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GRAPH SELECTORS AND VISCOSITY SOLUTIONS ON LAGRANGIAN
MANIFOLDS

David McCaffrey1

Abstract. Let Λ be a Lagrangian submanifold of T ∗X for some closed manifold X. Let S(x, ξ) be
a generating function for Λ which is quadratic at infinity, and let W (x) be the corresponding graph
selector for Λ, in the sense of Chaperon-Sikorav-Viterbo, so that there exists a subset X0 ⊂ X of
measure zero such that W is Lipschitz continuous on X, smooth on X\X0 and (x, ∂W/∂x(x)) ∈ Λ
for X\X0. Let H(x, p) = 0 for (x, p) ∈ Λ. Then W is a classical solution to H(x,∂W/∂x(x)) = 0 on
X\X0 and extends to a Lipschitz function on the whole of X. Viterbo refers to W as a variational
solution. We prove that W is also a viscosity solution under some simple and natural conditions. We
also prove that these conditions are satisfied in many cases, including certain commonly occuring cases
where H(x, p) is not convex in p.
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1. Introduction

Let Λ be a Lagrangian submanifold of T ∗X for some closed manifold X. Various authors [3, 13, 19, 24] have
put forward a Lusternick-Schnirelman type min-max procedure for constructing from Λ a Lipschitz continuous
function W (x), where x ∈ X. This construction uses the fundamental notion of a generating function for Λ
which is quadratic at infinity, the details of which can be found in the above references and are summarised
below. The reader is also referred to [26] for an introduction to the general notion of a generating function for
a Lagrangian manifold. The function W is known as a graph selector for Λ because, if Λ is thought of as a
multi-valued section of T ∗X, then outside of a set X0 of measure zero in X, the differential dW (x) selects a
single value of this section in a smooth way. So given some Hamiltonian H(x, p) which vanishes on Λ, it follows
that W is a classical solution to H(x, ∂W/∂x(x)) = 0 on X\X0, and extends to a Lipschitz function on the
whole of X. For this reason [24, 25], interprets W as a type of generalised solution to H(x, ∂W/∂x(x)) = 0 on
X, described in those references as a variational solution.

The question considered in this paper is under what circumstances is this variational solution W also a
viscosity solution to H(x, ∂W/∂x(x)) = 0. We put forward some simple and natural conditions under which
this is true, and present some examples to demonstrate that these conditions are naturally satisfied in many
cases, including cases where H(x, p) is not convex in p. The reader is referred to standard sources such as [5,6,9]
for details on viscosity solutions.

Keywords and phrases. Viscosity solution, Lagrangian manifold, graph selector.

1 University of Sheffield, Dept. of Automatic Control and Systems Engineering, Mappin Street, Sheffield, S1 3JD, UK;
david@mccaffrey275.fsnet.co.uk

c© EDP Sciences, SMAI 2006

Article published by EDP Sciences and available at http://www.edpsciences.org/cocv or http://dx.doi.org/10.1051/cocv:2006023

http://www.edpsciences.org/cocv
http://dx.doi.org/10.1051/cocv:2006023


796 D. MCCAFFREY

Our results generalise and simplify two sets of existing partial results in the literature. The first set is
contained in [24, 25], where it is shown that, if x is a point at which dW (x) is discontinuous, then W is a
viscosity solution if HesspH(x, p) ≥ 0 (e.g. if H(x, .) is convex) and if there exists a surface of discontinuity
in dW running through x and across which the jump in dW (x) is in the direction consistent with the defining
requirements of a viscosity solution. Our results clarify the precise extent to which convexity ofH(x, .) is required
in order for W to be a viscosity solution, and this turns out to be much weaker than a general assumption of
convexity at points of discontinuity of dW (x). Our results also address the difficulty of achieving consistency
between the orientation of the jump in dW at points of discontinuity, and the direction of the sub- and super-
solution inequalities required to establish the viscosity solution property, a difficulty which also appears in other
references cited below. We do this by formulating a natural condition on W in terms of the dynamics of H,
which leads to the correct choice of equation H = 0 or −H = 0 to be solved in the viscosity sense.

The second set of existing results appears in [7,15,16], the latter two being earlier work of the current author.
In the first reference, a construction of W from Λ is put forward for the specific case where H(x, .) is convex.
This construction uses an explicit formula which identifies the minimum critical value of the generating function
of Λ. We show below that this formula is a special case of the general graph selector construction in the case
where H(x, .) is convex. Then, in [7], under a further assumption that W is Lipschitz, it is shown that W is
a viscosity solution. The proofs in this reference use very natural arguments in terms of the dynamics of the
problem, as well as a key result from non-smooth analysis which provides a characterisation of the sub- and
super-differentials of W as subsets of convex sets defined in terms of points on Λ. These natural arguments are
the basis for the proofs of our generalised results below. In [15], we showed that the a priori assumption of
Lipschitz continuity of W in [7] was unnecessary, since this property could be proved to follow from geometrical
properties of Λ, at least for dim Λ ≤ 5. The dimension restriction arose from the use of Arnold’s classification
of singularities of Λ up to dim 5 in the proof, and did not appear to be intrinsic. This was confirmed in [16]
where the approach was extended, in outline form, to arbitrary dimensions using some of the ideas of the graph
selector approach applied to the explicit formula of [7], abeit still under the assumption of convexity of H .
In this current paper we complete the synthesis of these two approaches by combining the natural dynamical
and convexity arguments referred to above with the full power and elegance of the graph selector approach
to produce general conditions under which W is a viscosity solution, without restrictive assumptions on the
convexity of H or the dimension of Λ.

We briefly review some other related approaches to generalised solutions to Hamilton-Jacobi equations in the
literature. First, there is the famous Hopf formula [11], which is shown in [1] to be a viscosity solution when
H is convex. Also in [2] a Hopf inf-sup type construction is applied to produce a generalised solution, starting
from a generating function for Λ and identifying a section of Λ. This is shown to be a viscosity solution in
the special case when H is convex and depends only on p. Both of these can be interpreted as special cases
of the graph selector, in that they pick out the same section of Λ. Lastly, there is the idempotent analysis
approach to generalised solutions, which can also be viewed as identifying a solution in terms of a section of
Λ – see [8] for details in the case of a specific physical problem. Connections between the graph selector and
idempotent analysis approaches are discussed in [16], where it is shown that they give the same solution under
certain circumstances.

The remainder of the paper is organised as follows. In the next two sections we briefly review the theory
of generating functions quadratic at infinity and graph selectors. In Section 4, we then set out and prove the
conditions under which a graph selector, or variational solution, is also a viscosity solution. In the final section,
we give two sets of examples to illustrate that these conditions are naturally satisfied in many cases. The first
set concerns initial and final value Cauchy problems with convex or concave Hamiltonians. The second set
concerns a non-convex Hamiltonian arising from a class of differential game optimisation problems. We also
give a third simple example where a variational solution exists which is not a viscosity solution.
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2. Generating functions quadratic at infinity

Let Λ be a Lagrangian submanifold of T ∗X for some closed manifold X. Then Λ is said to have a generating
function quadratic at infinity (GFQI), denoted S, if there exists a vector bundle P = X × E → X (with
fibre space given by vector space E which we assume to be real E = R

m for some m) and a C2 function
S : (x, ξ) ∈ P → S(x, ξ) ∈ R such that

ΣS =
{

(x, ξ) ∈ P :
∂S

∂ξ
(x, ξ) = 0

}

is a subvariety of P and Λ is the image of ΣS under the embedding

iS : (x, ξ) →
(
x,
∂S

∂x
(x, ξ)

)

with S(x, ξ) = Bx(ξ) for all |ξ| ≥ R > 0 for some family Bx(.) of non-degenerate quadratic forms.
Suppose that Λ is Lagrangian isotopic to the zero section of T ∗X , i.e. can be smoothly transformed into the

zero section via a family of Lagragian isomorphisms, and that Λ is exact, i.e. the cohomology class generated by
the restriction of the Liouville form to Λ vanishes. These conditions are satisfied if, for example, Λ is the image
under a Hamiltonian flow of some initial Lagrangian manifold with a well-defined projection onto X. Then, by
the Théorème of [19], Λ has a GFQI S, and by Proposition 1.5 of [23], S is unique up to stable equivalence.

Uniqueness up to stable equivalence means that if there are two GFQI S1 and S2 for Λ, then they can both
be transformed into the same generating function S through application of operations of the form

S(x, ξ, η) = Si(x, ξ) + Ci(η)

and
S(x, ξ) = Si(x, ψi(x, ξ)),

where Ci(.) is a non-denegerate quadratic form on R
l and (x, ξ) → (x, ψi(x, ξ)) is a fibre preserving diffeomor-

phism of P . This still leaves an indeterminate constant in the definition of S. Note, in the example cited above
of a Lagrangian manifold generated under a Hamiltonian flow from an initial Lagrangian manifold Λ0, this
constant is determined by the choice of constant in the generating function S0 for Λ0. This is how we will fix
this constant in the examples given at the end.

The construction of a GFQI S for Λ, as set out in [13, 19], uses the so-called broken phase curves method
to produce a finite-dimensional parameterisation of the Hamilton-Jacobi action functional, considered as an
infinite-dimensional generating function for Λ. For the benefit of readers unfamiliar with this theory and to
illustrate the essential simplicity of the idea, we give a simplified version of the proof for the case where X = Tn,
a n-dimensional torus. This version appeared in [12] and was communicated to us by Claude Viterbo.

Let Λ0 denote the zero section of T ∗X, and suppose Λ is exact and Lagrangian isotopic to Λ0. Then there
exists a time dependent Hamiltonian H : T ∗X × [0, 1] → T ∗

R
n with compact support and with phase flow ϕt

on T ∗X such that Λ = ϕ1(Λ0). Lift H to a Hamiltonian H̃(q, p, t) : T ∗
R

n × [0, 1] → T ∗
R

n which is Z
n-periodic

with respect to q, and denote by ϕ̃t the corresponding phase flow on T ∗
R

n. Let 0 ≤ s < t ≤ 1 and consider the
canonical transformation (Q,P ) = Rt

s(q, p) of T ∗
R

n given by Rt
s := ϕ̃t ◦ ϕ̃−1

s . Then there exists δ > 0 such that
for t− s < δ, Rt

s is defined by a canonical generating function St
s(Q, p) such that

P = p+ δSt
s/δQ, q = Q+ δSt

s/δp

and the mapping (Q, p) �→ (q, p) is a diffeomorphism of T ∗
R

n. The function St
s is defined up to an additive

constant by the formula

St
s(Q, p) =

∫ t

s

(
(Pτ − p)dQτ/dτ − H̃τ (Qτ , Pτ )

)
dτ
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where (Qτ , Pτ ) = Rτ
s (q, p). So St

s is Z
n-periodic with respect to Q and C2. Choose a sufficiently large integer l

such that 1/(l + 1) < δ and let Sj,t = S
(j+1)t/(l+1)
jt/(l+1) for 0 ≤ t ≤ 1 and (Qj , Pj) = R

(j+1)t/(l+1)
jt/(l+1) (qj , pj) for each

0 ≤ j ≤ l. Then the function

St(Q0, . . . , Ql, p0, . . . , pl) =
l∑

j=0

(Sj,t(Qj , pj) + pj+1(Qj+1 −Qj)) ,

with the convention that l + 1 = 0, has differential

dSt(Q0, . . . , Ql, p0, . . . , pl) =
l∑

j=0

((Pj − pj+1)dQj + (qj+1 −Qj)dpj+1) .

So now we take (Qj , pj+1)0≤j<l to be the fibre coordinates on the fibre space E = R
2l and consider the subvariety

ΣSt of P = X × E on which the partial derivatives of St with respect to (Qj , pj+1)0≤j<l all vanish. Then the
graph of ϕ̃t is the image of ΣSt under the embedding

(Q0, . . . , Ql, p0, . . . , pl) �→ ((Ql + δSt/δp0, p0), (Ql, p0 + δSt/δQl)) .

To see this, note that on ΣSt , (qj+1, pj+1) = R
(j+1)t/(l+1)
jt/(l+1) (qj , pj) for each 0 ≤ j < l and so (Ql, Pl) = ϕ̃t(q0, p0).

Now let pj−p0 = zj and Qj−Qj−1 = yj for 1 ≤ j ≤ l, and let (y, z) = (yj , zj)1≤j≤l denote the fibre coordinates.
Then we can re-write St as S̃t((y, z), (Ql, p0)) = F̃t((y, z), (Ql, p0)) +

∑l
j=1 zjyj where

F̃t((y, z), (Ql, p0)) = S0,t

(
Ql −

l∑
i=1

yi, p0

)
+

l∑
j=1

Sj,t

⎛
⎝Ql −

∑
j<i≤1

yi, p0 + zj

⎞
⎠

and where
∑l

j=1 zjyj is a non-degenerate quadratic form of index l on the fibre space R
2l. Since the functions Sj,t

have compact support, S̃t reduces to this quadratic form for large (y, z). So now restricting S̃1((y, z), (Ql, 0)) to
{p0 = 0} we get a Z

n-periodic function with respect to Ql, which, on taking quotients and considering Ql ∈ X ,
induces the required GFQI for Λ. This argument can be generalised to an arbitrary closed manifold X by
embedding it in R

m for sufficiently large m. This induces a symplectic embedding of T ∗X in T ∗
R

m. One then
constructs a Hamiltonian isotopy ϕ̃t of T ∗

R
m corresponding to a compactly supported Hamiltonian such that

Λ = ϕ̃1(Λ0) and proceeds as above. The full details are given in [13,19]. It is also shown in this latter reference
that the property of having a GFQI is preserved under Hamiltonian isotopy, i.e. the initial exact Lagrangian
manifold Λ0 in the above argument can be generalised to be Lagrangian isotopic to the zero section and need
not be the zero section itself. Also note that, under the above definition of uniqueness up to stable equivalence,
we can add extra dimensions to the fibre space and add a corresponding quadratic form of arbitrary index to
the GFQI. So the fact that the above proof produces a quadratic form with index equal to its co-index is not
an intrinsic property of a GFQI.

3. Graph selectors

In this section we review the notion of a graph selector weak solution to Hamilton-Jacobi equations as
introduced in [3] and studied in [23–25]. We continue the notation and assumptions of the previous section, and
refer the reader to Chap. 8 of [14] for a good introduction to relative homology and Morse groups. In particular,
we will make use of the following basic fact about relative homology groups

Hn(Bk, Bk\{0}) � δn,kR
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Let Sx(ξ) = S(x, ξ) be a GFQI for Λ and let

Ec(Sx) = Ec = {ξ ∈ E : Sx(ξ) ≤ c} .

Then for c large enough

Hk(Ec, E−c) �
{

R if k is index of Bx

0 otherwise.
Note, the family Bx has the same index for all x since it is non-degenerate. Let α be the generator of
H∗(Ec, E−c). Then define

γ(α, Sx) = inf
{
λ : α induces non-null class in H∗(Eλ, E−c)

}
.

Denote
WS(x) = γ(α, Sx).

Now, as noted in Section 2 of [23], the definition of WS is invariant under the above defined operations of stable
equivalence. Since S is unique up to stable equivalence, it follows that W is in fact independent of the particular
choice of S. So we can drop the S subscript and refer to W as an (invariant) graph selector for Λ. Note that
W (x) is a critical value of Sx(.).

Let X0 ⊂ X be the set of points x0 which are either
(1) singular values for the projection π : Λ → X, or
(2) non-singular values such that there exists ξ 	= ξ′ with

∂S

∂ξ
(x0, ξ) =

∂S

∂ξ
(x0, ξ

′) = 0, S(x0, ξ) = S(x0, ξ
′),

∂S

∂x
(x0, ξ) 	= ∂S

∂x
(x0, ξ

′)

(i.e. distinct points on Λ with the same projection onto X and s.t.
∫
pdx on a path between them is

null).
Then X0 is closed with empty interior (i.e. measure zero) and W is Lipschitz in X, W is Ck in X\X0 for some
k ≥ 1 and for x ∈ X\X0 (

x,
∂W

∂x
(x)
)

∈ Λ.

See Proposition II and Lemma V of [25] or Theorem 2.1 of [18] for details. This latter reference has a particularly
clear proof of the Lipschitz continuity of W .

Hence W is called a graph selector because its differential smoothly selects a single value of the section Λ
over X\X0, where Λ is thought of as a multi-valued section of T ∗X.

Now let H(x, p) be C2 such that H(x, p) = 0 for all (x, p) ∈ Λ. Then clearly, for x ∈ X\X0

H

(
x,
∂W

∂x
(x)
)

= 0.

So W is a classical solution to H(x, ∂W/∂x(x)) = 0 on X\X0, and extends to a Lipschitz function on the whole
of X . For this reason, Viterbo in [24, 25] interprets the above graph selector construction as producing from Λ
a type of generalised solution to H(x, ∂W/∂x(x)) = 0 on X, one which he calls a variational solution. In the
next section we give natural conditions under which W is also a viscosity solution on X.

4. Conditions on variational solution to be viscosity solutions

Continuing the notation of the previous section, if x ∈ X\X0, then Sx = S(x, .) is a Morse function whose
critical points have pairwise distinct critical values. So given a neighbourhood U of x, there exists a smooth
function φ : U → E such that φ(x) is a critical point of Sx and W (x) = S(x, φ(x)).
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Similarly, if x0 ∈ X0, then we can consider some trajectory xs : (−t, t) → X in state space which passes
through x0 at s = 0 and intersects X0 transversely. We assume here and for the remainder of the paper that Λ
and S are in sufficiently general position to ensure that X0 is embedded as a submanifold of X, so as to avoid
degenerate situations. For s < 0, we can choose a neighbourhood U with xs ∈ U for all s < 0, x0 ∈ cl(U),
U ⊆ X\X0 and such that there exists a smooth function φ : U → E with φ(xs) a critical point of S(xs, .), i.e.
∂S/∂ξ(xs, φ(xs)) = 0, and

W (xs) = S(xs, φ(xs))
for all s < 0. Now let

ξ0 = lim
s→0−

φ(xs)

which exists since φ is continuous, and let

p0 = lim
s→0−

∂S

∂x
(xs, φ(xs)) = lim

s→0−

∂W

∂x
(xs)

which exists since ∂S/∂x is continuous.

Lemma 4.1. (x0, p0) ∈ Λ and W (x0) = S(x0, ξ0).

Proof. It follows from the continuity of ∂S/∂x and ∂S/∂ξ that

∂S

∂ξ
(x0, ξ0) = 0

and

p0 =
∂S

∂x
(x0, ξ0).

The result now follows from the definition of S as a generating function for Λ, and from the continuity of S
and W . �

The same result holds true for s > 0.
We now set out the conditions under which a variational solution will be a viscosity solution. Let

Cx = co
{

p : (x, p) ∈ Λ where p = ∂S
∂x (x, ξ) for

some ξ ∈ E s.t. W (x) = S(x, ξ)

}
(1)

where co denotes convex hull.

Hypothesis 4.2. For x0 ∈ X0, there exists a convex C2 function H+
x0

: Cx0 → R such that

H(x0, q) ≤ H+
x0

(q) ∀q ∈ Cx0

H(x0, p0) = H+
x0

(p0) (= 0)

for some p0 such that (x0, p0) ∈ Λ and H+
x0

(p0) = max{H+
x0

(p) : p is an extremal point of Cx0}.
Hypothesis 4.3. For x0 ∈ X0, let ξ0 be any critical point of Sx0 such that

W (x0) = S(x0, ξ0).

Let (xs, ps) be the bi-characteristic for the Hamiltonian flow corresponding to H such that (xs, ps) lies on Λ and
satisfies

(x0, p0) =
(
x0,

∂S

∂x
(x0, ξ0)

)
.
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Note that the parameterisation by s is in the direction of the Hamiltonian flow. We assume that (xs) intersects
X0 transversely. Now, we can find a neighbourhood U of x0 such that there exists a smooth function φ : U → E
with φ(xs) a critical point of S(xs, .) and φ(x0) = ξ0. Then the hypothesis is that either:

(1) there exists some t < 0 and a convex C2 function H−
x0

: Cx0 → R such that

W (xs) = S(xs, φ(xs))

for all s ∈ [t, 0] and

H(x0, q) ≥ H−
x0

(q) ∀q ∈ Cx0

H(x0, p0) = H−
x0

(p0) (= 0)

∂H

∂p
(x0, p0) =

∂H−
x0

∂p
(p0)

(2) or there exists some t > 0 and a concave C2 function H−
x0

: Cx0 → R such that

W (xs) = S(xs, φ(xs))

for all s ∈ [0, t] and

−H(x0, q) ≤ H−
x0

(q) ∀q ∈ Cx0

H(x0, p0) = H−
x0

(p0) (= 0)

∂H

∂p
(x0, p0) =

∂H−
x0

∂p
(p0).

Note, that in part (1) of the last hypotheses, we are assuming that W (xs) = S(xs, φ(xs)) for s ≤ 0, but not
necessarily for s > 0, i.e. given a Hamiltonian trajectory (xs, ps) on Λ on which the graph selector critical value
is achieved at s = 0, where x0 ∈ X0, then we are assuming that the graph selector critical value is also achieved
along the same trajectory for s < 0 but not necessarily for s > 0. In part (2), we are assuming the the graph
selector critical value is achieved for s ≥ 0 but not necessarily for s < 0. Note also that the last hypothesis
includes a transversality or general position assumption, which is not restrictive, and which will be repeated
several times below. Assuming the above hypotheses, we then have the following theorem.

Theorem 4.4. W is a viscosity solution of H(x, ∂W/∂x(x)) = 0 for all x ∈ X.

Proof. As noted earlier, H(x, ∂W/∂x(x)) = 0 for all x ∈ X\X0. So it is sufficient to prove the viscosity solution
property for x0 ∈ X0.

Subsolution property. (The following argument is a generalisation to the GFQI setting of the proof of
Th. 3 of [7].) W is Lipschitz continuous at x0. So, by [10],

D+W (x0) ⊆ ∂W (x0)

where ∂W (x0) denotes the generalised Clarke gradient. By [4], Theorem 2.5.1, for any set G of measure zero

∂W (x0) = co
{

lim
∂W

∂x
(xi) : xi → x0, xi /∈ G,

∂W

∂x
(xi) converges

}
.

Take G = X0 which, as noted earlier, has measure zero and is such that W is smooth on X\X0.
Now take a sequence xi → x0 with xi /∈ X0 and ∂W/∂x(xi) convergent. Then, as in Lemma 4.1, we can find

a smooth function φ : U → E on a neighbourhood U ⊆ X\X0 with xi ∈ U for all i and x0 ∈ cl(U) such that
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φ(xi) is a critical point of Sxi = S(xi, .) and

W (xi) = S(xi, φ(xi)).

Now, by definition, (xi, pi) ∈ Λ where

pi =
∂S

∂x
(xi, φ(xi)) =

∂W

∂x
(xi).

Let ξ ∈ E be such that ξ = limi φ(xi) and let

p =
∂S

∂x
(x0, ξ).

Then by continuity of ∂S/∂ξ,
∂S

∂ξ
(x0, ξ) = lim

i

∂S

∂ξ
(xi, φ(xi)) = 0,

from which it follows that (x0, p) ∈ Λ. Further, by continuity of ∂S/∂x, we have that

p = lim
i

∂S

∂x
(xi, φ(xi)) = lim

i

∂W

∂x
(xi),

while by continuity of W and S, we have that

W (x0) = S(x0, ξ).

Hence ∂W (x0) ⊆ Cx0 .
So now let q ∈ D+W (x0), then since D+W (x0) ⊆ Cx0 and H+

x0
is convex on Cx0 ,

H(x0, q) ≤ H+
x0

(q)

≤ max{H+
x0

(p) : p is an extremal point of Cx0}
= H+

x0
(p0)

= H(x0, p0) = 0

as required, where p0 is as defined in Hypothesis 4.2.
Supersolution property. Let q ∈ D−W (x0), so there exists a C1 function χ such that

χ(x) ≤W (x), χ(x0) = W (x0), q = Dχ(x0).

Now, again by [10], since W is Lipschitz at x0, D−W (x0) ⊆ ∂W (x0), which as shown above is ⊆ Cx0 . So
q ∈ Cx0 . Then with p0 as in Hypothesis 4.3 and supposing that case (1) of that hypothesis holds,

H(x0, q) ≥ H−
x0

(q)

≥ (q − p0)
∂H−

x0

∂p
(p0) +H−

x0
(p0)

= (q − p0)
∂H

∂p
(x0, p0) +H(x0, p0)

= (Dχ(x0) − p0)ẋ0
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where (xs, ps) denotes the bi-characteristic defined in Hypotheses 4.3, and we are using the fact that ẋs =
∂H/∂p(xs, ps). Now, for t < 0 defined in Hypotheses 4.3(1),

∫ 0

t

Dχ(xs)ẋsds = χ(x0) − χ(xt) ≥W (x0) −W (xt)

and ∫ 0

t

psẋsds = S(x0, ξ0) − S(xt, φ(xt)) = W (x0) −W (xt).

Then ∫ 0

t

(Dχ(xs) − ps) ẋsds ≥ 0.

Since this holds for arbitrarily small t < 0, it follows by continuity of Dχ, ps and ẋs that

(Dχ(x0) − p0) ẋ0 ≥ 0.

Hence H(x0, q) ≥ 0 as required. A similar argument with the inequalities reversed and t > 0 applies when
case (2) of Hypothesis 4.3 holds. �

If we keep Hypothesis 4.2, but change Hypothesis 4.3 so that case (1) holds for t > 0 and case (2) holds for
t < 0, then we have the following theorem.

Theorem 4.5. W is a viscosity solution of −H(x, ∂W/∂x(x)) = 0 for all x ∈ X.

Proof.
Supersolution property. Let q ∈ D−W (x0) ⊆ ∂W (x0) ⊆ Cx0 . Then

H(x0, q) ≤ H+
x0

(q) ≤ H+
x0

(p0) = H(x0, p0) = 0

for some p0 as defined in Hypothesis 4.2. So W is a supersolution for −H as required.
Subsolution property. Let q ∈ D+W (x0), so there exists a C1 function χ such that

χ(x) ≥W (x), χ(x0) = W (x0), q = Dχ(x0).

Then, with p0 as in Hypothesis 4.3 and supposing that case (1) of that hypothesis holds (for t > 0), we have

D+W (x0) ⊆ ∂W (x0) ⊆ Cx0

and so

H(x0, q) ≥ H−
x0

(q)

≥ (q − p0)
∂H−

x0

∂p
(p0) +H−

x0
(p0)

= (q − p0)
∂H

∂p
(x0, p0) +H(x0, p0)

= (Dχ(x0) − p0)ẋ0.

Now, for t > 0 ∫ t

0

(Dχ(xs) − ps) ẋsds = χ(xt) − χ(x0) − S(xt, φ(xt)) + S(x0, ξ0)

≥ W (xt) −W (x0) −W (xt) +W (x0).
= 0.
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Since this holds for arbitrarily small t > 0, it follows by continuity, that

(Dχ(x0) − p0) ẋ0 ≥ 0

and so H(x0, q) ≥ 0. W is therefore a subsolution of −H . �

Now consider the following hypotheses in place of Hypotheses 4.2 and 4.3 above.

Hypothesis 4.6. For x0 ∈ X0, there exists a concave C2 function H−
x0

: Cx0 → R such that

H(x0, q) ≥ H−
x0

(q) ∀q ∈ Cx0

H(x0, p0) = H−
x0

(p0) (= 0)

for some p0 such that (x0, p0) ∈ Λ and H−
x0

(p0) = min{H−
x0

(p) : p is an extremal point of Cx0}.
Hypothesis 4.7. For x0 ∈ X0, let ξ0 be any critical point of Sx0 such that

W (x0) = S(x0, ξ0).

Let (xs, ps) be the bi-characteristic for the Hamiltonian flow corresponding to H such that (xs, ps) lies on Λ and
satisfies

(x0, p0) =
(
x0,

∂S

∂x
(x0, ξ0)

)
.

Let φ : U → E be a smooth function on a neighbourhood U of x0 such that φ(xs) is a critical point of S(xs, .)
and φ(x0) = ξ0. Then the hypothesis is that either:

(1) there exists some t < 0 and a concave C2 function H+
x0

: Cx0 → R such that

W (xs) = S(xs, φ(xs))

for all s ∈ [t, 0] and

H(x0, q) ≤ H+
x0

(q) ∀q ∈ Cx0

H(x0, p0) = H+
x0

(p0) (= 0)

∂H

∂p
(x0, p0) =

∂H+
x0

∂p
(p0)

(2) or there exists some t > 0 and a convex C2 function H+
x0

: Cx0 → R such that

W (xs) = S(xs, φ(xs))

for all s ∈ [0, t] and

−H(x0, q) ≥ H+
x0

(q) ∀q ∈ Cx0

H(x0, p0) = H+
x0

(p0) (= 0)

∂H

∂p
(x0, p0) =

∂H+
x0

∂p
(p0).

Then we have the following theorem.

Theorem 4.8. W is a viscosity solution of H(x, ∂W/∂x(x)) = 0 for all x ∈ X.
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This can be proved by re-working the proof of Theorem 4.4 and switching the roles played by the sub- and
super-differentials. Alternatively, we can apply the following time-reversal argument. Suppose that case (1) of
Hypothesis 4.7 holds. A similar arguments works if case (2) holds. First, reverse the direction of parameterisation
of the Hamiltonian flow, i.e. reverse time. So we obtain a new set of Hamiltonian dynamics with respect to
Ĥ = −H and with −Ĥ satisfying case (1) of 4.7 for t > 0. Then we can multiply the equalities and inequalities of
Hypotheses 4.6 and 4.7(1) by −1 throughout, to get that Ĥ satisfies Hypotheses 4.2 and 4.3(1) for t > 0. Finally,
we can apply Theorem 4.5 to get that W is a viscosity solution of −Ĥ(x, ∂W/∂x(x)) = H(x, ∂W/∂x(x)) = 0.

Lastly, if we keep Hypothesis 4.6, but change Hypothesis 4.7 so that case (1) holds for t > 0 and case (2)
holds for t < 0, then we have the following theorem.

Theorem 4.9. W is a viscosity solution of −H(x, ∂W/∂x(x)) = 0 for all x ∈ X.

5. Examples

We now give two sets of examples to illustrate that the requirements of Hypotheses 4.2 and 4.3 or 4.6
and 4.7 are naturally satisfied by many cases of graph selectors, or variational solutions, defined on Lagrangian
manifolds. We also give a simple one-dimensional non-convex example where a graph selector exists which does
not satisfy all the hypotheses and is also not a viscosity solution.

5.1. Convex Hamiltonians

For use both in this and the following section, we start with the following set-up and prove some initial
lemmas. Let H(x, p, t) be convex in p for all x and t. Denote the Hamiltonian flow corresponding to H by
ψt. Let S0(x) be some smooth function with compact support and Λ0 = {x, ∂S0(x)/∂x} be the corresponding
Lagrangian manifold with well-defined projection onto X. For 0 ≤ t ≤ T, let Λt = ψt(Λ0) be the exact
Lagrangian isotopy of Λ0 generated by ψt. The following lemma seems to be well-known amongst symplectic
topologists but we could not find a published reference. It does, however, appear unpublished as Théorème 7.1
in [12]. For completeness, we include the proof from ibid, and thank Claude Viterbo for directing us to this.

Lemma 5.1. For 0 ≤ t ≤ T, there is a natural choice of GFQI St(x, ξ) for Λt such that St has index zero at
infinity, i.e. such that the quadratic form at infinity has index zero.

Proof. For the moment, use q in place of x to denote the coordinate on X . As in the proof of existence of a
GFQI given in Section 2, we start with the case where X = Tn, a n-dimensional torus. Since H is convex in p,
then by choice of a suitable partition of unity we can assume, without changing the neighbourhood of Λt, that
for p outside of a compact set, H(q, p, t) = 1/2 |p|2. Now we apply the argument given in Section 2, noting that
this is still applicable because the associated Hamiltonian field is globally Lipschitz. So there is a δ > 0 such
that for 0 ≤ s < t ≤ T, if we let (Q,P ) = Rt

s(q, p), then the mapping (q, p) �→ (q,Q) is a global diffeomorphism
defined by a canonical generating function

St
s(q,Q) =

∫ t

s

(
PτdQτ/dτ − H̃τ (Qτ , Pτ )

)
dτ.

Note in particular that for large |Q− q| we have

St
s(q,Q) =

1
2

(Q− q)2

(t− s)
·

Choose l sufficiently large that T/(l + 1) < δ, and let Sj,t = S
(j+1)t/(l+1)
jt/(l+1) for 0 ≤ t ≤ T . For each 1 ≤ j ≤ l, we

let (qj+1, Pj) = R
(j+1)t/(l+1)
jt/(l+1) (qj , pj) be canonically generated by Sj,t(qj , qj+1), while for j = 0 we let (q1, P0) =
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R
t/(l+1)
0 (q0, p0) be canonically generated by S0,t(q0, q1) + S0(q0). Then the function

St(q0, . . . , ql, ql+1) =
l∑

j=0

Sj,t(qj , qj+1) + S0(q0)

has differential

dSt(q0, . . . , ql, ql+1) = Pldql+1 +
l−1∑
j=0

(Pj − pj+1)dqj+1 +
(
∂S0

∂q0
− p0

)
dq0.

Consider (q0, . . . , ql) to be the fibre coordinates on fibre space E = R
l+1 and ql+1 to be the coordinate on X,

after taking quotients. Let ΣSt be the subvariety of P = X × E on which ∂St/∂qj = 0 for 0 ≤ j ≤ l. Then
Λt = ψt(Λ0) is the image of ΣSt under the embedding (q0, . . . , ql, ql+1) �→ (ql+1, ∂St/∂ql+1).

Now let x = ql+1 and change the other coordinates to ξj = qj+1 − qj for 0 ≤ j ≤ l. Then the function
St(x, ξ0, . . . , ξl) is Z

n-periodic in x and induces on X × R
l+1 a GFQI for Λt. Furthermore, for large values of

the fibre variables ξj ,

St(x, ξ0, . . . , ξl) =
(l + 1)2

2t

l∑
j=0

ξ2j + S0

⎛
⎝x−

l∑
j=0

ξj

⎞
⎠ =

(l + 1)2

2t

l∑
j=0

ξ2j .

So St is a quadratic form at infinity of index zero as required.
For an arbitrary manifold X we can repeat the above argument replacing the flat metric 1/2 |p|2 by an

arbitrary Riemannian metric. No matter how big we make l, it is possible for the function St(., ξ0, . . . , ξl+1)
to have more critical points than we are interested in. The extra ones correspond to conjugate points for the
metric. However, for l large enough, these extra critical points correspond to very large critical values of St and
so do not affect the deduction made in the next lemma. �
Lemma 5.2. Let S be a GFQI for a Lagrangian manifold Λ such that S has index zero at infinity. Then the
graph selector takes the form

WS(x) = min
{
S(x, ξ) : ξ ∈ E s.t.

∂S

∂ξ
(x, ξ) = 0

}
. (2)

Proof. Sx(.) = S(x, .) has a global minimum for each x, so let ξ0 denote the globally minimising point at a
given x and λ0 = Sx(ξ0) be the corresponding minimum value. Then in the definition of the graph selector
corresponding to S we have

H0(Eλ0 , E−c) = R

and
H0(Eλ, E−c) = 0

for λ < λ0. It follows that W (x) = λ0. �
It follows from the previous two lemmas that, for convex Hamiltonians, the graph selector is equivalent to

the global minimum formulation put forward in [7]. Note, that [7] used inf rather than min, but then imposed
various hypotheses to ensure that the infimum was always attained.

We now turn to the class of examples considered in this section. Let K(y, q, τ) be a convex Hamiltonian
and consider the Cauchy problem K(y, ∂W/∂y(y, τ), τ) = −∂W/∂τ(y, τ) with initial data W (y, 0) = S0(y).
Let Λ0 = {y, ∂S0(y)/∂y} be the corresponding initial Lagrangian submanifold of R

2n phase space. Then, as
usual, let Λ =

⋃
τ>0 ψτ (Λ0) be the Lagrangian submanifold of R

2n+2 phase space traced out by Λ0 under the
Hamiltonian flow ψτ associated with K, and let x = (y, τ) and p = (q, σ) be the augmented state and adjoint
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coordinates respectively on R
2n+2. Now define an augmented Hamiltonian H(x, p) = K(y, q, τ) + σ. Note that

H is convex and Λ is contained in the hypersurface {H = 0}. By Lemma 5.1, Λτ has a GFQI Sτ (y) with index
zero at infinity. Since Λτ is transverse to the flow ψτ , it follows that S(x) = S(y, τ) = Sτ (y) is a GFQI for Λ
with index zero at infinity. Now let W be the graph selector corresponding to S. By Lemma 5.2 this takes the
form (2). We want to show that:

Theorem 5.3. W is a viscosity solution to H(x, ∂W/∂x(x)) = 0.

As outlined in the Introduction, for H convex as here, this result appears in [24, 25], under an additional
assumption on the orientation of jumps in dW (x) across surfaces of discontinuity. For W explicitly represented
in the form (2), it also appears in [7], under an additional assumption of Lispchtiz continuity of W . We show
here that the result in fact holds without these extra assumptions by demonstrating that the hypotheses of the
previous section are satisfied. Now clearly, Hypothesis 4.2 is satisfied trivially by H and Λ. The result will
therefore follow by Theorem 4.4 once we have shown that:

Lemma 5.4. For the above choice of S and W, Hypothesis 4.3(1) is satisfied with H = H−
x0

and t < 0 for all
x0 ∈ X0.

Proof. Let x0 ∈ X0 and let (xs, ps) denote the Hamiltonian bi-characteristic of Hypothesis 4.3 which lies on Λ
and satisfies

(x0, p0) =
(
x0,

∂S

∂x
(x0, ξ0)

)
,

where ξ0 is an arbitrary critical point of Sx0 at which S(x0, ξ0) = W (x0), i.e. at which the min of Sx0(.) over E
is achieved. For some neighbourhood U of x0, let φ : U → E be a smooth function with φ(xs) a critical point
of Sxs and φ(x0) = ξ0. We need to prove that, for some t < 0, S(xs, φ(xs)) = W (xs) for s ∈ [t, 0], which we will
do by showing that the min of Sxs(.) over E is achieved at φ(xs).

Let ξ̂0 	= ξ0 be some other critical point of Sx0 , i.e. with

∂S

∂ξ
(x0, ξ0) =

∂S

∂ξ

(
x0, ξ̂0

)
= 0

but

p0 =
∂S

∂x
(x0, ξ0) 	= ∂S

∂x
(x0, ξ̂0) = p̂0.

Then there exists a second smooth function φ̂ : U → E such that φ̂(xs) is a critical point of Sxs with φ̂(xs) 	=
φ(xs) and φ̂(x0) = ξ̂0. If we denote

p̂s =
∂S

∂x
(xs, φ̂(xs))

then there is a trajectory (xs, p̂s) lying over (xs) on the branch of Λ corresponding to ξ̂0, with

(x0, p̂0) =
(
x0,

∂S

∂x
(x0, ξ̂0)

)
.

If S(x0, ξ̂0) 	= S(x0, ξ0) = W (x0), then by definition S(x0, ξ̂0) > S(x0, ξ0), and so for some t < 0, we have
S(xs, φ̂(xs)) > S(xs, φ(xs)) for s ∈ [t, 0].

Suppose, on the other hand, that S(x0, ξ̂0) = S(x0, ξ0) = W (x0), i.e. the min of Sx0(.) over E is also achieved
at ξ̂0. Then

H(xs, p̂s) ≥ (p̂s − ps)
∂H

∂p
(xs, ps) +H(xs, ps).
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Since both (xs, ps) and (xs, p̂s) ∈ Λ, H(xs, ps) = H(xs, p̂s) = 0, and so, for some t < 0 and t1 ∈ [t, 0)

0 ≥
∫ 0

t1

(p̂s − ps)
∂H

∂p
(xs, ps)ds

=
∫ 0

t1

(p̂s − ps)ẋsds

= S(x0, ξ̂0) − S(xt1 , φ̂(xt1)) − S(x0, ξ0) + S(xt1 , φ(xt1 ))

= −S(xt1 , φ̂(xt1 )) + S(xt1 , φ(xt1 )).

Since the choice of t1 was arbitrary, it follows that for some t < 0 and all s ∈ [t, 0],

S(xs, φ(xs)) = min
{
S(xs, ξ) : ξ ∈ E s.t.

∂S

∂ξ
(xs, ξ) = 0

}

and so, by (2), S(xs, φ(xs)) = W (xs). �

Note, if H(x, .) is concave for all x, then there is a natural choice of GFQI S(x, ξ) for Λ such that S is
negative definite at infinity. It follows in this case that Sx(.) has a global maximum for all x. The graph selector
therefore reduces to a global maximum formulation. Hypothesis 4.7(1) is then satisfied for t < 0 by H+

x0
= H,

and the corresponding graph selector W is a viscosity solution of H(x, ∂W/∂x(x)) = 0. Similarly, for final value
problems, either Hypothesis 4.3(1) or 4.7(1) is satisfied for t > 0 depending on whether H is respectively convex
or concave, and W is then a viscosity solution of −H(x, ∂W/∂x(x)) = 0.

5.2. A class of non-convex Hamiltonians

Let x ∈ R
n, p ∈ R

n, u ∈ R
m, w ∈ R

q. Let f : R
n → R

n, g : R
n → R

n×m, h : R
n → R

p, k : R
n → R

n×q,
r : R

n → R
m×m be C2 functions with f(0) = 0, h(0) = 0, h(x) 	= 0 for x 	= 0 and r(x) positive definite for all

x. Let γ > 0 be a scalar. We consider the following Hamiltonian

H(x, p) = min
w

max
u

{
pT (f(x) + g(x)u + k(x)w) − 1

2
|h(x)|2 − 1

2
uT r(x)u +

1
2
γ2 |w|2

}

=
1
2
pT g(x)r(x)−1g(x)T p− 1

2γ2
pTk(x)k(x)T p+ pT f(x) − 1

2
|h(x)|2 . (3)

Clearly this Hamiltonian is in general neither convex in p for all x, nor concave in p for all x. For fixed x, it is
a quadratic form in p, but the rank and index of this form will, in general, vary with x.

This Hamiltonian arises from the application of the maximum principle to the differential game formulation
of a particular class of, so-called, control-affine nonlinear H∞-optimal control problems – see [21,22] for details
of this class of problems, and [20] for details of its formulation as a differential game. It is sufficient to note
here that there is an underlying dynamical system

ẋ = f(x) + g(x)u + k(x)w, x(0) = ζ

z = h(x)

which can be thought of as being disturbed by one player via inputs w, and controlled by the other player
via inputs u. The aim of the second player is to achieve an attenuation level γ between the L2 norms of the
disturbance input and controlled system output.

The Hamiltonian dynamics
ẋ = ∂H/∂p, ṗ = −∂H/∂x
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corresponding to the above H have an equilibrium point at the origin in phase space. For γ above some
minimum level, and given certain controllability and observability assumptions on the linearisation of these
dynamics around this equilibrium point, it can be shown that the equilibrium is hyperbolic. So, by the local
stable manifold theorem, there exist n-dimensional stable and unstable planes T+ and T− for the linearised
dynamics around the equilibrium point. Further, by the global stable manifold theorem, these can be extended
to global n-dimensional stable and unstable manifolds Λ+ and Λ− for the Hamiltonian dynamics. From now
on, we concentrate just on Λ+, which for brevity we denote by Λ. This can be shown to be Lagrangian with
H = 0 on Λ. Furthermore, Λ is tangent to T+ at the origin, and so in a neighbourhood Ω0 of the origin, Λ is a
graph {x, ∂S0(x)/∂x : x ∈ Ω0} over state space for some classical generating function S0(x). The details of the
arguments of this paragraph can be found in [21, 22].

Now let Ω be the largest open region in state space containing 0 such that Ω is covered by Λ and is forward
invariant with respect to the projection of the Hamiltonian dynamics on Λ. Note that Ω will in general be
strictly larger than Ω0, but may not equal the whole of R

n, e.g. in cases where Λ does not cover R
n or is not

simply connected. To deal with these cases, we restrict consideration to the submanifold of Λ consisting of
those (x, p) ∈ Λ with x ∈ Ω. This submanifold, which we continue to denote as Λ, is simply connected, and we
can then lift Ω to a closed manifold X and Λ to a Lagrangian submanifold of T ∗X such that Λ is exact and
Lagrangian isotopic to the zero section of T ∗X.

Now consider the final value Cauchy problem

−H(x, ∂V (x, t)/∂x) = ∂V (x, t)/∂t, V (x, T ) = 0

where x ∈ Ω0 and H is given by (3). This has a smooth solution VT (x, t), and it can be shown that as T → ∞,
the sequence VT (x, t) tends to a steady state limit V (x) = S0(x) which solves the steady state equation

−H(x, ∂V (x)/∂x) = 0

for x ∈ Ω0. The Hamiltonian bi-characteristics corresponding to this steady state solution lie on the stable
manifold Λ and tend asymptotically to the origin as t→ ∞.

Now let S(x, ξ) be a GFQI for Λ which satisfies S(x, ξ) = S0(x) for x ∈ Ω0. Let W be the graph selector
corresponding to S. Then we have the following, where the set X0 is as defined in Section 3:

Theorem 5.5. Suppose that for x0 ∈ X0, H(x0, p) is a non-degenerate quadratic form. Then W is a viscosity
solution of −H(x, ∂W/∂x(x)) = 0 for x ∈ X.

Note that X0 is not necessarily connected, and so the hypothesis of this theorem still allows variation in the
index of H(x0, p) on X0, as well as variation in the rank of H(x, p) for x /∈ X0. We prove this theorem by
showing that, for x0 ∈ X0, the conditions of either Hypotheses 4.2 and 4.3(1) or of 4.6 and 4.7(1) are satisfied
for t > 0. We start with the following lemma and proposition which will show that the first part of both
Hypotheses 4.3(1) and 4.7(1) holds true for t > 0.

Lemma 5.6. For x0 ∈ X0, let Ĉx0 = co{p1, p2 : (x0, pi) ∈ Λ}. Then H(x0, p) is either convex in p for all
p ∈ Ĉx0 or concave in p for all p ∈ Ĉx0 .

Proof. H(x0, p) is a quadratic form in p of rank n and some index i. So the level set H(x0, p) = 0 defines a
non-degenerate conic in adjoint (i.e. p) space. Since Λ is contained the hypersurface H = 0, it follows that both
p1 and p2 lie on this conic. So Ĉx0 is a chord between two points on a conic, and therefore lies either wholly in
an affine space on which H(x0, .) is convex, or wholly in an affine space on which H(x0, .) is concave. �

As an example to illustrate the above, suppose that Λ is two-dimensional and that, for some x0, H(x0, p) =
p2
1 − p2

2 − 1. Then, for instance, on the lines p2 = 1 or p1 + 2p2 = 2, H(x0, .) is convex while on the lines p1 = 2
or 2p1 + p2 = 4, H(x0, .) is concave.
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Proposition 5.7. For x0 ∈ X0, let ξ0 be an arbitrary critical point of Sx0 at which S(x0, ξ0) = W (x0). Let
(xs, ps) denote the Hamiltonian bi-characteristic which lies on Λ and satisfies

(x0, p0) =
(
x0,

∂S

∂x
(x0, ξ0)

)
.

We assume that (xs) intersects X0 transversely. For some neighbourhood U of x0, let φ : U → E be a smooth
function with φ(xs) a critical point of Sxs and φ(x0) = ξ0. Then there exists t > 0 such that S(xs, φ(xs)) = W (xs)
for s ∈ [0, t].

Proof. Consider the set Cx0 defined above in (1). When this is a singleton, i.e. contains only p0, then the graph
selector critical value W (x0) is achieved uniquely at the critical point ξ0 of Sx0 . Now since the trajectory (xs)
intersects X0 transversely, since the critical value W (xs) must be achieved at some critical point of Sxs and
since W (xs) must be continuous with respect to s at x0, it follows that S(xs, φ(xs)) = W (xs) for s ∈ [−t, t] and
for some t > 0.

Now suppose that Cx0 is not a singleton. Then there exists at least one other extremal point p̂0 	= p0 in Cx0 ,

in addition to p0. Let ξ̂0 	= ξ0 be the critical point of Sx0 corresponding to p̂0, i.e. with

∂S

∂ξ
(x0, ξ0) =

∂S

∂ξ

(
x0, ξ̂0

)
= 0, S (x0, ξ0) = S

(
x0, ξ̂0

)
= W (x0)

and

p0 =
∂S

∂x
(x0, ξ0) 	= ∂S

∂x

(
x0, ξ̂0

)
= p̂0.

Then there exists a second smooth function φ̂ : U → E such that φ̂(xs) is a critical point of Sxs with φ̂(xs) 	=
φ(xs) and φ̂(x0) = ξ̂0. If we denote

p̂s =
∂S

∂x

(
xs, φ̂(xs)

)
then there is a (non-Hamiltonian) trajectory (xs, p̂s) lying over (xs) on the branch of Λ corresponding to ξ̂0,
with

(x0, p̂0) =
(
x0,

∂S

∂x
(x0, ξ̂0)

)
.

Suppose, with a view to a contradiction, that S(xs, φ̂(xs)) = W (xs) for s ∈ [0, t] and for some small t > 0, i.e.
the graph selector critical value over the trajectory (xs) is obtained on the branch of Λ corresponding to ξ̂0. So
now, consider the section Λ′ of Λ lying over a neighbourhood U ′ around the trajectory (xs) for s ∈ [0, t], and
with Λ′ restricted to just the two branches determined by the functions φ and φ̂ : U ′ → E. Since for all x ∈ U ′,
W (x) is achieved at either S(x, φ(x)) or S(x, φ̂(x)) on Λ′, then W is a graph selector for Λ′.

Now, along the trajectory (xs) for s ∈ [0, t], consider the line segment in adjoint space defined by

Ĉxs = co
{
ps, p̂s : ps =

∂S

∂x
(xs, φ(xs)) , p̂s =

∂S

∂x

(
xs, φ̂(xs)

)}
.

At s = 0, Ĉx0 is the subset of Cx0 defined by the two extremal points p0 and p̂0. Since both (xs, ps) and
(xs, p̂s) ∈ Λ, Lemma 5.6 shows that H(xs, .) is either convex or concave on Ĉxs for s ∈ [0, t]. Furthermore, by
smoothness of H and the hypothesis that H(x0, .) is a non-degenerate quadratic form for x0 ∈ X0, it follows
that if H(x0, .) is convex on Ĉx0 , then H(xs, .) is convex on Ĉxs for s ∈ (0, t], and vice versa. Note, if H(x0, .)
was degenerate then we could have the situation where Ĉx0 lies wholly in the degenerate conic defined by
H(x0, p) = 0 and then it is not clear whether H(xs, .) is convex or concave on Cxs for s > 0. This situation has
to be excluded, hence the non-degeneracy condition.
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So suppose that H(xs, .) is convex on Ĉxs for s ∈ [0, t]. Let ψτ denote the flow corresponding to H and
consider the Lagrangian section Λ′

t = ψt(Λ′) generated as the image of Λ′ under ψt. Let U ′
t be the state space

neighbourhood over which Λ′
t lies. Then since the trajectory (xs) is transverse to X0, it follows that for t small

enough, we can assume that the function

max{S(x, φ(x)), S(x, φ̂(x))}

is smooth on U ′
t and Λ′

t is the graph of the differential of this function over U ′
t. Now consider Λ′ = ψ−t(Λ′

t)
to be the image of Λ′

t under the reverse flow. Since this flow is associated with a convex Hamiltonian, we can
apply the argument of Lemma 5.1 to obtain a GFQI S′ for Λ′ which is negative definite at infinity. We then
apply the argument of Lemma 5.2 to obtain a graph selector W ′ for Λ′ with the property that W ′(x) is the
global maximum of the critical values of S′

x over Λ′, for x ∈ U ′.
Note that, since the bi-characteristic (xs, ps) lies on the stable manifold Λ, the function

max
{
S(xs, φ(xs)), S

(
xs, φ̂(xs)

)}
→ S0(xs)

as s→ ∞. So
S′(x, φ(x)) = S(x, φ(x)) (4)

for x ∈ U ′, since they can both be obtained by integrating backwards along the same Hamiltonian flow from
the same final data S0. Also,

W ′(x) = W (x) (5)

for x ∈ U ′ by the uniqueness of the graph selector for Λ′, referenced earlier in Section 3.
Then, working with S′ and W ′ on Λ′, we have that for s ∈ [0, t], by the convexity of H(xs, .) on Ĉxs

H(xs, p̂s) ≥ (p̂s − ps)
∂H

∂p
(xs, ps) +H(xs, ps).

So, for t1 ∈ (0, t]

0 ≥
∫ t1

0

(p̂s − ps)
∂H

∂p
(xs, ps)ds

=
∫ t1

0

(p̂s − ps)ẋsds

= S′(xt1 , φ̂(xt1)) − S′(x0, ξ̂0) − S′(xt1 , φ(xt1)) + S′(x0, ξ0)

= S′(xt1 , φ̂(xt1)) − S′(xt1 , φ(xt1 )).

Since the choice of t1 was arbitrary and Λ′ consists of only the two branches determined by φ and φ̂ over U ′, it
follows that S′(xs, φ(xs)) is the global maximum of the critical values of S′

x for s ∈ [0, t], and hence

S′(xs, φ(xs)) = W ′(xs)

for s ∈ [0, t].
Then, by (4) and (5), we have

S(xs, φ(xs)) = W (xs)

for s ∈ [0, t], which contradicts the assumption that S(xs, φ̂(xs)) = W (xs) and (xs) intersects X0 transversely
at x0.
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In the remaining case, where H(xs, .) is concave on Ĉxs for s ∈ [0, t], we consider Λ′ = ψ−t(Λ′
t) to be the

image under the reverse flow of a Lagrangian section of Λ′
t defined as the graph of the differential of the smooth

function

min{S(x, φ(x)), S(x, φ̂(x))}
on U ′

t. We then apply the arguments of Lemmas 5.1 and 5.2 to obtain a GFQI S′ with index 0 at infinity and
a graph selector W ′ such that W ′(x) is the global minimum of the critical values of S′

x over Λ′. The above
calculation can then be repeated using the concavity of H(xs, .) on Cxs to obtain a contradiction.

Finally, since the choice of the other extremal point p̂0 leading to a contradiction was arbitrary, and since
the critical value W (xs) must be achieved at some critical point of Sxs over the trajectory (xs), it follows that
it must be achieved on the branch of Λ corresponding to ξ0, i.e. for some t > 0, S(xs, φ(xs)) = W (xs) for
s ∈ [0, t] as required. �

Proof. (of Theorem 5.5). Let x0 ∈ X0 and recall the definition of the convex set Cx0 from (1). Let {pi : i ∈ I}
denote the set of extremal points of Cx0 . So for each i, (x0, pi) ∈ Λ where pi = ∂S

∂x (x0, ξi) for some ξi ∈ E s.t.
W (x0) = S(x0, ξi). Then for each pairwise selection i 	= j ∈ I, let Cij

x0
= co{pi, pj} be the edge of Cx0 lying

between pi and pj . By Lemma 5.6, Hx0(.) = H(x0, .) is either convex or concave on Cij
x0
.

Now let q ∈ Cx0 . As in the proof of Theorem 4.4, D±W (x0) ⊆ Cx0 and so either q /∈ D±W (x0), in which
case we are not interested in it, or q ∈ D−W (x0) and we have to show H(x0, q) ≤ 0, or q ∈ D+W (x0) and we
have to show H(x0, q) ≥ 0. Since this covers all points in D±W (x0), it will then follow that W is a viscosity
solution of −H(x0, ∂W (x0)/∂x) = 0 as required.

The remainder of the proof proceeds by induction on the dimension of Cx0 , and is notationally complicated
but geometrically simple. We outline the arguments up to dimension two and leave the reader to formalise the
induction step. For dim Cx0 = 0, q = p0 for some (x0, p0) ∈ Λ, so H(x0, q) = 0 and we are trivially done.

For dimCx0 = 1, Cx0 = co{p0, p1} on which Hx0 is either convex or concave. Suppose it is convex. Then
if q ∈ D−W (x0), we apply the proof of the supersolution property from Theorem 4.5 with H+

x0
(.) = H(x0, .)

to get that H(x0, q) ≤ 0, while if q ∈ D+W (x0) then we take H−
x0

(.) = H(x0, .) together with the property
established in the Proposition 5.7, and apply the proof of the subsolution property from Theorem 4.5 to get
that H(x0, q) ≥ 0. If Hx0 is concave on Cx0 , then we switch the roles of sub- and super-differentials above and
apply the proof of Theorem 4.9.

Now suppose dimCx0 = 2. Then it is sufficient to prove the result for the 2-simplex Cx0 = co{p1, p2, p3},
where {pi : i = 1, 2, 3} are non-colinear extremal points. For s ∈ [0, 1], let Cis

x0
= co{pi, p(s)} denote the interior

line seqment from one extremal point pi to the point p(s) = spj + (1 − s)pk lying on the opposite edge Cjk
x0
.

Note that (x0, p(s)) /∈ Λ for s ∈ (0, 1). Let Cisq
x0 = co{pi, p(sq)} denote the particular interior line segment from

pi which passes through q. Recall that, by Lemma 5.6, Hx0 is either convex or concave on each edge Cij
x0
. The

same argument shows that Hx0 is either convex or concave (or both) on each Cis
x0
. A further analysis of the

properties of the non-degenerate quadratic form Hx0 shows that if, for some s0 ∈ (0, 1), Hx0 is identically zero
(i.e. both convex and concave) on Cis0

x0
, then either Hx0 is convex on Cis

x0
for all 0 ≤ s < s0 and concave on Cis

x0

for all s0 < s ≤ 1, or vice versa. We now distinguish three cases.
In the first case, suppose that Hx0 is convex on each edge Cij

x0
. (A similar argument works if Hx0 is concave

on each edge.) Then for each i, Hx0 is convex on both edges Cij
x0

and Cik
x0

emanating from pi, and so by the
previous paragraph, Hx0 is also convex on all interior line segments Cis

x0
, s ∈ (0, 1), emanating from pi. In

particular, for each i, Hx0 is convex on the interior line segment Cisq
x0 through q. It then follows that, for some

i,H(x0, q) ≤ H(x0, pi) = 0.
To see this last statement, suppose that it is not true, i.e. H(x0, q) > H(x0, pi) = 0 for each i. Since Hx0 is

convex on the convex set Cisq
x0 , then H(x0, q) must be less than or equal to the value of Hx0 at the other extreme

point of Cisq
x0 , i.e. 0 < H(x0, q) ≤ H(x0, p(sq)). But p(sq) is an interior point on the edge Cjk

x0
opposite pi. Since

Hx0 is convex on this edge, it follows that H(x0, p(sq)) ≤ H(x0, pj) = H(x0, pk) = 0, which is a contradiction.
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So for some i, Hx0 is convex on the interior line segment Cisq
x0 through q with H(x0, q) ≤ H(x0, pi) = 0.

Now, we repeat the argument used above for the dimension 1 case. If q ∈ D−W (x0), apply the proof of the
supersolution property from Theorem 4.5 with H+

x0
(.) = H(x0, .) on C

isq
x0 to get that H(x0, q) ≤ 0, while if

q ∈ D+W (x0) then take H−
x0

(.) = H(x0, .) on C
isq
x0 together with Proposition 5.7, and apply the proof of the

subsolution property from Theorem 4.5 to get that H(x0, q) ≥ 0.
In the second case, suppose that Hx0 is convex on at least one edge Cij

x0
and concave on at least one edge

Cik
x0

. Suppose also in this case that, for each i, Hx0 is convex on the interior line segment Cisq
x0 through q. It then

follows that, for some i,H(x0, q) ≤ H(x0, pi) = 0. Again, to see why, suppose otherwise and reason as above to
get that each edge Cjk

x0
contains an interior point p(sq) at which H(x0, p(sq)) > 0. This is inconsistent with Hx0

being convex on at least one edge. So again, for some i, Hx0 is convex on Cisq
x0 with H(x0, q) ≤ H(x0, pi) = 0,

and we can repeat the argument of the previous paragraph to get the required result. A similar argument, using
Theorem 4.9, holds if we suppose that, for each i,Hx0 is concave on Cisq

x0 .
In the third and final case, suppose that there exists at least one i and one j such that Hx0 is convex on the

interior line segment Cisq
x0 through q, and concave on C

jsq
x0 . Suppose q ∈ D+W (x0). Then by Proposition 5.7,

the conditions of Hypothesis 4.3(1) hold for t > 0 and for H−
x0

(.) equal to the convex function H(x0, .) on Cisq
x0 .

We then apply the proof of the subsolution property from Theorem 4.5 to get that H(x0, q) ≥ 0. Suppose on
the other hand that q ∈ D−W (x0). Then by Proposition 5.7, the conditions of Hypothesis 4.7(1) hold for t > 0
and for H+

x0
(.) equal to the concave function H(x0, .) on C

jsq
x0 . We then apply the proof of the supersolution

property from Theorem 4.9 to get that H(x0, q) ≤ 0.
The proof for dimCx0 > 2 then follows by generalising the above argument to an n-simplex. �

Note that the result of Theorem 5.5, namely the graph selectorW being a viscosity solution to −H(x, ∂W/∂x)
= 0, is equivalent to V = −W being a viscosity solution to H(x,−∂V/∂x) = 0. If, in addition, V ≥ 0, then
by the results of [20], this is sufficient for existence of a solution to the H∞-control problem described above.
In fact, we will show directly in a later paper [17] that, under this additional non-negativity assumption, the
variational solution −W is the value function (i.e. the optimal solution) for the H∞-control problem in a weak
sense, and that a weak set valued feedback control can be constructed from W and Λ.

5.3. A non-convex one-dimensional example

We give in this subsection a simple example of a Lipschitz graph selector on a one-dimensional Lagrangian
manifold Λ, and a non-convex H vanishing on Λ. This example satisfies Hypothesis 4.3 and is a trivial su-
persolution, since the sub-differential at the point of non-differentiability is empty. However, it fails to satisfy
Hypothesis 4.2 and also fails to be a subsolution. This latter fact can be seen directly.

In 2-dimensional phase space, take as generating function

S(x, p) = xp− 1
2
p2 +

1
4
p4.

So the 1-dimensional Lagrangian manifold is given by

Λ =
{
(x, p) : x = p− p3

}
.

The graph selector W on Λ picks out, at each x, the minimum value of S over the branches of Λ. It has the
following analytic form.

For x < 0, let p+(x) denote the unique positive root of the cubic polynomial x − p+ p3 = 0 (for x < − 2
3
√

3

there is only one real root, for − 2
3
√

3
≤ x < 0 there is one positive real root and two negative). Then

W (x) = xp+(x) − 1
2
p+(x)2 +

1
4
p+(x)4.
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For x > 0, let p−(x) denote the unique negative root of the cubic polynomial x− p+ p3 = 0. Then

W (x) = xp−(x) − 1
2
p−(x)2 +

1
4
p−(x)4.

At x = 0, W (0) = − 1
4 , this being the maximum value ofW over x. So W has a single point of non-differentiability

at x = 0, at which the superdifferential D+W (0) = [−1,+1] and the subdifferential D−W (0) = ∅.
The Hamiltonian

H(x, p) = p− p3 − x

vanishes on Λ. This corresponds to dynamics on Λ which, when projected onto the x-axis go monotonically
from +∞ to the left, come to a stop at x = − 2

3
√

3
, reverse back to x = + 2

3
√

3
, stop again, reverse and then

proceed monotonically to −∞. The p-axis projection goes at constant velocity from −∞ to +∞. There are
“cut” dynamics corresponding to W which involve jumping from the lower to the upper branch of Λ at x = 0.
These “cut” dynamics are smooth when projected onto the x-axis, so in that sense the variational solution W
does provide a generalised action on the projected “cut” dynamics.

However, W is not a viscosity solution to H(x,DW (x)) = 0 at x = 0. The subsolution property

H(0, D+W (0)) ≤ 0

fails. For example, take q = 1√
3
. Then q ∈ D+W (0) = [−1,+1], but H(0, q) = 2

3
√

3
> 0. The supersolution

property is satisfied trivially since D−W (0) = ∅.
It can be seen also that Hypothesis 4.2 is not satisfied by H and Λ, since in this case C0 = [−1,+1] and we

need to find a convex function H+
0 (q) on C0 such that H+

0 (q) ≥ H(0, q) for all q ∈ C0 and which must satisfy
H+

0 (+1) = H(0,+1) = 0 if H+
0 (+1) ≥ H+

0 (−1), or must satisfy H+
0 (−1) = H(0,−1) = 0 if H+

0 (−1) ≥ H+
0 (+1),

i.e. H+
0 must take maximum value 0 on C0. Since the maximum value of H(0, q) on C0 is 2

3
√

3
> 0, it is not

possible to find such a function.
A trivial calculation shows that Hypothesis 4.3 is satisfied at x = 0, corresponding to the fact that W is a

supersolution. In fact both case (1) and (2) of this hypothesis are satisfied at x = 0; case (1) with p0 = −1 for
t < 0 and case (2) with p0 = +1 for t > 0.

Note that since H vanishes on Λ, W is a generalised solution to H(x, ∂W/∂x) = 0 in the variational sense
put forward by Viterbo [24, 25]. The work of Viterbo and others cited in the Introduction has established
existence and uniqueness properties for variational solutions. Also, as this example shows, variational solutions
can exist which are not viscosity solutions, and can be given a meaningful dynamical interpretation. It would
be interesting to see if some of the other nice properties of viscosity solutions, such as dynamic programming
principles, can be extended to variational solutions.

6. Conclusion

We have proved conditions under which a graph selector W defined on a Lagrangian manifold Λ is a viscosity
solution to H(x, ∂W/∂x(x)) = 0, for a Hamiltonian H vanishing on Λ. We have then presented examples where
these conditions are satisfied, including where H(x, p) is not convex in p.
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