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MODEL PROBLEMS FROM NONLINEAR ELASTICITY:
PARTIAL REGULARITY RESULTS
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Abstract. In this paper we prove that every weak and strong local minimizer u ∈ W 1,2(Ω, IR3) of
the functional

I(u) =

∫
Ω

|Du|2 + f(AdjDu) + g(detDu),

where u : Ω ⊂ IR3 → IR3, f grows like |AdjDu|p, g grows like |detDu|q and 1 < q < p < 2, is C1,α on
an open subset Ω0 of Ω such that meas(Ω \ Ω0) = 0. Such functionals naturally arise from nonlinear
elasticity problems. The key point in order to obtain the partial regularity result is to establish an
energy estimate of Caccioppoli type, which is based on an appropriate choice of the test functions. The
limit case p = q ≤ 2 is also treated for weak local minimizers.
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1. Introduction

Let us consider integral functionals of the Calculus of Variations of the type

I(u) =
∫

Ω

F (Du)dx ,

where Ω ⊂ IRn and u : Ω → IRN .
An interesting class of integral functionals which naturally arise from problems of nonlinear elasticity [3] is the

one of polyconvex functionals, i.e. functionals in which the integrand is a convex function of the minors of the
matrix [Du]. It is well known that polyconvex functionals are also quasiconvex, but they often satisfy anisotropic
growth conditions which are not recovered by the results concerning the quasiconvex case [1, 5, 6, 8, 9, 13, 14].

For this reason [10, 11] have considered polyconvex integrals with anisotropic growth conditions, which are
close to the typical examples arising from nonlinear elasticity theory. A model case included in the results of
[10] is, for n = N = 3

I(u) =
∫

Ω

|Du|2 + |Du|p + |AdjDu|p + |detDu|p
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where p > 2. They proved that absolute minimizers of I(u) are C1,α except for a closed subset of Ω of zero
Lebesgue measure. Recall that a function u is an absolute minimizer of I(u) if I(u) ≤ I(u + ϕ) for every
ϕ ∈ C∞

o (Ω).
Motivated by a recent paper of Ball [4], in [7, 15] partial regularity has been proved for a new class of

minimizers of I(u), when F is a quasiconvex integrand. In particular, they consider W 1,p̄ local minimizers,
defined as follows

Definition 1.1. Let 1 ≤ p ≤ p̄ ≤ +∞. A map u ∈ W 1,p(Ω; IRN ) is a W 1,p̄(Ω; IRN ) local minimizer of I(v), if
there exists δ > 0 such that I(u) ≤ I(v) whenever v ∈ u+W 1,p

o (Ω; IRN ) and ||Dv −Du||p̄ ≤ δ.

We will refer to a W 1,p̄(Ω; IRN ) local minimizer of I(v) with 1 ≤ p̄ < ∞ as a strong local minimizer and to
a W 1,∞(Ω; IRN ) local minimizer as a weak local minimizer. It has been noted in [15] that, if p = p̄, the study
of partial regularity of strong local minimizers can be reduced to the study of absolute minimizers. For this
reason we confine ourselves to the case p̄ > p. Since in [4] the study of this class of minimizers is proposed
for polyconvex integral functionals, as a natural continuation of the results in [15], in this paper we prove C1,α

partial regularity for weak and strong local minimizers of polyconvex functionals of the type∫
Ω

|Du|2 + f(AdjDu) + g(detDu) ,

where u : Ω ⊂ IR3 → IR3, f grows like |AdjDu|p, g grows like |detDu|q and 1 < q < p < 2. We mention that,
under the same assumptions on f and g of Theorem A below, the regularity result for absolute minimizers has
been obtained in [16].

Theorem A. Let us consider the functional

I(v) =
∫

Ω

|Dv|2 + f(AdjDv) + g(detDv), (1.1)

and suppose that f : IR3×3 → IR, g : IR → IR are C2 convex functions satisfying the following assumptions

(H1) c1(µ2 + |z|2) p−2
2 |ξ|2 ≤ fzizj (z)ξiξj ≤ c2(µ2 + |z|2) p−2

2 |ξ|2 ,

(H2) c3(µ2 + t2)
q−2
2 ≤ g′′(t) ≤ c4(µ2 + t2)

q−2
2 ,

where 1 < q < p < 2 and µ ≥ 0. Let 2 ≤ p̄ ≤ ∞ and assume that u ∈ W 1,2(Ω, IR3) ∩W 1,p̄
loc (Ω, IR3) be a W 1,p̄

local minimizer of I(v).
If p̄ = ∞, we assume in addition that

limsupR→0+ ||Du− (Du)x,R||L∞(B(x,R)) < δ (1.2)

holds locally uniformly in x ∈ Ω, with δ as in Definition 1. Then, there exists α ∈ (0, 1) such that u ∈ C1,α(Ω0)
for some open subset Ω0 of Ω with meas(Ω \ Ω0) = 0.

As far as we know, no results are available, even for absolute minimizers, if p = q ≤ 2. However, in the
special case of weak local minimizers, we are able to deal also with this assumption. Namely we have

Theorem B. Let f , g satisfy the same assumptions as in Theorem A with 1 < p = q ≤ 2. Let u ∈
W 1,∞

loc (Ω, IR3) be a weak local minimizer for the functional (1.1) such that

limsupR→0+ ||Du− (Du)x,R||L∞(BR(x)) < δ (1.3)
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holds locally uniformly in x ∈ Ω, with δ as in Definition 1. Then, there exists α ∈ (0, 1) such that u ∈ C1,α(Ω0)
for some open subset Ω0 of Ω with meas(Ω \ Ω0) = 0.

We have restricted our study to the case n = N = 3, which is the most significant from the point of view
of the applications, thus avoiding the heavy technicalities needed for the general case n ≥ 3, N ≥ 2, which in
any case can carried on without any new idea. A fundamental tool needed to prove partial regularity is a new
Caccioppoli type estimate (see Lem. 2.3).

The difficulties here are twofold. The first one is due to the anisotropic growth of the functional which
requires the use of suitable test functions obtained (as in [10]) by interpolating the values of u on the boundary.

The second difficulty comes from the definition of local minimizers which imposes a bound on the W 1,p̄ norm
of the test functions. Kristensen and Taheri [15] discovered that this restriction is responsible of the fact that
in the proof of the Caccioppoli estimate it is impossible the iteration on small radii and thus they are lead
to an inequality which does not involve any two concentric balls. Here, in a different way, we also obtain a
pre-iterated form of the Caccioppoli inequality involving only two balls of radii R and R

2 .
This weaker form of the usual Caccioppoli estimate is however enough to establish the decay estimate by the

use of an extra new iteration argument.

2. The energy estimate

Let Ω be a bounded open subset of IR3. If A ∈ Hom(IR3, IR3) we set

∧0A = 1, ∧1A = A, ∧2A = adjA, ∧3A = detA.

Following [11], for every A,B ∈ Hom(IR3, IR3) and for k = 2, 3, we shall write,

∧k(A+B) =
k∑

i=0

∧k−iA	 ∧iB, (2.1)

where ∧k−iA 	 ∧iB denotes a suitable linear combination of products of a component of ∧k−iA times a com-
ponent of ∧iB. The explicit expression of ∧k−iA	 ∧iB will not be needed in the sequel.

Definition 2.1. Let Ω be a smooth bounded domain of IR3 and p > 1. The Sobolev class ∧3W 1,p(Ω; IR3)
consists of all functions u ∈ W 1,p(Ω; IR3) such that ∧iDu ∈ Lp(Ω) for every 1 ≤ i ≤ 3.

Remark that the Sobolev class ∧3W 1,p is not a linear space. Indeed, if u, v ∈ ∧3W 1,p it may happen that
u+ v 
∈ ∧3W 1,p.

In what follows Br(x) will be the ball centered in x of radius r. If no confusion arises, Br will stands for a
ball centered in 0 of radius r. When r = 1, we may use B instead of B1. The letter C will denote a generic
constant whose value may change from line to line.

Lemma 2.2. Let α be a constant and let fh, gh be two sequences of functions in L1(B) such that fh → α for
a.e. x ∈ B, gh → g weakly in L1+η(B), for some η > 0. Assume that

∫
B

|fhgh|1+δdx <∞,

where δ ≥ η. Then fhgh → αg weakly in L1+η(B).
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Proof. See [11], Lemma 5.5.

If Ω ⊂ IR3 is a bounded open set and λ ∈ (0, 1) is a real number, we consider, for v ∈ W 1,2(Ω, IR3), the
functional

Jλ(v) =
∫

Ω

[|Dv|2 + λα|AdjDv|p + λβ |detDv|q]dx (2.2)

where 0 < q
p <

β
α and 1 < q < p < 2.

If Q ≥ 1 is a real number we say that u ∈ W 1,2(Ω, IR3) is a W 1,p̄(Ω, IR3) Q-local minimizer of Jλ if there
exists a δ > 0 such that Jλ(u) ≤ QJλ(ϕ) for any ϕ ∈ u+W 1,2

0 (Ω, IR3) with

||Dϕ−Du||Lp̄ ≤ δ. (2.3)

We prove the following Caccioppoli type estimate �

Lemma 2.3. Let 2 ≤ p̄ ≤ ∞ and let u ∈ W 1,2(Ω, IR3) ∩W 1,p̄
loc (Ω, IR3) be a W 1,p̄ Q- local minimizer of Jλ. If

p̄ = ∞, assume also that
limsupR→0+ ||Du||L∞(B(x,R)) < δ (2.4)

where δ is the number appearing in (2.3). Then there exist a constant c depending only on Q and a radius R̄
depending only on δ and a θ ∈ (0, 1) such that for any R < R̄, BR ⊂⊂ Ω

Jλ(u;BR
2
) ≤ θJλ(u;BR) +

c

R2

∫
BR\B R

2

|u− uR|2dx

+cλαR5−3p
(∫

BR

|Du|2dx
)p

+ cλ
βp−αq

p−q R3− 3pq
2(p−q)

(∫
BR

|Du|2dx
) pq

2(p−q)
.

Proof. Fix BR ⊂ Ω and define

ER =

{
ρ ∈

(R
2
, R
)

:
∫

∂Bρ

|Du|p̄dH2 ≤ 8
R

∫
BR\B R

2

|Du|p̄dx

and
∫

∂Bρ

|Du|2dH2 ≤ 8
R

∫
BR\B R

2

|Du|2dx
}
.

We have that
(

R
2 , R

)
\ ER = C1 ∪ C2 where

C1 =

{
ρ ∈

(R
2
, R
)

:
∫

∂Bρ

|Du|p̄dH2 ≥ 8
R

∫
BR\B R

2

|Du|p̄
}

C2 =

{
ρ ∈

(R
2
, R
)

:
∫

∂Bρ

|Du|2dH2 ≥ 8
R

∫
BR\B R

2

|Du|2
}
.

One easily gets that

meas(Ci) <
R

8
and then

meas(ER) ≥ R

4
· (2.5)
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Now let ω = x
|x| and for a.e. ρ ∈ (R

2 , R) consider the function ω → u(ρω). For every 1 < m < 2 we get

(∫
∂Bρ

∣∣u− u∂Bρ

∣∣m∗
dH2

) 1
m∗

≤ c

(∫
∂Bρ

|Du|mdH2

) 1
m

(2.6)

where as usual m∗ = 2m
2−m denote the Sobolev exponent of m.

For each ρ ∈ ER, following [11], we define the function

ϕ(rω) =

⎧⎪⎨
⎪⎩

u∂Bρ r ≤ R
4

ρ−r
ρ−R

4
u∂Bρ + r−R

4
ρ− R

4
u(ρω) R

4 ≤ r ≤ ρ

u(rω) ρ ≤ r ≤ R

(2.7)

and observe that, for R
4 < r < ρ

|Dϕ(rω)| ≤ c

(
|u(ρω) − u∂Bρ |

ρ− R
4

+ |Du(ρω)|
)

(2.8)

|AdjDϕ(rω)| ≤ c
|u(ρω) − u∂Bρ |

ρ− R
4

|Du(ρω)| + c|AdjDu(ρω)| (2.9)

|detDϕ(rω)| ≤ c
|u(ρω) − u∂Bρ |

ρ− R
4

|AdjDu(ρω)|. (2.10)

If p̄ <∞, by (2.8) and the assumption u ∈W 1,p̄
loc , one easily gets that there exists a R̄ = R̄(δ) such that

∫
BR

|Du−Dϕ|p̄dx =
∫

Bρ

|Du−Dϕ|p̄dx ≤ c

∫
Bρ\B R

4

|u(ρω) − u∂Bρ |p̄
(ρ− R

4 )p̄
dx+ c

∫
BR

|Du|p̄dx

≤ c

(ρ− R
4 )p̄−1

∫
∂Bρ

|u(ρω) − u∂Bρ |p̄dH2 + c

∫
BR

|Du|p̄dx

≤ cρp̄

(ρ− R
4 )p̄−1

∫
∂Bρ

|Du|p̄dH2 + c

∫
BR

|Du|p̄dx

≤ cRp̄−1

(ρ− R
4 )p̄−1

∫
BR\B R

2

|Du|p̄dx+ c

∫
BR

|Du|p̄dx ≤ c

∫
BR

|Du|p̄

where we used also Poincaré inequality and the fact that R
2 < ρ < R. Then, previous inequality ensures that ϕ

is an admissible test function, by the absolute continuity of the integral for p̄ <∞ and by (2.4) if p̄ = ∞.
Using (2.8), (2.9), (2.10) and the fact that u is a W 1,p̄ Q- local minimizer we get∫

Bρ

[|Du|2 + λα|AdjDu|p + λβ |detDu|q]dx ≤ Q

∫
Bρ

[|Dϕ|2 + λα|AdjDϕ|p + λβ |detDϕ|q]dx

≤ c

R

∫
∂Bρ

|u− u∂Bρ |2dH2 + cR

∫
∂Bρ

|Du|2dH2

+
cλα

Rp−1

∫
∂Bρ

|u− u∂Bρ |p|Du|pdH2 + cλαR

∫
∂Bρ

|AdjDu|pdH2

+
cλβ

Rq−1

∫
∂Bρ

|u− u∂Bρ |q|AdjDu|qdH2 (2.11)
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where we used again that R
2 < ρ < R. Now, we observe that

∫
∂Bρ

|u− u∂Bρ |p|Du|pdH2 ≤
(∫

∂Bρ

|Du|2dH2

) p
2
(∫

∂Bρ

|u− u∂Bρ |
2p

2−p dH2

) 2−p
2

≤ c

(∫
∂Bρ

|Du|2dH2

) p
2
(∫

∂Bρ

|Du|pdH2

)
≤ cR2−p

(∫
∂Bρ

|Du|2dH2

)p

, (2.12)

where we used Hölder inequality and (2.6). Moreover using Young’s inequality and (2.6) again we get

cλβ

Rq−1

∫
∂Bρ

|u− u∂Bρ |q|AdjDu|qdH2

≤ cλ
βp−αq

p−q

R
pq

p−q−1

(∫
∂Bρ

|u− u∂Bρ |
pq

p−q dH2

)
+ cλαR

(∫
∂Bρ

|AdjDu|pdH2

)

≤ cλ
βp−αq

p−q

R
pq

p−q−1

(∫
∂Bρ

|Du| 2pq
2p−2q+pq dH2

) 2p−2q+pq
2(p−q)

+ cλαR

(∫
∂Bρ

|AdjDu|pdH2

)

≤ cλ
βp−αq

p−q R3− pq
p−q

(∫
∂Bρ

|Du|2dH2

) pq
2(p−q)

+ cλαR

(∫
∂Bρ

|AdjDu|pdH2

)
. (2.13)

Inserting the inequalities (2.12) and (2.13) in (2.11) we obtain

∫
Bρ

[|Du|2 + λα|AdjDu|p + λβ |detDu|q]dx

≤ c

R

∫
∂Bρ

|u− u∂Bρ |2dH2 + cR

∫
∂Bρ

|Du|2dH2 + cλαR

∫
∂Bρ

|AdjDu|pdH2

+ cλαR3−2p

(∫
∂Bρ

|Du|2dH2

)p

+ cλ
βp−αq

p−q R3− pq
p−q

(∫
∂Bρ

|Du|2dH2

) pq
2(p−q)

. (2.14)

Recalling that ρ is in ER, we get

∫
Bρ

[|Du|2 + λα|AdjDu|p + λβ |detDu|q]dx

≤ c

R

∫
∂Bρ

|u− u∂Bρ |2dH2 + cR

∫
∂Bρ

|Du|2dH2 + cλαR

∫
∂Bρ

|AdjDu|pdH2

+cλαR3−3p

(∫
BR\B R

2

|Du|2dx
)p

+ cλ
βp−αq

p−q R3− 3pq
2(p−q)

(∫
BR\B R

2

|Du|2dx
) pq

2(p−q)

. (2.15)
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Integrating (2.15) with respect to ρ in ER, using (2.5) we obtain

R

∫
B R

2

[|Du|2 + λα|AdjDu|p + λβ |detDu|q]dx

≤ c

R

∫
BR\B R

2

|u− uR|2dx+ cR

∫
BR\B R

2

|Du|2dx+ cλαR

∫
BR\B R

2

|AdjDu|pdx

+ cλαR4−3p

(∫
BR

|Du|2dx
)p

+ cλ
βp−αq

p−q R4− 3pq
2(p−q)

(∫
BR

|Du|2dx
) pq

2(p−q)

. (2.16)

Dividing inequality (2.16) by R and using the standard trick of “hole-filling” we get

Jλ(u;BR
2
) ≤ θJλ(u;BR) +

c

R2

∫
BR\B R

2

|u− uR|2dx

+ cλαR3−3p
( ∫

BR

|Du|2dx
)p

+ cλ
βp−αq

p−q R3− 3pq
2(p−q)

( ∫
BR

|Du|2dx
) pq

2(p−q)

where θ = c
c+1 ∈ (0, 1) i.e. the conclusion follows. �

3. Proof of Theorem A

Let us consider the excess function

U(x, r) =
∫

Br(x)

|Du− (Du)r|2 + |Adj(Du− (Du)r)|p + |det(Du − (Du)r)|q (3.1)

we want to establish, as usual, a decay estimate for U(x, r). More precisely we have the following lemma.

Lemma 3.1. Let u ∈ W 1,2(Ω, IR3)∩W 1,p̄
loc (Ω, IR3) be a W 1,p̄ local minimizer of I (satisfying (1.3) if p̄ = +∞).

For any M > 0 and τ ∈ (0, 1
2 ) there exist two constants c(M) and ε(τ,M) such that, if

|(Du)r| ≤M and U(x, r) < ε, (3.2)

then
U(x, τr) ≤ c(M)τµU(x, r), (3.3)

for some µ independent of M and τ .

Proof. Step 1 (Blow up). Fix M > 0 and τ ∈ (0, 1
2 ). Arguing by contradiction, we assume that there exists a

sequence Brh
(xh) ⊂⊂ Ω such that

|(Du)xh,rh
| ≤M and λ2

h = U(xh, rh) → 0, (3.4)

but
U(xh, τrh)

λ2
h

> c(M)τµ, (3.5)

for some c(M) to be determined later. Setting Ah = (Du)xh,rh
and

vh =
u(xh + rhy) − (u)xh,rh

− rhAhy

λhrh
(3.6)
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for all y ∈ B1(0), we have ∫
B1(0)

|Dvh|2 + λ2p−2
h |Adj(Dvh)|p + λ3q−2

h |det(Dvh)|q = 1 (3.7)

and (vh)0,1 = 0. Passing to a subsequence and using the divergence structure of minors, we may assume,
without loss of generality, that

Dvh → Dv w − L2(B1)

vh → v s− L2(B1)

λ
2p−2

p

h AdjDvh → 0 w − Lp(B1)

λ
3q−2

q

h detDvh → 0 w − Lq(B1)

Ah → A ah → a. (3.8)

We introduce the rescaled functionals

fh(ξ) =
1
λ2

h

[f(Adj(Ah + λhξ)) − f(Adj(Ah)) −Df(Adj(Ah))(Adj(Ah + λhξ) − Adj(Ah))]

and
gh(s) =

1
λ2

h

[g(det(Ah + λhs)) − g(det(Ah)) − g′(det(Ah))(det(Ah + λhs) − det(Ah))]

and for any h,we set

Ih(w) =
∫

B1

|Dw|2 + fh(Dw) + gh(Dw). (3.9)

It is easy to check that Ih(vh) ≤ Ih(vh + ϕ) provided ϕ ∈W 1,p̄
0 (B1, R

N) and

||Dϕ||p̄ ≤ δh =

{ δ

λhr
n
p̄

h

p̄ <∞
δ

λh
p̄ = ∞.

Step 2 (v solves a linear system). By formula (2.1) one easily deduces that, for every φ ∈ C∞
0 (B1),

d
dt

∧i (Ah + λh(Dvh + tDφ))|t=0 = ∧i−1(Ah + λhDvh) 	 λhDφ.

Then the minimality of vh implies that they solve the Euler Lagrange systems:

∫
B1(0)

DvhDφdx +
∫

B1(0)

(∫ 1

0

D2f(Adj(Ah) + t(Adj(Ah + λhDvh) − Adj(Ah)))dt

)

× (λhAdj(Dvh) +Ah 	Dvh) · [(Ah + λhDvh) 	Dφ]dx

+
∫

B1(0)

(∫ 1

0

g′′(det(Ah) + t(det(Ah + λhDvh) − det(Ah)))dt

)

× (Adj(Ah) 	Dvh + λhDvh 	 adj(Dvh)) · [Adj(Ah + λhDvh) 	Dφ]dx = 0 (3.10)

for all φ ∈ C∞
0 (B1). Letting h→ ∞, using (3.8) and Lemma 2.2 we get

0 =
∫

B1(0)

DvDφ+D2f(AdjA)(A 	Dv)(A	Dφ) +D2g(detA)(AdjA	Dv)(AdjA	Dφ)dx
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then v solves a linear elliptic system, with constant coefficients. By standard regularity result (see [12]) we have
that for any σ ∈ (0, 1

2 ] ∫
Bσ

|Dv − (Dv)σ |2 ≤ cσ2

∫
B1

|Dv − (Dv)σ|2 ≤ cσ2 (3.11)

and
|(Dv)2σ − (Dv)σ |2 ≤ cσ2 (3.12)

where the constant c depends only on M . Setting

wh(y) = vh(y) − (Dvh)σy − (vh)2σ (3.13)

and using the fact that vh minimizes the functional (3.9), one easily see that wh minimizes the functional

w →
∫

B1

|Dw|2 + fh(Dw + (Dvh)σ) + gh(Dw + (Dvh)σ). (3.14)

Now, we claim that

|fh(ξ)| ≤ c(M)(|ξ|2 + λ2p−2
h |Adjξ|p) (3.15)

|gh(ξ)| ≤ c(M)(|ξ|2 + λ3q−2
h |detξ|q).

Namely, by definition of fh, we have that

fh(ξ) =
1
λ2

h

[f(Adj(Ah + λhξ)) − f(Adj(Ah)) −Df(Adj(Ah))(Adj(Ah + λhξ) − Adj(Ah))]

=
1
λ2

h

[f(AdjAh + λ2
hAdjξ +Ah 	 λhξ) − f(Adj(Ah)) −Df(Adj(Ah))(λ2

hAdjξ +Ah 	 λhξ)]

and setting
ζ = λ2

hAdjξ +Ah 	 λhξ

we can write

λ2
h|fh(ξ)| =

∣∣∣∣
∫ 1

0

(1 − s)D2f(AdjAh + sζ)ζζds
∣∣∣∣

≤ |ζ|2
∫ 1

0

(
µ2 + |AdjAh + sζ|2) p−2

2

≤ c|ζ|2(µ2 + |AdjAh|2 + |ζ + AdjAh|2)
p−2
2 , (3.16)

where we used Lemma 2.1 in [2] and assumption (H2). On the other hand we observe that if

|λ2
hAdj(ξ)| ≤ |Ah 	 λhξ|,

then by (3.16) we have
λ2

h|fh(ξ)| ≤ cλ2
h|Ah 	 ξ|2 ≤ c(M)λ2

h|ξ|2.
If

|λ2
hAdj(ξ)| > |Ah 	 λhξ|,

then by (3.16)
λ2

h|fh(ξ)| ≤ cλ2p
h |Adj(ξ)|p.
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The second inequality in (3.15) is analogue. Using Lemma 2.1 in [2] again and assumptions (H1) and (H2) we
obtain

|fh(ξ)| ≥ c(M)(|ξ|2 + λ2p−2
h |Adjξ|p),

|gh(ξ)| ≥ c(M)(|ξ|2 + λ3q−2
h |detξ|q).

Hence the functional defined at (3.14) is equivalent to the following

w →
∫

B1

|Dw|2 + λ2p−2
h |Adj(Dw)|p + λ3q−2

h |det(Dw)|q

and then wh is a W 1,p̄ Q-local minimizer of Jλh
(B1) for some Q = Q(M), with α = 2p− 2 and β = 3q − 2.

Step 3 (Conclusion). Rescaling the excess function defined by (3.1), we get

U(xh, σrh) =
∫

Bσrh
(xh)

|Du− (Du)σrh
|2 + |Adj(Du − (Du)σrh

)|p + |det(Du − (Du)σrh
)|q

=
∫

Bσ(0)

λ2
h|Dvh − (Dvh)σ|2 + λ2p

h |Adj(Dvh − (Dvh)σ)|p + λ3q
h |det(Dvh − (Dvh)σ)|p

=
∫

Bσ(0)

λ2
h|Dwh|2 + λ2p

h |Adj(Dwh)|p + λ3q
h |det(Dwh)|p.

Since wh satisfies the assumptions of Lemma 2.3 (in particular if p̄ = +∞ assumption (1.3) implies that wh

satisfies (2.4) with δh = δ
λh

), for h sufficiently large we obtain

U(xh, σrh)
λ2

h

=
∫

Bσ(0)

|Dwh|2 + λ2p−2
h |Adj(Dwh)|p + λ3q−2

h |det(Dwh)|q

≤ θ
U(xh, 2σrh)

λ2
h

+
c

σ2

∫
B2σ

|wh − (wh)2σ|2

+ cσ5−3pλ2p−2
h

(∫
B2σ

|Dwh|2
)p

+ cσ3− 3pq
2(p−q) λ

pq
p−q −2

h

(∫
B2σ

|Dwh|2
) pq

2(p−q)

. (3.17)

Passing to the limit as h→ ∞ in (3.17) and using (3.8), (3.11), (3.12) and the assumption 1 < p < q < 2 we get

lim sup
h→∞

U(xh, σrh)
λ2

h

≤ θ lim sup
h→∞

U(xh, 2σrh)
λ2

h

+
c

σ2

∫
B2σ

|v − (v)2σ − (Dv)σy|2dy

≤ θ lim sup
h→∞

U(xh, 2σrh)
λ2

h

+
c

σ2

∫
B2σ

[|v − (v)2σ − (Dv)2σy|2 + |(Dv)2σy − (Dv)σy|2]dy

≤ θ lim sup
h→∞

U(xh, 2σrh)
λ2

h

+ c

∫
B2σ

|Dv − (Dv)2σ|2dy + cσ2

≤ θ lim sup
h→∞

U(xh, 2σrh)
λ2

h

+ c1(M)σ2, (3.18)
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where we used Poincaré inequality. Setting for σ ∈ (0, 1
2 ]

ϕ(σ) = lim sup
h→∞

U(xh, σrh)
λ2

h

inequality (3.18) can be rewritten as
ϕ(σ) ≤ θϕ(2σ) + c1(M)σ2

and one can easily check that the function

ψ(σ) = ϕ(σ) + c1(M)σ2

is such that, for all σ ∈ (0, 1
2 ],

ψ(σ) ≤ max
{
θ,

1
2

}
ψ(2σ) = γψ(2σ) 0 < γ < 1. (3.19)

An iteration procedure yields that, for any k = 0, 1, 2, . . . and σ ∈ (0, 1
2 ]

ψ
( σ

2k

)
≤ γkψ(σ). (3.20)

Now, take τ in the interval
(

1
2k+1 ; 1

2k

)
and observe, by the definition of ψ, that

ψ(τ) ≤ Cψ

(
1
2k

)
. (3.21)

Putting together estimates (3.20) and (3.21), we obtain

ϕ(τ) ≤ ψ(τ) ≤ γk−1ψ

(
1
2

)

= 2(k−1) log2 γψ

(
1
2

)
=
(

2k+1

4

)log2 γ

ψ

(
1
2

)

≤
(

1
4

)log2 γ (1
τ

)log2 γ

ψ

(
1
2

)

=
1
γ2
τ− log2 γψ

(
1
2

)
≤ C2(M)τµ. (3.22)

Inequality (3.22) contradicts (3.5) if we choose c(M) larger then C2(M). �

We now are in position to give the proof of Theorem A, that relies on a standard iteration argument involving
the excess function.

Lemma 3.2. Let 0 < α < 1 and M > 0. Then there exist τ ∈ (0, 1
2 ) and ε > 0 both depending on α and M

such that if
B(x, r) ⊂ Ω, |(Du)r| ≤M, and U(x, r) < ε

then
U(x, τ lr) ≤ (τ l)αU(x, r)

for every l ∈ N .
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Proof. See Lemma 6.1 [10]. �

Lemma 3.3. Let u ∈ ∧kW
1,p(Ω). Then

lim
r→0

∫
Br(x)

| ∧i (Du− (Du)r|p = 0

for almost every x ∈ Ω and 1 ≤ i ≤ k.

Proof. See Lemma 6.2 [10]. �

The proof of Theorem A is now consequence of a iteration procedure based on Lemma 4.1. The singular set
turns out to be contained in the complement of

Ωo =

{
x ∈ Ω : lim

r→0
(Du)r = 0, lim

r→0

∫
Br(x)

|Adj(Du− (Du)r|p = 0,

lim
r→0

∫
Br(x)

|det(Du− (Du)r|q = 0

}
. (3.23)

4. The limit case

In this section we treat the limit case in which the growth exponents p = q ≤ 2. Also in this case the partial
regularity of weak local minimizers is based on a decay estimate for the excess function

U(x, r) =
∫

Br(x)

|Du− (Du)r|2 + |Adj(Du − (Du)r)|p + |det(Du− (Du)r)|p. (4.1)

The proof of Theorem B differs from the one of Theorem A only in the Caccioppoli type estimate.

Lemma 4.1. Let p ≤ 2, and u ∈W 1,2(Ω, IR3) ∩W 1,∞
loc (Ω, IR3) be a W 1,∞ Q- local minimizer of

Jλ(v) =
∫

Ω

|Dv|2 + λ2p−2|AdjDv|p + λ3p−2|detDv|p

such that

limsupR→0+ ||Du||L∞(BR(x)) <
δ

λ
, (4.2)

where δ is the number appearing in (1.3). Then there exist a constant c depending only on Q, a radius R̄
depending only on δ and a number θ ∈ (0, 1) such that for any R < R̄, we have

Jλ(u;BR
2
) ≤ θJλ(u;BR) +

c

R2

∫
BR\B R

2

|u− uR|2 + cλ2p−2R5−3p

⎛
⎝∫

BR\B R
2

|Du|2
⎞
⎠

p

,

if p < 2,

Jλ(u;BR
2
) ≤ θJλ(u;BR) +

c

R2

∫
BR\B R

2

|u− uR|2,

if p = 2.
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Proof. The proof goes as the one of Lemma 2.3 with some minor changes. Assumption (4.2) implies that there
exists a radius R̄ depending only on δ such that for any R < R̄,

||Du||L∞(BR(x)) <
δ

λ
·

Fix R < R̄ and consider ρ in the set

ER =

{
ρ ∈

(
R

2
, R

)
:
∫

∂Bρ

|Du|2dH2 ≤ 4
R

∫
BR\B R

2

|Du|2dx
}
.

Since u is Lipschitz continuous

|u(ρω) − u∂Bρ | ≤ 2R||Du||L∞(Bρ) ≤ 2
δ

λ
R (4.3)

holds.
By the assumption u ∈ W 1,∞

loc (Ω) and (4.2), one easily gets that the function ϕ, defined at (2.6), is an
admissible test function. Arguing as in Lemma 2.1, using that u is a W 1,∞ Q- local minimizer, we get

∫
Bρ

[|Du|2 + λ2p−2|AdjDu|p + λ3p−2|detDu|p] dx

≤ Q

∫
Bρ\B R

2

[|Dϕ|2 + λ2p−2|AdjDϕ|p + λ3p−2|detDϕ|p] dx

≤ c

∫
∂Bρ

|u− u∂Bρ |2
R

+ cR

∫
∂Bρ

|Du|2 + cRλ2p−2

∫
∂Bρ

|AdjDu|p

+ cλ2p−2

∫
∂Bρ

|u− u∂Bρ |p
Rp−1

|Du|p + cλ3p−2

∫
∂Bρ

|u − u∂Bρ |p
Rp−1

|AdjDu|p. (4.4)

Let us treat separately the two cases p < 2 and p = 2. Assume that p < 2. Using (4.3) we get

∫
∂Bρ

|u− u∂Bρ |p
Rp−1

|AdjDu|p ≤ 2R
δp

λp

∫
∂Bρ

|AdjDu|p. (4.5)

Inserting the inequality (4.5) in (4.4) and using (2.12), we obtain

∫
Bρ

[|Du|2 + λ2p−2|AdjDu|2 + λ3p−2|detDu|p] dx

≤ c

∫
∂Bρ

|u− u∂Bρ |2
R

dH2 + cR

∫
∂Bρ

|Du|2dH2 + c(1 + δp)λ2p−2R

∫
∂Bρ

|AdjDu|pdH2

+ cλ2p−2R3−2p

(∫
∂Bρ

|Du|2dH2

)p

. (4.6)
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Recalling that ρ is in ER, integrating with respect to ρ in ER and using the fact that |ER| ≥ R
4 , we obtain

R

∫
B R

2

|Du|2 + λ2p−2|AdjDu|p + λ3p−2|detDu|p

≤ c

∫
BR\B R

2

|u− uR|2
R

+ cR

∫
BR\B R

2

|Du|2 + cλ2p−2R

∫
BR\B R

2

|AdjDu|p

+ cλ2p−2R4−3p

⎛
⎝∫

BR\B R
2

|Du|2
⎞
⎠

p

. (4.7)

Dividing inequality (4.7) by R and using the standard trick of “hole-filling” we get

Jλ(u;BR
2
) ≤ θJλ(u;BR) +

c

R2

∫
BR\B R

2

|u− uR|2 + cλ2p−2R3−3p

⎛
⎝∫

BR\B R
2

|Du|2
⎞
⎠

p

,

where θ ∈ (0, 1). This is conclusion in the case p < 2.
Suppose p = 2. Formula (4.4) becomes

∫
Bρ

[|Du|2 + λ2|AdjDu|2 + λ4|detDu|2] dx

≤ Q

∫
Bρ\B R

2

[|Dϕ|2 + λ2|AdjDϕ|2 + λ4|detDϕ|2] dx

≤ c

∫
Bρ\B R

2

|u− u∂Bρ |2
R2

+ c

∫
Bρ\B R

2

|Du|2 + cλ2

∫
Bρ\B R

2

|AdjDu|2

+ cλ2

∫
Bρ\B R

2

|u− u∂Bρ |2
R2

|Du|2 + cλ4

∫
Bρ\B R

2

|u− u∂Bρ |2
R2

|AdjDu|2. (4.8)

Using (4.3) in (4.8) we find

∫
Bρ

[|Du|2 + λ2|AdjDu|2 + λ4|detDu|2] dx

≤ c

∫
Bρ\B R

2

|u− u∂Bρ |2
R2

+ c

∫
Bρ\B R

2

|Du|2 + cλ2

∫
Bρ\B R

2

|AdjDu|2

+ cλ2 δ
2

λ2

∫
Bρ\B R

2

|Du|2 + cλ4 δ
2

λ2

∫
Bρ\B R

2

|AdjDu|2

Arguing as before we conclude the proof. �
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