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HOMOGENIZATION OF HAMILTON-JACOBI EQUATIONS
IN CARNOT GROUPS

Bianca Stroffolini1

Abstract. We study an homogenization problem for Hamilton-Jacobi equations in the geometry
of Carnot Groups. The tiling and the corresponding notion of periodicity are compatible with the
dilatations of the Group and use the Lie bracket generating property.
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1. Background and motivations

Consider a Hamilton-Jacobi equation:

u+H(ξ,∇u) = 0 in R
N

where the Hamiltonian H(ξ, p) : R
N × R

N×N → R is not coercive in p. The lack of coerciveness of the
Hamiltonian can be overcome by changing the underlying geometry with a suitable family of vector fields. More
precisely, we are able to consider the case when H(ξ, p) = H(ξ, σ(ξ)q), where σ(ξ) is a m×N matrix, m < N ,
H is coercive in q. Here the rows of the matrix σ(ξ) will be considered as coefficients of vector fields satisfying
Hörmander condition and that generate a Carnot Group, therefore σ(ξ)∇u will be the horizontal gradient in a
Carnot Group, denoted by Dhu, see Section 2.

We shall consider homogenizations problems for Hamilton-Jacobi equations of the form:

uε(ξ) +H(ξ,
ξ

ε
,Dhu

ε(ξ)) = 0 (1.1)

in a Carnot Group G, where the Hamiltonian H is G-periodic in the second variable and ξ
ε will be interpreted

in the geometry of the group.
Let us revise first some key results in the Euclidean setting, for ZN -periodic Hamiltonians. The pioneering

paper on homogenization of Hamilton-Jacobi equations is due to P.L. Lions, Papanicolau and Varadhan. They
proved that the asymptotic behaviour, as ε tends to zero, of the solutions uε is governed by the equation:

u(ξ) + H̄(ξ,Du(ξ)) = 0. (1.2)
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The effective Hamiltonian H̄ is obtained by solving a cell problem:

H(x, ξ, p+Dv(ξ)) = λ (1.3)

for every (x, p) fixed and putting H̄(x, p) = λ.
Evans [8, 9] developed the perturbed test functions method for homogenization problems in the framework

of the theory of viscosity solutions, see also [4]. The combined use of comparison results and perturbed test
functions allow to establish, in a simple way, uniform estimates in the sup norm for the solutions uε to the
solution of the homogenized equation.

The question of estimating the rate of the uniform convergence of the solutions uε to the solution of the
homogenized equation has been tackled up by Capuzzo Dolcetta and Ishii [7].

For recent developments in the framework of stochastic control and second-order Hamilton-Jacobi-Bellmann
equations, see the papers [1, 2].

Birindelli and Wigniolle have studied the problem in the Heisenberg Group, [6], giving also an estimate of
the rate of convergence.

The aim of this paper is the homogenization in general Carnot Group of step r, with a strong interplay with
their geometry. We reinterpret the results obtained “by hand” by Birindelli and Wigniolle, in the geometry of
the group, using the Lie bracket generating property, and a geometric construction of the tiling, valid in any
Carnot Group.

In the Heisenberg Group case, the authors were able to give estimates of the rate of convergence, using the
homogeneity of test functions of degree two, and, therefore, uniform estimates of the second derivatives; for step
r groups, r > 2, we will obtain uniform convergence of uε towards the solution of the homogenized equation.

Notice that viscosity solutions are Lipschitz continuous with respect to the group distance, but only Hölder
continuous with respect to the Euclidean one. Viscosity solutions for Hamilton-Jacobi equations in the
Heisenberg Group were considered in [16].

2. Carnot Groups

We will consider (RN , ·) as a Carnot Group with a Group operation · and a family of dilations, compatible
with the Lie structure.

Let us briefly recall some basic facts about Carnot Groups G. A Carnot Group G of step r ≥ 1, is a simply
connected nilpotent Lie Group whose Lie algebra g is stratified. This means that g admits a decomposition as
a vector space sum

g = g1 ⊕ g2 ⊕ · · · ⊕ gr

such that
[g1, gj] = gj+1

for j = 1 · · · r with gk = {0} for k > r. Note that g is generated as a Lie algebra by g1.
Let mj = dimgj and chose a basis of gj formed by left-invariant vector fields Xi,j , i = 1, · · · ,mj . The

dimension of G as a manifold is N = m1 + · · ·mr. The horizontal tangent space at a point ξ ∈ G is the m1-
dimensional subspace that is linearly spanned by X1,1(ξ), · · ·Xm1,1(ξ). From now on, we will indicate simply
by m the dimension of G1 and by by X1, · · ·Xm a frame of vector fields that span the first layer G1. The
exponential coordinates are given by the diffeomorphism F : RN → G defined by:

F (x) = exp

⎛
⎝ r∑

j=1

mj∑
i=1

xi,jXi,j

⎞
⎠ .

Denoting by · the group operation in G, the mapping (ξ, η) → ξ ·η has polynomial entries, when written in expo-
nential coordinates. Viceversa, given a point ξ ∈ G, we denote by xs the vector of coordinates (x1,s, · · · , xms,s)
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for every s = 1, · · · , r. The following formula holds:

Xα =
∂

∂x1,α
+

r∑
s=2

ms∑
β=1

bβs,α(x1(ξ), · · · , xs−1(g))
∂

∂xs,β
, · · ·α = 1, · · · ,m (2.1)

where each bβs,α is a polynomial of weighted degree s − 1. By weighted degree we mean that the layer gs

in the stratification of g has the degree s. Correspondingly, each homogeneous monomial xα1
1 , · · · , xαr

r , with
multi-indices αs = (α1,s, · · · , αms,s), s = 1, · · · , r is said to have weighted degree p if

r∑
s=1

s

⎛
⎝ms∑

β=1

αβ,s

⎞
⎠ = p.

There is a family of dilations that is compatible with the group operation:

δλ(x1, · · · , xN ) = (λx1,1, · · · , λx1,m, λ
2x2,1, · · · , λ2x2,m2 , · · · , λrxr,mr ).

With the above notations the horizontal subspace can be identified with the left translation by ξ of G1, that is
we have

ξ ·G1 = Linear-span{X1(ξ), · · · , Xm(ξ)} .
A horizontal curve γ(t) is a piece-wise smooth curve whose tangent vector γ′(t) is in the the horizontal tangent
space (γ(t)) · G1 whenever it exists. Given two points ξ and η we consider the set of all possible horizontal
curves joining these points:

Γ(ξ, η) = {γ horizontal curve : γ(0) = ξ, γ(1) = η}.

This set is never empty by Chow’s accessibility theorem (see for example [5]). For convenience, fix an ambient
Riemannian metric in g so that X = {Xi,j} is an orthonormal frame and the

Riemannian volume element = Haar measure of G = Lebesgue measure in RN .
The Carnot-Carathéodory distance is then defined as the infimum of the length of horizontal curves of the

set Γ:

dCC(ξ, η) = inf
Γ(ξ,η)

∫ 1

0

|γ′(t)|dt.
It depends only of the restriction of the ambient Riemannian metric to the horizontal distribution generated by
the horizontal tangent spaces.

The Carnot-Carathéodory ball of radius R centered at a point ξ is given by

B(ξ, R) = {η ∈ G : dCC(ξ, η) < r}.

The Carnot-Carathéodory gauge is given by

|ξ|CC = d(0, ξ).

An important cone-like property of this gauge is that it solves the eikonal equation in the almost everywhere
sense. This was proven by Monti and Serra-Cassano [19] in general Carnot Groups.

Theorem 1. Consider the horizontal gradient of |ξ|CC given by

X (|ξ|CC) = (X1 (|ξ|CC) , · · · , Xm (|ξ|CC)) .

Then, for a.e. ξ ∈ RN , we have
|X (|ξ|CC) | = 1.
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A smooth gauge in G is defined:

|ξ|G =

⎛
⎝ r∑

j=1

(mj∑
i=1

|xi,j |2
) r!

j

⎞
⎠

1
2r!

.

Theorem 2 [5].

|ξ|CC ∼ |ξ|G ∼
r∑

j=1

mj∑
i=1

|xi,j | 1j

vol(B(0, R)) ∼ rQ

where Q =
∑r

j=1 jmj is the homogeneous dimension of G.

From the point of view of the viscosity theory, we do know that the smooth gauge is a viscosity subsolution
of the eikonal equation, see Section 3.

For simplicity, we will make the following assumptions on G: denote by X1, · · · , Xm a basis for the first layer
and suppose that the following identities hold:

[X1, Xm] = Xm+1, · · · , [X1, Xm+r−1] = Xm+r, m+ r = N.

Following [5, 10], the group operation in G has polynomial entries:

ξ · η = (x1,1 + y1,1, · · · , x1,m + y1,m, xm+1 + ym+1 +Q2(x1,j , y1,j),

xm+2 + ym+2 +Q3(x1,j , y1,j , xm+1, ym+1), · · · , xm+r + ym+r +Qr(x1,j , y1,j, · · · , xm+r−1, ym+r−1))

where each Qs, s = 1, · · · , r is an homogeneous polynomial of degree s in the variables indicated.

2.1. Examples

2.1.1. Heisenberg Group

Such group is the simplest prototype of a Carnot Group of step two. It can be identified with the Euclidean
space Cn × R ≡ R2n+1 endowed with the non-abelian group law:

(x, y, t) · (x′, y′, t′) =
(
x+ x′, y + y′, t+ t′ +

1
2
〈x, y′〉 − 〈x′, y〉

)
.

The Heisenberg algebra is splitted in V1 ⊕ V2, where V1 = R
2n × {0} and V2 = {0} × R. It is generated by the

vector fields:

Xj =
∂

∂xj
+

1
2
yj
∂

∂t

Yj =
∂

∂yj
− 1

2
xj

∂

∂t
·

The only nontrivial commutator is

[Xj, Yj ] =
∂

∂t
·

The homogeneous dimension is 4.
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2.1.2. Engel Group

The Engel Group E can be identified with R
4 and the Lie algebra is decomposed in:

E = G1 ⊕G2 ⊕G3.

The horizontal algebra is spanned by X1, X2 and the nontrivial commutators are:

[X1, X2] = X3 [X1, X3] = [X1, [X1, X2]] = X4.

This is a group of step 3.
The group law is:

(x, y, t, s) · (x′, y′, t′, s′) = (x + x′, y + y′, t+ t′ +Q2, s+ s′ +Q3)

where
Q2 =

1
2
(xy′ − yx′)

Q3 =
1
2
(xt′ − tx′) +

1
12

(x2y′ − xx′(y + y′) + yx′2).

The homogeneous dimension is 7. For more examples of Carnot Groups, see the recent monograph [17].
We recall the following property, that in the sequel will be referred as the Lie bracket generating property.

Following the notations of [20] and [19], we define the following quantities. Let S1, · · · , S� be fields belonging
to the family X1, · · · , Xm and let a ∈ R:

C1(a;S1) = exp(aS1)

C2(a;S1, S2) = exp(−aS2) exp(−aS1) exp(aS2) exp(aS1)
and, by induction:

C�(a;S1, · · · , S�) = C�−1(a;S2, · · · , S�)−1 exp(−aS1)C�−1(a;S2, · · · , S�) exp(aS1).

By the Campbell-Hausdorff formula and the Jacobi identity they get the following equality:

C2(a;S1, S2) = exp

⎛
⎝a2[S1, S2] +

∑
d(I)>2

cIa
d(I)S[I]

⎞
⎠ .

Iterating:

C�(a;S1, S2, · · · , S�) = exp

⎛
⎝a�S[1,··· ,�] +

∑
d(I)>�

cIa
d(I)S[I]

⎞
⎠ .

Here d(I) represents the length of the multiindex I, so the iteration will end after r steps, where r is the step
of the group.

3. Hamilton-Jacobi equation

In order to define viscosity solutions we must first identify the first order jets adapted to our framework.
Motivated by the Taylor expansion [5,15] consider a differentiable function u : G 
→ R at the point ξ0. We have

u(ξ) = u(ξ0) + 〈Dhu(ξ0), ξ−1
0 · ξ〉 + o

(|ξ−1
0 · ξ|G

)
,

where Dhu = X1uX1 + · · · +XmuXm is the horizontal gradient of u and ξ is the horizontal projection.
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Definition 1. A function u : G 
→ R is of class C1 if the horizontal derivatives X1u, · · · , Xmu are continuous.

If a function u is not necessarily smooth but merely upper semicontinuous, the collection of vectors p ∈ Rm

such that
u(ξ) ≤ u(ξ0) + 〈p, ξ−1

0 · ξ〉 + o
(|ξ−1

0 · ξ|G
)

(3.1)
is denoted by J1,+

u (ξ0) and called the first order superjet of u at the point ξ0. Analogously we define J1,−
v (ξ0),

the first order subjet of a lower semicontinuous function v at ξ0 as the set of vectors q ∈ Rm such that

v(ξ) ≥ v(ξ0) + 〈q, ξ−1
0 · ξ〉 + o

(|ξ−1
0 · ξ|G

)
. (3.2)

Jets can also be characterized by test functions ψ as follows, see [16] in the Heisenberg Group case.
Let u defined on a neighborhood of a point ξ0. Suppose that ψ is a C1 function touching u from above at ξ0,

u(ξ0) = ψ(ξ0)

and
u(ξ) ≤ ψ(ξ)

in a neighborhood of ξ0. Then the vector

(Dhψ(ξ0)) ∈ J1,+
u (ξ0).

Moreover, every vector
η ∈ J1,+

u (ξ0)
is of the form

(Dhψ(ξ0))
for some C1 function ψ that touches u from above at ξ0.

A similar statement holds for J1,−
u (ξ0) replacing “touching from above” by “touching from below”.

An upper semicontinuous function u is a viscosity subsolution of a first order equation of the form

F (ξ, u,Dhu) = 0 (3.3)

where F is continuous in all variables and increasing in u if, for any ξ0 and every p ∈ J1,+
u (ξ0), the inequality

holds:
F (ξ0, u(ξ0), p) ≤ 0.

A lower semicontinuous function v is a viscosity supersolution of (3.3) if for any ξ0 and every q ∈ J1,−
v (ξ0), then:

F (ξ0, v(ξ0), q) ≥ 0.

A continuous function u that is both a viscosity subsolution and a viscosity supersolution is called a viscosity
solution. Uniform limits of viscosity solutions are viscosity solutions.

Let us start from a simple example of first order equation: the eikonal equation. The smooth gauge | · |G is a
viscosity subsolution of |Dhu| = 1 in BR(ξ) − {ξ}, with the boundary conditions u = R on ∂BR and u(ξ) = 0,
see [12, 13]. Let us consider a more general eikonal equation: |Dhu| = C and prove that every subsolution
is Lipschitz continuous with respect to the smooth gauge. By Pansu Theorem, it is also almost everywhere
differentiable. The Lie bracket generating property transports the Lipschitz continuity from the horizontal layer
to the entire group. In fact, control theory guarantees the continuity only for horizontally connected points.
For arbitrary points, the Lie geometry plays the major role.

Theorem 3. Any bounded viscosity solution of |Dhu| ≤ C satisfies:

|u(ξ · η) − u(ξ)| ≤ C|η|.
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Proof. First step: Without loss of generality we can assume that ξ is equal to the origin 0. We shall prove the
inequality for any horizontal η ∈ G1.This is done following the same proof of [6], using Theorem 5.21 of [3]. We
write the norm of the horizontal gradient:

|Dhu| = |σ(ξ)∇u| = sup
η∈G1,|η|≤1

σT η · ∇u

where σ is the m×N matrix with entries aij , Xi =
∑

j aij
∂

∂xj
. We are considering the evolution of a horizontal

curve starting from the origin: {
γ′(t) =

∑m
i=1 ηiXi(γ(t))

γ(0) = 0 (3.4)

where η ∈ Rm. The solution y(s, η) can be parametrized using the dilations: y(s, η) = δs(η). Geometrically, it
represents a horizontal curve joining the origin and η ∈ G1.

The function u is a viscosity subsolution of the Hamilton-Jacobi-Bellmann equation:

sup
η∈G1,|η|≤1

{〈η,Dhu〉 − C} = 0.

Hence u satisfies:
u(y(s, η)) − u(y(t, η)) ≤ (t− s)

for s ≤ t. Changing η in −η we get the assertion for horizontally connected points. The general case is achieved
using the Lie bracket generating property. We write the point η as direct sum of projection onto G1, G2, · · · , Gr,
namely η = h1 ⊕ h2 ⊕ · · · ⊕ hr. We write the difference in a telescopic sum:

u(0) − u(η) = u(0) − u(h1, 0, · · · , 0) + u(h1, 0, · · · , 0) − u(h1, h2, · · · , 0)

+ · · · + u(h1, h2, · · · , hr−1, 0) − u(h1, h2, · · · , hr).

The first difference is controlled by step 1. To estimate the second one, we take a = |h2| 12 and apply C2 to the
point (h1, 0, · · · , 0). Iterating the construction, after a finite number of steps, we get the all group.

The telescoping sum is controlled by:

|h1| + |h2| 12 + · · · + |hr| 1r .

Therefore, we reach the assertion, having a control in terms of the smooth gauge. �

From now on, we will always consider Lipschitz continuity with respect to the Carnot smooth gauge.
Our Hamilton-Jacobi equations is of the form:

γu+H(ξ,Dhu) = 0 (3.5)

with γ > 0. The Hamiltonian H verifies:

|H(ξ′, p) −H(ξ, p)| ≤ m(|ξ−1 · ξ′|G(1 + |p|))Q(ξ, ξ′, p)
|H(ξ, 0)| ≤ C3

lim
|p|→∞

H(ξ, p) = +∞ uniformly in ξ

where m(t) → 0 when t → 0 and Q(ξ, ξ′, p) = max{Φ(H(ξ, p)),Φ(H(ξ′, p))} and Φ is a continuous function
from R into R+. Examples of Hamiltonians that satisfy our hypotheses are: H(x, p) = Ψ(Ho(x, p)) where
Ho is a continuous function on R2N satisfying: p → Ho(x, p) convex, Ho(x, λp) = λHo(x, p), Ho(x, p) ≥ 0,
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|Ho(x, p) − Ho(y, p)| ≤ ω(|x − y|(1 + |p|), with ω modulus of continuity such that lims→0+ ω(s) = 0, for
all λ > 0, x, y ∈ RN . We assume also that Ho is degenerate coercive in the sense that for some ε > 0
σ(x)([−ε, ε]m) ⊂ ∂Ho(x, 0). Here ∂Ho is the subdifferential of the convex function Ho and σ(x) is the m ×N
matrix as in the introduction. The function Ψ is convex, increasing, Φ(0) = 0. The function Ho plays the role
of a generalized gauge in G, for example, one can take Ho(ξ) = |ξ|CC .

Remark 1. The hypotheses on the Hamiltonian H ensure that −γC3 and γC3 are respectively subsolution and
supersolution of the equation (3.5). In particular, they are also Euclidean viscosity subsolution and supersolu-
tion. Perron’s method for viscosity solutions [11] proves the existence of an Euclidean viscosity solution, that is
also subelliptic viscosity solution. Also, a solution, as a consequence of the coercivity of H , verifies an equation
of the form |Dhu| ≤M , for some M > 0, so it is (subelliptic) Lipschitz continuous, see Theorem 3.

It will remain to prove the uniqueness theorem. The proof for second order subelliptic equations has been
done in [19]. The author uses the Euclidean theorem to get the jets and twist them into the subelliptic setting.
For first order equations, we can proceed directly.

Theorem 4. Let u a bounded subsolution and v a bounded supersolution of equation (3.5). Then we have u ≤ v
on G. As a consequence, the solution is unique.

Proof. Suppose, by contradiction, that sup(u− v) = δ > 0. We define the functions:

A(ξ, η) = |ξ−1 · η|rG ρ(ξ) = |ξ|rG.

We have the following inequalities:

|Dh,ξA(ξ, η)| ≤ CrA
r−1

r (ξ, η), |Dh,ηA(ξ, η)| ≤ CrA
r−1

r (ξ, η).

Consider for τ and α positive:
ψ(ξ, η) = u(η) − v(ξ) − τA(ξ, η) − αρ(ξ).

For every τ and α, since u and v are bounded there is a maximum of ψ attained in a point (ξτ,α, ητ,α). In
particular, the point ξτ,α is a minimum for ξ → v(ξ) + τA(ξ, ητ,α) +αρ(ξ) and v is a supersolution, we get that
pτ,α = −τDh,ξτ,αA(ξτ,α, ητ,α) − αDhρ(ξτ,α) ∈ J1,−

v (ξτ,α) and plugging it into the equation:

γv(ξτ,α) + F (ξτ,α, pτ,α) ≥ 0. (3.6)

From the other hand, the point ητ,α is a maximum for the function: η → u(η)− τA(ξτ,α, η) and u is a viscosity
subsolution:

γu(ητ,α) + F (ητ,α, qτ,α) ≤ 0 (3.7)

where qτ,α = τDh,ητ,αA(ξτ,α, ητ,α) ∈ J1,+
u (ητ,α).

Now the coercitivity condition on H and the viscosity subsolution property of u guarantee that u is in fact a
viscosity subsolution of an eikonal equation|Dhu| ≤M for some M > 0. We then apply the Lipschitz continuity
to get:

τA(ξτ,α, ητ,α) ≤ u(ητ,α) − u(ξτ,α) ≤M |ξ−1
τ,α · ητ,α|G ≤MA(ξτ,α, ητ,α)

1
r

which implies

A(ξτ,α, ητ,α) ≤
(
M

τ

) r
r−1

(3.8)

From the other hand, writing ψ(ξτ,α, ητ,α) ≥ ψ(ξτ,α, ξτ,α), we get:

τA(ξτ,α, ητ,α) + αρ(ξτ,α) ≤ C.
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We get

|ξ−1
τ,αητ,α|G → 0 (τ, α) → (+∞, 0)

αρ(ξτ,α) → 0 (τ, α) → (+∞, 0)

Mτ,α →M (τ, α) → (+∞, 0).

Taking into account the hypothese on H :

γ(u(ητ,α) − v(ξτ,α)) ≤ H(ητ,α, qτ,α) −H(ξτ,α, pτ,α)

H(ητ,α, qτ,α) −H(ξτ,α, qτ,α) +H(ξτ,α, qτ,α) −H(ξτ,α, pτ,α)

≤ m(|ξ−1
τ,αητ,α|G(1 + |qτ,α|)) + nτ (α|ξτ,α|)

where n(·) is a modulus of continuity of H on the set G× B̄sτ and sτ = max{‖u‖, ‖v‖, 1+ τ}. To conclude, we
fix τ and let α goes to zero, then we let τ goes to +∞. �

4. Homogenization problems

Consider the cube Q = [− 1
2 ,

1
2 )N and construct a tiling of G moving only from horizontal points of the form

(k, 0), k ∈ Zm, where (k, 0) ∈ G1, Qk = (k, 0)·Q. The bracket generating property yields the following property:

Lemma 1. For every point ξ ∈ G there exists a point ξ0 ∈ Q and a finite number of group actions generated
by elements of the form (k, 0), k ∈ Zm that applied to ξ0 give ξ.

Proof. We put ki = [xi + 1
2 ], for i = 1 · · ·m, where [·] stand for the integer part; hence x̃i = xi − ki ∈ [− 1

2 ,
1
2 )m.

We consider k̄ = (k1, · · · , km) ∈ Zm and compute

(k̄, 0, · · · , 0) · ξ̃.

The group operation gives a point with the first m coordinates equal to the first m coordinates of ξ and the
m + 1 equal to ξ̃m+1 + Q2, where Q2 is an homogeneous polynomial of degree 2 in the horizontal variables.
Using the Lie bracket generating property towards the mappings C� we could solve a system of equations in
terms of the components of ξ0. �

We will adopt this latter one as an intrinsic pavage and therefore the corresponding notion of periodicity, we
will call it G-periodicity.

Definition 2. A function f defined on a Carnot Group G is said G-periodic iff

f((k, 0) · ξ) = f(ξ) ∀k ∈ Z
m, ∀ξ ∈ Q.

Consider now the action of the dilatations of the group:

Qε
k = δε(Qk) = δε

(
(k, 0) ·Q).

We notice that {Qε
k} is still a tiling of G. Furthermore, if f is G-periodic, then f(δ 1

ε
ξ) is εG-periodic.

In this context, homogenizations problems are:

uε +H(ξ, δ 1
ε
ξ,Dhu

ε(ξ)) = 0 (4.1)
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with η → H(ξ, η, p) G-periodic for each (ξ, p) ∈ G× Rm. The function H is defined on R2N × Rm and satisfies
for all ξ, ξ′, η, η′ ∈ RN and all p, p′ ∈ Rm:

|H(ξ′, η′, p′) −H(ξ, η, p)| ≤ C(|ξ−1 · ξ′|G + |η−1 · η′|G + |p− p′|)
ν|p| − C3 ≤ H(ξ, η, p) ≤ ν|p| + C3.

Remark 2. From the previous section we do know that it exists a sequence of solutions of the (4.1); more-
over this sequence is equibounded and equilipschitz. In fact, −C3 and C3 are, respectively, subsolution and
supersolution of equations (4.1) and, therefore, by comparison ‖uε‖∞ ≤ C. In addition, using the coercivity
of H , we get that |Dhuε| ≤ C in the viscosity sense, that implies, by Theorem 3, the equilipschitz bound. So,
up to a subsequence, it converges uniformly, as ε tends to zero, to a continuous function u, the solution of the
homogenized problem, see Theorem 6.

The nonlinear eigenvalue problem for the effective Hamiltonian is:

H(ξ, η, p+Dhv(η)) = λ (4.2)

and then the effective Hamiltonian H̄ is
H̄(ξ, p) = λ

for every (ξ, p) ∈ G×Rm. The uniqueness of λ depending on (ξ, p) is a consequence of the comparison theorem.
As in the Euclidean case, (see [14],[7]), one consider a sequence of approximated problems:

αvα(η) +H(ξ, η, p+Dhvα(η)) = 0

and study the asymptotic behaviour as α tends to zero. We already know that there exists a solution vα bounded
and Lipschitz continuous,that is also periodic. It can be viewed indeed (see [14]) that the limit of αvα(η) does
not depend on η and that a solution (λ, v) of (4.2 ) is given by

λ = − lim
α→0

αvα v(η) = lim
α→0

(vα − infQvα).

Theorem 5. For each p there exists a unique λ such that there exists v viscosity solution of (4.2).

Proof. From Theorem 4 we know that there exists unique vα that is also Lipschitz and, from the uniqueness, it
follows that is periodic. Moreover

−supηH(ξ, η, p) ≤ −αvα(η) ≤ −infηH(ξ, η, p) (4.3)

and from the coercivity of H , we also get:
‖Dhvα‖∞ ≤ C

for some C independent of α. Set ṽα = vα − infQvα and observe that ṽα is periodic and equilipschitz. Up to a
subsequence, we may assume that (−αvα, ṽα) converges uniformly to some (λ, v). From the stability property
of viscosity solutions, v is a solution of (4.2). Suppose now that there exists another couple (µ,w), solution of
the cell problem, with λ �= µ. We may assume that λ < µ is the case. Since if w is a solution of

H(ξ, η, p+Dhw(η)) = µ

then so is w+ c; therefore, we can also assume that w > v. Choose α so that λ+αv ≤ µ+αw. We notice that
v, w are respectively the unique viscosity solutions of

H(ξ, η, p+Dhv(η)) + αv(η) = λ+ αv(η) (4.4)

H(ξ, η, p+Dhw(η)) + αw(η) = µ+ αw(η). (4.5)
Then, in particular, w is a super solution of (4.4), and by comparison, v ≤ w, that is a contradiction. �
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We now conclude by proving the uniform convergence of uε towards the solution of the homogenized problem,
using the perturbed test functions method adapted to Hamilton-Jacobi equations.

Theorem 6. The sequence uε converges uniformly to the solution of the homogenized equation:

u+ H̄(ξ,Dhu) = 0. (4.6)

Proof. We consider a point ξ0 and a test function φ such that u− φ has a strict local maximum at ξ0, we need
to prove that

φ(ξ0) + H̄(ξ0, Dhφ(ξ0)) ≤ 0.

We start by solving the cell problem (4.2) at the point ξ0 and with p = Dhφ(ξ0)

H(ξ0, y,Dhφ(ξ0) +Dhψ(y)) = H̄(ξ0, Dhφ(ξ0)). (4.7)

The function ψ is G-periodic and defined up to a constant, we normalize it, by requiring that
∫

Q
ψ = 1. Since

ψ is a.e. differentiable, we take a test function χ touching ψ from above at the point δ 1
ε
(ξ0). Consider the

perturbed test function:
φε(ξ) = φ(ξ) + εχ(δ 1

ε
(ξ)).

Since u− φ has a strict local maximum at ξ0 and, up to a subsequence,uε → u, φε → φ uniformly, we see that
for each ε, uε −φε has a local maximum at some point ξε, with ξε → ξ0 as ε→ 0. By using that uε is a solution
of (4.1), we get:

φε(ξε) +H(ξε, δ 1
ε
(ξε), Dhφ

ε(ξε)) ≤ 0. (4.8)

We compute:
Dhφ

ε(ξε) = Dhφ(ξε) +Dhχ(δ 1
ε
(ξε)) = Dhφ(ξ0) +Dhχ(δ 1

ε
(ξε)) + o(1)

since the horizontal gradient commutes with dilations and ξε converges to ξ0.
By inserting Dhφ

ε(ξε) in (4.8) and use the uniform convergence of φε to φ and the continuity of H :

φ(ξ0) +H(ξ0, δ 1
ε
(ξε), Dhφ(ξ0) +Dhχ(δ 1

ε
(ξε)) ≤ o(1).

We now set y = δ 1
ε
(ξε) in (4.7) and substitute with H̄ , to conclude as ε→ 0. Analogously, starting from a strict

local minimum for u− φ, we can show the opposite inequality. �

5. appendix

We have defined the function:

A(ξ, η) =

⎧⎪⎨
⎪⎩
⎡
⎣ m∑

j=1

(x1,j − y1,j)2

⎤
⎦

r!

+
[
(xm+1 − ym+1 +Q2)2

] r!
2

+ · · · + [(xm+r−1 − ym+r−1 +Qr−1)2
] r!

r−1 +
[
(xm+r − ym+r +Qr)2

](r−1)!

⎫⎪⎬
⎪⎭

r
2r!

.

Let us develop the calculations for:

|Dh,ξA(ξ, η)| ≤ CrA
r−1

r (ξ, η).
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Denote by B the argument of A inside the graph parenthesis:

B =

⎡
⎣ m∑

j=1

(x1,j − y1,j)2

⎤
⎦

r!

+ · · · + [(xm+r−1 − ym+r−1 +Qr−1)2
] r!

r−1 +
[
(xm+r − ym+r +Qr)2

](r−1)!

= Ir!
1 + I

r!
2

2 + · · · + I
r!

r−1
r−1 + I(r−1)!

r

Xj,ξA(ξ, η) = Xj,ξ{B(ξ, η)} r
2r!

=
r

2r!
{B} r

2r!−1Xj,ξB.

Observe that the exponent r
2r! − 1 is negative. Recall now the formula (2.1) in a simplified version accordingly

to our notations:

Xj(g) =
∂

∂xj
+

m+r∑
s=m+1

bs,j(x1(g), · · · , xs−1(g))
∂

∂xs
, j = 1, · · · ,m

where each bs,j is a homogeneous polynomial of weighted degree s−m and observe that Qj are homogeneous
polynomial of weighted degree j. We get:

[
C1I

r!−1
1 I

1
2
1 + · · · + Cr−1I

r!
r−1+ 1

2
r−1 Rr−2

]
+ CrI

(r−1)!+ 1
2

r Rr−1

+ bm+1,j

{
C2I

r!
2 −1

1 I
1
2
2 + · · · + Cr−1I

r!
r−1 + 1

2
r−1 Rr−3 + CrI

(r−1)!+ 1
2

r Rr−2

}
+ · · · + bm+r,jCrI

(r−1)!+ 1
2

r

where Rt are homogeneous polynomial of weighted degree t. To conclude, observe that the polynomial Rj are
equivalent to the polynomial Qj that appear in the group operation.
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