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A COMPLETE CHARACTERIZATION OF INVARIANT JOINTLY RANK-R
CONVEX QUADRATIC FORMS AND APPLICATIONS

TO COMPOSITE MATERIALS
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Abstract. The theory of compensated compactness of Murat and Tartar links the algebraic condition
of rank-r convexity with the analytic condition of weak lower semicontinuity. The former is an algebraic
condition and therefore it is, in principle, very easy to use. However, in applications of this theory, the
need for an efficient classification of rank-r convex forms arises. In the present paper, we define the
concept of extremal 2-forms and characterize them in the rotationally invariant jointly rank-r convex
case.
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1. Introduction

The theory of compensated compactness [42, 59] links the algebraic condition of rank-r convexity with the
analytic condition of weak lower semicontinuity. To make this statement precise we need to introduce some
definitions. Throughout the paper the integer d ≥ 2 will denote the dimension of the vector space Rd over which
the relevant fields will be defined. We denote the space of real n × m matrices by

M(n, m) (1.1)

and we set

Mk(n, m) :=

k times︷ ︸︸ ︷
M(n, m) × · · · ×M(n, m) . (1.2)

Definition 1.1. We use a bold character, like P, to denote a list of matrices (P 1, P 2, . . . , P k). We denote by
O(d) the group of real orthogonal matrices i.e. the matrices M ∈ M(d, d) such that MM t = Id(d).

Definition 1.2. A function
F : Mk(d, d) → R (1.3)

is a 2-form if it is a homogeneous polynomial of degree two.

Keywords and phrases. Compensated compactness, rank-r convexity, effective conductivity, quadratic forms.
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2 V. NESI AND E. ROGORA

Definition 1.3. Let r be an integer with r ∈ {1, . . . , d}. A function F is an invariant 2-form if it is a 2-form
which is rotationally invariant in the following sense

∀R ∈ O(d), ∀M = (M1, M2, . . . , Mk) ∈ Mk(d, d) ,

F (M1, M2, . . . , Mk) = F (RtM1R, RtM2R, . . . , RtMkR) . (1.4)

Definition 1.4. A function F : M(d, d) → R is rank-r convex if

F ((1 − t)P + tQ) ≤ (1 − t)F (P ) + tF (Q)

for all t ∈ [0, 1] and all pair of matrices P and Q in M(d, d) such that rank (Q − P ) ≤ r or, equivalently, such
that dim(Ker(Q − P )) ≥ d − r.

Remark 1.5. The notion of d-convexity is equivalent to the usual notion of convexity.

Remark 1.6. A 2-form F is rank-r convex if and only if

F (P ) ≥ 0, ∀P ∈ M(d, d) such that dim(Ker(P )) ≥ d − r . (1.5)

In particular, F is convex (equivalently, rank-d convex) if and only if

F (P ) ≥ 0, ∀P ∈ M(d, d) . (1.6)

Notation. Let Ω be an open bounded subset of Rd and let p ∈ L2(Ω; Rd), p = (p1, . . . , pd). We define
Curl p ∈ H−1(Ω; Rd×d) by

(Curl p)ij =
∂pi

∂xj
− ∂pj

∂xi
, i, j = 1, . . . , d

and Div p ∈ H−1(Ω; R) by

Div p =
∂p1

∂x1
+ · · · + ∂pd

∂xd
·

The definitions of Div and Curl carry over to matrix valued functions by defining Div and Curl row by row.
Namely, if P ∈ L2(Ω; Rd×d) and pk is the k-th row of P , then Curl P ∈ H−1(Ω; Rd×d×d) is defined by

(Curl P )ijk =
∂pk

i

∂xj
−

∂pk
j

∂xi
, i, j, k = 1, . . . , d,

and Div P ∈ H−1(Ω; Rd) is defined by

(Div P )k =
∂pk

1

∂x1
+ · · · + ∂pk

d

∂xd
k = 1, . . . , d.

The following two remarkable results are well known and establish the importance of the notion of r-convexity.

Theorem 1.7 (Tartar [58]). Let Ω be an open bounded subset of Rd and let Pε and P0 be in L2(Ω; Rd×d) such
that

Pε ⇀ P0 weakly in
(
L2(Ω)

)d×d
, (1.7)

Curl Pε belongs to a compact subset of (H−1(Ω))d×d×d . (1.8)
Let F be a rank-1 convex 2-form on M(d, d). Then, for any φ ≥ 0 with φ ∈ Cc(Ω), we have

lim inf
ε→0+

∫
Ω

φF (Pε)dx ≥
∫

Ω

φF (P0)dx . (1.9)
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Theorem 1.8 (Tartar [58]). Let Ω be an open bounded subset of Rd and let Qε and Q0 be in L2(Ω; Rd×d) such
that

Qε ⇀ Q0 weakly in
(
L2(Ω)

)d×d
, (1.10)

Div Qε belongs to a compact subset of (H−1(Ω))d . (1.11)
Let F be a rank-(d − 1) convex 2-form on M(d, d). Then, for any φ ≥ 0 with φ ∈ Cc(Ω), we have

lim inf
ε→0+

∫
Ω

φF (Qε)dx ≥
∫

Ω

φF (Q0)dx . (1.12)

In his work on bounds in homogenization [57], [58] Tartar observed that the function

T (1)(E) := Tr(EEt) − (TrE)2 (1.13)

is rank-1 convex, whereas the function

T (d−1)(B) := (d − 1)Tr(BBt) − (TrB)2 (1.14)

is rank-(d − 1) convex. Hence, Theorem 1.7 holds with F = T (1) and Theorem 1.8 holds with F = T (d−1).
See [61] for a detailed derivation of bounds in homogenization using these ideas.

The main theme of the present paper is to describe the set of all invariant, jointly (in the sense of Def. 1.9),
rank-r convex 2-forms in a way which makes their use in homogenization most efficient. Before explaining our
contribution toward this goal, let us mention why the natural setting is with a 2-form defined on Mk(d, d), for
possibly very large k. Suppose we try to bound the effective conductivity tensor (also called H-limit [45] or
G-limit [53]) of some family of conductivity matrices σε defined on some subdomain of Rd. The natural variables
are an “almost irrotational” sequence of fields eε(x) (in the sense of (1.8)) and an “almost soloneoidal” sequence
of fields bε(x) (in the sense of (1.11)). It turns out that it is useful to consider d different choices of pairs (bε, eε)
which, in some sense, are relative to linearly independent boundary conditions (see Section 5 for more details
in the periodic context). Therefore the basic sequences can be thought of as a d× d almost irrotational matrix
valued field Eε and a d× d almost solenoidal matrix valued field Bε related by the linear equations σεE

t
ε = Bt

ε.
This case is covered setting k = 1.

A different and interesting problem is the study of the effective properties of k distinct physical proper-
ties [4, 5, 10, 12, 13, 19, 22–24,33–35,52, 58]. This is one instance where the need for k > 1 arises. Another
example is the case when measurements for the effective properties are known for certain values of the conduc-
tivity of the constituent phases. One would like to have bounds for the effective properties for different values
of the conductivity of the constituent phases. Work in this direction includes [7, 8, 35, 36, 49].

More recently, yet another field of possible applications arose from the work on bounding effective laws or
overall energies for non linear (for instance power law) composites. The pertinent number k in this framework
turns out to be unbounded! See [25, 40]. We will give further simpler motivations in Section 6.

For these kind of applications (and many others) we need to introduce the definition which makes compensated
compactness applicable in a straightforward way.

Definition 1.9. Let r and k be integers with 1 ≤ r ≤ d and 1 ≤ k. We say that F is jointly rank-r convex
if F ((1 − t)P + tQ) ≤ (1 − t)F (P) + tF (Q) for all t ∈ [0, 1] and all pairs of choices P = (P 1, P 2, . . . , P k),
Q = (Q1, Q2, . . . , Qk) ∈ Mk(d, d) such that

dim

(
k⋂

i=1

Ker(Qi − P i)

)
≥ d − r .

We will often omit the qualifier “jointly” in the rest of the paper.
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Remark 1.10. When F is a 2-form, the Definition 1.9 reduces itself to the following condition: F is jointly
rank-r convex if and only if

F (P) ≥ 0, ∀P ∈ Mk(d, d) such that dim

(
k⋂

i=1

Ker(P i)

)
≥ d − r . (1.15)

Remark 1.11. Let us point out some very elementary facts about joint rank-r convexity of 2-forms. As already
mentioned, rank-d convexity is just the usual convexity and rank-r convexity implies rank-(r − 1) convexity for
all r ∈ {d, d − 1, . . . , 2}. The sum of a rank-r1 convex form and a rank-r2 convex form is rank-r convex with
r = min(r1, r2). In particular the sum of a rank-r convex and a convex form, is rank-r convex.

Let us now recall that convex forms are not interesting in the framework of compensated compactness because
they carry no differential information. To be specific, assume that F is rank-1 convex and F = C + Q with
C convex and Q rank-1 convex. By rank-1 convexity of F and Q one has: for all sequences {Eε} satisfying (1.7)
and (1.8)

lim inf
ε→0+

(∫
Ω

φ C(Eε) +
∫

Ω

φQ(Eε)
)

≥
∫

Ω

φ C(E0) +
∫

Ω

φQ(E0) ∀φ ∈ Cc(Ω), φ ≥ 0 , (1.16)

lim inf
ε→0+

∫
Ω

φQ(Eε) ≥
∫

Ω

φQ(E0) ∀φ ∈ Cc(Ω), φ ≥ 0 . (1.17)

By the convexity of C one has: for all sequences {Aε} satisfying (1.7) (but not necessarily (1.8)!)

lim inf
ε→0+

∫
Ω

φ C(Aε) ≥
∫

Ω

φ C(A0) . (1.18)

Clearly (1.17) and (1.18) imply (1.16) but only (1.17) is a consequence of the differential constraint (1.8). In
contrast (1.18) does not carry the information (1.8).

This observation has a counterpart in the issue of bounding effective moduli. In fact, as discovered by
Milton [36] and Cherkaev and Gibiansky [20], in order to bound effective moduli of composite materials, the
“useful” rank-1 convex functions are those which cannot be decomposed as a sum of a possibly different rank-
1 convex function and a convex one. Similarly for the case in which one uses a rank-(d − 1) convex function.
The same issue appears in the context of linearized elasticity. A striking example can be found in the work of
Allaire and Kohn [2] where the authors implements the ideas of Milton [36] in the specific example of seeking
lower bounds on the elastic energy of a 2D composite. In Section 5 we will give more details explaining what is
meant by “useful” rank-r convex 2-forms. The key observation can be found in Lemma 5.5. Roughly speaking
the lemma states that the bounds obtained by using a class of 2-forms F = C + Q with C ranging on a set of
convex 2-forms and Q a given rank-1 convex 2-form, do not improve upon those using only the function Q. We
are led to the following definition which is the essential basis of our work.

Definition 1.12. Let r, s, k be integers such that 1 ≤ r < s ≤ d and 1 ≤ k and let F be a non zero rank-r
convex invariant 2-form on Mk(d, d). We say that F is quadratically (r, s) extremal if the following condition
holds: assume F = Fr + Fs with Fr a rank-r convex invariant 2-form and Fs a rank-s convex invariant 2-form,
then Fs is identically zero.

We will typically omit the qualifier “quadratically”.

Our definition of extremal forms can be rephrased as follows: for r and s as in Definition 1.12, we say that the
rank-r convex form F is (r, s) extremal if one cannot subtract from F any rank-s convex form (s > r) without
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loosing rank-r convexity of F . Note that if F is (r, s) extremal and s < d then F is also (r, s + 1) extremal. For
the converse statement, see Proposition 1.20.

The nature of our results suggests an independent definition for the case r = s.

Definition 1.13. Let r and k be integers such that 1 ≤ r ≤ d and 1 ≤ k and let F be a rank-r convex invariant
2-form on Mk(d, d). We say that F is quadratically (r, r) extremal if it cannot be expressed as the sum of two
linearly independent invariant rank-r convex 2-forms.

Our main result is to give a complete characterization of (r, s) extremal invariant 2-forms for all integers r, s
with 1 ≤ r ≤ d and r ≤ s ≤ d (see Prop. 1.19). At present, applications to composites are restricted to the
case r = 1 and r = d − 1 but we believe that the general theory will turn out to be equally useful. Let us now
describe a typical result of our analysis. It deals with the familiar case of rank-(d − 1) convexity and therefore
with the case of almost divergence free matrix fields.

Proposition 1.14. Let d ≥ 3 and k ≥ 1 be two given integers. Let F be a jointly rank-(d− 1) convex invariant
2-form. Then F is quadratically (d − 1, d) extremal if and only if there exists a symmetric, nonnegative matrix
H with elements hij such that

F (M) =
k∑

i,j=1

hijG(M i, M j) (1.19)

where

G(P, Q) :=
d − 1

2
[Tr(PQt) + Tr(PQ)] − Tr(P )Tr(Q) . (1.20)

Furthermore F is (d−1, d−1) extremal if and only if it has the form (1.19), for some symmetric matrix H ≥ 0,
with rank (H) = 1. Finally any rank-(d − 1) convex invariant 2-form F is the sum of a convex one and a
(d − 1, d) extremal one.

Proposition 1.14 follows from Theorem 1.15 and Proposition 1.19, which treat the more general case r ∈
{2, . . . , d}. We now state our results in their general form.

Theorem 1.15. Let d ≥ 3 and 1 ≤ k be two integers. Let r and s be two integers with 2 ≤ r < s ≤ d. Let F
be a non zero, jointly rank-r convex, invariant 2-form. Then,

Part I) F is quadratically (r, s) extremal if and only if there exists a symmetric matrix H ≥ 0 with elements hij

such that

F (M) =
k∑

i,j=1

hijGr(M i, M j) (1.21)

where
Gr(P, Q) :=

r

2
[Tr(PQt) + Tr(PQ)] − Tr(P )Tr(Q) . (1.22)

Part II) Furthermore, F is, in addition, quadratically (r, r) extremal if and only if it has the form (1.21) for
some symmetric matrix H ≥ 0 and with rank(H) = 1.

The case r = 1 is handled by the following result.

Theorem 1.16. Let d ≥ 2 and k ≥ 1 be two integers. Let s be an integer with 1 < s ≤ d. Let F be a non zero,
jointly rank-1 convex, invariant 2-form. Then,
Part I) F is quadratically (1, s) extremal if and only if there exists an arbitrary symmetric matrix H with
elements hij such that

F (M) =
k∑

i,j=1

hijG1(M i, M j) (1.23)
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where
G1(P, Q) := Tr(PQ) − Tr(P )Tr(Q) . (1.24)

Part II) Furthermore, F is, in addition, quadratically (1, 1) extremal if and only if it has the form (1.23) for
some H with rank (H) = 1.

Remark 1.17. When r = 1, the function E → G1(E, E) is well known. It is the (unique up to a multiplicative
factor) quadratic invariant null-lagrangian. When r = d − 1, the importance of the function B → Gd−1(B, B)
has been already recognized by Cherkaev and Gibiansky [20] and by Milton [36].

To simplify the following statements it is convenient to have a single notation for (1.21) and (1.23).

Definition 1.18. Given an integer k ≥ 1, an integer r ∈ {1, 2, . . . , d − 1} and a symmetric k × k matrix H

(nonnegative definite if r ≥ 2), we define the following forms F (r)
H : Mk(d, d) → R

F (r)
H (M) :=

k∑
i,j=1

hijGr(M i, M j) (1.25)

where the forms Gr are defined in (1.22) for r ≥ 2 and in (1.24) for r = 1.

In the language of Definitions 1.13 and 1.18, the jointly rank-r convex, (r, r + 1) extremal forms are exactly
the forms F (r)

H defined in (1.25). We can now state two useful corollaries of our results.

Proposition 1.19. (Canonical form of jointly rank-r convex invariant 2-forms). Let k and r be two integers,
1 ≤ k, 1 ≤ r ≤ d. Any invariant, jointly rank-r convex 2-form F on Mk(d, d) is the sum of at most k invariant
and (r, r)-extremal, 2-forms and of an invariant and convex one. More precisely, there exist at most k linearly
independent vectors uj ∈ Rk and a convex form C such that

F (M) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

k∑
j=1

F (r)

uj⊗uj (M) + C(M) if r ≥ 2

k∑
j=1

σjF (r)
uj⊗uj (M) + C(M) if r = 1

(1.26)

with σj ∈ {−1, 1} for j = 1, . . . , k.

Proposition 1.20. Let F be a jointly rank-r convex, invariant 2-form on Mk(d, d). Then F is (r, d)-extremal
if and only if it is (r, r + 1)-extremal.

Remark 1.21. It is easy to verify that the form (1.26) can be equivalently rewritten as follows:

F (M) =
k∑

j=1

G(r)

(
k∑

i=1

M iuj
i

)
+ C(M) (1.27)

where
G(r)(P ) := Gr(P, P ) . (1.28)

Hence, defining Pj :=
k∑

i=1

M iuj
i , one has

F (M) =
k∑

j=1

G(r)(Pj) + C(M) . (1.29)
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The latter formula shows that, for given r, essentially only one form has to be remembered, namely G(r)!

Remark 1.22. The decomposition (1.26) is not unique as pointed out by one of the referees. However,
given F , we will give an explicit algorithm to construct one possible choice of the vectors uj , the form C and
the numbers σj . We will came back to this issue in Remark 3.4.

The plan of the paper is the following. In Section 2 we review some well known facts from group representation
theory and collect a few facts of linear algebra which will be used in Section 3. In Section 3 we use the results of
Section 2 to prove Lemma 3.1, which is the main tool used to prove Theorems 1.15 and 1.16 and Propositions 1.19
and 1.20. Lemma 3.1 gives a necessary and sufficient condition to determine when F is jointly rank-r convex.
In Section 4, we present more detailed results concerning extremal rank-r functions aiming, in particular, at
characterizing the sets where the extremal forms are positive, null and negative respectively. When k = 1 and
r = d− 1, our results recover those of Milton [38], p. 546. We also present a characterization of extremal forms
(see Prop. 4.3). These results are essential to establish necessary conditions on the relevant fields for optimality
of bounds using the compensated compactness method.

In Section 5, we present an interesting application of our results to composites. We focus on the effective
properties of 3D materials made of two distinct phases each of which has two distinctive physical properties
such as electrical conductivity and magnetic permeability. Application of the theory developed in Sections 2
and 3, delivers bounds which were found in [5] (lower bounds) and in [7]; see also [6, 34, 35] (upper bounds).
The novelty is two-fold. First the upper bounds were not found before using the compensated compactness
method (in contrast, for the case d = 2, Cherkaev and Gibiansky [12], have a complete characterization based on
compensated compactness). Second, and most important, our work shows that the bounds cannot be improved
by a more clever choice of the invariant rank-(d− 1) forms in the class of those which are rotationally invariant.
At present the upper bound is only known to be optimal at five specific points. Therefore one should either
consider 2-forms which are not rotationally invariant or change the bounding method to include more detailed
information about the specific problem under consideration, like in [48]. A third possibility is to look for new
microgeometries. In fact, non invariant 2-forms have already been considered by Dell’Antonio and Nesi [16] in
the context of linear conductivity and by Gibiansky and Cherkaev in the context of linear elasticity [20, 21].
We remark that although we refrain ourselves to present the details, our approach permits to treat anisotropic
composites, a task which seems beyond the capabilities of the method based on analytic dependency exploited
in [34, 35]. Finally, in Section 6, we generalize our approach in such a way to be able to cover the setting
of the div-curl lemma of Tartar and Murat [42, 59]. Indeed we consider forms acting simultaneously on fields
of “almost gradient” type and of “almost divergence” type. Our results are not conclusive for these cases
because we have not achieved a complete description of “extremal forms”. However we prove an algebraic
lemma, Lemma 6.7, that reduces the calculation to a set of inequalities involving k×k matrices for any given k.
Moreover, in Corollary 6.9 we characterize, for any k, those forms for which the results which are the analogous of
Theorems 1.7 and 1.8 hold both for F and −F , effectively characterizing what should be called “null lagrangians”
in this context. Overall our results should be seen as a generalization of the work of Milton and Cherkaev and
Gibiansky attempting to make optimal use of the compensated compactness statements. Many open questions
remain.

2. Tools from representation theory

Let M(d, d) be the algebra of d × d matrices with real coefficient, endowed with the inner product

〈A, B〉 := Tr(ABt) .

Recall that the orthogonal group O(d) is the group of matrices R ∈ M(d, d) such that RRt = Id(d) acts on
M(d, d) by

O(d) ×M(d, d) −→ M(d, d)
(R, M) �−→ RMRt .

(2.1)
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This induces the action

O(d) ×Mk(d, d) −→ Mk(d, d)
(R,M) = (R, (M1, . . . , Mk)) �−→ (RM1R

t, . . . , RMkRt) = RMRt ,
(2.2)

and the contragradient action

O(d) × R[x1
ij , . . . , x

k
ij ] −→ R[x1

ij , . . . , x
k
ij ]

(R, f(X1, . . . , Xk)) �−→ f(RtX1R, . . . , RtXkR) .
(2.3)

The ring of invariants R[xh
ij ]

O(d) is the ring of polynomial functions f ∈ R[xh
ij ] which remain invariant under

the action (2.3). Its homogeneous component of degree e is denoted by R[xh
ij ]

O(d)
e . Classical invariant theory

provides us with a complete description of the multilinear orthogonal invariant of 2k vectors (see [64]). From
this it follows that every orthogonal invariant of R[xh

ij ]
O(d) is a polynomial in the elements Tr(U i1U i2 . . . U is)

where U i = M i or U i = (M i)t (see [50]). In particular writing M = (M1, . . . , Mk), we have

Theorem 2.1. Any invariant 2-form F on Mk(d, d), i.e. any element of R[xh
ij ]

O(d)
2 , can be written as follows

F (M) =
k∑

i,j=1

aijTr(M i(M j)t) +
k∑

i,j=1

bijTr(M iM j) −
k∑

i,j=1

cijTrM iTrM j . (2.4)

We define the symmetric k × k real matrices A, B and C with entries (A)ij = aij , (B)ij = bij and (C)ij = cij ,
respectively and note that any invariant 2-form F is in a one to one correspondence with the triple of symmetric
matrices (A, B, C).

Therefore F depends exactly on three symmetric k × k matrices A, B and C. In particular R[xh
ij ]

O(d)
2 has

dimension 3k(k+1)
2 .

Definition 2.2. We will say that an invariant 2-form F on Mk(d, d) is associated to (A, B, C) when F has the
representation given in (2.4).

Remark 2.3. With the language of Definition 2.2, the forms defined in (1.25) are associated with the triples
(A, B, C) = ( r

2H, r
2H, H) if r ≥ 2 and to the triple (A, B, C) = (0, H, H) if r = 1.

The next remark will be used many times in the paper.

Remark 2.4. The map F → (AF , BF , CF ) defined in Definition 2.2 is linear:

(AF+F ′ , BF+F ′ , CF+F ′) = (AF + AF ′ , BF + BF ′ , CF + CF ′) . (2.5)

For our computations the basis {Tr(M i(M j)t), Tr(M iM j), TrM iTrM j} of R[xh
ij ]

O(d)
2 provided by Theorem 2.4

can be conveniently replaced by a different bases which takes into account the decomposition of M(d, d) under
the action of O(d).

Let Pi : M(d, d) → M(d, d) be defined by

P1M :=
Tr(M)

d
· Id(d) , P2M :=

1
2
(M + M t) − P1M , P3M :=

1
2
(M − M t) (2.6)

and let PiM be the image of Pi. The Pi are mutually orthogonal projectors and give rise to the orthogonal
splitting

M(d, d) = P1M⊕ P2M⊕ P3M (2.7)
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which is a splitting into irreducible subspaces under the action (2.1) of the orthogonal group. We note, for
future reference, that

dim(P1) = 1, dim(P2) =
d(d + 1)

2
, dim(P3) =

d(d − 1)
2

· (2.8)

Remark 2.5. The vector spaces of this splitting are irreducible O(d) modules. They are also irreducible SO(d)
modules, except for d = 2 and d = 4. For d = 2 the traceless symmetric matrices are reducible over C and
irreducible over R. For d = 4 the antisymmetric matrices are reducible over C and R (see [64], Th. 5.9 A).

We will not pursue here the goal of studying 2-forms which are invariant with respect to the action of SO(d)
rather than O(d). This topic is discussed in [51].

Elements of P1M are matrices which are multiple of the identity and therefore sometimes called scalar
matrices. Similarly P2M is called the space of traceless symmetric matrices and P3M the space of antisymmetric
matrices, and we have

P1M
t = P1M, P2M

t = P2M, P3M
t = −P3M . (2.9)

We have the following obvious but extremely useful identities:

〈M, N〉 := Tr(MN t) = 〈P1M, P1N〉 + 〈P2M, P2N〉 + 〈P3M, P3N〉 , (2.10)

Tr(MN) = 〈P1M, P1N〉 + 〈P2M, P2N〉 − 〈P3M, P3N〉 , (2.11)
Tr(M)Tr(N) = d〈P1M, P1N〉 . (2.12)

The next corollary is now immediate and gives another basis of R[xh
ij ]

O(d)
2 .

Corollary 2.6. Any invariant 2-form F , can be written as follows

F (M) =
k∑

i,j=1

{
[aij + bij − dcij ]〈P1M

i, P1M
j〉 + [aij + bij ]〈P2M

i, P2M
j〉 + [aij − bij ]〈P3M

i, P3M
j〉
}

. (2.13)

Proof. Use Theorem 2.1 and the identities (2.6), (2.10) and (2.11). �
It is useful and interesting to point out that the forms

F (r)
H (M) =

k∑
i,j=1

hijGr(M i, M j), r ∈ {1, . . . , d} (2.14)

already defined in (1.25), take an especially simple form if described in the language of the projectors Pi.
Indeed one has

Gr(M, N) = −(d − r)〈P1M, P1N〉 + r〈P2M, P2N〉 if 2 ≤ r , (2.15)
G1(M, N) = −(d − 1)〈P1M, P1N〉 + 〈P2M, P2N〉 − 〈P3M, P3N〉. (2.16)

Remark 2.7. The expression (2.15) shows that if r ≥ 2 the extremal form does not depend on the antisymmetric
part of the matrices. Using Theorem 1.15, it is easy to conclude that any invariant rank-r convex 2 form is
actually convex in the subspace

k−times︷ ︸︸ ︷
P3M× · · · × P3M .

We will return on this issue in Section 4.

We will use the invariance of the 2-forms to give rank-r convexity a particularly simple form. To this end
the following definitions are crucial.
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Definition 2.8. We define Mk
d,r to be the set of elements M = (M1, . . . , Mk) of Mk(d, d) such that each Mi

has the last d − r rows equal to zero. The space Mk
d,r is obviously isomorphic to Mk(d, r). When k = 1, we

write M(d, r) for M1(d, r) and Md,r for M1
d,r.

Definition 2.9. For M = (M1, M2, . . . , Mk) ∈ Mk(d, d), we define Sk(d, r) by

M ∈ Sk(d, r) ⇐⇒ dim

(
k⋂

i=1

Ker(M i)

)
≥ d − r . (2.17)

Remark 2.10. The crucial fact is that

M ∈ Sk(d, r) ⇐⇒ ∃R ∈ O(d) : (RM1Rt, . . . , RMkRt) ∈ Mk
d,r (2.18)

i.e. the map
O(d) ×Mk

d,r → Sk(d, r) (2.19)

which sends (R,M) to RMRt is onto. In short: the orbit of Mk
d,r under the action of O(d) is Sk(d, r).

Definition 2.11. Given an invariant 2-form F over Mk(d, d) we denote by F↓ its restriction to Sk(d, r) and
by F↓↓ its restriction to Mk

d,r. We call F↓↓ the restricted form associated to F .

Since F is O(d)-invariant, F (RtMR) = F (M) for any R ∈ O(d) hence, by (2.19), the values of F ↓ are
completely determined by the values of F↓↓.

We introduce the following notations:

Definition 2.12. Given a jointly rank-r convex, invariant 2-form F we set⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

NF ≡ Eigenspace relative to negative eigenvalues of F
KF ≡ Eigenspace relative to null eigenvalues of F
PF ≡ Eigenspace relative to positive eigenvalues of F
KF↓ ≡ {M ∈ Sk(d, r) : F (M) = 0}
PF↓ ≡ {M ∈ Sk(d, r) : F (M) > 0}
KF↓↓ ≡ {M ∈ Mk

d,r : F (M) = 0}
PF↓↓ ≡ {M ∈ Mk

d,r : F (M) > 0}.

(2.20)

Remark 2.13. Note that ⎧⎨
⎩

PF = (NF ⊕ KF )⊥

PF↓ = Sk(d, r) \ KF↓
PF↓↓ = Mk

d,r \ KF↓↓.
(2.21)

Remark 2.14. The sets KF↓ and PF↓ are completely determined by KF↓↓ and PF↓↓ respectively. In fact the sets
KF↓ and PF↓ are the orbits of the sets KF↓↓ and PF↓↓ under the action of O(d), i.e. the map (2.19) restricted to
O(d) × KF↓↓ (resp. O(d) × PF↓↓) surjects onto O(d) × KF↓ (resp. O(d) × PF↓).

Finally we introduce some notations to be used in the next section. For any matrix M ∈ Md,r, we define
(see (2.22)) N ∈ M(r, r) to be its principal minor, obtained by taking only the first r rows and columns of M ,
and E ∈ M(r, d − r) the matrix formed with the first r rows and the last (d − r) columns of M .

M =
(

N E
0 0

)
(2.22)

with N ∈ M(r, r) and E ∈ M(r, d − r).
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The following relations link the invariants of M to those of N and E:

Tr(MM t) = Tr(NN t) + Tr(EEt)
Tr(MM) = Tr(NN)
(TrM)2 = (TrN)2

(TrN)2 = r|P1N |2.
(2.23)

With a slight abuse of notation, we have denoted by P1N the first canonical projection acting on the space
M(r, r) (rather than on the space M(d, d)).

3. An algebraic characterization of rank-r convexity

The present section is devoted to prove Theorems 1.15 and 1.20. The most important ingredients are
Lemma 3.1, Corollary 3.2 and Lemma 3.3. We use the notation of Section 2.

Lemma 3.1. Let d ≥ 2. Let F be an invariant 2-form associated to the triple (A, B, C) in the sense of
Definition 2.2. For any integer r ∈ [2, d], the following characterization holds:

If r ≥ 2, F is jointly rank-r convex ⇐⇒

⎧⎨
⎩

A + B − r C ≥ 0
A + B ≥ 0
A − B ≥ 0

(3.1)

and

F is jointly rank-1 convex ⇐⇒
{

A ≥ 0
A + B − C ≥ 0.

(3.2)

Proof of (3.1).
Part 1: r = d. We want to check the joint convexity of F . This is an immediate consequence of Corollary 2.6.
Indeed, in the new coordinates inherited by the irreducible decomposition of Section 2, (see 2.6), the Hessian
of F is the direct sum of the matrices A + B − dC, A + B and A − B each one with its multiplicity. They are
the dimensions of P1M, P2M and P3M as given by (2.8).

Part 2: 2 ≤ r < d. We may assume d ≥ 3, otherwise there is nothing to prove. We need to check the joint
rank-r convexity of F , with r ∈ [2, d − 1]. We divide the proof in several steps.
Step 1. We use (2.7), (2.9) and (2.11). By Remark 2.10, F is jointly rank-r convex on Mk(d, d) if and only if
F↓↓ is jointly convex on Mk

d,r.

Step 2. Using (2.23), we compute the restriction F↓↓ of F to Mk
d,r. One has

F↓↓ (N1, N2, . . . , Nk, E1, E2, . . . , Ek) =
k∑

i,j=1

aij

{
Tr(N i(N j)t) + Tr(Ei(Ej)t)

}

+
k∑

i,j=1

bijTr(N iN j) −
k∑

i,j=1

cijTrN iTrN j . (3.3)

Step 3. Rewrite the above expression using the projectors Pi defined in (2.6). Recall that they now act on
r × r matrices. In particular, one has

(TrN)2 = r|P1|2 . (3.4)
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We get

F↓↓ (N1, N2, . . . , Nk, E1, E2, . . . , Ek) =
k∑

i,j=1

[aij + bij − rcij ]〈P1N
i, P1N

j〉

+
k∑

i,j=1

aijTr(Ei(Ej)t) +
k∑

i,j=1

[aij + bij ]〈P2N
i, P2N

j〉

+
k∑

i,j=1

[aij − bij ]〈P3N
i, P3N

j〉. (3.5)

Using Part 1 of the present Theorem applied for d = r and the independence of the Eis from the N is, we get
that (when r ≥ 2)

F↓↓ is jointly convex on Mk
d,r ⇐⇒

⎧⎪⎪⎨
⎪⎪⎩

A ≥ 0
A + B − r C ≥ 0
A + B ≥ 0
A − B ≥ 0.

(3.6)

Step 4. Finally we remark that the third and the fourth inequalities in (3.6), imply the first one. On use of
Step 1, this concludes Part 2 for the case d ≥ 3.

Proof of (3.2). The proof is very similar to that of (3.1) except for the fact that when r = 1 the orthogonal
splitting (2.7) trivializes. Only P1 survives. One is then led to the system of inequalities in (3.6) but without
the third and fourth inequalities (which were originated by the projections P2 and P3). We get that

F↓↓ is jointly convex on Mk
d,1 ⇐⇒

{
A ≥ 0
A + B − C ≥ 0 .

(3.7)

This time, however, the first inequality is not automatically satisfied and it must be retained. The proof is now
complete. �

The following corollary is particularly useful. It performs the first step of our program. It shows that the forms
defined in (1.25), are indeed rank-r convex.

Corollary 3.2. For each r = 1, 2, . . . (d − 1), the form F (r)
H defined in (1.25) is rank-r convex.

Proof. Let us begin with the case r ≥ 2. We need to verify (3.1). Recalling Definition 2.2 and Remark 2.3, the
forms F (r)

H are associated to the triple (A, B, C) = ( r
2H, r

2H, H). Hence, by Lemma 3.1, F (r)
H is rank r-convex

if and only if
rH ≥ 0 . (3.8)

By assumption r ≥ 2, and H ≥ 0. Hence (3.8) is satisfied. The case r = 1 is similar. This time F (1)
H is associated

to the triple (A, B, C) = (0, H, H). Hence, by Lemma 3.1, F (1)
H is rank 1-convex. �

We now perform the second part of our program addressing the extremality issue.

Lemma 3.3. The forms (1.25) are (r, s) extremal for r = 1, 2, . . . , (d − 1), s = r + 1, . . . , d.

Proof. We start by considering the case r ≥ 2. For fixed r, we need to show that, if F (r)
H is the sum of a jointly

rank-r convex form Q and a jointly rank-s convex form S, then S is zero. Recall that, by assumption, S is
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rank-s convex and s > r > 1. Hence, according to Definition 2.2, it is associated to a triple (AS , BS , CS) which,
by Lemma 3.1, satisfies the following system of inequalities:⎧⎨

⎩
AS + BS − sCS ≥ 0
AS + BS ≥ 0
AS − BS ≥ 0.

(3.9)

The form F (r)
H is associated, by construction, to the triple (A, B, C) = ( r

2H, r
2H, H) (see Rem. 2.3). Since

F (r)
H = Q + S, the form Q is associated with the triple (AQ, BQ, CQ) given by

⎧⎨
⎩

AQ = r
2H − AS

BQ = r
2H − BS

CQ = H − CS .
(3.10)

By Lemma 3.1, the form Q is rank-r convex if and only if⎧⎨
⎩

AQ + BQ − rCQ := rH − rH − AS − BS + rCS ≥ 0 ⇔ AS + BS ≤ rCS

AQ + BQ := rH − (AS + BS) ≥ 0
AQ − BQ := BS − AS ≥ 0.

(3.11)

The third inequality of (3.9), together with the third inequality of (3.11), implies BS = AS . The remaining
inequalities read as follows: ⎧⎪⎪⎨

⎪⎪⎩
2AS − sCS ≥ 0
2AS ≥ 0
2AS ≤ rCS

rH − 2AS ≥ 0

(3.12)

which imply ⎧⎨
⎩

r CS ≥ 2 AS

AS ≥ 0
(r − s)CS ≥ 0.

(3.13)

Since r < s, the third inequality implies CS ≤ 0. The first and the second imply CS ≥ 0, and therefore CS = 0.
Then the first and second inequality in (3.13) implies AS = 0. Therefore the rank-s convex form S is associated
to the triple (0, 0, 0), and therefore it is identically zero as asserted. This completes the proof for the case r ≥ 2.

The case r = 1 is similar. Suppose F (1)
H = Q + S where Q is jointly rank-1 convex and S is jointly rank-s

convex. Let (AQ, BQ, CQ) and (AS , BS , CS) be associated to Q and S respectively. Recall that by (2.3), F (1)
H

is associated to (0, H, H). We have

AS − BS ≥ 0 , (3.14)
AS + BS ≥ 0 , (3.15)

AS + BS − sCS ≥ 0 , (3.16)

and, by construction,

AQ = −AS , (3.17)
BQ = H − BS , (3.18)
CQ = H − CS . (3.19)
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By Lemma 3.1

AQ ≥ 0 , (3.20)
AQ + BQ − CQ ≥ 0 . (3.21)

Note that (3.14) and (3.15) imply AS ≥ 0. Using the latter and (3.17) we get AQ ≤ 0. The latter and (3.20)
imply AQ = 0. Then by (3.17) we get AS = 0. Now use (3.14) and (3.15) to obtain BS = 0. Since AS = BS = 0
and s ≥ 0, (3.16) implies CS ≤ 0; since BS = 0, by (3.18) we get BQ = H . We are left with the inequalities{

CS ≤ 0
H − CQ = CS ≥ 0 (3.22)

from which we conclude CS = 0. Thus AS = BS = CS = 0, hence S = 0. �

We are now ready to prove Theorem 1.15.

Proof of Theorem 1.15.

Part I. Fix r ≥ 2. By Corollary 3.2 we know that F = F (r)
H is rank-r convex. By Lemma 3.3, we also know

that the form F (r)
H is (r, s) extremal for s > r. Therefore to prove Part I, it is enough to show that for any

jointly invariant rank-r convex 2-form F , there exists a symmetric matrix H such that, F can be written as the
sum of F (r)

H and a jointly convex invariant 2-form CH .
Let F be associated to the triple (AF , BF , CF ). Set

H :=
AF + BF

r
(3.23)

and define F (r)
H accordingly. Thus F (r)

H is associated to(
AF + BF

2
,
AF + BF

2
,
AF + BF

r

)
.

Since F is rank-r convex, the second inequality in (3.1) shows that H , as defined in (3.23) is non negative and
therefore F (r)

H is (r, s) extremal by Lemma 3.3. It remains to show that C := F − F (r)
(AF +BF )/r is convex. By

construction, C is associated to the triple

(AF , BF , CF ) −
(

AF + BF

2
,
AF + BF

2
,
AF + BF

r

)
=
(

AF − BF

2
,
BF − AF

2
, CF − AF + BF

r

)
. (3.24)

By Lemma 3.1, C is convex if and only if the following inequalities hold

AF − BF

2
+

BF − AF

2
− d

(
CF − AF + BF

r

)
≥ 0 , (3.25)

AF − BF

2
+

BF − AF

2
≥ 0 , (3.26)

AF − BF

2
− BF − AF

2
≥ 0 . (3.27)

The latter holds if and only if

AF + BF − rCF ≥ 0 , (3.28)
AF − BF ≥ 0 , (3.29)
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which are verified because of the first and third inequalities in (3.1).
Part II. We assume k ≥ 2 since for k = 1 there is nothing to prove. Given r ≥ 2, let F = F (r)

H for some
symmetric H such that H ≥ 0. We first prove that if H has rank one, then F is (r, s) extremal for s = r, . . . , d.
Assume by contradiction that F = Q + P with Q and P non zero, linearly independent and (r, s) extremal for
s = r, . . . , d. Here in particular Q and P must be (r, s) extremal for s > r. Hence there exist HQ and HP

symmetric and non negative definite such that Q and P are associated to ( r
2HQ, r

2HQ, HQ), ( r
2HP , r

2HP , HP ),
respectively. Since Q �= 0, P �= 0, rank(HQ) ≥ 1 and rank(HP ) ≥ 1. Since Q and P are linearly independent,
rank(HP + HQ) ≥ 2. By construction, H = HP + HQ and we obtain a contradiction because rank(H) = 1 by
assumption.

Now we prove that if rH = rank(H) ≥ 2, F (r)
H is not (r, r) extremal. Indeed, if F (r)

H is associated to

( r
2H, r

2H, H) we write H =
rH∑
i=1

Hi with Hi = hi ⊗ hi, hi �= 0. Then F (r) =
rH∑
i=1

F (r)
Hi

, F (r)
Hi

is (r, r) extremal by

the first part and, if i �= j, they are linearly independent by construction. Hence F (r)
H is not (r, r) extremal if

r ≥ 2. �

Remark 3.4. Inspection of the proof of Theorem 1.15 shows an algorithm which, for any invariant rank-r
convex 2-form F associated to (A, B, C), delivers a specific extremal invariant rank-r convex 2-form namely
F (r)

A+B
r

and, by setting

C := F −F (r)
A+B

r

it also delivers an explicit convex part in the decomposition (1.26).
The latter decomposition, as already remarked in Remark 1.22, is not unique but it has the following char-

acteristic property. For all ε > 0 and for all G = Gt ≥ 0, the 2-form F − F (r)
A+B

r +εG
is not convex!

Exactly the same observation and the same formula applies to the case r = 1.

Proof of Theorem 1.16.
Part I. By Corollary 3.2 and Lemma 3.3, the form (1.23) is jointly rank-1 and quadratically (1, s) extremal for
s > 1. Therefore, in order to prove Part I, it is enough to show that for any jointly invariant rank-1 convex
2-form F , there exists a symmetric matrix H such that F can be written as the sum of F (1)

H and a jointly convex
invariant 2-form C. Let F be associated to the triple (AF , BF , CF ) and set H = AF + BF . By Remark 2.3,
F (1)

H is associated to (0, H, H), hence C is associated to the triple

(AS , BS , CS) = (AF ,−AF , CF − AF − BF ) . (3.30)

By assumption, F is jointly rank 1-convex, hence, by Lemma 3.1{
AF ≥ 0
AF + BF − CF ≥ 0 .

(3.31)

We need to prove that for all integers s ∈ {2, d} one has⎧⎨
⎩

AS + BS − sCS ≥ 0
AS + BS ≥ 0
AS − BS ≥ 0 .

(3.32)

By (3.30), we have that (3.32) is equivalent to⎧⎨
⎩

−s(CF − AF − BF ) ≥ 0
0 ≥ 0
2AF ≥ 0

(3.33)
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which is verified by (3.31), for any integer s ∈ {2, d}.

Part II. Let H =
k∑

i=1

Hi, rank(H) = k, rank(Hi) = 1. Since (0, H, H) =
k∑

i=1

(0, Hi, Hi) then, by Remark 2.4,

F (1)
H =

k∑
i=1

F (1)
Hi

. By Part I, each F (1)
Hi

is rank-1 convex and extremal. Hence F is extremal if and only if F = F (1)
H

with rank(H) = 1. �

Proof of Proposition 1.19. We treat the case r ≥ 2 first. Let F be associated to (AF , BF , CF ). In the proof of
Theorem 1.15, Part I, we already proved that F = F (r)

HF
+ C where HF = (AF + BF )/r and C is associated to

(
AF − BF

2
,
BF − AF

2
, CF − AF + BF

r

)

and it is convex. Now write HF =
k∑

j=1

uF
j ⊗ uF

j using the spectral theorem and note that, by Remark 2.4,

F (r)
HF

=
k∑

j=1

F (r)

uF
j ⊗uF

j

.

The case r = 1 is similar. In the proof of Theorem 1.16 we have proved that F = F (1)
HF

+C where C is convex and
HF = AF + BF . The difference now is that HF is only symmetric but not necessarily non negative. Therefore

HF =
rank(HF )∑

j=1

Hj

with Hj symmetric and rank one. Hence Hj = σju
j ⊗ uj where σj is either 1 or −1. The rest of the proof is

identical to the previous case. �

Proof of Proposition 1.20. (⇒) We use the canonical form given by Proposition 1.19. It suffices to prove that
F (r)

H is (r, s) extremal for every s > r. This was already proved in Lemma 3.3.
(⇐) An immediate consequence of the definitions. �

4. Some characterizations of extremal forms

In this section we present some characterizations of the extremal forms F (r)
H as defined in (1.25). We treat

in detail the case k = 1 and the cases k ≥ 1 when rankH = 1 and when rankH = k.
We are interested in describing explicitly the spaces in (2.12) only for functions which are (r, d) extremal. As

usual the case r = 1 is special and will be treated separately. We treat the case k = 1 first since, as we shall
see, the case when F is (r, r) extremal is essentially reduced to the case k = 1.

We shall say that the (r, d − r) block form of a matrix M is a block decomposition of the form(
M11 M12

M21 M22

)
(4.1)

where M11 ∈ M(r, r), M12 ∈ M(r, d− r), M21 ∈ M(d− r, r), M22 ∈ M(d− r, d− r). When there is no risk of
ambiguity, we omit the horizontal and vertical segments in (4.1).

Lemma 4.1. Let k = 1, d ≥ 3, r ∈ {2, . . . , d} and recall (1.22) and (2.7). Let F = G(r) be the (r, r) extremal
rank-r convex form defined by

G(r)(M) = Gr(M, M) =
r

2
(Tr(MM t) + Tr(M2)) − Tr(M)2. (4.2)
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Then

NG(r) ≡ P1M (4.3)
KG(r) ≡ P3M (4.4)

KG(r)↓↓ ≡
⋃

λ∈R, Q∈P3M

(
λId(r) + Q 0

0 0

)
. (4.5)

For the matrix in (4.5), we have used the (r, d − r) block form defined in (4.1) .

Proof. Recall Part 1 of the proof of Lemma 3.1. The Hessian of an invariant rank-r convex two form associated
to (A, B, C) in the sense of Definition 2.2, is the direct sum A+B−dC, A+B and A−B with their multiplicities,
the matrices above being associated to the spaces P1M, P2M and P3M respectively. In our case k = 1 and
(A, B, C) reduces to the real numbers

(
r
2 , r

2 , 1
)
. Therefore in suitable coordinates the Hessian of Gr is given by

diag(r − d,

d(d+1)
2 times︷ ︸︸ ︷
r, . . . , r ,

d(d−1)
2 times︷ ︸︸ ︷

0, . . . , 0 ) . (4.6)

This proves (4.3) and (4.4). We now prove (4.5). In this case one has A = a, B = b, C = c and

G(r)↓↓ (N, E) = (a + b − rc)|P1N |2 + a|E|2 + (a + b)|P2N |2 (4.7)
+(a − b)|P3N |2

=
r

2
|E|2 + r|P2N |2 .

Therefore G(r)↓↓= 0 if and only if E = 0 and P2N = 0, i.e.

M = Rt

(
N1 + N3 0

0 0

)
R

for some N1 = λId(r) and N3 = −(N3)t ∈ P3M. �

Note that, as R ranges over O(d) the set of matrices

Rt

(
N3 0
0 0

)
R

coincides with P3M when d = 3, r = 2. In this case our result reduces to that proved in [38], p. 546. However,
when d > 3, this is not generally the case since 3× 3 antisymmetric non zero matrices have rank 2, while 4 × 4
antisymmetric non zero matrices may have rank 2 or 4.

The next result refers to invariant (r, r) extremal jointly rank-r convex functions, for r ≥ 2.

Lemma 4.2. Given the integers k ≥ 1, d ≥ 3, r ∈ {2, . . . , d} and a symmetric matrix H ≥ 0, let F (M) =
F (r)

H (M) be (r, r) extremal so that there exists a non zero vector u such that H = u ⊗ u, see (2.14). Use the
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notations of Definition 2.12. One has

M ∈ NFH ⇐⇒
k∑

i=1

uiM
i ∈ P1M , (4.8)

M ∈ KFH ⇐⇒
k∑

i=1

uiM
i ∈ P3M , (4.9)

M ∈ KF↓↓ ⇐⇒
k∑

i=1

uiM
i ∈ KG(r)↓↓ . (4.10)

Sketch of the proof. By construction

F (r)
H (M1, M2, . . . , Mk) = G(r)

(
k∑

i=1

uiM
i

)
. (4.11)

Then use Lemma 4.1. �
Proposition 4.3. Given three integers 1 ≤ k, 3 ≤ d and 2 ≤ r ≤ d, the set of (r, r)-extremal, jointly rank-r
convex, invariant two forms is characterized by the following property: F is (r, r)-extremal if and only if the
restriction F ↓↓ of F to Mk

d,r maximizes the dimension of its kernel among all possible jointly rank-r convex,
invariant two forms which are not convex.

Proof. Let F be a jointly rank-r convex invariant 2-form associated to (A, B, C). By (3.5), the Hessian of F↓↓
in suitable coordinates, is given by

(A + B − rC) ⊕ {A ⊕ · · · ⊕ A︸ ︷︷ ︸
r(d-r) times

} ⊕ {(A + B) ⊕ · · · ⊕ (A + B)︸ ︷︷ ︸
r2+r

2 −1 times

} ⊕ {(A − B) ⊕ · · · ⊕ (A − B)︸ ︷︷ ︸
r2−r

2 times

} . (4.12)

For a k × k symmetric matrix M we set z(M) to be the number of zero eigenvalues of M . With this notation
we have

dim(Ker(F↓↓)) = z(A + B − rC) + r(d − r)z(A) +
(

r2 + r

2
− 1
)

z(A + B) +
(

r2 − r

2

)
z(A − B) . (4.13)

Let us compute the dimension of KerF↓↓ when F is (r, r) extremal. In this case C = H = u⊗u, A = B = r
2u⊗u.

Hence {
z(A + B − rC) = k = z(A − B)

z(A + B) = z(A) = k − 1 .

Therefore, when F = Fu⊗u, one has

Λ(r, d, k) := dim(Ker(F (r)
u⊗u↓↓))

= k + r(d − r)(k − 1) +
(

r2+r
2 − 1

)
(k − 1) +

(
r2−r

2

)
k .

(4.14)

Therefore if F is (r, r) extremal (r ≥ 2) then

dim(Ker(F↓↓)) = Λ(r, d, k) .

We now show that if F is not convex then

dim(Ker(F↓↓)) ≤ Λ(r, d, k) .
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Assume, for contradiction, that F is not convex and dim(Ker(F ↓↓)) > Λ(r, d, k). We claim that necessarily
either

z(A) = k or z(A + B) = k . (4.15)
Indeed at least one of the addends of the sum in (4.14) must increase; the first and the fourth cannot increase.
The second and the third can only increase if z(A) > k − 1 or z(A + B) > k − 1 i.e. if and only if (4.15) holds
as claimed. We now check that neither case can occur in (4.15).

1. z(A)=k cannot occur. Indeed, z(A) = k implies A = 0, because A is symmetric. Then, since by rank-r
convexity A−B ≥ 0 and A+ B ≥ 0, one has that also B = 0. Next, since by rank-r convexity A+ B− rC ≥ 0,
one obtains C ≤ 0. In this case, by Lemma 3.1, F is convex, which contradicts the assumption.

2. z(A+B)=d cannot occur. If z(A + B) = d, then A + B = 0. The condition A + B − rC ≥ 0 implies
C ≤ 0 and, by Lemma 3.1, F is convex.

This shows that, if F is not convex, then dim(KerF↓↓) ≤ Λ(r, d, k) and therefore, dim(KerF↓↓) is maximal if
F↓↓ is extremal.

Now we want to show that, conversely, if dim(KerF ↓↓) = Λ(r, d, k), then F is (r, r) extremal. Indeed, if F
is not convex we have already seen that dim(KerF ↓↓) ≤ Λ(r, d, k), z(A) < k and z(A + B) < k. Therefore,
by (4.14), one necessarily has z(A − B) = k = z(A + B − rC). Since A, B and C are symmetric, this implies
A = B and C = A+B

r . Setting H := C one has that F is associated to ( r
2H, r

2H, H) and therefore it is (r, r +1)
extremal and is denoted by F (r)

H . Recall that H = 0 implies F (r)
H = 0 which implies F (r)

H convex, hence H �= 0.
Moreover for any non negative H �= 0,

dim Ker(F (r)
H ) = k + r(d − r)z(H) +

(
r2 + r

2
− 1
)

z(H) +
r2 − r

2
·

The latter is always less than or equal to Λ(r, d, k) with equality (for H �= 0) if and only if rank(H) = 1. �

In Lemma 4.1 we have described the spaces (4.3), (4.4), (4.5) for (r, r) extremal invariant 2-forms i.e. forms
Fr

H with rank(H) = 1. Now we want to describe these spaces when rank(H) is maximal.
We need to recall the following result, due to Von Neumann, see [63].

Theorem 4.4. Let A, B ∈ M(k, k) be two symmetric non negative matrices. Let 0 ≤ a1 ≤ a2 ≤ · · · ≤ ak and
0 ≤ b1 ≤ b2 ≤ · · · ≤ bk be the eigenvalues of A and B respectively. Then

a1bk + · · · + akb1 ≤ Tr(AB) ≤ a1b1 + · · · + akbk . (4.16)

Since the matrix RtBR has the same eigenvalues as B if R is orthogonal, we have the following corollaries.

Corollary 4.5. Let A and B be as in Theorem 4.4. For each R ∈ O(k),

a1bk + · · · + akb1 ≤ Tr(ARtBR) ≤ a1b1 + · · · + akbk . (4.17)

Corollary 4.6. Let A, B ∈ M(k, k) be two symmetric non negative matrices such that Tr(AB) = 0. Then
rank(A) + rank(B) ≤ k .

Proof. Suppose that rank(A) = s. Let a1 = · · · = ak−s = 0 and ak+1 �= 0. Since

0 = Tr(AB) ≥ ak−s+1bs + · · · + akb1 ≥ 0 ,

(the first inequality by Th. 4.4, the second by non negativity of A and B) we have

ak−s+1bs + · · · + akb1 = 0 .
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Hence, since ak−s+1, . . . , ak are strictly positive, we have bs = · · · = b1 = 0 and rank(B) ≤ k − s, from which
the result follows. �

Lemma 4.7. Let F = F (r)
H with rank(H) = k. Then

NFH = P1M⊕ · · · ⊕ P1M︸ ︷︷ ︸
k times

, (4.18)

KFH = P3M⊕ · · · ⊕ P3M︸ ︷︷ ︸
k times

, (4.19)

KerF↓↓ = KG(r)↓↓ . (4.20)

Proof. First we prove (4.18) and (4.19). As in the proof of Lemma 4.1 we observe that the Hessian of an
invariant 2-form associated to (A, B, C) is the direct sum of (A + B − dC, A + B, A − B) with multiplicities k,
k
(

d(d+1)
2 − 1

)
and k

(
d(d−1)

2

)
respectively. For extremal forms with r ≥ 2, one has that there exists H such

that H = Ht, H ≥ 0 and ⎧⎨
⎩

A + B − dC = (r − d)H
A + B = rH
A − B = 0.

Hence we get (4.18) and (4.19).

We now prove (4.20). We need to prove that

F↓↓ (N1, . . . , Nk, E1, . . . , Ek) = 0 ⇐⇒ Ei = 0 and N i ∈ P1M⊕ P3M, i = 1, . . . , k. (4.21)

By Remark 2.3, the form F = Fr
H is associated to ( r

2H, r
2H, H) and by (3.5),

F↓↓ (N1, . . . , Nk, E1, . . . , Ek) =
r

2

k∑
i,j=1

hij〈Ei, Ej〉 +
k∑

i,j=1

hij〈P2N
i, P2N

j〉. (4.22)

Therefore (4.22) vanishes if and only if⎧⎪⎪⎪⎨
⎪⎪⎪⎩

k∑
i,j=1

hij〈Ei, Ej〉 = 0

k∑
i,j=1

hij〈P2N
i, P2N

j〉 = 0.

(4.23)

If we define the matrices E and P2N by

Eij = 〈Ei, Ej〉, (P2N)ij = 〈P2N
i, P2N

j〉 , (4.24)

then (4.23) can be rewritten as {
Tr(HE) = 0

Tr(HP2N) = 0 (4.25)

with E and P2N symmetric and non negative. Since rank(H) = k, by Corollary 4.6, (4.25) implies E = 0 and
P2N = 0. This implies Ei = 0 and P2Ni = 0 for all i = 1, . . . , k. �

In Section 5 we will show, in one specific example, how to apply our results to bound effective moduli. The
goal is to minimize the amount of linear algebra and optimization to be made and perform it once and for all.
The results of the present section will turn out to be very useful in that respect. The basic fact is that in the
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kind of applications we shall discuss in Section 5 it is particulary useful to know, for a given jointly rank-r
convex, invariant 2-form F , the vector space NF defined in Definition 2.12, because, as we shall see in Section 5,
only in those subspaces one can obtain information which is not already recoverable by convex forms.

We have shown in the present Section that for extremal forms, if r ≥ 2 such subspaces have dimension at
most k, reducing the complexity of the general problem. For instance, for k properties in dimension d one has to
deal in principle with matrices of dimension kd2 × kd2. We reduce the problem to a problem involving matrices
of dimension k2. For dimension d = 3, with k = 2 the algorithm reduces from 324 to 4 parameters. The price
we payed is that we disregard non invariant forms.

5. Bounds in homogenization

In this section we shall apply our results to a significant example in the theory of composites. Let us start
with a very short review. Let T = (0, 1)3. A symmetric 3 × 3 matrix valued measurable function Σ defined on
R3 and T periodic is called a conductivity matrix if there exists K > 1 such that

K−1Id(3) ≤ Σ ≤ KId(3) a.e. in R
3. (5.1)

The effective conductivity Σ∗ associated to Σ is defined as the unique symmetric 3 × 3 matrix satisfying the
following properties: ∀F ∈ M(3, 3)

Tr(FΣ∗F t) := inf
U∈W 1,2

�
(T,R3)

∫
T

Tr((DU + F )Σ(x)(DU + F )t)dx . (5.2)

The space W 1,2
� denotes as usual the space of zero mean vector fields which are in W 1,2

loc (R3, R3) and are
T-periodic, see [14].

Remark 5.1. The periodicity assumption is made to keep things as simple as possible. For the general
definition through the theory of G-convergence and of H-convergence (or even Γ-convergence) the reader is
referred to [14, 15, 27, 44, 45, 53, 58].

For a general introduction to the field of bounds see also [38, 61, 65]. To state the general bounds in the
present setting we will use the following definition, in which we identify a pair of d × d matrices with a vector
of 2d2 components, obtained by juxtaposition of the rows of the first with those of the second matrix.

Definition 5.2. Given a 2-form F on M2(d, d) × M2(d, d), we write MF for the symmetric 2d2 × 2d2 real
matrix which satisfies 〈

MF

(
A
B

)
,

(
A
B

)〉
:= F (A, B)

for all A, B in M(d, d).

Note that MF is the Hessian of F divided by 2. In what follows Σ and Λ are conductivity matrices in the
sense of (5.1).

Theorem 5.3. Let F be a 2-form and let MF be associated to F via Definition 5.2.
Part I. If F is jointly rank-1 convex, then the inequality(

Σ(x) ⊗ Id(3) 0
0 Λ(x) ⊗ Id(3)

)
− MF ≥ 0 a.e. in R

3 (5.3)

implies the inequality

(
Σ∗ ⊗ Id(3) 0

0 Λ∗ ⊗ Id(3)

)
≥ MF +

(∫
T

((
Σ(x) ⊗ Id(3) 0

0 Λ(x) ⊗ Id(3)

)
− MF

)−1

dx

)−1

. (5.4)
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Part II. If F is jointly rank-(d − 1) convex, then the inequality(
Σ−1(x) ⊗ Id(3) 0

0 Λ(x)−1 ⊗ Id(3)

)
− MF > 0 a.e. in R

3 (5.5)

implies the inequality

(
(Σ∗)−1 ⊗ Id(3) 0

0 (Λ∗)−1 ⊗ Id(3)

)
≥ MF +

(∫
T

((
Σ−1(x) ⊗ Id(3) 0

0 Λ−1(x) ⊗ Id(3)

)
− MF

)−1

dx

)−1

.

(5.6)

The proof is a well known consequence of compensated compactness. We refer to [12], [36] and [58].
From now on we will make the following assumptions.

Σ(x) = (σ1χ(x) + σ2(1 − χ(x))Id(3) ,

Λ(x) = (λ1χ(x) + λ2(1 − χ(x))Id(3) ,

Σ∗ = σ∗Id(3), Λ∗ = λ∗Id(3)

and we will set

θ =
∫

T

χ(x)dx .

In physical terms we are assuming that both the first and the second physical properties are locally isotropic
and that they have isotropic effective moduli. The function χ is the characteristic function of some measurable
subset of T. The number θ is called the volume fraction and it obviously satisfies θ ∈ [0, 1]. The next assumption
is that we will restrict the forms to be rotationally invariant. In this case, the splitting (2.7) induces a splitting
of the matrix MF = MF

1 + MF
2 + MF

3 so that each of the inequalities (5.3), (5.4), (5.5), (5.6) can be written
as a system of three inequalities involving lower dimensional matrices. Actually, each of the matrices MF

i can
be written as a direct sum of two dimensional blocks depending only on i, which we continue to call MF

i and
which, for i = 1, 2, 3, have multiplicities 1, d(d+1)

2 − 1 and d(d−1)
2 respectively.

We now focus on the upper bound. For the lower bound the analysis is very similar, hence it will be omitted.
Part II of Theorem 5.3 becomes⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
σ−1(x) 0

0 λ−1(x)

)
≥ MF

i i = 1, 2, 3 a.e. in R3

implies

(
σ−1∗ 0
0 λ−1

∗

)
≥ MF

i +

(∫
T

((
σ−1(x) 0

0 λ−1(x)

)
− MF

i

)−1

dx

)−1

i = 1, 2, 3.

(5.7)

Moreover, by construction, the matrices MF
i are given by

MF
1 = A + B − 3C

MF
2 = A + B

MF
3 = A − B (5.8)

where (A, B, C) is the triple associated to F via Definition 2.3.
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Remark 5.4. The same happens if k > 2. The invariant forms always give rise to three algebraic problems
on symmetric elements of M(k, k). The next step is to show that among invariant two forms attention can be
restricted to (r, d) extremal ones. This crucial observation is due to Milton [36] and it has also been exploited
by Cherkaev and Gibiansky [20].

We will use the notation ∫
Ω

− :=
1

vol(Ω)

∫
Ω

.

Lemma 5.5 (Milton). Let Ω be a bounded measurable domain of Rd. Let α > 0, let Ψ be a symmetric real
matrix valued function Ψ : Ω → MS(d, d) such that Ψ(x) ≥ αI a.e. in Ω. (MS(d, d) denotes the vector space
of symmetric real valued d × d matrices). Set V to be the set of symmetric non negative definite matrices H
which satisfy H < Ψ(x) a.e. in Ω. and set

T : V → MS(d, d)

to be

T (H) :=
(∫

Ω

−(Ψ(x) − H)−1 dx

)−1

+ H. (5.9)

Then
T (H) ≤ T (0) (5.10)

for all H ∈ V . Moreover, if Ψ is not constant, T (H) < T (0) for all H ∈ V \ {0}.

Proof. A version of this result is proved in [38]. We give here a self contained alternative proof which maybe of
independent interest.
Step 1. For H ∈ V set

gH : [0, 1] → MS(d, d)
to be

gH(t) := T (tH)
and note that gH is well defined. Indeed if H ∈ V , then tH ∈ V for all t ∈ [0, 1], as it is easily verified. We
want to prove that gH(1) ≤ gH(0) for all H ∈ V and gH(1) < gH(0) if H �= 0 and Ψ is not constant.

We have

gH(1) − gH(0) =
∫ 1

0

ġH(s) ds , (5.11)

where ġH(s) denotes differentiation of gH(s) with respect to s.

Claim 1. Let H ∈ V , H �= 0, t ∈ (0, 1). Then

˙gH(t) = H −
(∫

Ω

−(Ψ(x) − tH)−1 dx

)−1

·
∫

Ω

−(Ψ(x) − tH)−1H(Ψ(x) − tH)−1 dx ·
∫

Ω

−(Ψ(x) − tH)−1 dx.

(5.12)

Claim 2. For all H ∈ V and for all t ∈ (0, 1) we have ġH(t) ≤ 0. Moreover, if H ∈ V \ {0} and Ψ is not
constant, then ġH(t) < 0.

Assuming Claims 1 and 2, and using (5.11) the proof of Lemma 5.5 is concluded. It remains to prove Claims
1 and 2.

Proof of Claim 1. For any A : (0, 1) → MS(d, d) of class C1 we have the well known formula (see [9])

d
dt

A−1(t) = −A−1(t)Ȧ(t)A−1(t) . (5.13)
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Using (5.13) one has

ġH(t) = H −
(∫

Ω

−(Ψ(x) − tH)−1 dx

)−1

·
(

d
dt

∫
Ω

−(Ψ(x) − tH)−1 dx

)−1

·
(∫

Ω

−(Ψ(x) − tH)−1 dx

)−1

. (5.14)

By using (5.13) again we get Claim 1.
Proof of Claim 2. By (5.12) the statement is equivalent to(∫

Ω

−(Ψ(x) − tH)−1 dx

)
H

(∫
Ω

−(Ψ(x) − tH)−1 dx

)
≤
∫

Ω

−
(
(Ψ(x) − tH)−1H(Ψ(x) − tH)−1

)
dx . (5.15)

Set
B(x) := H1/2 (Ψ(x) − tH)−1

. (5.16)
Then (5.15) can be written as ∫

Ω

−Bt(x)B(x) dx ≥
(∫

Ω

−Bt(x) dx

)(∫
Ω

−B(x) dx

)
. (5.17)

Note that the inequality M t M ≥ 0 for all matrices M ∈ M(d, d) implies(
Bt(x) −

∫
Ω

−Bt(x) dx

)(
B(x) −

∫
Ω

−B(x) dx

)
≥ 0 a.e. in Ω

and the latter implies ∫
Ω

−
(

Bt(x) −
∫

Ω

−Bt(x) dx

)(
B(x) −

∫
Ω

−B(x) dx

)
dx ≥ 0

which is equivalent to ∫
Ω

−Bt(x)B(x) dx ≥
(∫

Ω

−Bt(x) dx

)(∫
Ω

−B(x) dx

)
.

This proves that (5.15) holds. Moreover equality in (5.15) holds if and only if it holds in (5.17) i.e. if and only if

B(x) =
∫

Ω

−B(x) dx.

By (5.16) the latter is equivalent to the fact that Ψ is constant. �

In order to simplify notations we introduce the two by two matrices

Ψ(x) :=
(

σ−1(x) 0
0 λ−1(x)

)
(5.18)

and

Ψ∗ :=
(

σ−1∗ 0
0 λ−1

∗

)
. (5.19)

By Lemma 3.1, MF
2 and MF

3 as defined in (5.8) are nonnegative. Therefore, by Lemma 5.5, (5.7)2 and (5.7)3
can, at the very best, deliver the bound

Ψ∗ ≥
(∫

T

Ψ(x)−1dx

)−1

(5.20)

i.e. the well known “arithmetic mean” bound.
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Moreover (5.7)1 can deliver a better bound than (5.20) only if A + B − 3C is not positive definite.
When F is extremal, F is associated to ( r

2H, r
2H, H). Since d = 3 and r = 2, we have that F is associated

to (H, H, H) and therefore ⎧⎨
⎩

MF
1 = −H

MF
2 = 2H

MF
3 = 0

where H is a nonnegative definite symmetric matrix:

H =
(

h11 h12

h12 h22

)
≥ 0 .

After some easy manipulations (5.7) becomes:⎧⎨
⎩

Ψ(x) − 2H ≥ 0

H ≥ 0
a.e. in R

3 (5.21)

implies ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(5.20)

Ψ∗ ≥ −H +
(∫

T

(Ψ(x) + H)−1 dx

)−1

Ψ∗ ≥ 2H +
(∫

T

(Ψ(x) − 2H)−1 dx

)−1

.

(5.22)

Using (5.9) with the choice (5.18), conditions (5.22) can be rewritten in the following fashion:

Ψ∗ ≥

⎧⎨
⎩

T (0)
T (−H)
T (2H).

(5.23)

Remark 5.6. Lemma 5.5 implies that, given two symmetric nonnegative matrices H1 and H2

if H1 ≥ H2, then T (H1) ≤ T (H2). (5.24)

Using Remark 5.6 we obtain that (5.23) is equivalent to Ψ∗ ≥ T (−H).

Now, for simplicity, we make some further assumptions leading to the so-called interchange inequality prob-
lem. We assume that {

σ1 = 1
K = λ2

σ2 = K = λ1
(5.25)

and we set

D1 =
(

1
K 0
0 K

)
D2 =

(
K 0
0 1

K

)
. (5.26)

There are still three parameters to optimize over, the entries of the matrix H . We obtain:

(5.21) ⇒ (5.22)

if and only if ⎧⎨
⎩

D1 − 2H ≥ 0
D2 − 2H ≥ 0
H ≥ 0.

⇒ Ψ∗ ≥ T (−H) (5.27)



26 V. NESI AND E. ROGORA

One can check, using a monotonicity argument of the same type of Lemma 5.5 that we omit, that the best
bound in (5.27) is obtained when H satisfies

det(D1 − 2H) = det(D2 − 2H) = 0.

The corresponding matrices H depend only on one parameter, called α and one easily checks that

H(α) =
(

α β±(α)
β±(α) α

)
(5.28)

with β±(α) := ±
√

(K − α)
(

1
K − α

)
and α ∈ I :=

[
1
K , K

K2+1

]
. Finally, it is easy to check that

H0 := H

(
K

K2 + 1

)
≥ H(α), ∀α ∈ I. (5.29)

Hence, by Remark 5.6, the best bound in (5.27) is obtained for

H = H0 =
K

K2 + 1

(
1 1
1 1

)
. (5.30)

The above choice H = H0 delivers the following upper bound:

6 σ∗λ∗ +
7K2 + 5

K(1 + K2)
(σ∗ + λ∗) + K2 + 4 +

1
K2

≤ 0. (5.31)

We recall that the already known lower bound has the following explicit expression:(
K +

1
K

)
(σ∗λ∗ − 2) + σ∗ + λ∗ ≥ 0 . (5.32)

We set LK = 2+4K2

5K+K3 and UK = 2K(2+K2)
1+5K2 · They represent the lower and upper Hashin-Shtrikman bounds for

a mixture of two isotropic phases with conductivities K and 1
K and volume fractions 1

2 and 1
2 ·

In Figure 1 we display simultaneously (5.31) and (5.32) for K = 9. It is well known that the upper bound
is attained at five points, which are spotted in Figure 2 for the case K = 9. For the derivation of the latter
result the reader is referred to [34, 35, 52]. The pertinent microgeometries use an idea of Schulgasser and
were found by Milton. They are described in Section 11 of [5]. We will not digress further on this. Let us
just point out that quite a number of authors have given contributions to the subject including Beran [6],
Bergman [7], Milton [34, 35] and, Allaire and Maillot [4]. In two dimension we mention the work of Keller [28]
and Dykhne [17]. For a more general situation when (5.25) does not hold and the effective conductivities are not
necessarily isotropic see Gibiansky and Cherkaev [12], which fully characterize the range of the pair of matrices
Σ∗ and Λ∗ completing previous work of Milton [34, 35], considering only isotropic composites. See also Clark
and Milton [13]. For phase interchange inequalities, see [5] and, for more than two phases the reader is referred
to [47, 65]. In the latter works, the authors, in particular, gave a new proof of the lower bound used in the
present section. The previous derivation, in [5], was slightly incorrect.

Remark 5.7. The way we optimized the family of bounds (5.27) over the admissible matrices H is essentially
to use Lemma 5.5. The result is that one can choose H so that rank(D1 − 2H) = rank(D2 − 2H) = 1.

We learned the idea of trying to maximize the number dim(Ker(D1 − 2H)) + dim(Ker(D2 − 2H)) from [12]
(see also [11, 38]).

The suggestion of Cherkaev-Gibiansky is very intuitive because the largest the kernels of D1 − 2H , D2 − 2H
is, the weaker the conditions that a putative optimal field should satisfy are. As it turns out, one needs some
extra considerations to find the optimal H .
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Figure 1. Region bounded by best
available bounds for K = 9.

Figure 2. The “Milton-Schulgasser”
points, K = 9.

Remark 5.8. Optimality conditions are a very important issue. Let us point out that the results of Section 4
provide a basis for a systematic study. For instance, an optimal field must have constant antisymmetric part
(zero if such is the average field).

Remark 5.9. The result of the present section can be extended to deliver bounds for anisotropic composites
in contrast to the results using complex variable techniques. Extension to more than two physical properties is
also possible.

6. The “mixed” case

The theory developed so far is not yet general enough to treat many interesting cases falling, in a natural way,
in the framework of compensated compactness. In particular, we would like to consider a framework general
enough to include the well known div-curl lemma of Murat and Tartar. In the latter case one considers scalar
products of sequences satisfying (1.7) and (1.8) with sequences satisfying (1.10) and (1.11).

To make the exposition clear we begin with the case k = 2 and restrict attention, as usual to invariant
2-forms. Throughout this section we consider only the case d ≥ 3. We look for jointly rank-(1, (d− 1)) convex
forms in the following sense.

Definition 6.1. A 2-form F on M2(d, d) is rank-(r, d− r) convex if for any pair of d× d matrices (P, Q) such
that

dim (KerP) = d − r , (6.1)
dim (KerQ) = r , (6.2)

KerP and KerQ are orthogonal (6.3)

one has
F (P, Q) ≥ 0 . (6.4)
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Remark 6.2. For a rank-(r, d− r) convex 2-form F , the positivity of F (P, Q) is automatically guaranteed for
a slightly more general class of matrices, using the following result.

Lemma 6.3. Let F be a rank-(r, d − r) convex 2-form. Let K and L be two orthogonal subspaces of M2(d, d)
such that dim(K) = d − r and dim(L) = r and let P, Q ∈ M2(d, d) be two matrices such that KerP ⊇ K and
KerQ ⊇ L. Then F (P, Q) ≥ 0.

Proof. A simple continuity argument that we omit. �

Definition 6.1 is the right one to apply the compensated compactness theory. The div-curl lemma of Murat
and Tartar considers the case r = 1:

Theorem 6.4 (Tartar and Murat). Let Ω be an open bounded subset of Rd and let (Pε, Qε), (P0, Q0) be in
L2(Ω; Rd×d) and satisfying (1.7), (1.8), (1.10) and (1.11).
Let F be a jointly rank-(1, d − 1) convex 2-form then, for any φ ≥ 0 with φ ∈ Cc(Ω), we have

lim inf
ε→0+

∫
Ω

φF (Pε, Qε)dx ≥
∫

Ω

φF (P0, Q0)dx . (6.5)

The div-curl lemma corresponds to the choice F (P, Q) = Tr(PQt). As it is well known Tr(PQt) = 0 for all P
and Q satisfying (6.1), (6.2) and (6.3). Therefore, for F (P, Q) = Tr(PQt) equality holds in (6.5).

In this section we prove two results about invariant jointly rank-(1, (d − 1)) convex 2-forms. The first gives
the analogue of Lemma 3.1. First we need a further definition.

Definition 6.5. Given positive integers, r, k1 and k2, set k = k1+k2. A 2-form F on Mk(d, d) is (k1, k2)-jointly
rank-(r, d− r) convex (1 ≤ r < d) if for any (P 1, . . . , P k1) ∈ Mk1(d, d) and any (Q1, . . . , Qk2) ∈ Mk2(d, d) such
that

U = KerP 1 = · · · = KerP k1 , dim(Ker(U)) = d − r, (6.6)
W = KerQ1 = · · · = KerQk2 , dim(Ker(W )) = r, (6.7)

U, W orthogonal (6.8)
one has

F (P 1, . . . , P k1 , Q1, . . . , Qk2) ≥ 0. (6.9)

As in Lemma 6.3 the positivity of F (P 1, . . . , P k1 , Q1, . . . , Qk2) is automatically guaranteed for a slightly more
general class of matrices.

Lemma 6.6. Let r, k1, k2 be positive integers, and let k = k1 + k2. Let F be a 2-form which is (k1, k2)-jointly
rank-(r, d− r) convex (1 ≤ r < d). Let (P 1, . . . , P k1) ∈ Mk1(d, d) and (Q1, . . . , Qk2) ∈ Mk2(d, d). Let K and L
be two orthogonal subspaces of M2(d, d) for which dim(K) = d − r, dim(L) = r and such that

K ⊆
k1⋂

i=1

KerP i, L ⊆
k2⋂

j=1

KerQj . (6.10)

Then
F (P 1, . . . , P k1 , Q1, . . . , Qk2) ≥ 0. (6.11)

Proof. As for Lemma 6.3, a simple continuity argument that we omit. �
Lemma 6.7. Let d ≥ 3, k1, k2 be two positive integers and let F : Mk1+k2(d, d) → R be an invariant 2-form
associated to (A, B, C) written in [k1, k2] block form as follows (see (2.22))

A =
(

Â AE

At
E Ã

)
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where Â ∈ M(k1, k1), AE ∈ M(k1, k2), Ã ∈ M(k2, k2), and similarly for B and C. Then F is (k1, k2) jointly
rank-(1, d − 1) convex if and only if

Ã + B̃ ≥ 0 (6.12)

Ã − B̃ ≥ 0 (6.13)(
Â BE

Bt
E Ã

)
≥ 0 (6.14)

(
Â + B̂ 0

0 Ã+B̃
d−1

)
− C ≥ 0. (6.15)

Proof. Using the arguments of Section 2, the O(d)-invariance of F implies that it is enough to check positivity
of the restricted form F↓↓. In this case, this means to consider F (P 1, . . . , P k1 , Q1, . . . , Qk2) for matrices of the
form

P i =
(

ni vP i

0 0

)
Qj =

(
0 0

vQj N j

)
where ni ∈ M(1, 1), vP i ∈ M(1, (d− 1)), vQj ∈ M((d− 1), 1) and N j ∈ M((d− 1), (d− 1)). The restriction of
F to matrices of the above form is denoted as usual by

F↓↓= F↓↓ (n1, . . . , nk, vP 1 , . . . , vP k1 , vQ1 , . . . , vQk2 , N1, . . . , Nk2) .

We use the following elementary identities

Tr(P i(P j)t) = ninj + 〈vP i , vP j 〉 (6.16)

Tr(Qi(Qj)t) = Tr(N i(N j)t) + 〈vQi , vQj 〉 (6.17)

Tr(P i(Qj)t) = 0 (6.18)

Tr(P iP j) = ninj (6.19)

Tr(QiQj) = Tr(N iN j) (6.20)

Tr(P iQj) = 〈vP i , vQj 〉 (6.21)

Tr(P i)Tr(P j) = ninj (6.22)

Tr(Qi)Tr(Qj) = Tr(N i)Tr(N j) (6.23)
Tr(P i)Tr(Qj) = niTr(N j) . (6.24)

Moreover, since d ≥ 3, we have

Tr(N i(N j)t) =
3∑

k=1

〈PkN i, PkN j〉 (6.25)

Tr(N iN j) =
2∑

k=1

〈PkN i, PkN j〉 − 〈P3N
i, P3N

j〉 (6.26)

Tr(N i)Tr(N j) = (d − 1)〈P1N
i, P1N

j〉. (6.27)

We claim that writing F↓↓ with the help of (6.16)–(6.27) and using the projections Pi one obtains the assertion.
We now check our claim. We write âij , ãij and aE

ij for the entries of Â, Ã, AE respectively. We do the same for
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B and C. We have

F↓↓ =
k1∑

i,j=1

[
âijTr(P i(P j)t) + b̂ijTr(P iP j) − ĉijTr(P i)Tr(P j)

]
+

k2∑
i,j=1

[
ãijTr(Qi(Qj)t) + b̃ijTr(QiQj) − c̃ijTr(Qi)Tr(Qj)

]
+2

k1∑
i=1

k2∑
j=1

[
aE

ij Tr(P i(Qj)t) + bE
ij Tr(P iQj) − cE

ij Tr(P i)Tr(Qj)
]

.

By using equations (6.16)–(6.27) it is easy to verify that the above expression can be rewritten as

F↓↓ =
k1∑

i,j=1

âij〈vP i , vP j 〉 +
k2∑

i,j=1

ãij〈vQi , vQj 〉 + 2
k1∑

i=1

k2∑
j=1

bE
ij〈vP i , vQj 〉

+
k2∑

i,j=1

(ãij + b̃ij)〈P2(N i), P2(N j)〉 +
k2∑

i,j=1

(ãij − b̃ij)〈P3(N i), P3(N j)〉

+
k1∑

i,j=1

(âij + b̂ij − ĉij)ninj

+
k2∑

i,j=1

(
ãij+b̃ij

d−1 − c̃ij

)
Tr(N i)Tr(N j)

−2
k1∑
i=1

k2∑
j=1

cE
ijniTr(N j) .

The variables vP i , vQj , ni, N j are all independent from each others. Therefore the latter expression is positive
if and only if the following four conditions hold:

k1∑
i,j=1

âij〈vP i , vP j 〉 +
k2∑

i,j=1

ãij〈vQi , vQj 〉 + 2
k1∑

i=1

k2∑
j=1

bE
ij〈vP i , vQj 〉 ≥ 0 , (6.28)

k2∑
i,j=1

(ãij + b̃ij)〈P2N
i, P2N

j〉 ≥ 0 , (6.29)

k2∑
i,j=1

(ãij − b̃ij)〈P3Ni, P3Nj〉 ≥ 0 , (6.30)

k1∑
i,j=1

(âij + b̂ij − ĉij)ninj +
k2∑

i,j=1

(
ãij + b̃ij

d − 1
− c̃ij

)
Tr(N i)Tr(N j) − 2

k1∑
i=1

k2∑
j=1

cE
ij niTr(N j) ≥ 0 . (6.31)

Clearly (6.28), (6.29) and (6.30) are equivalent to (6.14), (6.12) and (6.13) respectively and (6.31) is equivalent to⎛
⎝ Â + B̂ − Ĉ −CE

−Ct
E

Ã+B̃
d−1 − C̃

⎞
⎠ ≥ 0

which is equivalent to (6.15). �

The next result characterizes the analogue of quasi-affine functions. We need a definition.
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Definition 6.8. Given positive integers k1, k2 set k = k1 + k2. We say that an invariant 2-form F is (k1, k2)-
jointly rank-(1, d− 1) affine if both F and −F are (k1, k2)-jointly rank-(1, d− 1) convex.

Corollary 6.9. An invariant 2-form F is (k1, k2)-jointly rank-(1, d − 1) affine (d ≥ 3) if and only if F is
associated to (

0 AE

AE 0

)
,

(
H 0
0 0

)
,

(
H 0
0 0

)
(6.32)

for some symmetric H ∈ M(k1, k1) and some arbitrary AE ∈ M(k1, k2).

Sketch of the proof. We need to choose A, B, C so that the inequalities (6.12)-(6.15) are satisfied as equalities.
The first two implies Ã = B̃ = 0. The third one implies Â = BE = 0. Finally the fourth one implies Ĉ = Â+ B̂

and C̃ = Ã+B̃
d−1 · �

Corollary 6.9 may be already known although we were unable to locate the right reference in the literature.
As usual we would like to classify “extremal forms” but we do not have a complete picture yet. This will be

left for future work.

7. Concluding remarks and open problems

Our work is tightly linked to the issue of semicontinuity of integral functionals of the kind I(B) =
∫
Ω f(B) dx

with B ∈ M(d, d). When B = DU and the integrand is not a 2-form, the notion of rank-one convexity has to
be compared with that of quasiconvexity introduced by Morrey [41] as opposed to the classical convexity theory
valid for scalar functions and initiated by Tonelli [62]. In this general context the notions of quasiconvexity and
rank-one convexity turn out to be different (at least when d = 3) as proved by Šverak in [55]. Similarly, if B
satisfies a linear differential constraint of the form AB = 0, when r ≥ 2, rank r-convexity must be compared with
the appropriate notion of A quasiconvexity introduced by Fonseca and Muller [18]. Our results have an impact
in this more general context. For instance, when considering integral functionals of the form I(U) =

∫
Ω

f(DU)
with f not quasiconvex, one may attempt to compute a lower bound for the quasiconvexification Qf of f by
using the same kind of ideas used in composites. If f is continuous and it grows at least quadratically at infinity,
the method works. An explicit example can be found in the pioneering work of Kohn and Strang (see [29–31])
and more recently in many papers including [1, 3], just to cite a few. In this context one faces exactly the
same difficulties explained in the context of homogenization in Section 5. Our results may be valuable in those
circumstances.

The issue of finding “extremal”, say quasiconvex functions arise explicitly in the work of several authors
including Milton [36], Allaire and Kohn [2] and Šverak [54]. The present paper represents a contribution
toward that goal: for smooth functions, our work selects the extremal quadratic part, thanks to the theory of
compensated compactness of Tartar.

Many questions, even in the quadratic case, remain open. Let us quote a few of them. First, we do not
characterize extremal forms for what we called the mixed case. This seems an interesting subject left for some
future work. Second, no general results are available for non invariant forms, but it is most likely (see [16,20]) that
some of them are “extremal”. Their algebraic structure however seems rather intricate. Their characterization
would be very useful in applications. Third, finding extremal SO(n) invariant forms requires new techniques.
In particular one needs to include forms which are SO(n) invariant but not necessarily O(n) invariant. Such
forms exist if n is even and they can be quadratic for n = 2 and n = 4. In general SO(n) invariant of matrices
are built by adding a further typical invariant (in the sense of Weyl) to the trace, i.e. the complete polarization
of the pfaffian (see [51]).

In “practical” terms our results were tested on a difficult problem as explained in Section 5. Our results
establish the upper bound for isotropic composites. It is better than those obtained by various authors including
the bounds obtained in [4] by using H-measures techniques. It coincides with the best known bound which was
obtained by different techniques (see [6,34,35]). Our method has the advantage of showing very clearly how to
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get similar bounds for more than two properties and/or for anisotropic composites. In contrast, the previous
derivations in 3D seem limited to the case of two physical properties and to isotropic composites.
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Poincaré Anal. non Linéaire 15 (1998) 301–339.

[2] G. Allaire and R.V. Kohn, Optimal lower bounds on the elastic energy of a composite made from two non-well ordered isotropic
materials. Quart. Appl. Math. LII (1994) 311–333.

[3] G. Allaire and V. Lods, Minimizer for a double-well problem with affine boundary conditions. Proc. Roy. Soc. Edinburgh Sec.
A 129 (1999) 439–466.

[4] G. Allaire and H. Maillot, H-measures and bounds on the effective properties of composite materials. Port. Math. (N.S.) 60
(2003) 161–192.

[5] M. Avellaneda, A.V. Cherkaev, K.A. Lurie and G.W. Milton, On the effective conductivity of polycrystals and a three
dimensional phase interchange inequality. J. Appl. Phys. 63 (1988) 4989–5003.

[6] M.J. Beran, Nuovo Cimento 38 (1965) 771–782.
[7] D.J. Bergman, The dielectric constant of a composite material: a problem in classical physics. Phys. Rep. 43 (1978) 377-407.
[8] D.J. Bergman, Rigorous bounds for the complex dielectric constant of a two-component composite. Ann. Physics 138 (1982)

78–114.
[9] R. Bhatia, Matrix Analysis. Graduate texts in Mathematics, Springer-Verlag, New York (1997).

[10] J.G. Berryman and G.W. Milton, Microgeometry of random composites and porous media. J. Phys. D: Appl. Phys. 21 (1988)
87–94.

[11] A. Cherkaev, Variational methods for structural optimization. Applied Mathematical Sciences 140, Springer-Verlag, Berlin
(2000).

[12] A.V. Cherkaev and L.V. Gibiansky, The exact coupled bounds for effective tensors of electrical and magnetic properties of
two-component two-dimensional composites. Proc. Roy. Soc. Edinburgh Sect. A 122 (1992) 93–125.

[13] K. Clark and G. Milton, Optimal bounds correlating electric, magnetic and thermal properties of two phases, two dimensional
composites. Proc. R. Soc. Lond. A, 448 (1995) 161–190.

[14] G. Dal Maso, An introduction to Γ-convergence. Progress in Nonlinear Differential Equations and their Applications 8,
Birkhauser Boston, Inc., Boston, MA (1993).

[15] E. De Giorgi and S. Spagnolo, Sulla convergenza degli integrali dell’energia per operatori ellittici del secondo ordine. Bull. Un.
Mat. Ital (4) 8 (1973) 391–411.

[16] G. Dell’Antonio and V. Nesi, A scalar inequality which bounds the effective conductivity of composites. Proc. Royal Soc.
London A 431 (1990) 519–530.

[17] A.M. Dykhne, Conductivity of a two-dimensional two-phase system. Soviet Physiscs JETP 32 (1971) 63–65.
[18] I. Fonseca and S. Müller, A-quasiconvexity, lower semicontinuity, and Young measures. SIAM J. Math. Anal. 30 (1999)

1355–1390.
[19] L.V. Gibiansky, Effective properties of a plane two-phase elastic composites: coupled bulk-shear moduli bounds, in Homoge-

nization, Ser. Adv. Math, Appl. Sci. 50, World Sci. Publishing, River Edge, NJ (1999) 214–258.
[20] L.V. Gibiansky and A.V. Cherkaev, Design of composite plates of extremal rigidity and/or Microstructures of composites of

extremal rigidity and exact bounds on the associated energy density, in Topics in the mathematical modelling of composite
materials, A. Cherkaev and R. Kohn Eds., Progr. Nonlinear Differential Equations Appl. 31, Birkhäuser Boston, Inc., Boston,
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[42] F. Murat, Compacité par compensation: condition nécessaire et suffisante de continuité faible sous une hypothèse de rang
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[54] V. Šverak, New examples of quasiconvex functions. Arch. Rational Mech. Anal. 119 (1992) 293–300.
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