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1. Introduction

In this paper we study the relaxation in BV(Ω) of an integral functional of the type

F (u) =
∫

Ω

f(x, u(x),∇u(x)) dx,

where u is a scalar function from W 1,1(Ω).
In recent years there has been a renewed interest in the L1-lower semicontinuity of such an integral functional

and of its BV counterpart

F(u) =
∫

Ω

f(x, u,∇u)dx+
∫

Ω

f∞
(
x, ũ,

Dcu

|Dcu|
)
d|Dcu| +

∫
Ju∩Ω

(∫ u+(x)

u−(x)

f∞(x, s, νu) ds

)
dHN−1(x)

with the aim of weakening the regularity assumptions on the integrand f with respect to the spatial variable x (see
[7–9, 18, 20, 21]). Roughly speaking, one can show that the L1-lower semicontinuity still holds if one replaces the
classical continuity and coerciveness assumptions with the weak differentiability of f with respect to x. Therefore
the results proved in the above papers suggest that a similar assumption should be also enough to prove that the
relaxation in BV of the functional F is represented by F .

In this paper we prove that this representation formula actually holds (see Th. 6.1) under the assumption that
for all (s, ξ) ∈ IR × IRN the function f(·, s, ξ) is weakly differentiable and coincides HN−1-a.e. with its precise
representative, i.e., it is HN−1-a.e. approximately continuous in Ω. Notice that though the functional F does
not change its values if we modify f in a subset of zero Lebesgue measure of Ω, this modification may affect the
values of F on BV(Ω). Therefore, if f is not assumed to be HN−1-a.e. approximately continuous with respect to
x, then it is not true in general that the relaxation of F is represented by F . On the other hand the approximate
continuity alone is not enough to assure the relaxation result, as shown in a counterexample given in [1]. In that
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paper the representation formula proved here has been obtained in the particular case where the integrand admits a
separate dependence on the spatial and the gradient variables. In that case the authors prove the relaxation result
by suitably refining the techniques introduced in [5] through the use of a new Reshetnyak-type theorem which
applies only to measures which are gradients of BV-function, but does not require the continuity of the integrand.
Unfortunately, this technique does not work for a general integrand like the ones considered here.

Thus, we have to follow another approach to relaxation by using the blow-up technique introduced by Fonseca
and Müller in [16] and [17] (see also [3]). However, in all these papers the use of this technique relies strongly on the
continuity of the integrand with respect to x, an assumption that here is replaced by the HN−1-a.e. approximate
continuity and weak differentiability in x.

This fact introduces some relevant difficulties and requires a delicate study of the approximate continuity of
(N−1)-dimensional restrictions of BV-functions. Differently from the usual continuity, the approximate continuity
is not inherited by the sections of measurable functions. However, in the first part of this paper we prove that given
a HN−1-almost everywhere approximately continuous BV-function, its sections keep the same property, as long as
we restrict them to a countably HN−1-rectifiable set whose normal is “never” orthogonal to the hyperplane with
respect to whom the sections are taken (see Th. 4.6). This theorem is the main tool needed for dealing with the
jump part of the functional via the blow-up technique. More precisely, given a jump point x0 of a BV-function u,
we study the behaviour of the integrand on the tangent hyperplane Π to the jump set at x0. If the restriction of the
integrand to Π is not approximately continuous, we have to approximate Π with a sequence of “good” hyperplanes
(where the restriction of f is approximately continuous). In fact, in Proposition 6.5 we prove that this property
holds at HN−1-point x0 of the jump set of u.

The paper is organized as follows: Section 2 is devoted to notations; in Section 3 we recall some properties of
BV-functions and some results of geometric measure theory needed for the sequel. In Section 4 we carry on a
thorough analysis of the fine properties of the (N−1)-dimensional sections of BV-functions. In Section 5 we set
the problem and state some technical lemmas; moreover, we discuss some properties of the recession function that
do not follow from the corresponding ones of integrand (see Ex. 5.3). Finally, in Section 6 we state and prove our
main result, i.e., the relaxation theorem.

2. Notation

Throughout the paper, N ≥ 2 is a fixed integer and the letter c denotes a strictly positive constant, whose value
may vary from line to line. Given x0 ∈ IRN and ρ > 0, Bρ(x0) denotes the ball in IRN centered in x0 with radius
ρ, while SN−1 is the unit sphere of IRN .

Let Ω be a bounded open set in IRN . We denote by A(Ω) the family of all bounded open subsets A of Ω and
by B(Ω) the σ-algebra of all Borel subsets B of Ω. Moreover, M(Ω; IRN ) is the space of the IRN -valued Radon
measures on Ω; in particular, M(Ω) := M(Ω; IR).

As usual, LN stands for the outer Lebesgue measure on IRN and Hk for the k-dimensional Hausdorff measure
on IRN . The Lebesgue measure of the unit ball in IRN is denoted by ωN , hence LN (Bρ(x0)) = ωNρ

N .
Given a direction ν ∈ SN−1, every point x ∈ IRN can be decomposed as x = (x⊥ν , xν), with xν = 〈x, ν〉ν and

x⊥ν = x − xν . By πν⊥ we denote the projection of IRN onto the plane through the origin orthogonal to ν and πν

denotes the projection of IRN over the line through the origin in the direction ν. We shall often identify πν⊥(IRN )
with IRN−1 and πν(IRN ) with IR, so that, for instance, the HN−1-measure on πν⊥(IRN ) will be identified with
LN−1. Finally, if E is a given subset of IRN , we set

Ex⊥
ν

= {xν ∈ πν(E) : (x⊥ν , xν) ∈ E} and Exν = {x⊥ν ∈ πν⊥(E) : (x⊥ν , xν) ∈ E} .

Similarly, if g : IRN → IR is a given function, for every x⊥ν ∈ IRN−1, we denote by gx⊥
ν

the restriction of the function
g to IR; i.e., the function xν ∈ IR �→ g(x⊥ν , xν); for every xν ∈ IR, the restriction gxν is defined analogously.

When ν = eN , we simply write πN−1, π1, (x′, y), Ex′ , Ey, gx′ , gy, instead of πe⊥N
, πeN

, (x⊥eN
, xeN

), Ex⊥
eN

, ExeN
,

gx⊥
eN

, gxeN
.
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3. Basic properties of BV-functions and a coarea formula

Let u ∈ L1
loc(Ω); we say that u has an approximate limit at x ∈ Ω if there exists z ∈ IR such that

lim
ε→0+

−
∫

Bε(x)

|u(y) − z| dx = 0,

where −∫
Bε(x)

stands for 1
LN (Bε(x))

∫
Bε(x)

. Let Su be the set of points where the previous property does not hold,
the so-called approximate discontinuity set. Note that it is a Borel set. If x �∈ Su, z is uniquely determined, it is
called the approximate limit of u at x and it is denoted by ũ(x). We recall that ũ : Ω \Su → IR is a Borel function.

We say that u is approximately continuous at x if x �∈ Su and u(x) = ũ(x). Clearly, x is a point of approximate
continuity of u if and only if is a Lebesgue point of u and since LN -almost every x ∈ Ω is a Lebesgue point,
LN (Su) = 0. Notice that in general the above definition of approximate continuity is stronger than the usual one
given by Federer (see [13]). However, if u ∈ L∞

loc(Ω) the two notions agree.
We say that x0 ∈ Su is an approximate jump point of u if there exist a, b ∈ IR and ν ∈ SN−1, such that a �= b

and
lim

ε→0+
−
∫

B+
ε (x0,ν)

|u(x) − a| dx = 0, lim
ε→0+

−
∫

B−
ε (x0,ν)

|u(x) − b| dx = 0,

where B±
ε (x0, ν) = x0 + εB±

ν and B±
ν = {x ∈ B1(0) : 〈x, ν〉 ≷ 0}. The triplet (a, b, ν), uniquely determined by the

previous definition up to a permutation of a, b and a change of sign of ν, is denoted by (u+(x0), u−(x0), νu(x0)).
We adopt the convention that u+(x0) > u−(x0). The set of approximate jump points is denoted by Ju and is a
Borel set. The quantity u+ − u− is the jump of u across the interface Ju and νu is the direction of the jump.

The space BV(Ω) is defined as the space of all functions u : Ω → IR belonging to L1(Ω) whose distributional
gradient Du is an IRN -valued Radon measure (i.e., Du ∈ M(Ω; IRN )) with total variation |Du| bounded in Ω. We
indicate by Dau and Dsu the absolutely continuous and the singular part of the measure Du with respect to the
Lebesgue measure. We recall that Dau and Dsu are mutually singular, moreover we can write

Du = Dau+Dsu and Dau = ∇u LN ,

where ∇u is the Radon-Nikodým derivative of Dau with respect to the Lebesgue measure. In particular,

Dsu = Dcu+ (u+ − u−)νu HN−1	Ju

and Ju is a countably HN−1-rectifiable Borel set (see [2], Def. 2.57) contained in Su, such that HN−1(Su \ Ju) = 0.
The remaining part Dcu is called the Cantor part of Du.

Remark 3.1. Since, for every u ∈ BV(Ω), Ju is a countably HN−1-rectifiable set, hence σ-finite with respect to
HN−1, it follows that the set

{ν ∈ SN−1 : HN−1({x ∈ Ju : νu(x) = ±ν}) > 0}

is at most countable.

Finally, we define the precise representative of a function u ∈∈ L1
loc(Ω) as

u∗(x) =

⎧⎪⎨⎪⎩
ũ(x) if x ∈ Ω\Su

u+(x)+u−(x)
2 if x ∈ Ju

0 if x ∈ Su \ Ju.

Clearly, u∗ : Ω → IR is a Borel function coinciding LN -almost everywhere with ũ and u.

Let us recall that if S ⊂ IRN is a countably HN−1-rectifiable set, then for HN−1-a.e. x ∈ S there exists the
approximate tangent plane πS

x to S at x (see [2], Th. 2.83). A unit vector orthogonal to πS
x is called an approximate
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normal to S at x and denoted by νS(x). Notice that if S is the jump set Ju of some BV function u, then ([2],
Th. 3.59) νJu(x) = ± νu(x) for HN−1-a.e. x ∈ Ju.

Let 1 ≤ k ≤ N − 1 be a given integer. By πk,N : IRN → IRk we denote the projection of IRN over the first
k components. The formula (3.1) below is a consequence of the general coarea formula for rectifiable set [2],
Theorem 2.93, and will be used in the sequel. For the reader’s convenience we give an explicit proof.

Theorem 3.2. Let S be a countably HN−1-rectifiable subset of IRN and g : IRN → [0,+∞] a Borel function. Then,
for any integer 1 ≤ k ≤ N − 1,

∫
S

g(x)

√√√√ N∑
i=k+1

|〈νS(x), ei〉|2 dHN−1(x) =
∫

IRk

dt
∫

π−1
k,N (t)∩S

g(x) dHN−k−1(x). (3.1)

Proof. From the coarea formula for rectifiable sets [2], Theorem 2.93 we have that∫
S

g(x)CkLx dHN−1(x) =
∫

IRk

dt
∫

π−1
k,N (t)∩S

g(x) dHN−k−1(x), (3.2)

where

CkLx :=
√

det(Lx ◦ L∗
x),

Lx : πS
x → IRk is the differential of πk,N on S at x and L∗

x is the adjoint of the linear map Lx.
Let us denote by {τ1, . . . , τN−1} an orthonormal base for πS

x ; thus, {τ1, . . . , τN−1, ν
S(x)} is an orthonormal base

for IRN . Denoting by (aij) the k× k matrix representing the linear map Lx ◦L∗
x with respect to the standard base

in IRk, we get that

aij =
N−1∑
h=1

〈τh, ei〉〈τh, ej〉 for all i, j = 1, . . . , k.

Writing, for all i, j, ei =
N−1∑
h=1

〈τh, ei〉τh + 〈νS(x), ei〉νS(x), we get

δij = 〈ei, ej〉 =
N−1∑
h=1

〈τh, ei〉〈τh, ej〉 + νS
i ν

S
j ,

hence

aij = δij − νS
i ν

S
j for all i, j = 1, . . . , k.

From this formula it follows that

CkLx =
√

det (I − ν̃ ⊗ ν̃),

where I is the k × k identity matrix and ν̃ = (νS
1 (x), . . . , νS

k (x)). The assertion then follows by observing that

det (I − ν̃ ⊗ ν̃) = 1 − |ν̃|2 =
N∑

i=k+1

|νS
i |2. (3.3)

�

For a general survey on measures and BV-functions we refer to [2, 12, 13, 19, 22].
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4. Sections of BV-functions

In this section we state some fine properties of BV-functions, which will be needed in the sequel.

Lemma 4.1. Let g : Ω → IR be a Borel function. Assume that g ∈ L1
loc(Ω) and set

G∗ :=
{

(x′, y) ∈ Ω \ Sg : lim
ε→0+

−
∫

Q′(x′,ε)
|g(z′, y) − g∗(x′, y)| dz′ = 0

}
,

where Q′(x′, ε) := x′ + εQ′ and Q′ = (−1/2, 1/2)N−1. Then G∗ is a Borel set.

Proof. Notice that G∗ = G1 ∩G2, where

G1 :=
{
(x′, y) ∈ Ω \ Sg : there exists z ∈ IR such that lim

ε→0+
−
∫

Q′(x′,ε)
|g(z′, y) − z| dz′ = 0

}
and

G2 :=
{

(x′, y) ∈ Ω \ Sg : lim
ε→0+

−
∫

Q′(x′,ε)
g(z′, y) dz′ = g∗(x′, y)

}
.

We claim that G1 is a Borel set. In fact, consider a dense sequence {qi} ⊂ IR and, for every i, j ∈ IN, set

Gij =
{
(x′, y) ∈ Ω : lim sup

ε→0+
−
∫

Q′(x′,ε)
|g(z′, y) − qi| dz′ <

1
j

}
.

It is not difficult to check that if h : IRN → IR is a locally summable Borel function, then also (x′, y) �→
−∫Q′(x′,ε)h(z′, y)dz′ is a Borel function for any ε > 0. From this fact we get immediately that each Gij is a
Borel set, and since

G1 =
∞⋂

j=1

∞⋃
i=1

Gij ,

our claim follows. On the other hand, since for any ε > 0 the function (x′, y) �→ −∫Q′(x′,ε)g(z
′, y)dz′ is Borel, we

easily get that also G2 is a Borel set. This concludes the proof. �

Lemma 4.2. ([2], Th. 3.108) Let g ∈ BV(Ω) be a given function. Then, for LN−1-almost every x′ ∈ πN−1(Ω),
the function gx′ belongs to BV(Ωx′). Moreover Jg

x′ = (Jg)x′ and (g∗)x′(y) = (gx′)∗(y) for every y ∈ Ωx′ \ (Jg)x′ .

In particular, if (Jg)x′ = ∅, then (g∗)x′(y) = (gx′)∗(y) for every y ∈ Ωx′ and both functions (g∗)x′ and (gx′)∗ are
continuous in Ωx′ .

Lemma 4.3. Let g ∈ BV(Ω) be a given function. Then, for L1-almost every y ∈ π1(Ω), the function gy belongs to
BV(Ωy).

Proof. If N = 2, the property follows by Lemma 4.2. If N > 2, the property can be easily obtained following the
proof of [2], Theorem 3.103. �

In the next two lemmas we assume N > 2. For every x = (x′, y) ∈ IRN , we set

x̂′i = (x1, . . . , xi−1, xi+1, . . . , xN−1) ∈ IRN−2

and write, for the sake of simplicity, x = (xi, x̂
′
i, y). Moreover, if E is a given set, with Ex̂′

iy
we denote Ex⊥

ν
, with

ν = ei; a similar notation will be used also for functions.
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Lemma 4.4. Let g ∈ BV(Ω) be a given function. Then there exists a set N0 ⊂ IR with L1(N0) = 0 with the
following property: for every y ∈ IR \ N0, gy ∈ BV(Ωy) and, for every i = 1, . . . , N − 1, there exists a set
N iy ⊂ IRN−2 with LN−2(N iy) = 0 such that, for every x̂′i ∈ IRN−2 \N iy we have that gx̂′

iy
∈ BV(Ωx̂′

iy
) and

(Sgy
)x̂′

i
= Jg

x̂′
i
y

(4.1)

[(gy)∗]x̂′
i
(xi) = (gx̂′

iy
)∗(xi) for every xi ∈ Ωx̂′

iy
\ Jg

x̂′
i
y
. (4.2)

Proof. For the sake of simplicity, assume Ω = IRN . By Lemma 4.3 there exists N0 ⊂ IR with L1(N0) = 0 such that
for every y ∈ IR\N0 we have that gy ∈ BV (IRN−1), Jgy

is a countably HN−2-rectifiable set and HN−2(Sgy
\Jgy

) = 0.
Moreover, by Theorem 3.2, we have that, for every i = 1, . . . , N − 1,

0 =
∫

Sgy
\Jgy

|〈νSgy , ei〉| dHN−2 =
∫

IRN−2
H0((Sgy

\ Jgy
)x̂′

i
) dx̂′i

so that there exists a set N iy
1 ⊂ IRN−2 with LN−2(N iy

1 ) = 0, such that for every x̂′i ∈ IRN−2 \ N iy
1 we have

(Sgy
\ Jgy

)x̂′
i
= ∅; i.e.,

(Sgy )x̂′
i
= (Jgy

)x̂′
i
. (4.3)

Moreover, by Lemma 4.2 applied to gy, we have that for every y ∈ IR \ N0 and for every i = 1, . . . , N − 1, there
exists a set N iy

2 ⊂ IRN−2 with LN−2(N iy
2 ) = 0, such that for every x̂′i ∈ IRN−2 \N iy

2 we have that gx̂′
iy

∈ BV (IR)
and

(Jgy)x̂′
i
= Jg

x̂′
i
y
. (4.4)

[(gy)∗]x̂′
i
(xi) = (gx̂′

iy
)∗(xi) for every xi ∈ IR \ Jg

x̂′
i
y
. (4.5)

Finally, for every y ∈ IR \N0 and for every i = 1, . . . , N − 1, set N iy = N iy
1 ∪N iy

2 ⊂ IRN−2, so that LN−2(N iy) = 0
and for every x̂′i ∈ IRN−2 \N iy we have that (4.3), (4.4) and (4.5) hold. Hence the assertion follows. �
Lemma 4.5. Let g ∈ BV(Ω) be a function which is approximately continuous in HN−1-almost every point of Ω.
Then there exists a set M0 ⊂ IR with L1(M0) = 0 with the following property: for every y ∈ IR \M0, gy ∈ BV(Ωy)
and, for every i = 1, . . . , N − 1, there exists a set M iy ⊂ IRN−2 with LN−2(M iy) = 0 such that, for every
x̂′i ∈ IRN−2 \M iy we have that gx̂′

iy
∈ BV(Ωx̂′

iy
) and

Jg
x̂′

i
y

= (Sg)x̂′
iy

= (Jg)x̂′
iy

= ∅, (4.6)

(gx̂′
iy

)∗(xi) = (g∗)x̂′
iy

(xi) for every xi ∈ Ωx̂′
iy

(4.7)
and both functions are continuous.

Proof. As before, we assume for simplicity Ω = IRN . By assumption we have that HN−1(Sg) = 0, thus from
Theorem 3.2 we get that for every i = 1, . . . , N − 1

0 =
∫

Sg

|〈νSg , ei〉| dHN−1 =
∫

IRN−1
H0((Sg)x̂′

iy
) dx̂′i dy.

Therefore there exists M i
1 ⊂ IRN−1, with LN−1(M i

1) = 0, such that for every (x̂′i, y) ∈ IRN−1 \ M i
1 we have

(Sg)x̂′
iy

= ∅. Set

M1 = {y ∈ IR : LN−2((M i
1)y) > 0 for at least one index i = 1, . . . , N − 1}.

Then, by Fubini’s theorem

0 = LN−1(M i
1) =

∫
IR

LN−2((M i
1)y) dy,
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so that LN−2((M i
1)y) = 0 for a.e. y ∈ IR; i.e., L1(M1) = 0. Moreover, for every y ∈ IR \ M1 and every

x̂′i ∈ IRN−2 \ (M i
1)y, recalling that (Jg)x̂′

iy
⊆ (Sg)x̂′

iy
, we have

(Sg)x̂′
iy

= (Jg)x̂′
iy

= ∅. (4.8)

By Lemma 4.2 we have that for every i = 1, . . . , N − 1, there exists a set M i
2 ⊂ IRN−1 with LN−1(M i

2) = 0, such
that for every (x̂′i, y) ∈ IRN−1 \M i

2 we have that gx̂′
iy

∈ BV (IR) and

Jg
x̂′

i
y

= (Jg)x̂′
iy
, (4.9)

(g∗)x̂′
iy

(xi) = (gx̂′
iy

)∗(xi) for every xi ∈ IR \ (Jg)x̂′
iy
. (4.10)

Set
M2 = {y ∈ IR : LN−2((M i

2)y) > 0 for at least one index i = 1, . . . , N − 1}.
As before, Fubini’s theorem implies that L1(M2) = 0. Thus for any y ∈ IR \M2 and any x̂′i ∈ IRN−2 \ (M i

2)y we
obtain that (4.9) and (4.10) hold. Finally, set M0 = M1 ∪M2 ⊂ IR and M iy = (M i

1)y ∪ (M i
2)y, so that L1(M0) = 0

and, for every y ∈ IR \M0, LN−2(M iy) = 0. Moreover, for every y ∈ IR \M0, by (4.8), (4.9) and (4.10) we have

∅ = (Sg)x̂′
iy

= (Jg)x̂′
iy

= Jgx̂′
i
y
,

(g∗)x̂′
iy

(xi) = (gx̂′
iy

)∗(xi) for every xi ∈ IR
and by Lemma 4.2 both functions are continuous. �

Next theorem states that given a HN−1-a.e. approximately continuous BV function g, its (N−1)-dimensional
sections are still HN−1-a.e. approximately continuous along a countably HN−1-rectifiable set whose normals are
“never” orthogonal to the direction in which the sections are taken.

Theorem 4.6. Let g ∈ BV(Ω) be a Borel function which is approximately continuous in HN−1-almost every point
of Ω. Set

G =

{
(x′, y) ∈ Ω \ Sg : lim

ε→0+
−
∫

Q′(x′,ε)
|g(z′, y) − g(x′, y)| dz′ = 0

}
.

Let S ⊂ Ω be a countably HN−1-rectifiable set such that HN−1({x ∈ S : νS(x) = ±eN}) = 0. Then
HN−1(S \G) = 0.

Proof. Again, we assume for simplicity that Ω = IRN .
Since g is approximately continuous HN−1-a.e., the thesis will be achieved if we prove that HN−1(S \G∗) = 0,

where G∗ is the set defined in Lemma 4.1. To this aim, let us first assume that N > 2.
Following the notation used in Lemmas 4.4 and 4.5 let us take y ∈ IR \ (N0∪M0) and for every i = 1, . . . , N −1,

x̂′i ∈ IRN−2 \ (N iy ∪M iy). Then by (4.1) and (4.6) we obtain

(Sg)x̂′
iy

= (Sgy )x̂′
i
= ∅

so that, for every xi ∈ IR we have that xi �∈ (Sg)x̂′
iy

, (i.e., x = (xi, x̂
′
i, y) �∈ Sg) and xi �∈ (Sgy )x̂′

i
(i.e., x′ = (xi, x̂

′
i) �∈

Sgy). Hence, x is a point where g has an approximate limit and x′ is a point where gy has an approximate limit.
Moreover by (4.2) and (4.7) it follows that (gy)∗(x′) = (g∗)x̂′

iy
(xi) = g∗(x), i.e.,

lim
ε→0+

−
∫

Q′(x′,ε)
|g(z′, y) − g∗(x)| dz′ = lim

ε→0+
−
∫

Q′(x′,ε)
|g(z′, y) − (gy)∗(x′)| dz′ = 0,

which implies that x ∈ G∗; i.e., xi ∈ G∗
x̂′

iy
. In particular we obtain that, for every y ∈ IR \ (N0 ∪M0), every

i = 1, . . . , N − 1 and every x̂′i ∈ IRN−2 \ (N iy ∪M iy)

G∗
x̂′

iy
= IR. (4.11)
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Since |νSy | = 1, from Theorem 3.2 and (4.11) we obtain

HN−2((S \G∗)y) =
N−1∑
i=1

∫
(S\G∗)y

|〈νSy , ei〉|2 dHN−2 ≤
N−1∑
i=1

∫
(S\G∗)y

|〈νSy , ei〉| dHN−2

=
N−1∑
i=1

∫
IRN−2

H0([(S \G∗)y]x̂′
i
) dx̂′i =

N−1∑
i=1

∫
IRN−2

H0((S \G∗)x̂′
iy

) dx̂′i = 0,

which implies HN−2((S \G∗)y) = 0 for every y ∈ IR \ (N0 ∪M0). Finally, using again Theorem 3.2, we obtain∫
S\G∗

√
1 − |〈νS , eN 〉|2 dHN−1 =

∫
IR

HN−2((S \G∗)y) dy = 0.

Therefore, taking into account the assumption made on S, we have HN−1(S \G∗) = 0.
If N = 2, we apply the coarea formula (3.1) again, thus getting∫

S\G∗
|〈νS , e1〉| dH1 =

∫
IR

H0((S \G∗)y) dy = 0,

where the last equality holds since H1(Sg) = 0 implies (Jg)y = ∅ for L1-almost every y ∈ π1(Ω) and, by Lemma 4.2,
(g∗)y(x) = (gy)∗(x) for all x ∈ Ωy and for L1-almost every y ∈ π1(Ω). Hence, the assertion follows. �
Remark 4.7. Clearly, Theorem 4.6 still holds if we replace eN by a generic direction ν. More precisely, given any
direction ν ∈ SN−1, set

Gν =

{
x = (x⊥ν , xν) ∈ Ω \ Sg : lim

ε→0+
−
∫

Q⊥
ν (x,ε)

|g(z⊥ν , xν) − g(x⊥ν , xν)| dz⊥ν = 0

}
,

where Q⊥
ν (x, ε) = πν⊥(x + εQν), Qν = Rν(−1/2, 1/2)N and Rν denotes a rotation such that RνeN = ν. Then

HN−1(S\Gν) = 0 for every countably HN−1-rectifiable subset S of Ω, such that HN−1({x ∈ S : νS(x) = ± ν}) = 0.

5. Setting of the problem

Let f : Ω × IR × IRN → IR be a Borel function satisfying the following conditions:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(i) f(·, s, ξ) ∈ W 1,1(Ω), for every (s, ξ) ∈ IR × IRN ;
(ii) f(·, s, ξ) is approximately continuousHN−1-a.e. in Ω, for every (s, ξ) ∈ IR × IRN ;
(iii) for every bounded set B ⊂ IR × IRN there exists a constant L(B) such that∫

Ω

|∇xf |(x, s, ξ) dx < L(B) ∀(s, ξ) ∈ B.

(5.1)

Remark 5.1. Notice that assumption (ii) of (5.1) seems redundant, since every W 1,1-function admits a HN−1-a.e.
approximately continuous representative. Moreover, the functional in (5.5) is clearly not affected by the choice
of the representative. However, functional (5.6) does depend on the particular representative chosen. Therefore,
the representation formula provided by Theorem 6.1 below does not hold if we take a representative of f not
satisfying (ii).

We will assume that

f(x, s, ·) is convex for every (x, s) ∈ Ω × IR; (5.2)

|f(x, s, ξ) − f(x, s0, ξ)| ≤ Λ
(
1 + |ξ|)|s− s0| for every (x, s, ξ), (x, s0, ξ) ∈ Ω × IR × IRN ; (5.3)

0 ≤ f(x, s, ξ) ≤ Λ(1 + |ξ|) for every (x, s, ξ) ∈ Ω × IR × IRN , (5.4)
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for some positive Λ. From (5.2) and (5.4), it follows that f is Lipschitz continuous in the last variable, uniformly
with respect to (x, s).

For every A ∈ A(Ω) and every u ∈ BV(Ω), we define

F (u,A) =

⎧⎪⎪⎨⎪⎪⎩
∫

A

f (x, u,∇u) dx if u ∈W 1,1(Ω)

+∞ if u ∈ BV(Ω) \W 1,1(Ω).

(5.5)

Our aim is to prove an integral representation theorem for the relaxation F of F , with respect to the L1-topology.
We recall that the relaxation of F is the greatest lower semicontinuous functional not greater than F ; i.e.,

F (u,Ω) := inf{lim inf
n→+∞F (un,Ω) : un ∈W 1,1(Ω) , un → u in L1(Ω)}.

Among the main properties of the relaxation, we recall the following ones:

(i) for every A ∈ A(Ω), F (·, A) is lower semicontinuous with respect to the L1-topology;

(ii) for every A ∈ A(Ω), F (·, A) is local; i.e., for every u, v ∈ BV(Ω), with u = v on A, F (u,A) = F (v,A);

(iii) for every u ∈ BV(Ω), F (u, ·) is a σ-additive measure on B(Ω).

For other properties of the relaxation we refer to [4, 6, 10, 11].

We set, for every A ∈ A(Ω) and every u ∈ BV (Ω),

F(u,A) =
∫

A

f(x, u,∇u) dx+
∫

A

f∞
(
x, ũ,

Dcu

|Dcu|
)

d|Dcu| +
∫

Ju∩A

(∫ u+(x)

u−(x)

f∞(x, s, νu) ds

)
dHN−1(x), (5.6)

where f∞ : Ω × IR × IRN → IR is the so-called recession function of f , defined by

f∞(x, s, ξ) = lim
t→+∞

f(x, s, tξ)
t

= sup
t>0

f(x, s, tξ) − f(x, s, 0)
t

· (5.7)

Notice that assumptions (5.2) and (5.4) imply that the limit in (5.7) exists for every (x, s, ξ) ∈ Ω× IR× IRN (since
the function t �→ f(x,s,tξ)−f(x,s,0)

t is increasing). Moreover, the function f∞ is convex and positively homogeneous
of degree one in the last variable and, as a consequence of definition (5.7), we have that

f(x, s, tξ)
t

≤ f∞(x, s, ξ) +
f(x, s, 0)

t
for all t > 0. (5.8)

Notice also that f∞ is a Borel function in Ω × IR × IRN . Thus, the functional F in (5.6) is well defined. By the

assumptions made on f , it follows that

0 ≤ f∞(x, s, ξ) ≤ Λ|ξ| for every (x, s, ξ) ∈ Ω × IR × IRN , (5.9)

|f∞(x, s, ξ) − f∞(x, s0, ξ)| ≤ Λ|ξ||s− s0| for every (x, s, ξ), (x, s0, ξ) ∈ Ω × IR × IRN . (5.10)
In the sequel, we will assume also that

f∞(·, s, ξ) ∈ BV(Ω) for every (s, ξ) ∈ IR × IRN , (5.11)

and that, for any (s, ξ) ∈ IR × IRN ,

f∞(·, s, ξ) is approximately continuous for HN−1-a.e. x ∈ Ω. (5.12)
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Remark 5.2. Note that (5.11), (5.12) trivially follow from (5.1) when f(x, s, ·) is positively 1-homogeneous (since
in this case f∞ coincides with f) and when f(x, s, ξ) = a(x, s) b(ξ) or f(x, s, ξ) = a(x) b(s, ξ) (since in this case the
dependence on x is not involved in the limit (5.7)). However, in general, property (5.12) is not a consequence of
(5.1)–(5.4), as the following example shows.

Example 5.3. Let f : (−1, 1)× IR → [0,+∞) be a function defined by

f(x, ξ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

5
2
|ξ| − 1

2x
if x ≥ 1

|ξ| ,

x|ξ|2
2

+
3
2
|ξ| if 0 ≤ x ≤ 1

|ξ| ,

3
2
|ξ| if x ≤ 0,

if ξ �= 0 and f(x, 0) = 0 for every x ∈ (−1, 1). It is easy to check that f is a Lipschitz function with respect to x
satisfying (5.1)–(5.4). Nevertheless, condition (5.12) does not hold, since

f∞(x, ξ) =

⎧⎪⎨⎪⎩
5
2
|ξ| if x > 0,

3
2
|ξ| if x ≤ 0.

We believe that assumptions (5.1), (5.2) and (5.4) do not imply that x �→ f∞(·, ξ) is a BV function. However,
next proposition states that under further assumptions on f , then the recession function f∞ necessarily satisfies
(5.11) and (5.12).

Proposition 5.4. Let f : Ω × IR × IRN → IR be a function satisfying (5.1), (5.2) and (5.4). Assume that
• (i) fξ(·, s, ξ) is weakly differentiable in Ω for all (s, ξ) and that∫

Ω

|∇xfξ(x, s, ξ)| dx ≤ c0 for all (s, ξ) ∈ IR × IRN .

Then f∞ satisfies (5.11). Moreover, if
• (ii) for every (x0, s) ∈ Ω × IR and for every ε > 0 there exist δ > 0 and L > 0 such that∣∣∣∣f∞(x, s, ξ) − f(x, s, tξ)

t

∣∣∣∣ ≤ ε

(
1 +

f(x, s, tξ)
t

)
for any x ∈ Ω, with |x− x0| ≤ δ, any ξ ∈ IRN and any t > L, then f∞ satisfies also (5.12).

Proof. Fix s ∈ IR and ϕ ∈ C1
0 (Ω, IRN ) and set ψs(ξ) =

∫
Ω〈∇xf(x, s, ξ), ϕ(x)〉dx. From assumption (i) we get

easily that |∇ψs(ξ)| ≤ c0‖ϕ‖∞ for all (s, ξ) ∈ IR × IRN . Hence ψs is Lipschitz continuous and Lip(ψs) ≤ c0‖ϕ‖∞.
Therefore, from (5.4) and (5.1), we get that for all (s, ξ)∫

Ω

f∞(x, s, ξ) divϕ(x) dx = lim
h→∞

∫
Ω

f(x, s, hξ)
h

divϕ(x) dx = lim
h→∞

∫
Ω

〈∇xf(x, s, hξ)
h

, ϕ(x)〉dx

= lim
h→∞

∫
Ω

1
h
〈∇xf(x, s, hξ) −∇xf(x, s, 0), ϕ(x)〉dx ≤ c0‖ϕ‖∞|ξ|

and from this inequality we get at once that f∞(·, s, ξ) ∈BV(Ω) and |Dxf
∞(·, s, ξ)|(Ω) ≤ c0|ξ|.

Fix (s, ξ) ∈ IR × IRN . Recalling that f(·, s, ξ) ∈ W 1,1(Ω), from (5.1) we get that there exists a set Ns,ξ,
with HN−1(Ns,ξ) = 0, such that for any h ∈ IN the function f(·, s, hξ) is approximately continuous in Ω \ Ns,ξ.
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Let us fix x0 ∈ Ω \Ns,ξ and ε > 0 and let δ and L be the quantities provided by the assumption (ii). Then for any
ρ ∈ (0, δ) and h > L∨1 we get, recalling also (5.4),

−
∫

Bρ(x0)

|f∞(x, s, ξ) − f∞(x0, s, ξ)| dx ≤ 1
h
−
∫

Bρ(x0)

|f(x, s, hξ) − f(x0, s, hξ)| dx+ 2ε(1 + Λ(1 + |ξ|)).

Thus, letting first ρ→ 0 and then ε→ 0 in the inequality above, we get that f∞(·, s, ξ) is approximately continuous
at x0. Hence, the assertion follows. �

Lemma 5.5. Assume that f, f∞ : Ω × IR × IRN → IR satisfy (5.2)–(5.4) and (5.12). Then, there exists N0 ⊂ Ω
(independent of (s, ξ)), with HN−1(N0) = 0, such that

lim
ε→0+

−
∫

Bε(x)

|f∞(y, s, ξ) − f∞(x, s, ξ)| dy = 0 (5.13)

for every (s, ξ) ∈ IR × IRN and every x ∈ Ω \N0.

Proof. From (5.12), we get that (5.13) holds for every (s, ξ) ∈ IR×IRN and every x ∈ Ω\Ns,ξ, with HN−1(Ns,ξ) = 0.
Now, let Σ0 = {(sk, ξk)} be a countable dense set in IR × IRN and set N0 =

⋃
k Nsk,ξk

. Clearly, HN−1(N0) = 0
and (5.13) holds for every x ∈ Ω \ N0 and every (sk, ξk) ∈ Σ0. Therefore, observing that (5.9) implies that
ξ �→ f∞(x, s, ξ) is Lipschitz continuous with a constant not depending on (x, s), and recalling (5.10), it follows that
(5.13) actually holds for every (s, ξ) ∈ IR × IRN and every x ∈ Ω \N0. �

Lemma 5.6. Let f, f∞ satisfy the same assumptions as in Lemma 5.5 and (5.11). Then, for every ν ∈ SN−1,
there exists Nν ⊂ πν⊥(Ω) (independent of s), with HN−1(Nν) = 0, such that the function xν �→ f∞(x⊥ν , xν , s, ν) is
continuous for every x⊥ν ∈ πν⊥(Ω) \Nν and every s ∈ IR.

Proof. By Lemma 4.2, it follows that for every (s, ν) ∈ IR × SN−1 there exists a set Ns,ν ⊂ πν⊥(Ω), with
HN−1(Ns,ν) = 0, such that for every x⊥ν ∈ πν⊥(Ω) \Ns,ν the function xν �→ f∞(x⊥ν , xν , s, ν) is continuous in Ωx⊥

ν
.

Now, let Σ0 = {sk} be a countable dense set in IR and set Nν =
⋃

k Nsk,ν . Clearly, HN−1(Nν) = 0 and, for every
x⊥ν ∈ πν⊥(Ω) \Nν and every sk ∈ Σ0, the function xν �→ f∞(x⊥ν , xν , sk, ν) is continuous in Ωx⊥

ν
. By using (5.10)

as in the previous proof, it follows that the function xν �→ f∞(x⊥ν , xν , s, ν) actually is continuous in Ωx⊥
ν
, for every

s ∈ IR and every x⊥ν ∈ πν⊥(Ω) \Nν . �

Lemma 5.7. Let f, f∞ be as in Lemma 5.6. Let D0 = {νj} be a countable sequence of directions in SN−1. There
exists a set G ⊂ Ω such that, for every s ∈ IR and every νj ∈ D0, each point x = (x⊥νj

, xνj ) ∈ G is a point of
approximate continuity for f∞(·, s, νj) and the function f∞(·, xνj , s, νj) is approximately continuous at x⊥νj

∈ Ωxνj
.

Moreover, HN−1(S \ G) = 0 for any countably HN−1-rectifiable set S ⊂ Ω such that

HN−1({x ∈ S : νS(x) = ± νj}) = 0 for all νj ∈ D0 .

Proof. For every νj ∈ D0 and every s ∈ IR, set

Gs
νj

=

{
x = (x⊥νj

, xνj ) ∈ Ω \N0 : lim
ε→0+

−
∫

Q⊥
νj

(x,ε)

|f∞(z⊥νj
, xνj , s, νj) − f∞(x⊥νj

, xνj , s, νj)| dz⊥νj
= 0

}
,

where Q⊥
νj

(x, ε) = πν⊥
j

(Qνj (x, ε)) and N0 is the set given by Lemma 5.5. By Remark 4.7, it follows that
HN−1(S \ Gs

νj
) = 0. We consider the set Gs =

⋂
j G

s
νj

; then, for every s ∈ IR, HN−1(S \ Gs) = 0. Now, let
{sk} be a countable dense subset of IR and, for every k ∈ IN, Gsk be the corresponding set, constructed as above.
Finally, set G =

⋂
k Gsk . Clearly, HN−1(S \ G) = 0. Moreover, as a consequence (5.10) and the density of {sk},
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we have that, for every νj ∈ D0 and every x ∈ G,

lim
ε→0+

−
∫

Q⊥
νj

(x,ε)

|f∞(z⊥νj
, xνj , s, νj) − f∞(x⊥νj

, xνj , s, νj)| dz⊥νj
= 0

for every s ∈ IR. �

6. Main result

As we pointed out in the introduction, it has been already proven, for instance in [5, 14, 15], under suitable
regularity assumptions on the integrand function f , that the functional defined in (5.6) provides a “natural”
extension of the functional (5.5) from W 1,1(Ω) to BV(Ω). In the next theorem we state that the same result still
holds under the different assumptions on f considered here.

Theorem 6.1. Assume that f : Ω × IR × IRN → IR is a Borel function satisfying (5.1)–(5.4). Let F : BV(Ω) ×
A(Ω) → [0,+∞] be the functional defined in (5.5) and F be the relaxation of F . Assume also that (5.11) and (5.12)
hold. Then, F (u, ·) is the trace of a finite Radon measure on A(Ω), and

F (u,A) =
∫

A

f(x, u,∇u) dx+
∫

A

f∞
(
x, ũ,

Dcu

|Dcu|
)

d|Dcu| +
∫

Ju∩A

(∫ u+(x)

u−(x)

f∞(x, s, νu) ds

)
dHN−1(x)

for every A ∈ A(Ω) and every u ∈ BV(Ω).

We start by observing that under the assumptions of Theorem 6.1 above it is well known that for any u ∈ BV(Ω)
the function F (u, ·) is the trace of a finite Radon measure on A(Ω) and that for all A ∈ A(Ω)

0 ≤ F (u,A) ≤ c(LN (A) + |Du|(A)) .

Hence, to prove Theorem 6.1 we have to establish the two inequalities

(i) F(u,A) ≤ F (u,A) for all A ∈ A(Ω) and u ∈ BV(Ω),

(ii) F(u,A) ≥ F (u,A) for all A ∈ A(Ω) and u ∈ BV(Ω).

The first one is an immediate consequence of next theorem which, in turn, follows from a more general lower
semicontinuity result [7], Theorem 1.1.

Theorem 6.2. Assume that f : Ω× IR× IRN → [0,+∞) is a locally bounded Borel function, satisfying (5.1)–(5.3).
Then, for every A ∈ A(Ω) the functional F(·, A) : BV(Ω) → [0,+∞) defined in (5.6) is lower semicontinuous with
respect to the L1-topology.

Inequality (ii) is established in the next theorem.

Theorem 6.3. Assume that f : Ω × IR × IRN → IR is a Borel function satisfying (5.2)–(5.4), (5.11) and (5.12).
Then, for every A ∈ A(Ω) and every u ∈ BV(Ω), F(u,A) ≥ F (u,A).

Following [15], Proof of Theorem 1.3, we fix u ∈ BV(Ω) and consider the Radon-Nikodým derivatives of F (u, ·)
with respect to the Lebesgue measure LN , to the total variation of the Cantor measure |Dcu| and to the Hausdorff
measure HN−1	Su, respectively. In order to obtain Theorem 6.3, we will prove that

(L)
dF (u, ·)

dLN
(x0) ≤ f(x0, u(x0),∇u(x0)) for LN -almost every x0 ∈ Ω,
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(C)
dF (u, ·)
d|Dcu| (x0) ≤ f∞

(
x0, ũ(x0),

Dcu

|Dcu|(x0)
)

for |Dcu|-almost every x0 ∈ Ω,

(J)
dF (u, ·)

dHN−1	Ju
(x0) ≤

∫ u+(x0)

u−(x0)

f∞(x0, s, νu(x0)) ds for HN−1-almost every x0 ∈ Ju.

Inequality (L) is proven in [15] (Th. 1.3, part (i)), under the only assumptions (5.2)–(5.4), hence, we have to prove
(C) and (J). To this purpose let us define the following coercive functional associated to F by setting

F 1(u,A) := F (u,A) + |Du|(A) .

Proposition 6.4. Assume that f : Ω× IR× IRN → IR is a Borel function satisfying (5.2)–(5.4) and (5.12). Then,
(C) holds; i.e., for every u ∈ BV(Ω),

(C)
dF (u, ·)
d|Dcu| (x0) ≤ f∞

(
x0, ũ(x0),

Dcu

|Dcu|(x0)
)

for |Dcu|-almost every x0 ∈ Ω .

Proof. By Lemma 3.9 of [3] for |Dcu|-almost every x0 ∈ Ω, there exists a double indexed sequence {tkε , uk
ε} such

that, for every k ∈ IN,
tkε → +∞, εtkε → 0+, uk

ε → ũ(x0) as ε→ 0+ , (6.1)

dF 1(u, ·)
d|Dcu| (x0) =

dF (u, ·)
d|Dcu| (x0) + 1

= lim
k→+∞

lim sup
ε→0+

inf{F 1(v,Qk
ν(x0, ε)) : v ∈ BV(Qk

ν(x0, ε)), v|∂Qk
ν(x0,ε) = uk

ε + 〈tkεν, x− x0〉}
kN−1εN tkε

,

where ν =
dDcu

d|Dcu| (x0), |ν| = 1, and Qk
ν(x0, ε) := x0 + εQk

ν , with

Qk
ν := Rν

(
(−k/2, k/2)N−1 × (−1/2, 1/2)

)
, (6.2)

and Rν denotes a rotation such that RνeN = ν. Fix x0 ∈ Ω so that all the limits above exist and are finite.
Moreover, since by Lemma 5.5 there exists N0 ⊂ Ω, with HN−1(N0) = 0 (hence, |Dcu|(N0) = 0), so that f∞(·, s, ξ)
is approximately continuous at x0 for every (s, ξ) ∈ IR × IRN , we may assume with no loss of generality that
x0 ∈ Ω \N0. Then, taking into account (5.8), (5.4) and (6.1), we have

dF (u, ·)
d|Dcu| (x0) + 1 ≤ lim inf

k→+∞
lim sup
ε→0+

1
kN−1εN tkε

F 1(uk
ε + 〈tkεν, x− x0〉, Qk

ν(x0, ε))

≤ lim inf
k→+∞

lim sup
ε→0+

−
∫

Qk
ν(x0,ε)

f(x, uk
ε + 〈tkεν, x− x0〉, tkεν)

tkε
dx+ 1

≤ lim inf
k→+∞

lim sup
ε→0+

−
∫

Qk
ν(x0,ε)

(
f∞(x, uk

ε +〈tkεν, x−x0〉, ν) +
f(x, uk

ε +〈tkεν, x−x0〉, 0)
tkε

)
dx+ 1

≤ lim inf
k→+∞

lim sup
ε→0+

−
∫

Qk
ν(x0,ε)

f∞(x, uk
ε + 〈tkεν, x− x0〉, ν) dx + 1,

which implies
dF (u, ·)
d|Dcu| (x0) ≤ lim inf

k→+∞
lim sup

ε→0+
−
∫

Qk
ν(x0,ε)

f∞(x, uk
ε + 〈tkεν, x− x0〉, ν) dx.
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Hence, in order to conclude, it is enough to prove that for all k ∈ IN

lim sup
ε→0+

−
∫

Qk
ν(x0,ε)

f∞(x, uk
ε + 〈tkεν, x− x0〉, ν) dx ≤ f∞(x0, ũ(x0), ν). (6.3)

By (5.10), the approximate continuity of the function f∞(·, ũ(x0), ν) in x0 ∈ Ω and (6.1), it follows that for every
k ∈ IN

lim sup
ε→0+

−
∫

Qk
ν(x0,ε)

f∞(x, uk
ε +〈tkεν, x−x0〉, ν) dx

≤ lim sup
ε→0+

−
∫

Qk
ν(x0,ε)

f∞(x, ũ(x0), ν) dx+ lim sup
ε→0+

−
∫

Qk
ν(x0,ε)

Λ|uk
ε + 〈tkεν, x− x0〉 − ũ(x0)| dx

≤ f∞(x0, ũ(x0), ν) + Λ lim sup
ε→0+

[
|uk

ε − ũ(x0)| + −
∫

Qk
ν(x0,ε)

tkε |x− x0| dx
]

≤ f∞(x0, ũ(x0), ν) + Λ lim sup
ε→0+

[
|uk

ε − ũ(x0)| + εtkε
√

(N−1)k2 + 1
]

= f∞(x0, ũ(x0), ν) .

Thus (6.3) is proved. Hence, the assertion follows. �

Proposition 6.5. Let f satisfy the assumptions of Theorem 6.3. Then,

dF (u, ·)
dHN−1	Ju

(x0) ≤
∫ u+(x0)

u−(x0)

f∞(x0, s, νu(x0)) ds (6.4)

for every u ∈ BV(Ω) and for HN−1-almost every x0 ∈ Ju.

Proof. Let u ∈ BV(Ω). We will prove that for HN−1-a.e. x0 ∈ Ju

dF (u, ·)
dHN−1	Ju

(x0) = lim
r→0+

F (u,Br(x0))
HN−1	Ju(Br(x0))

≤
∫ u+(x0)

u−(x0)

f∞(x0, s, νu(x0)) ds.

By Remark 3.1 the set Φu, defined by

Φu = {ν ∈ SN−1 : HN−1({x ∈ Ju : νu(x) = ± ν}) > 0},

is at most countable. Given a countable dense subset D0 of directions in SN−1 \ Φu, we apply Lemma 5.7, with
S = Ju. Thus, there exists a set G ⊂ Ω, such that, for every s ∈ IR and every ν ∈ D0, if x = (x⊥ν , xν) ∈ G, then
f∞(·, s, ν) is approximately continuous at x, f∞(·, xν , s, ν) is approximately continuous at x⊥ν and HN−1(Ju\G) = 0.

By Theorem 3.7 of [3], for HN−1-almost every x0 ∈ Ju ∩ G we have

dF 1(u, ·)
dHN−1	Ju

(x0) =
dF (u, ·)

dHN−1	Ju
(x0) + |u+(x0) − u−(x0)| (6.5)

= lim sup
ε→0+

inf{F 1(v,Qν(x0, ε)) : v ∈ BV(Qν(x0, ε)), v|∂Qν(x0,ε) = wν}
εN−1

,

where ν = νu(x0), Qν(x0, ε) = x0 + εQν , Qν is defined as in (6.2) with k = 1, and wν is the jump function which
takes the value u+(x0) if 〈x−x0, ν〉 > 0 and u−(x0) if 〈x−x0, ν〉 ≤ 0. Let {νj} be a sequence of directions contained
in D0 converging to ν. Let us fix δ > 0; then Qν(0, 1 − δ) ⊂ Qνj ⊂ Qν(0, 1 + δ) for every j sufficiently large.

Let φ ∈ C∞
0 (Qν(0; 1 + δ)) be a cut-off function such that φ(x) = 1 in Qν(0; 1 − 2δ), φ(x) = 0 on Qν(0; 1 + δ) \

Qν(0; 1 − δ) and |∇φ| ≤ c/δ. For every ε > 0, set φε(x) = φ(x−x0
ε ), so that |∇φε| ≤ c/εδ and, for every j ∈ IN



410 M. AMAR, V. DE CICCO AND N. FUSCO

sufficiently large, set wε,ν,νj (x) = φε(x)wνj (x) + (1 − φε(x))wν (x), where wνj is defined as wν , with ν replaced
by νj . We note that wε,ν,νj satisfies the boundary condition wε,ν,νj |∂Qν(x0,ε) = wν , so that, by (6.5), we obtain

dF 1(u, ·)
dHN−1	Ju

(x0) ≤ lim sup
ε→0+

[
F (wε,ν,νj , Qν(x0, ε))

εN−1
+

|Dwε,ν,νj |(Qν(x0, ε))
εN−1

]
. (6.6)

Clearly, for every ε > 0 and j ∈ IN sufficiently large,

|Dwε,ν,νj |(Qν(x0, ε))
εN−1

(6.7)

≤ 1
εN−1

[∫
Qν(x0,ε)

|∇φε||wνj − wν | dx+ |Dwνj |(Qν(x0, ε)) + |Dwν |(Qν(x0, ε) \Qν(x0, (1 − 2δ)ε))

]

≤ c

εNδ

∫
Qν(x0,ε)

|wνj − wν | dx+
|u+(x0) − u−(x0)|

|〈ν, νj〉| + cδ ≤ c

δ
sin(ν̂νj) +

|u+(x0) − u−(x0)|
|〈ν, νj〉| + cδ.

Moreover, let us approximate the jump function wε,ν,νj by means of a sequence of W 1,1-functions, given by
un

ε,ν,νj
(x) = φε(x)un

ε,νj
(x) + (1 − φε(x))un

ε,ν(x), where

un
ε,ν(x) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

u+(x0) if ε/2n ≤ 〈x − x0, ν〉,

(u+(x0) − u−(x0))
n

ε
〈x− x0, ν〉 +

u+(x0) + u−(x0)
2

if − ε/2n ≤ 〈x− x0, ν〉 ≤ ε/2n,

u−(x0) if 〈x− x0, ν〉 ≤ −ε/2n,

and un
ε,νj

is defined similarly by replacing ν with νj . Clearly, ‖un
ε,ν,νj

−wε,ν,νj‖L1(Qν(x0,ε)) → 0 as n→ +∞, hence,
using the lower semicontinuity of F , (5.4), (5.8), it follows

F (wε,ν,νj , Qν(x0, ε))
εN−1

≤ lim inf
n→+∞

1
εN−1

∫
Qν(x0,ε)

f(x, un
ε,ν,νj

,∇un
ε,ν,νj

) dx (6.8)

≤ lim inf
n→+∞

1
εN−1

[∫
Qν(x0,ε(1−2δ))

f(x, un
ε,νj

,∇un
ε,νj

) dx+ c

∫
Qν(x0,ε)

[
|∇φε| |un

ε,ν−un
ε,νj

| + 1
]
dx

+ c

∫
Qν(x0,ε)\Qν(x0,(1−2δ)ε)

(
φε|∇un

ε,νj
| + (1 − φε)|∇un

ε,ν | + 1
)
dx

]

≤ lim inf
n→+∞ −

∫
Qνj

(x0,ε)

εf(x, un
ε,νj

,∇un
ε,νj

)dx+ cε+
c

δ
sin(ν̂νj) + cδ

≤ lim inf
n→+∞ −

∫
Qνj

(x0,ε)

[
f∞(x, un

ε,νj
, ε∇un

ε,νj
) + εf(x, un

ε,νj
, 0)

]
dx+ cε+

c

δ
sin(ν̂νj) + cδ

≤ lim inf
n→+∞ −

∫
Qνj

(x0,ε)

f∞(x, un
ε,νj

, ε∇un
ε,νj

) dx+ cε+
c

δ
sin(ν̂νj) + cδ

≤ (u+(x0)−u−(x0)) lim inf
n→+∞ −

∫
Q⊥

νj
(x0,ε)

[
n

ε

∫ (x0)νj
+ε/2n

(x0)νj
−ε/2n

f∞(x⊥νj
, xνj , u

n
ε,νj

(x), νj) dxνj

]
dx⊥νj

+ cε+
c

δ
sin(ν̂νj) + cδ,
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where Q⊥
νj

(x0, ε) = πν⊥
j

(Qνj (x0, ε)). We note that the function un
ε,νj

actually depends only on xνj , so that, by the
change of variable s = un

ε,νj
(xνj ), we obtain

xνj = ρn,ε(s) =
ε

n(u+(x0) − u−(x0))
(
s− u+(x0) + u−(x0)

2
)

+ (x0)νj

and ρn,ε(s) → (x0)νj , when n→ +∞; so that, by dominated convergence theorem and Lemma 5.6, we have

(u+(x0) − u−(x0)) lim sup
ε→0+

lim inf
n→+∞−

∫
Q⊥

νj
(x0,ε)

[
n

ε

∫ (x0)νj
+ε/2n

(x0)νj
−ε/2n

f∞(x⊥νj
, xνj , u

n
ε,νj

(xνj ), νj) dxνj

]
dx⊥νj

(6.9)

= lim sup
ε→0+

lim inf
n→+∞−

∫
Q⊥

νj
(x0,ε)

[∫ u+(x0)

u−(x0)

f∞(x⊥νj
, ρn,ε(s), s, νj) ds

]
dx⊥νj

≤ lim sup
ε→0+

−
∫

Q⊥
νj

(x0,ε)

[∫ u+(x0)

u−(x0)

lim
n→+∞ f∞(x⊥νj

, ρn,ε(s), s, νj) ds

]
dx⊥νj

≤ lim sup
ε→0+

−
∫

Q⊥
νj

u(x0,ε)

[∫ u+(x0)

u−(x0)

f∞(x⊥νj
, (x0)νj , s, νj) ds

]
dx⊥νj

=
∫ u+(x0)

u−(x0)

[
lim

ε→0+
−
∫

Q⊥
νj

(x0,ε)

f∞(x⊥νj
, (x0)νj , s, νj) dx⊥νj

]
ds =

∫ u+(x0)

u−(x0)

f∞(x0, s, νj) ds,

where the last equality is due to the approximate continuity at (x0)⊥νj
of f∞(·, (x0)νj , s, νj), for every s ∈ IR.

By (6.5)–(6.9), we obtain, letting ε→ 0+,

dF (u, ·)
dHN−1	Ju

(x0) + |u+(x0) − u−(x0)| ≤
∫ u+(x0)

u−(x0)

f∞(x0, s, νj) ds+
c

δ
sin(ν̂νj) + cδ +

|u+(x0) − u−(x0)|
|〈ν, νj〉| ·

Now, taking into account the Lipschitz continuity of f∞ with respect to the last variable and letting first j → +∞
and then δ → 0+ we get

dF (u, ·)
dHN−1	Ju

(x0) + |u+(x0) − u−(x0)| ≤
∫ u+(x0)

u−(x0)

f∞(x0, s, νu(x0)) ds+ |u+(x0) − u−(x0)|.

Hence, the assertion follows. �
We are now in position to give the proof of Theorem 6.1.

Proof of Theorem 6.1. Taking into account Theorem 6.2, [15] (Th. 1.3, part (i)), and Propositions 6.4 and 6.5, we
obtain the assertion for any function u ∈ BV(Ω) and any A ∈ A(Ω). �
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