r

∂u

∂r
ūdσ ≥ ∣∣√z

∣∣ C1

∫
|x|=r

|u|2 +
∣∣∣√z

−1∇u
∣∣∣2 dσ

−C2 e−η|√z|
∫
|x|=R

|u|2 +
∣∣∣√z

−1∇u
∣∣∣2 dσ.

According to Lemma 2 and 1.10 , h2
n∆un is bounded in L2

loc(Ω), then h4
n

∫
|x|=R

|un|2 dσ,
∫
|x|=R

∣∣h2
n∇u

∣∣2 dσ are
bounded. Since Im

√
iτn → 0 and h−4

n e−η|√τn| → 0, this shows, thanks to Proposition 1, that

lim inf
n→+∞ Im

∫
|x|=r

∂un

∂r
ūndσ ≤ 0,

thus, we can deduce that ∫
ΩR

a(x) |un|2 dx −→ 0

which yields µ ≡ 0 on ω. �



STABILIZATION OF SCHRÖDINGER EQUATION IN EXTERIOR DOMAINS 577

Here we finish the proof of Theorem 1. We deduce, from equation (1.10), that the sequence (un) is hn-
oscillating (see [3] for more details). Hence

〈µ, χ(x) × 1ξ〉 = lim
n−→+∞ ‖χun‖2 = 1 �= 0.

And we will get the announced contradiction, if we show that µ ≡ 0. We recall from [3], Propositions 4.4 and
4.6, that the measure µ is invariant along the generalized bicharacteristic flow associated to the symbol |ξ|2 − 1.

Let q = (x, ξ) ∈ T ∗
b Ω (Melrose’s compressed cotangent bundle (see [3], Sect. 4.1)) and γ be a generalized

bicharacteristic curve issued from q. We have to consider two cases:

1st case. γ is a trapped ray3. By the E.G.C. assumption, γ meets the stabilization region T ∗ω and by Lemma 2
µ = 0 on T ∗ω. Applying then the measure propagation result of Burq [3], we conclude that µ = 0 near q.

2nd case. γ is a non-trapped ray. In this case γ meets the incoming region {x.ξ ≤ 0, |x| ≥ R} where the
measure µ is null (see Lem. 3). Using again the measure propagation, we deduce that µ = 0 near q.

Thus we conclude that µ is identically null, which ends the proof.

2. Decay of the local energy

In this section we give the proof of Theorem 2.
Our strategy is to recover u(t) by inverting the Laplace transform and to shift the contour of integration into

the halfplan Re τ > 0, using Cauchy’s theorem. In this way, the results of the first section provide the local
energy decay.

Remark 2. In applying the Cauchy integral theorem some convergence problems have to be analyzed to justify
the shift contour. This is possible for initial data with higher regularity only. But by continuity and density
arguments, the resulting identities still hold for initial data with finite energy.

We recall that

R(τ)f = i

∫ +∞

0

eτtu(t) dt, Re τ < 0,

and for all t ≥ 0 the inverse Laplace transform

u(t) = −(2π)−1

∫
Re τ=−δ

e−tτR(τ)f dτ, ∀δ > 0. (2.1)

Here the integral is to be understood as

lim
M→∞

∫ iM−δ

−iM−δ

e−tτR(τ)f dτ,

where the convergence in L2(Ω) is uniform for t in bounded intervals. Unfortunately the real part of τ seems
to have the wrong sign to derive good estimates of the solution out of (2.1). The path of integration has to be
moved. According to Theorem 1 and using the behavior of R(τ) at low frequencies, there exists α0 > 0 such
that ∀ε > 0, R(τ) is analytic in the region which is hatched in Figure 1. By Γε we denote the whole contour
defined by Γε = Γ+

1ε ∪ Γ−
1ε ∪ Γ+

2ε ∪ Γ−
2ε where Γ±

1ε = {α0 ± iy; y > ε} and Γ±
2ε =

{
(1 ± i ε

α0
)s; 0 ≤ s ≤ α0

}
.

3We identify here γ to its projection in Ω̄, then it is also called ray.
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ε

Γ+
1ε

Γ−
1ε

Γ−
2ε

Γ+
2ε

α0 Re τ

Im τ

Figure 1. Free of poles region.

Due to (2.1) and the Cauchy Theorem and Remark 2, we can write

u(t) = −(2π)−1

∫
Γε

e−tτR(τ)f dτ, ∀ε > 0 (2.2)

u(t) = −(2π)−1e−α0t

∫ +∞

−∞
e−ityR(α0 + iy)f dy

+(2π)−1

(
lim

ε→0

(∫
Γ−

2ε

etτR(τ)f dτ −
∫

Γ+
2ε

etτR(τ)f dτ

))

= W1(t)f + W2(t)f.

From the resolvent equation, we get for f ∈ D(A2
a) ∩ L2

r(Ω)

Rχ(τ)f = i
1
τ

χ(I + Aa)χ +
1
τ2

Rχ(τ)A2
af.

Since ‖R(α0 + iy)f‖L2(Ωr) is bounded, we obtain as in [11] ([9])

‖W1(t)f‖L2(Ωr) ≤ c e−ct ‖f‖L2(Ω) , t ≥ 1 (2.3)

and Lemma 1 (see [5, 9, 11]) gives

‖W2(t)f‖L2(Ωr) ≤ Ct−d/2 ‖f‖L2(Ω) t ≥ 1. (2.4)

Finally, we obtain
‖u(t)‖L2

r(Ω) ≤ Ct−d/2 ‖f‖L2(Ω) , ∀t ≥ 1.

Remark 3. It should be remarked that the high-frequency behavior decides whether there is uniform local
energy decay or not. But the explicit rate is calculated from the low-frequency asymptotic.
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