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BOUNDARY-INFLUENCED ROBUST CONTROLS:
TWO NETWORK EXAMPLES ∗

Martin V. Day1

Abstract. We consider the differential game associated with robust control of a system in a compact
state domain, using Skorokhod dynamics on the boundary. A specific class of problems motivated by
queueing network control is considered. A constructive approach to the Hamilton-Jacobi-Isaacs equa-
tion is developed which is based on an appropriate family of extremals, including boundary extremals
for which the Skorokhod dynamics are active. A number of technical lemmas and a structured verifi-
cation theorem are formulated to support the use of this technique in simple examples. Two examples
are considered which illustrate the application of the results. This extends previous work by Ball, Day
and others on such problems, but with a new emphasis on problems for which the Skorokhod dynamics
play a critical role. Connections with the viscosity-sense oblique derivative conditions of Lions and
others are noted.
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Introduction

Robust control of nonlinear systems generally leads to differential games. Soravia [33] has given a rather
general treatment of this, including the characterization of the (lower) value of the game as a viscosity solution
of the Hamilton-Jacobi-Isaacs equation (HJI). In Lions’ study [26] of Neumann-type boundary conditions for
viscosity solutions the connection is made between oblique-derivative boundary conditions in the viscosity sense
and problems in which the state dynamics use a Skorokhod problem mechanism to model boundary reflections
which serve to restrict the state to a closed domain. We consider here a particular class of differential games,
motivated by recent work in queueing control, which involve Skorokhod dynamics and a compact state domain.

Two somewhat different points of view have suggested deterministic differential games in the context of
optimal service control strategies for queueing networks. Deterministic fluid processes, like x(t) in our (8), arise
as functional strong law limits 1

nXnt ⇒ x(t) of discrete state stochastic queueing processes Xs; see [12]. It
has been shown that stability properties of the zero-state of these fluid limits determine stochastic stability
properties of the original stochastic queueing processes; see Dai [13] and Meyn [29]. Thus it is natural to pose
various control problems for the limiting fluid systems in an effort to identify effective service strategies for the
stochastic queueing processes. Formulations which minimize the mean time to empty and the mean holding
cost until empty have been studied with considerable success; see Weiss [34] and Avram, Bertsimas, Ricard [5]
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(and [27, 35] regarding methods of calculation). A natural next step in this direction is to seek controls (for
the fluid model) which are more robust with respect to modeling parameters. Following the successful game
approach to robust control for nonlinear systems [9], one can consider a version of the fluid system which, in
addition to the control player, also includes a second “disturbance” player whose role is to perturb the arrival
and/or service rates. A game can then be posed using a cost criterion which balances some measure of system
performance against some measure of the size of the disturbances. The particular game (11) we consider here
originated from this point of view. Proposed by Day, Ball and others [6, 7, 15], it uses simple quadratic cost
criteria similar to those of classical linear control theory.

A second source of differential game problems for queueing models is the risk-averse limit of risk-sensitive
control problems. Whittle’s [36] original idea of risk-sensitive control is to “exponentially sensitize” a stochastic
control problem to large values of the cost by seeking to minimize E exp(1

ε cost), where ε > 0 is a sensitivity
parameter. When the sensitivity parameter is coupled to the scaling parameter of the fluid limit, ε = 1

n , the
“risk-averse limit” as ε → 0 typically produces a deterministic differential game, in which the large-deviations
structure of the stochastic process appears in the resulting cost. For standard control formulations (using
Gaussian noise) this produces a nice connection of H∞ ideas to stochastic control; see Fleming and James
[21] and Fleming and McEneaney [22] for some results in this direction. The idea has been applied to policy
optimization for queueing processes by Atar, Dupuis, and Schwartz [2, 3] leading to games for fluid queueing
processes which are similar to ours, but with an entropy-like cost associated with the disturbance player, rather
than the quadratic cost we use. For additional examples and ideas in the use of deterministic control problems
in queueing networks, see Avram [4].

The Skorokhod problem mechanism is natural in modeling queueing systems because it effectively accounts for
the inherent nonnegativity of queue lengths and the associated changes in the state dynamics when one or more
queues becomes empty. This is true in both stochastic and deterministic (fluid) models; see [11,13,18,23,31,37]
for instance. Its presence in the differential game gives rise to the boundary conditions and boundary extremals
that are the focus of our work below.

Given the formulation of a differential game, the usual approach to its solution by means of its HJI equation
consists of the following steps:

• prove that the value function V (x) solves the HJI (typically in the viscosity sense);
• prove that solutions to the HJI (in the appropriate sense) are unique;
• construct (by some method) a solution to the HJI.

It is not our intent to carry out that general approach here. (The second step is particularly difficult for the
games arising in robust control, and not adequately resolved even for more classical examples.) Rather we
will pursue an approach more akin to that used by Isaacs [25] to explore illustrative examples. This consists of
constructing the value V (x) in specific examples using families of extremal trajectories covering the state domain,
and which satisfy various equations or inequalities on the curves where two of the families coincide. This is not
a theoretically general approach. However the solution to an example by this approach, when it exists, provides
more detailed information about the structure of the differential game than any other method. Many of the
papers we have cited above explore games for specific low dimensional queueing models in which this constructive
approach is feasible. The examples of [6, 7, 15] in particular are addressed by such an approach. However, the
construction of the extremals for the examples of those papers did not directly involve the Skorokhod dynamics.
Only after the construction was complete were the Skorokhod dynamics considered, as part of the verification
argument. We are concerned here with problems for which the Skorokhod dynamics play a more prominent role
in the construction.

The reason that Skorokhod dynamics could be ignored in the constructions of [6,7,15] was essentially because
the cases considered were all single-server models. Under the optimal strategy, service effort is applied only to
nonempty queues, which keeps the system out of the Skorokhod dynamics regime. When multiple servers are
involved it is possible for all the queues at one of the servers to be empty so that it is forced to operate at
reduced capacity (which is the effect of the Skorokhod mechanism), while other servers still have work to do.
The optimal strategy for the other servers may well be influenced by the reduced output from the server facing
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empty queues. In such examples we expect the Skorokhod dynamics to play a more important role in the design
of the optimal policy. We will see that this is the case in the examples below.

Multiple server examples necessarily involve 3 or more state dimensions. We consider one (briefly) in Section 7.
However as a tutorial to illustrate the applicability of our results, a 2-dimensional example is easier to describe
and discuss. A 2-dimensional example for which the Skorokhod dynamics figure prominently in the construction
is obtained if we choose some parameters in a way which would not be realistic for an actual network. The
example of Section 6 is of this type, and will be our primary example. Although it is not a realistic network
example, our purpose is to illustrate the constructive approach, and for that it is more suitable than a higher
dimensional multiple server example.

Section 1 will describe the class of models under consideration and their motivation from queueing networks.
Some technicalities associated with the Skorokhod problem are presented as well.

Section 2 will describe the differential game that we consider and its HJI equation. Our overall approach is
to develop results which are sufficient to identify the value of the game using features found in simple examples,
but which are stronger than necessary in general. In particular we will work with a version of the HJI in which
the Skorokhod dynamics are included directly in the Hamiltonian (12):

Hπ(x,DV (x)) = 0.

This is appropriate for verification theorem of Section 4, but is different than the typical approach which employs
a simpler Hamiltonian (14) together with separate oblique derivative boundary conditions, combined as in (15).
Theorem 2.1 shows that a viscosity solution of our equation −Hπ = 0 is necessarily a viscosity solution in the
typical formulation (15). (The minus sign is important for the viscosity interpretation.) Theorem 2.1 also shows
that for smooth functions V (x), the classical and viscosity notions of solution to −Hπ = 0 coincide. This is
not the case for the typical formulation; a smooth function V which satisfies (15) need not satisfy the boundary
conditions di ·DV (x) = 0 in the classical sense. Although we will be working exclusively with smooth solutions
of −Hπ = 0, the connection with the oblique derivative boundary condition is used in Section 5.

Section 3 provides a number of purely technical sufficient conditions for a smooth function V to satisfy
Hπ(x,DV (x)) = 0 at boundary points. These results are specific to the particular dynamics (8) and cost
structure (11) of the games we are considering. When we construct the solution in an example using extremals
and boundary extremals, the structure of the extremals will provide hypotheses needed to invoke these results.
The results themselves are stated without any reference to extremals, however.

Section 4 provides the “structured” verification result Theorem 4.1 which identifies a smooth solution V (x)
of Hπ(x,DV (x)) = 0 as the value of the game. The theorem depends on the existence of a family E of extremals
associated with V and having special properties. Although we cannot expect such structure to exist in general,
it is present in some examples, as Section 6 will show.

Section 5 turns to the issue of how we might find extremals as needed for the family E needed by Theorem 4.1.
In particular it motives a simple system of differential equations (50) which will produce an appropriate ex-
tremal running along the boundary of Ω for which the Skorokhod dynamics are active, what we call boundary
extremals. There are no theorems in this section. Some presumptions are imposed for the sake of explaining
why equations (50) are natural. But those presumptions do not need to be checked to apply the equations.
Rather the equations are used in the construction of an extremal family E for which the properties needed to
invoke Theorem 4.1 are either manifest in the equations themselves or by means of the results of Section 3.
The fact that we have made restrictive presumptions in discussing the boundary extremal equations means only
that they do not necessarily describe all possible boundary extremals. They will be enough for our examples,
however.

Section 6 brings these various results to bear on a simple example in two dimensions. A smooth V and
associated family of extremals E is described, which is built up starting from a pair of boundary extremals
produced using the equations of Section 5. The numerous hypotheses needed to invoke Theorem 4.1 are
discussed, using the technical results of Section 3 in particular to verify the saddle point conditions required at
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Figure 1. 2-Server example.

boundary points. The applicability of Theorem 4.1 implies that V is indeed the value of the game. In addition
Theorem 2.1 implies that V is a viscosity solution of the typical HJI with boundary conditions (15).

Finally, in Section 7 we look at a few features of a family of extremals for the 2-server example of Figure 1.
The purpose is only to illustrate those results from Section 3 that were not needed in Section 6. We do not
present a full discussion of that example. In fact we believe this example produces a nonsmooth value function,
though we do not pursue that here. We simply use it to illustrate remaining results from Section 3 by applying
them locally.

We use the usual notation x = (x1, . . . , xn) to indicate x ∈ Rn in terms of its coordinates. For purposes of
matrix expressions we consider all vectors x ∈ Rn to be column vectors; see (3) below for example. The usual

scalar product of x, y ∈ Rn is thus x · y = xT y. The standard basis vectors in Rn are ei = (0, . . . , 0,
i
1, 0, . . . , 0),

with the dimension n determined by the context.

1. Model dynamics

We consider systems of the type arising in the fluid queueing models of [15] and [6] but with a more general
compact domain Ω. As an example of our class of systems, consider the simple network of Figure 1. The server
at A must allocate a total effort of u1(t) + u3(t) = 1 between serving queues x1 and x3, while the server at B
has no service allocation decision and always serves x2 at maximum capacity (u2 ≡ 1). With maximum service
rates si > 0 and time dependent arrival rates qi(t), the state or queue length vector x(t) ∈ R3 is described
(nominally) by ⎡

⎣ẋ1(t)
ẋ2(t)
ẋ3(t)

⎤
⎦ =

⎡
⎣q1(t)q2(t)
q3(t)

⎤
⎦− s1u1(t)

⎡
⎣ 1
−1
0

⎤
⎦− s2

⎡
⎣ 0

1
−1

⎤
⎦− s3u3(t)

⎡
⎣0

0
1

⎤
⎦ . (1)

The three vectors

d1 =

⎡
⎣ 1
−1
0

⎤
⎦ , d2 =

⎡
⎣ 0

1
−1

⎤
⎦ , d3 =

⎡
⎣0
0
1

⎤
⎦ (2)

describe the the contributions to ẋ resulting from of service at each of the three queues. With u(t) = (u1(t), u3(t))
we can rewrite (1) as

ẋ(t) = q(t) −Gu(t), (3)
where

G =

⎡
⎣ s1 0
s2 − s1 s2
−s2 s3 − s2

⎤
⎦ .

This only describes the state nominally because it does not account for the changes to the dynamics when one
or more of the queues becomes empty. To maintain xi ≥ 0 we must add to the right side of (3) a positive
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multiple of di whenever xi = 0 and ẋi < 0 . This corresponds to simply reducing the requested service rate siui

to the level that can actually be implemented, given xi, the arrival rate qi, and any throughput from upstream
queues. This is, in intuitive terms, the mechanism of Skorokhod dynamics, denoted ẋ = π(x, q−Gu) with π(·, ·)
as described below. The result, given input q(·) and control u(·), is a state x(t) remaining in the nonnegative
orthant R3

+.
We may also wish to impose finite buffer capacities. For instance if we impose limits xi ≤ Bi, then we would

also add to ẋ positive multiples of “overflow” vectors d̃i when xi = Bi and ẋi > 0. For instance if customers
overflowing buffer 2 are simply lost to the system we could take d̃2 = (0,−1, 0). If they are forced back into
queue 1 we could take d̃2 = (1,−1, 0). Thus d̃i can be chosen to model various overflow assumptions. Once
chosen, we would have a model of the form (8) below producing a state x(t) in the closed box Ω consisting of
x with of 0 ≤ xi ≤ Bi.

1.1. System hypotheses

To describe a general class of systems including such examples, we consider a state space Ω ⊆ Rn which is
assumed to be a compact, convex polyhedron defined by a system of linear inequalities

x · ni ≥ ci, i = 1, . . . , N. (4)

The ni are assumed to be unit vectors. We require 0 ∈ Ω, which is equivalent to ci ≤ 0. For x ∈ Ω,

I(x) = {i : x · ni = ci}

will denote the set of indices of active constraints. The faces of Ω are

∂iΩ = {x ∈ Ω : ni · x = ci}.

Thus x ∈ ∂iΩ iff i ∈ I(x). For x in the relative interior of ∂iΩ, I(x) = {i}. More generally,

∂F Ω = ∩i∈F ∂iΩ = {x ∈ Ω : ni · x = ci, all i ∈ F}.

Note that x ∈ ∂F Ω implies F ⊆ I(x), but F could be a proper subset of I(x).
Associated with each constraint i is a restoration vector di which we assume to be normalized by

ni · di = 1.

Given a locally integrable ψ(t) ∈ Rn and initial point x(0) ∈ Ω, the Skorokhod Problem consists of finding an
absolutely continuous x(t) ∈ Ω described roughly by

ẋ = ψ(t) +
∑

βi(t)di (5)

where βi(t) are nonnegative with βi(t) > 0 only if x(t) ∈ ∂iΩ. If we take ψ(t) = q(t) −Gu(t) in the context of
our example (3) above, we see that the effect of the βi(t)di is simply to reduce the service rates to those levels
which can be implemented without producing any negative state variables xi.

The description (5) contemplates only absolutely continuous x(t). For a careful and more general formulation
in the context of paths with jump discontinuities, and the associated existence and uniqueness theory of the
Skorokhod Problem, see Dupuis and Ishii [16], and also [18]. Technical hypotheses on Ω and the di are needed
to insure that the problem is well-posed. Specifically we impose Assumption 2.1 of [16]: there exists a compact,
convex set B ⊆ Rn with 0 ∈ B◦, such that for each i = 1, . . .N and z ∈ ∂B, and any inward normal v to B
at z,

|z · ni| < 1 implies v · di = 0. (6)
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(See Sect. 6 below for an example.) This hypothesis insures uniqueness and other continuity properties of the
Skorokhod Problem.

For each F ⊆ {1, . . . , N} let NF (respectively DF ) denote the n× |F | matrix whose columns are ni (respec-
tively di), i ∈ F . We assume that for each F = I(x), x ∈ ∂Ω,

NT
F DF is coercive, (7)

namely that for any ai ∈ R, i ∈ F not all zero, (
∑

F aini) · (
∑

F aidi) > 0. Notice that (7) only refers to those
F ⊆ {1, . . . , N} which actually occur as F = I(x) for some x ∈ ∂Ω. Although the number of constraints N
might be large compared to the dimension n, (7) implies that {ni : i ∈ I(x)} and {di : i ∈ I(x)} are both
linearly independent for any x ∈ ∂Ω and thus the number |I(x)| of active constraints can be at most n. Under
these hypotheses, the solution x(t) of the Skorokhod problem with a locally integrable ψ(·) is described precisely
by an ordinary differential equation

ẋ(t) = π(x(t), ψ(t)),

holding almost surely, where π(x, v) is the velocity projection defined in [16]. Section 1.2 below describes π and
the significance of (7) in more detail.

The systems we consider are thus of the general form

ẋ(t) = π(x(t), q(t) −Gu(t)), x(0) = x0. (8)

Here x(t) ∈ Ω is the queue-length vector, or state. q(t) ∈ Rn represents an unspecified external load, such as
arrival rates of new “customers”, to which the system must respond. The matrix G is fixed and the control
variable u(t) belongs to the convex hull U of some finite set U0 of basic control settings. Taken together, −Gu,
u ∈ U , give the possible queue depletion rates that can be achieved by the various control settings. The choice
of G, U0 and di is made based on the particular network of interest, as illustrated by the example above. Other
examples were treated in [6, 15].

Before moving on, we want to record the following technical facts related to ∂Ω, which are a consequence
of (7).

Lemma 1.1. Given x ∈ ∂F Ω there exist vectors νj, j ∈ F c (= {1, . . . , N} \ F ), such that the following hold:

a) ni, i ∈ F together with νj, j ∈ F c form a basis of Rn.
b) For i ∈ I(x) and j ∈ F c, ni · νj = δij.
c) For some ε > 0,

I

⎛
⎝x+

∑
j∈F c

ajνj

⎞
⎠ = F for all 0 ≤ aj < ε.

Note that in b) it is possible that i = j if F is a proper subset of I(x). The point of c) is that given any F ⊆ I(x)
it is possible to construct x′ ∈ Ω arbitrarily close to x with I(x′) = F . This will be needed in the arguments of
Section 5 below.

Proof. We establish the existence of νj , j ∈ F c first for j ∈ I(x) \ F . Let m = |I(x)|. The independence of ni,
i ∈ I(x) means that NT

I(x) has full row rank m. Consequently, for each j ∈ I(x) \ F there exists a solution νj

to NT
I(x)νj = ej (ej ∈ Rm). We can assume moreover that each νj is in the span of ni, i ∈ I(x). This accounts

for b) if j ∈ I(x) \ F . The next step is to show that ni, i ∈ F together with νj , j ∈ I(x) \ F are linearly
independent. To prove the linear independence, suppose αi, βj are scalars such that

∑
i∈F

αini +
∑

j∈I(x)\F

βjνj = 0.
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Taking the scalar product of this with
∑

i∈F αini and using b) implies that ‖∑
i∈F αini‖2 = 0. The linear

independence of ni implies that αi = 0. We are left with
∑

j∈I(x)\F βjνj = 0. The scalar product of this with
nj , j ∈ I(x) \ F now implies βj = 0. It now follows that ni, i ∈ F together with νj , j ∈ I(x) \ F are a basis of
the span of ni, i ∈ I(x).

We need complete the selection of νj , for j ∈ I(x)c. We take these to be any orthonormal basis of the
orthogonal complement of the span of ni, i ∈ I(x). Part a) is now satisfied. Part b) remains true for the new νj .

We turn now to part c). Let
y = x+

∑
j∈F c

ajνj .

For i ∈ F , since ni · x = ci, it follows from b) that

ni · y = ni · x = ci.

For j ∈ I(x) \ F , since nj · x ≥ cj and aj ≥ 0 we have

nj · y = nj · x+ aj ≥ cj .

For j ∈ I(x)c we have

nj · y ≥ nj · x−
∑

|aj |‖νj‖ ≥ nj · x−
(∑

aj

)
max ‖νj‖.

Since nj · x > cj for such j, it is clear that ε > 0 exists as claimed. �

1.2. The projection map and reflection matrices

In [16] the Skorokhod Problem is considered under two hypotheses. The first is our (6), which insures
uniqueness of solutions and Lipschitz continuity properties. The second is Assumption 3.1 of [16], which
concerns existence of solutions. It is generally recognized that Assumption 3.1 is equivalent to the solvability of
a collection of complementarity problems associated with x ∈ ∂Ω. One development of this is presented in [14].
These complementarity problems provide the representation of the velocity projection map π(x, v) that we will
use below. For x in the interior of Ω, π(x, v) is simply v. For x ∈ ∂Ω the value w = π(x, v) is described by

w = v +
∑

i∈I(x)

βidi, (9)

where for each i ∈ I(x), βi satisfies the following complementarity conditions:

βi ≥ 0, ni · w ≥ 0, and βi(ni · w) = 0. (10)

Our hypothesis (7) is a simple sufficient condition for the existence of a unique solution to the complementarity
problem (9) and (10). Note that a consequence of the complementarity conditions is that

ni · π(x, v) ≥ 0, for all i ∈ I(x).

We record a number of facts related to π(x, v) which will be used in later sections.

Lemma 1.2. The map v 
→ π(x, v) is Lipschitz continuous, uniformly over x ∈ Ω: there exists a constant K
so that

‖π(x, v2) − π(x, v1)‖ ≤ K‖v2 − v1‖.
This follows from the hypothesis (6) as in [16]. It also can be derived directly from the coercivity (7). A simple
consequence is the bound

‖π(x, v)‖ ≤ K‖v‖.
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In solving (9), (10) if one knew F = {i ∈ I(x) : βi > 0} a priori, then solving ni · w = 0, i ∈ F for βi leads to
π(x, v) = RF v where RF are the reflection matrices

RF = I +DFBF ,

and BF = −(NT
F DF )−1NT

F . (Notice that NT
F DF is indeed invertible under our hypothesis (7).) In general

one does not know F in advance and must solve the complementarity problem to determine F . The following
simple modification of Lemma 1 of [15] describes π(x, v) directly in terms of the reflection matrices. (Vector
inequalities are to be interpreted coordinatewise.)

Lemma 1.3. Given x ∈ Ω and F ⊆ I(x) then π(x, v) = RF v if and only if
a) BF v ≥ 0, and
b) NT

I(x)\FRF v ≥ 0.

(We consider a) [respectively b)] to hold vacuously if F = ∅ [I(x) = F ].) Moreover, π(x, v) = RF v determines
F ⊆ I(x) uniquely if and only if

BF v > 0 and NT
I(x)\FRF v > 0

hold with strict inequality in all components.

Note that π(x, v) = RF v holds for F = F0 = {i ∈ I(x) : βi > 0} in particular, where βi are as in the
complementarity problem (10). And certainly π(x, v) = RF v implies F0 ⊆ F . Thus F0 is the minimal F for
which π(x, v) = RF v. The following properties of the reflection matrices will be useful.

Lemma 1.4. For each F = I(x), x ∈ ∂Ω, the following hold:
a) The kernel of RF has basis {di : i ∈ F}.
b) The kernel of RT

F has basis {ni : i ∈ F}.
c) p = RT

F p iff di · p = 0 all i ∈ F .
d) v = RF v iff ni · v = 0 all i ∈ F .

Proof. It is easy to see from the formula for RF that RFDF = 0 and NT
F RF = 0. Therefore the rank of RF is

at most n− k where k = |F |. For any p orthogonal to all di, i ∈ F , one also easily checks that p = RT
F p. This

implies that the rank of RF is at least n − k, and therefore equal to n− k. This implies a) and b), as well as
the “if” assertion of c). If p = RT

F p then p is in the range of RT
F . Since the range of RT

F is the same as the
orthogonal complement of the kernel of RF , a) implies di · p = 0 for all i ∈ F . This completes the proof of c).
Part d) is similar: one easily checks that ni ·v = 0 for all i ∈ F implies v = RF v. Conversely, v = RF v implies v
is in the range of RF , which is the same as the orthogonal compliment of the kernel of RT

F , which by b) implies
ni · v = 0 all i ∈ F . �

Lemma 1.5. For any subsets F1 ⊆ F2 ⊆ I(x), x ∈ ∂Ω,

RF1RF2 = RF2RF1 = RF2 .

In particular, for any F ⊆ I(x), RF is an (oblique) projection: RF = RFRF .

Proof. By Lemma 1.4b, the rows of NT
F1

are a subset of the kernel of RT
F2

. Therefore NT
F1
RF2 = 0, and so

RF1RF2 = RF2 −DF1(N
T
F1
DF1)

−1NT
F1
RF2 = RF2 .

Similarly, Lemma 1.4a implies RF2DF1 = 0, so that

RF2RF1 = RF2 −RF2DF1(N
T
F1
DF1)

−1NT
F1

= RF2 .

�
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2. L2 robust control formulation and Hamilton-Jacobi-Isaacs equations

Using the system equations (8) we consider the differential game formulated in [15]. Specifically, we seek the
lower value function

V (x(0)) = inf
α(·)

sup
q(·),T

∫ T

0

1
2
‖x(t)‖2 − 1

2
‖q(t)‖2 dt. (11)

We now describe the qualifications of the objects on the right side. First, T ranges over (0,∞) and q(·) is an
arbitrary square integrable function on [0, T ]. Next, α(·) refers to an arbitrary nonanticipating strategy. By
this we mean that for each x(0) ∈ Ω and q ∈ L2[0, T ], α is a rule which determines at least one (possibly more)
measurable control function u(t) = α[x(0), q(·)](t) ∈ U for 0 ≤ t ≤ T such that the solution of (8) exists on
[0, T ]. For technical reasons we allow a policy to determine more than one control. The necessity of this is
explained in some detail in Section 4; see the discussion preceding Theorem 4.1. Nonanticipating means that
if q(s) = q̃(s) for s ≤ t, then α[x(0), q(·)](s) = α[x(0), q̃(·)](s) for s ≤ t. More properly, since we are allowing a
policy to determine more than one control, our definition of nonanticipating should interpret α[x(0), q(·)](s) as
the set of associated u(s) on 0 ≤ s ≤ t. We mean this nonanticipating property to include the usual Markov-
extension property: if q ∈ L2[0, T ] and q̃ ∈ L2[0, T̃ ] with T < T̃ and q(t) = q̃(t) for 0 ≤ t ≤ T , then any u(·) in
α[x(0), q(·)] for [0, T ] is the restriction to [0, T ] of some ũ(·) in α[x(0), q̃(·)] on [0, T̃ ]. In other words, if u(t) is
one of the controls that a policy α associates with q(t) on [0, T ], and we extend q to q̃ on [0, T̃ ], then u(t) has
an extension ũ(t) to [0, T̃ ] still associated with the same policy α.

The possibility of multiple u(t) for a given α is handled in (11) by putting the multiple u(·) into the supremum.
Thus for each nonanticipating policy α and given x(0) ∈ Ω the supremum in (11) is over all q ∈ L2[0, T ], all
u(t) = α[x(0), q(·)](t) produced by the policy and solutions x(t) of (8) corresponding to q(·), u(·). The outer
infimum is then over all nonanticipating strategies.

Aside from the allowance of multiple controls per policy, and the presence of Skorokhod dynamics in (8), this
is the general formulation of robust control as described by Soravia [33]; see his equation (2.6) in particular.
In [15], Section 2.4, additional technicalities are discussed which arise because only Ω = Rn

+ (unbounded)
was considered, while (11) can only be finite in a bounded set. We have avoided that complication here by
assuming Ω to be compact. Soravia and other treatments of robust control typically include a gain parameter
γ2 multiplying the ‖q‖2 in (11). The reasoning of [15, Section 2.4] showed that for problems of our structure, γ
can be scaled out of the problem by considering γ3V (γ−1x) (in Ωγ = γΩ). Thus we simply take γ = 1 for our
discussion.

Based on the results of Soravia, and the general theory and heuristics of differential games [8], we expect
V (x) to be a viscosity solution of the following Hamilton-Jacobi-Isaacs equation (HJI):

−Hπ(x,DV (x)) = 0, x ∈ Ω. (12)

The Hamiltonian here is defined by

Hπ(x, p) = sup
q

inf
u∈U

(
p · π(x, q −Gu) − 1

2
‖q‖2 +

1
2
‖x‖2

)
. (13)

As explained in the introduction, our goal is not to prove (12) as a theoretical necessity. Rather we want to
develop a constructive approach which uses (12) as part of sufficient conditions to identify the value (11). This
is the same approach as in [6, 15]. The new features here relate to problems in which the Skorokhod dynamics
play a more prominent role.

The papers [1,2] are among the few treatments in the literature of differential games which include Skorokhod
dynamics on polyhedral domains such as our Ω. They prove that the value function is necessarily a viscosity
solution of a HJI equation with oblique derivative boundary conditions. In that approach the Hamiltonian is
defined independently of the reflection map π(x, v). In the remainder of this section we observe some simple
relationships between viscosity solutions of (12) and the boundary condition formulation. After this section V
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will always be C1. But here we temporarily relax our hypothesis to V ∈ C(Ω) for the purpose of making these
connections to the general theory of viscosity solutions of Hamilton-Jacobi equations.

For both HJI formulations we need to be precise about the definition of the super- and sub-differentials of
V (x). D+

ΩV (x) is defined to be the set of φ+ = Dψ(x) where ψ(·) is a smooth test function such that, for some
ε > 0, V (x) − ψ(x) ≥ V (y) − ψ(y) for all y ∈ Ω with ‖y − x‖ < ε. In other words, V − ψ has a local maximum
at x relative to Ω. The definition of D−

ΩV (x) is analogous, with local relative minimum replacing maximum.
We say that a continuous function V is a viscosity solution of −Hπ(x,DV (x)) = 0 if for each x ∈ Ω,

φ+ ∈ D+
ΩV (x) and φ− ∈ D−

ΩV (x), the following hold:

−Hπ(x, φ+) ≤ 0, and −Hπ(x, φ−) ≥ 0.

The formulation using boundary conditions uses only the the interior Hamiltonian,

H(x, p) = sup
q

inf
u∈U

(
p · (q −Gu) − 1

2
‖q‖2 +

1
2
‖x‖2

)

=
1
2
‖p‖2 − sup

u∈U
p ·Gu+

1
2
‖x‖2.

(14)

A continuous function V is a viscosity solution of −H(x,DV (x)) = 0 in Ω with oblique derivative boundary
conditions −di · DV (x) = 0, i ∈ I(x), if for each x ∈ Ω, φ+ ∈ D+

ΩV (x) and φ− ∈ D−
ΩV (x) the following hold:

min
i∈I(x)

(−H(x, φ+),−di · φ+) ≤ 0, and max
i∈I(x)

(−H(x, φ−),−di · φ−) ≥ 0. (15)

The theorem below provides the simple connections between viscosity solutions of our original HJI (12) and the
boundary condition formulation (15). Note in particular that for C1(Ω) functions the classical and viscosity
notions for (12) coincide. (This is not true for the formulation (15).)

Theorem 2.1.

a) Suppose V ∈ C1(Ω). Then V is a classical solution of −Hπ(x,DV (x)) = 0 in Ω if and only if it is a
viscosity solution of −Hπ(x,DV (x)) = 0 in Ω.

b) If V is a continuous viscosity solution of −Hπ(x,DV (x)) = 0 in Ω, then V is a viscosity solution of
−H(x,DV (x)) = 0 in Ω with boundary conditions −di · DV (x) = 0 for all i ∈ I(x).

Proof. For x in the interior of Ω the hypothesis in part a) that V ∈ C1(Ω) means that D±
ΩV (x) = {DV (x)},

so that the viscosity and classical notions of solution coincide. Consider then x ∈ ∂Ω and φ+ ∈ D+
ΩV (x). We

claim that φ+ = DV (x) +
∑

I(x) bini, for some bi ≥ 0. This boils down to the conjugacy relationship between
a convex cone and its polar cone: [32], Theorem 14.1. Let

N (x) =

⎧⎨
⎩

∑
i∈I(x)

bini, bi ≥ 0

⎫⎬
⎭ .

By definition of Ω, the vectors v such that x+ tv ∈ Ω for all t in some interval [0, ε) are precisely those for which
v ·n ≥ 0 for all n ∈ N (x). In other words −v ∈ N (x)◦, the polar cone to N (x). The definition of φ+ ∈ D+

ΩV (x)
implies that (φ+ − DV (x)) · v ≥ 0 for all such v. This means that φ+ − DV (x) ∈ N (x)◦◦, which is the same as
N (x) by the conjugacy relationship. This proves our claim that φ+ = DV (x) +

∑
I(x) bini, for some bi ≥ 0.

For any v ∈ Rm we know π(x, v) ·ni ≥ 0, all i ∈ I(x). Therefore φ+ ·π(x, v) ≥ DV (x) ·π(x, v), which implies

−Hπ(x, φ+) ≤ −Hπ(x,DV (x)).
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So if V is a classical solution of Hπ(x,DV (x)) = 0 then it is a viscosity subsolution. Analogous reasoning
implies the supersolution property. Conversely if V is a viscosity solution of −Hπ(x,DV (x)) = 0, then since
V ∈ C1(Ω) we know DV (x) belongs to both D±

ΩV (x), which implies Hπ(x,DV (x)) = 0. Hence V is also a
classical solution.

We turn now to b). Again, for x in the interior of Ω the two notions of solution coincide, so we consider an
x ∈ ∂Ω and φ+ ∈ D+

ΩV (x). By hypothesis −Hπ(x, φ+) ≤ 0. We want to show that

−H(x, φ+) ∧ min
I(x)

(−di · φ+) ≤ 0.

We may suppose that di · φ+ < 0 for all i ∈ I(x), else the above is trivial. Now we know that for any v ∈ Rm,
π(x, v) = v +

∑
I(x) βidi for some βi ≥ 0. It follows that φ+ · π(x, v) ≤ φ+ · v, and consequently,

−H(x, φ+) ≤ −Hπ(x, φ+) ≤ 0.

This shows that the implication of b) is true for subsolutions of the two problems. The argument for superso-
lutions is analogous. �

3. Sufficient conditions for saddle point solutions of Hπ = 0

Our goal in the sections to follow is to produce a V ∈ C1(Ω) satisfying (12). (The negative sign is significant
for the notion of viscosity solution, but is irrelevant for smooth solutions.) At interior points of Ω, H(x, p) =
Hπ(x, p) for all p. So the V we seek will satisfy H(x,DV (x)) = 0 at all x ∈ Ω, including boundary points by
continuity. The results of this section are aimed at the converse conclusion. Specifically we assume throughout
this section that p(x) (= DV (x)) is a continuous Rn-valued function on Ω which satisfies

H(x, p(x)) = 0, all x ∈ Ω. (16)

We develop a number of purely technical sufficient conditions under which we can conclude that Hπ(x, p(x)) = 0
for x ∈ ∂Ω as well. Notice that in the definition (14) of H(x, p(x)), the supq and infu∈U separate, and the value
is always given by a saddle point (q∗, u∗) determined by

q∗ = p(x) and p(x) ·Gu∗ = max
u∈U

p(x) ·Gu. (17)

We will call (17) the interior saddle point conditions at x.
We will be interested specifically in saddle point solutions of Hπ(x, p(x)) = 0. By this we mean that the

supq infu∈U of (13) is given by a saddle point (q∗, u∗):

u∗ ∈ U minimizes p(x) · π(x, q∗ −Gu) (18)

q∗ ∈ Rm maximizes p(x) · π(x, q −Gu∗) − 1
2
‖q‖2, (19)

with the saddle value
0 = p(x) · π(x, q∗ −Gu∗) − 1

2
‖q∗‖2 +

1
2
‖x‖2. (20)

Notice that for Hπ(x, p(x)) = 0 one would only need that q∗ maximizes

inf
u∈U

(
p(t) · π(x(t), q −Gu) − 1

2
‖q‖2

)
,

which is weaker than (19). However the stronger property (19) will be important in the verification theorem of
the next section. We will refer to (18) as the u∗-saddle condition and (19) as the q∗-saddle condition. When
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x ∈ ∂Ω the saddle conditions (18), (19), and (20) are more complicated than their interior versions (17) due to
the presence of the velocity projection π(x, v). In general it is conceivable that (18)–(20) hold for a different
saddle point than the interior saddle conditions. However, in our results we will always have the same q∗ = p(x)
and u∗ as in (17).

As a first result we observe that if the boundary conditions di · DV (x) = 0 are satisfied in the classical
sense at x ∈ ∂Ω, then the saddle conditions for Hπ(x, p(x)) = 0 hold there as well. While elementary, this
is significant because the boundary extremals of Section 5 below will produce values of p(x) which satisfy the
boundary conditions classically; see (49) and Lemma 1.4.

Theorem 3.1. Assume (16) and that di · p(x0) = 0 for all i ∈ I(x0). Then all (q∗, u∗) satisfying the interior
saddle point conditions (17) at x0 satisfy the saddle conditions (18) and (19) at x0 as well.

Proof. Since di · p(x0) = 0 for all i ∈ I(x0) it follows from (9) that p(x0) · π(x0, v) = p(x0) · v for all v. Thus the
interior saddle point conditions are equivalent to (18) and (19). �

Next we collect several sufficient conditions for the q∗-saddle condition.

Theorem 3.2. Assume (16), x0 ∈ ∂Ω, that q∗ and u∗ satisfy the interior saddle point conditions (17) there,
and that

π(x0, q
∗ −Gu∗) = q∗ −Gu∗. (21)

The following are each sufficient for the boundary q∗-saddle condition (19) at x0, using the same u∗.

a) di · p(x0) ≤ 0 for all i ∈ I(x0).
b) I(x0) = {i} and

p(x0) · di ≤ 2ni · (p(x0) −Gu∗). (22)

c) For some ε > 0 and each ‖x− x0‖ < ε, q̄(x) = RT
I(x)p(x) fails to satisfy one of the following:

i) π(x, q̄(x) −Gu∗) = RI(x)(q̄(x) −Gu∗), and
ii) p(x) · π(x, q̄(x) −Gu∗) + 1

2‖q̄(x)‖ > p(x) · π(x, p(x) −Gu∗) + 1
2‖p(x)‖.

Several comments are in order. First observe that (21) is equivalent to ni · (q∗−Gu∗) ≥ 0, all i ∈ I(x0), i.e. that
the velocity v = q∗ −Gu∗ points into Ω from x0. When we consider extremals in Section 5 we will find that in
the interior of Ω they will satisfy ẋ = p −Gu∗. Thus Theorem 3.2 (and Th. 3.3 below) will apply at x0 ∈ ∂Ω
at which an extremal moves from x0 into the interior in positive time.

Part b) provides a definitive test for the q∗ saddle condition on a face. (In fact (22) is necessary as well,
though we have only presented the sufficiency.) Notice that in light of the hypothesis ni · (p(x0) − Gu∗) ≥ 0,
the inequality

di · p(x0) ≤ ni · (p(x0) −Gu∗) (23)

implies (22). In particular if di = ni, then b) applies whenever ni ·Gu∗ ≤ 0. Or if di = ni − ei+1 we find that
ni ·Gu∗ ≤ ei+1 · p(x0) is sufficient. These observations will be useful in Section 7.

Part c) is useful on edges. Consider a point on an edge: I(x0) = {i, j}. Suppose we have already verified
the saddle conditions on the adjoining faces ∂iΩ and ∂jΩ. This implies that ii) does not hold on those faces
because otherwise q̄(x) would violate the saddle condition there. Thus we would only need to check that i) or ii)
fails for x on the edge I(x) = {i, j} and sufficiently close to x0. In particular, by Lemma 1.3, if one coordinate
of BI(x)(q(x) −Gu∗) is negative at x = x0, then by continuity i) cannot hold. The q∗ saddle condition would
follow as a consequence.

Proof. Part a) is the same as Lemma 2.2 of [6]. The proof is elementary, being analogous to that of Theorem 3.3
part a), which is written out below.
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We turn to the proof of b). Define the “fixed-control” Hamiltonians

Hu∗(x, p) = sup
q

(
p · (q −Gu∗) − 1

2
‖q‖2 +

1
2
‖x‖2

)

=
1
2
‖p‖2 − p ·Gu∗ +

1
2
‖x‖2,

and

Hπ
u∗(x, p) = sup

q

(
p · π(x, q −Gu∗) − 1

2
‖q‖2 +

1
2
‖x‖2

)
.

Our hypotheses imply Hu∗(x0, p(x0)) = 0. Our goal is to show that Hπ
u∗(x0, p(x0)) = 0. We begin by writing

p(x0) = µni + τ,

where τ is a vector orthogonal to ni and µ = ni · p(x0). Define the scalar function

h(w) = Hu∗(x,wni + τ).

We know h(w) is quadratic, strictly convex, with h′(w) = ni · (wni + τ −Gu∗) = w − w0, where

w0 = ni ·Gu∗.

Thus h(w) takes its unique minimum at w0. By hypothesis h(µ) = Hu∗(x0, p(x0)) = 0. So h(w0) ≤ 0. If µ �= w0

the other root of h(w) = 0 is

µ̃ = w0 − (µ− w0) = 2w0 − µ.

Note that from (21) we know ni · (p(x0) −Gu∗) ≥ 0, which implies µ ≥ w0. Therefore

µ̃ ≤ w0 ≤ µ. (24)

Since R{i} = I − din
T
i we find

RT
{i}p(x0) = p(x0) − (p(x0) · di) ni

= µRni + τ, (25)

where

µR = µ− p(x0) · di.

Observe that the hypothesis p(x0) ·di ≤ 2ni · (p(x0)−Gu∗) means µ−µR ≤ 2(µ−w0), which on rearrangement
implies that

µ̃ ≤ µR. (26)

With these preliminaries we can turn to the main argument. The supq defining Hπ
u∗(x, p(x0)) can be broken

into two parts. The first part considers just those q for which π(x, q −Gu∗) = q −Gu∗, i.e. those q for which
ni · (q − Gu∗) ≥ 0, which is to say ni · q ≥ w0. The second part considers those q for which π(x, q − Gu∗) =
R{i}(q − Gu∗), i.e. q for which ni · q ≤ w0. (The q with ni · q = w0, so that R{i}(q − Gu∗) = (q − Gu∗), are
included in both parts of the supremum.) Thus we can write

Hπ
u∗(x, p(x0)) = max(Q1, Q2), (27)
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where

Q1 = sup
ni·q≥w0

(
p(x0) · (q −Gu∗) − 1

2
‖q‖2 +

1
2
‖x‖2

)

Q2 = sup
ni·q≤w0

(
p(x0) · R{i}(q −Gu∗) − 1

2
‖q‖2 +

1
2
‖x‖2

)
,

Consider Q1. The global supremum (i.e. unconstrained by ni ·q ≥ w0) is attained at q∗ = p(x0). By hypothesis,
ni · q∗ − w0 = ni · (p(x0) −Gu∗) ≥ 0. Thus q∗ satisfies the constraint, so that

Q1 = Hu∗(x, p(x0)) = h(µ) = 0.

Next consider Q2. Observe that we can complete the square to rewrite the expression to be minimized as:

p(x0) · R{i}(q −Gu∗) − 1
2
‖q‖2 +

1
2
‖x‖2 = C − 1

2
‖q −RT

{i}p(x0)‖2,

where C is a collection of terms that do not depend on q. The global maximum with respect to q (i.e. ignoring
the constraint to ni · q ≤ w0) is attained at q̄ = RT

{i}p(x0). If µR ≤ w0 then (25) implies that q̄ satisfies the
constraint. In that case Q2 = Hu∗(x,RT

{i}p(x0)) = h(µR). Moreover (26) and (24) imply that µR is in the
interval [µ̃, µ] on which h(w) ≤ 0. Therefore Q2 = h(µR) ≤ 0.

Now suppose µR > w0. Then the maximum Q2 will be attained at that q closest to RT
{i}p(x0) = µRni + τ

with ni · q ≤ w0. Thus the maximizer is q̄ = w0ni + τ . Since ni · (q̄ − Gu∗) = w0 − w0 = 0, it follows that
R{i}(q̄ −Gu∗) = (q̄ −Gu∗) and therefore

Q2 = p(x0) · (q̄ −Gu∗) − 1
2
‖q̄‖2 +

1
2
‖x‖2.

But notice that
(p(x0) − q̄) · (q̄ −Gu∗) = (µ− w0)ni · (q̄ −Gu∗) = 0.

Thus, when µR > w0 we have

Q2 = q̄ · (q̄ −Gu∗) − 1
2
‖q̄‖2 +

1
2
‖x‖2

= Hu∗(x, q̄)

= h(w0) ≤ 0.

Thus, in either case, Q2 ≤ 0 and so

Hπ
u∗(x, p(x0)) = max(Q1, Q2) = Q1 = 0.

Moreover the supremum over q defining Hπ
u∗(x, p(x0)) is attained at the q∗ = p(x0) of Q1. This b).

Now we prove c). The hypotheses imply that q∗ = p(x) satisfies

p(x0) · π(x0, q
∗ −Gu∗) − 1

2
‖q∗‖2 +

1
2
‖x0‖2 = 0.

Suppose the q∗-saddle condition fails at x0. We must show that there exist x arbitrarily close to x0 at which
both i) and ii) hold. Since the q∗-saddle condition fails there must exist a q with

p(x0) · π(x0, q −Gu∗) − 1
2
‖q‖2 +

1
2
‖x0‖2 > 0.



676 M.V. DAY

We can assume q maximizes this expression. Because (q∗, u∗) satisfy the interior saddle point conditions, it
must be that π(x0, q−Gu∗) = RF (q−Gu∗) for some ∅ � F ⊆ I(x0). By choosing the minimal such F we may
suppose that BF (q − Gu∗) > 0. (See the comments following Lem. 1.3.) If it were the case that F = I(x0),
then BF v ≥ 0 would be sufficient for π(x0, v) = RF v (Lem. 1.3), and so q would be a local maximum of

p(x0) ·RF (q −Gu∗) − 1
2
‖q‖2 +

1
2
‖x0‖2

which would imply q = q̄(x0), satisfying i) and ii) for x = x0.
Suppose that F � I(x0). Lemma 1.1 implies that for all 0 < δ sufficiently small x′ = x0 +

∑
i∈F c δνj will

belong to Ω, have I(x′) = F , BF (q −Gu∗)) > 0 and

p(x′) ·RF (q −Gu∗) − 1
2
‖q‖2 +

1
2
‖x′‖2 > 0.

Since F = I(x′), BF (q −Gu∗) > 0 implies that π(x′, q −Gu∗) = RF (q −Gu∗), so that the above says

p(x′) · π(x′, q −Gu∗) − 1
2
‖q‖2 +

1
2
‖x′‖2 > 0. (28)

We now repeat the argument from above. Take q to maximize (28). It must be that π(x′, q−Gu∗) = RF ′(q−Gu∗)
for some ∅ � F ′ ⊆ I(x′) = F . Take F ′ to be minimal: BF ′(q −Gu∗) > 0. If F ′ = I(x′), then π(x′, v) = RF ′v
for v in a neighborhood of q −Gu∗, which implies q = q̄(x′), satisfying i) and ii) for x = x′.

If on the other hand F ′ � I(x′) then iterate the preceding paragraph again. The process must terminate
because at each stage F ′ is a proper subset of F , but must be nonempty. �

Lastly we collect sufficient conditions for the u∗-saddle condition.

Theorem 3.3. Assume (16), x0 ∈ ∂Ω, that q∗ = p(x0) and u∗ satisfy the interior saddle point conditions (17)
there, and that (21) holds:

π(x0, q
∗ −Gu∗) = q∗ −Gu∗.

Each of the following is sufficient for u∗ to satisfy the u∗-saddle condition (18) at x0, using the same q∗.
a) di · p(x0) ≥ 0 for all i ∈ I(x0).
b) There exists a single F ⊆ I(x0) such that for all u ∈ U

π(x0, p(x0) −Gu) = RF (p(x0) −Gu), and

p(x0) ·RFGu∗ ≥ p(x0) · RFGu.

c) I(x0) = {i} (i.e. x is on a face), and for all u ∈ U0

p(x0) · π(x0, p(x0) −Gu∗) ≤ p(x0) · π(x0, p(x0) −Gu).

The point of c) is that on a face ∂iΩ, in order to extend the u-saddle condition from the interior to the boundary,
we only need to check the basic control values u ∈ U0 against u∗; we don’t need to check all convex combinations
u ∈ U .

Proof. For part a), using di · p(x0) ≥ 0 in (9) implies p(x0) · π(x0, v) ≥ p(x0) · v. Thus

p(x0) · π(x0, q
∗ −Gu) ≥ p(x0) · (q∗ −Gu)

≥ p(x0) · (q∗ −Gu∗)

= p(x0) · π(x0, q
∗ −Gu∗),
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the last equality by (21). This is the u∗-saddle condition.
Part b) is trivial. Part c) was argued at the end of Section 4.2 of [15]. �

We pause briefly to note how the above results apply to examples considered in previous work [6]. For the
non re-entrant single servers of [6], Section 3, the construction produced p · di = 0 and ni · (p(x)−Gu∗) ≥ 0 for
all i ∈ I(x). Thus the saddle conditions for both q∗ = p(x) and u∗ follow from Theorem 3.1.

In the Loop Model of [6], Section 4, on the vertical face ∂1Ω it turned out that d1 · p(x) ≤ 0, so that
Theorem 3.2a applies for the q∗-saddle condition. The u∗-saddle condition was essentially a development of our
Theorem 3.3b. On the horizontal face ∂2Ω the model used d2 = n2 = e2. By the remarks after Theorem 3.2,
n2 · Gu∗ ≤ 0 is sufficient to invoke b) for the q∗-saddle condition. Since Gu∗ = Ge1 = [ s1−s1 ], we see that this
is indeed satisfied. Regarding the u∗-saddle condition on ∂2Ω, it was observed on [6, pg. 343] that p · d2 ≥ 0,
which implies

p · π(x, p−Ge2) ≥ p · (p−Ge2) ≥ p · (p−Ge1) = p · π(x, p−Ge1),
so Theorem 3.3c applies.

4. A structured verification theorem

We turn now to the structured verification result, Theorem 4.1. As explained in the introduction, our intent
is to construct the value V of our game using a family of extremals. Our verification theorem uses the structure
of such a family of extremals to identify a smooth solution of Hπ(x,DV (x)) = 0 as the value of the game.
We emphasize once more that there is no claim that the structure described below is necessary, only that it is
sufficient.

We will say that V ∈ C1(Ω) is associated with a regular family E of extremals when the following all hold.
(1) E consists of a collection of triples (x(t), q∗(t), u∗(t)), called extremals, each defined and satisfying (8)

on some interval τ ≤ t ≤ 0, and terminating at the origin:

ẋ(t) = π(x(t), q∗(t) −Gu∗(t)); x(0) = 0, (29)

x absolutely continuous and both q∗ and u∗ piecewise continuous.
(2) E provides a simple covering of Ω in the sense that for each y ∈ Ω there exists (x(t), q∗(t), u∗(t)) ∈ E

with y = x(s) for some τ ≤ s ≤ 0, and any two such extremals through y agree on [s, 0].
(3) For each (x(t), q∗(t), u∗(t)) in E , the disturbance component is given specifically by q∗(t) = p(t), where

p(t) = DV (x(t)) is the corresponding costate.
(4) (q∗(t), u∗(t)) satisfy the saddle conditions,

u∗(t) ∈ U minimizes p(t) · π(x(t), q∗(t) −Gu) over u ∈ U (30)

q∗(t) ∈ Rm maximizes p(t) · π(x(t), q −Gu∗(t)) − 1
2
‖q‖2 over q ∈ Rn, (31)

with saddle value

0 = p(t) · π(x(t), q∗(t) −Gu∗(t)) − 1
2
‖q∗(t)‖2 +

1
2
‖x(t)‖2. (32)

(5) For each x ∈ Ω with x �= 0, the positive storage condition holds:

‖DV (x)‖2 < ‖x‖2. (33)

Notice that the above imply that V (x) is a saddle point solution of Hπ(x,DV (x)) = 0, as defined in Section 3.
To apply the verification theorem in an example we will need to exhibit such a solution and an associated family
E with all the listed properties. We will do just that in the example of Section 6. The results of Section 3
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will assist us in verifying the saddle point properties (30)–(32) on ∂Ω. The hypothesis that q∗(t) = p(t) is
consistent with those results. The significance of the positive storage condition (33) will appear in the proof of
Theorem 4.1.

An important assertion of the theorem is the existence of an optimal strategy α∗. One would hope to
produce a state-feedback policy which, when at state x, specifies a control value u∗ which is optimal for the
“worst case” disturbance q∗ = DV (x) (optimal meaning that the saddle conditions hold). However there are
serious technical difficulties in defining such a policy. The easiest resolution of these difficulties is the use of
multiple-valued polices, as indicated in Section 2. To explain this, for each x ∈ Ω let A(x) ⊆ U denote the set
(or a nonempty subset) of control values u0 satisfying the saddle conditions for q∗ = DV (x):

(u0, q
∗) satisfies the saddle point conditions (18), (19) for every u0 ∈ A(x). (34)

In case A(x) is only a subset of the possible saddle point controls at x we need to also require that

u∗(t) ∈ A(x(t)) for any (x(·), q∗(·), u∗(·)) ∈ E , (35)

in order that α∗ be consistent with our family E . To be well-defined our policy α∗ must accept any q(·) ∈ L2[0, T ]
and x0 ∈ Ω and produce one (or more) controls u(·) ∈ α∗[x0, q(·)] on [0, T ] so that the solution x(t) of (8) satisfies
the desired feedback relation:

u(t) ∈ A(x(t)). (36)
As a consequence, the state x(t) corresponding the q(·) and the control u(·) prescribed by the policy α∗ must
obey the differential inclusion

ẋ ∈ π(x(t), q(t) −GA(x(t)); x(0) = x0. (37)
To define α∗[x0, q(·)] we must solve the differential inclusion, and take u(t) ∈ A(x(t)) as the control selection
actually used by the solution. Naturally, we would prefer that the policy prescribe a single control u(·) for
a given x0 and q(·). For this we would like to take A(x) = {a(x)} to be a singleton, using some function
a : Ω → U . Then (37) would be a differential equation and, if uniquely solvable, would produce a unique control
u(t) = a(x(t)). Unfortunately, depending on the solution V , the saddle point requirement (34) may rule out the
existence of a continuous a(x). Indeed in the example of Section 6 below a(x) would be forced to have jump
discontinuities; see (64). Without continuity properties of a(x) (or some more detailed knowledge about its
jumps) we would not able to assert the existence (much less uniqueness) of solutions to (37) in general, creating
an obstacle for the definition of α∗. For an adequate existence theory in the presence of such discontinuities we
are forced to the level of differential inclusions. Filippov [20] provides some general theory. Sufficient conditions
for existence typically include closed graph properties of the right side. In [6, §1.4] an existence argument
for (37) specifically was outlined. The essential hypotheses are that A(x) is nonempty and closed for each x,
and upper semi-continuous in x. (Upper semi-continuity means that A(x) contains all limits points of A(xn)
for sequences xn → x. Closure and upper semi-continuity together are equivalent to closed graph.) That is the
existence argument that our proof below appeals to. We note that for examples such as (64) below, the upper
semi-continuity property makes a set-valued A(x) unavoidable.

Closure and upper semi-continuity of A(x) resolve the existence of solutions to (37). However with such
weak continuity hypotheses we cannot expect any uniqueness of solutions in general. (Solutions to (8) with
u(·), q(·), and x0 given are unique. It is the inclusion of state feedback in the differential inclusion which creates
the nonuniqueness.) Defining a single-valued policy α∗ would require selecting one among the many possible
solutions to (37) for each prescribed q(·). The difficult aspect is to make the selection so that the nonanticipating
requirement is satisfied. To do this carefully would require the design of some explicit selection mechanism,
whose discussion would be a detraction from our main purpose here. It is far easier to accept the idea of
multivalued strategies. Given A(x) satisfying hypotheses sufficient for existence of solutions to the initial value
problem (37), simply define α∗[x0, q(·)] to consist of all controls u(·) with the property that the corresponding
solution x(t) of (8) satisfies the feedback condition (36). The nonanticipating (Markov-extension) property of
α∗ then follows easily from the existence of solutions to (37).
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To invoke the theorem we will need to exhibit A(x) with the above properties along with the extremal family
E . Another hypothesis of the theorem is Lipschitz continuity of p(x) = DV (x), which will be needed for the
approximation construction in the proof. The notation V ∈ C1,Lip(Ω) means that DV (x) is Lipschitz continuous
(uniformly) in Ω.

Theorem 4.1. Suppose V ∈ C1,Lip(Ω) is associated with a regular family of extremals E, as described above,
that V (0) = 0 and that A(x) is a nonempty, closed, upper semi-continuous set-valued function with A(x) ⊆ U
for all x ∈ Ω. Assume A(x) satisfies both (35) and (34) above. Then V (x) is the lower value of the differential
game of Section 2. Specifically, α∗ as described above in terms of A(x) is a valid policy, and for each x(0) ∈ Ω0,

V (x(0)) = sup
q(·),T

∫ T

0

1
2
‖x(t)‖2 − 1

2
‖q(t)‖2 dt.

For an arbitrary control policy,

V (x(0)) ≤ sup
q(·),T

∫ T

0

1
2
‖x(t)‖2 − 1

2
‖q(t)‖2 dt. (38)

The proof is a typical dynamic programming argument. The details for our specific setting are as in [6,15], with
some simplifications.

Proof. We define α∗ as described preceding the proof: α∗[x0, q(·)] consists of all controls u(·) such that the
resulting solution x·) of (8) satisfies the state-feedback relationship (36). The closure and upper semi-continuity
of A(x) provides the technical structure necessary to invoke the existence argument described in [6], Section 1.4,
which is based in turn on [17, Theorem 3]. This is enough to imply that α∗ is well-defined as a multi-valued
policy and satisfies the nonanticipating, Markov-extension property.

We continue to use p(x) to denote DV (x). By hypothesis, p(x) is Lipschitz continuous. For an extremal
(x(t), q∗(t), u∗(t)) from the family E we know by hypothesis that q∗(t) = p(x(t)). It will be convenient to use
p(t) = p(x(t)) for the associated costate trajectory. That u∗(t) is one of the controls associated with the policy
α∗ for q∗(·) is evident from (30) and the description of A(x) above. Given x0 ∈ Ω consider the extremal with
initial point x0 = x(τ), τ < 0, and x(0) = 0, the value of V (x0) is given by

V (x0) = V (0) +
∫ 0

τ

p(t) · ẋ(t) dt =
∫ 0

τ

1
2
‖x(t)‖2 − 1

2
‖q∗(t)‖2 dt,

by virtue of (29) and (32). We have used the time parameter t ∈ [τ, 0] here because that is the way we described
our family E in (29). But to write this in the form most compatible with the rest of the proof, we make a
simple shift of time variable, so that x(t) is defined on [0, T ] (T = −τ) with x(0) = x0, x(T ) = 0. Then, using
V (0) = 0, the above becomes

V (x(0)) =
∫ T

0

1
2
‖x(t)‖2 − 1

2
‖q∗(t)‖2 dt. (39)

Note at this point that the positive storage condition (33) implies that V (x0) > 0 for x0 �= 0.
Next, for the same initial point x0, consider an arbitrary disturbance q(t) and any control u∗(t) produced by

α∗: u∗(t) ∈ A(x(t)). By definition of A(x) the saddle conditions are satisfied. The q∗-saddle condition implies
that

0 = p(x) · π(x, q∗ −Gu∗) − 1
2
‖q∗‖2 +

1
2
‖x‖2 ≥ p(x) · π(x, q −Gu∗) − 1

2
‖q‖2 +

1
2
‖x‖2.

So if x(t) is a state trajectory of the system with control policy α∗ for an arbitrary load q(t) (and any control
u∗(t) ∈ A(x(t)) associated with α∗), we have

DV (x(t)) · ẋ(t) ≤ 1
2
‖q(t)‖2 − 1

2
‖x(t)‖2.
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Thus on any interval [0, T ] we have

V (x(T )) − V (x(0)) ≤
∫ T

0

1
2
‖q(t)‖2 − 1

2
‖x(t)‖2 dt.

Since V (x(T )) ≥ 0, it follows that

V (x(0)) ≥
∫ T

0

1
2
‖x(t)‖2 − 1

2
‖q(t)‖2 dt.

When we use the extremal from our family with the prescribed x(0), and on the interval [0, T ] such that
x(T ) = 0, the above holds with equality: (39). This shows that using α∗ we have

V (x(0)) = sup
T,q(·)

∫ T

0

1
2
‖x(t)‖2 − 1

2
‖q(t)‖2 dt. (40)

Recall that this supremum includes all u(t) produced by α∗ for each q(·).
Now we consider an arbitrary control policy α. We would like to consider the behavior of the controlled

system when given a load such that q(t) = q∗(x(t)), where x(t) is the controlled state trajectory produced by
the policy α. However, we can’t assume that such a q(t) exists; that would require the solvability of the system
equations subject to the policy α but with a feedback loop q(t) = p(x(t)) added to the dynamics. We have only
asked that control policies to respond to open loop loads q(t). Following the construction of [15], Section 5, we
can approximate the desired q(t). The idea is to get around the solvability issue by introducing a small time
lag:

q(t) =

{
p(x(t− εe−t)) if εe−t < t

p(x(0)) if t ≤ εe−t.

We can solve the system incrementally on a sequence of intervals [tn−1, tn] such that q(t) for each interval depends
only on x(t) for the preceding interval [tn−2, tn−1]. The basic existence and Markov-extension hypotheses for
α subject to a prescribed q(t) on an interval [0, T ] is used inductively to insure the existence of x(t) with q(t)
as above and some control u(t) produced by the policy α. Note that q(t) is always a value of p(x) = DV (x) at
some x ∈ Ω, although not x = x(t).

We claim that for some constant C2 (independent of ε and T ),

V (x(0)) − V (x(T )) ≤ C2ε+
1
2

∫ T

0

‖x(t)‖2 − ‖q(t)‖2 dt (41)

holds for all T . The argument for this starts by observing that p(x) − Gu is bounded over x ∈ Ω, u ∈ U . It
follows from Lemma 1.2 that there is a uniform bound on ‖ẋ‖:

‖ẋ‖ = ‖π(x, q(t) −Gu(t))‖ ≤ B.

Consequently,
‖x(t) − x(t− εe−t)‖ ≤ B εe−t.

Next, since p(x) is Lipschitz, it follows that

‖q(t) − DV (x(t))‖ = ‖DV (x(t − εe−t)) − DV (x(t))‖ ≤ C1 εe−t, (42)

for some constant C1 (independent of ε). Since π(x, v) is Lipschitz in v it follows that for some constant C2

(independent of ε) and all t > 0

DV (x) · π(x, q(t) −Gu(t)) − 1
2
‖q(t)‖2 + C2εe−t ≥ DV (x) · π(x,DV (x) −Gu(t)) − 1

2
‖DV (x)‖2.
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(Because by hypothesis Ω is compact, ‖DV (x)‖2 is Lipschitz as well.) Since V is a saddle point solution of
Hπ(x,DV (x)) = 0 with saddle point q∗(x) = DV (x) and some u∗, we know that

0 ≤ DV (x) · π(x,DV (x) −Gu(t)) − 1
2
‖DV (x)‖2 +

1
2
‖x‖2.

So it follows that
−DV (x) · π(x, q(t) −Gu(t)) ≤ C2εe−t +

1
2
‖x(t)‖2 − 1

2
‖q(t)‖2.

Since ẋ = π(x, q(t) −Gu(t)), integrating both sides over [0, T ] yields (41).
To finish the argument we want to show that the V (x(T )) can be ignored when taking supT of the right side

of (41). Suppose there exists a sequence of Tn > 0 with x(Tn) → 0. Then V (x(Tn)) → 0 and it follows that

V (x(0)) ≤ C2ε+ lim sup
n→∞

∫ Tn

0

1
2
‖x(t)‖2 − 1

2
‖q(t)‖2 dt ≤ C2ε+ sup

T

1
2

∫ T

0

‖x(t)‖2 − ‖q(t)‖2 dt.

If no such Tn exist, then there must exist a compact set K ⊆ Ω \ {0} with x(t) ∈ K for all t ≥ 0. In that case
the positive storage condition (33) implies that (for ε > 0 sufficiently small) there is a positive lower bound:

1
2
‖x(t)‖2 − 1

2
‖q(t)‖2 ≥ k > 0.

Consequently from (42),

∫ T

0

1
2
‖x(t)‖2 − 1

2
‖q(t)‖2 dt ≥ C2ε+ kT → +∞ as T → +∞.

Thus in either case we find that

V (x(0)) ≤ C2ε+ sup
T

∫ T

0

1
2
‖x(t)‖2 − 1

2
‖q(t)‖2 dt.

Since ε > 0 was arbitrary, this proves (38). �

5. Boundary extremals

Consider now the task of constructing a regular family E of extremals satisfying the hypotheses of Theorem 4.1
above. The purpose of this section is to identify differential equations which can be used in such a construction.
Specifically, we need to adjoin to the state equation

ẋ(t) = π(x(t), p(t) −Gu∗(t))

an equation for ṗ(t), where p(t) = DV (x(t)), V (x) being the solution of Hπ(x,DV (x)) = 0 under construction.
We are particularly interested in the appropriate ṗ equation when x(t) runs along ∂Ω with active Skorokhod
dynamics. We do not intend an exhaustive derivation of all theoretically possible types of extremals. Rather
we are merely trying to predict the typical forms of boundary extremals away from the complicated structures
which might occur at various types of singularities, such as discontinuities in the optimal control or in the
F ⊆ I(x) for which π(x, q∗ −Gu∗) = RF (q∗ −Gu∗). To that end we make a number of simplifying assumptions
(marked by bullets • below) to help us anticipate equations (50) for boundary extremals. These particular types
of extremals will be enough to discover a regular family E as desired for Theorem 4.1 in our examples. Our
simplifying assumptions begin with the following.

• Assume V ∈ C2(Ω) is a saddle-point solution of Hπ(x,DV (x)) = 0.



682 M.V. DAY

As always p(x) will denote DV (x). First consider an extremal (x(t), q∗(t), u∗(t)) (29)–(32) as it passes through
an interior point x0 = x(t0) of Ω.

• Assume there is a unique u0 ∈ U maximizing p(x0) ·Gu.
Recall that U is the convex hull of a finite set U0. This assumption means u0 must be one of the extreme
points U0 and must remain the maximizer of p(x) · Gu for x in a neighborhood of x0. Thus we must have
q∗(t) = p(x(t)) = DV (x(t)) and u∗(t) = u0 for t in a neighborhood of t0. In particular ẋ = p(x) − Gu0.
Moreover in a neighborhood of x0 we have

0 = H(x,DV (x)) =
1
2
‖p(x)‖2 − p(x) ·Gu0 +

1
2
‖x‖2.

Differentiating with respect to x yields

0 = p(x) ·Dp(x) − (Gu0) ·Dp(x) + x.

The matrix Dp(x) is the Hessian of V (x) and is therefore symmetric. So the above can be rewritten as
ṗ(x(t)) = px(x(t)) · (p(x(t)) − Gu0) = −x. Thus (under our bulleted assumptions) the state x(t) and costate
p(t) = p(x(t)) along an interior extremal will satisfy

ẋ = p−Gu∗, ṗ = −x, (43)

with u∗(t) ≡ u0. These are the equations used to build the solution families in [6, 15].
Next we want to develop some comparable equations to describe extremals for which the action of π(·, ·) is

nontrivial, boundary extremals as we will call them. To this end we make the following assumptions.
• x0 ∈ ∂F Ω and there is an extremal (x∗(t), u∗(t), q∗(t)) as in (30)–(32) through x(t0) = x0 with x(t) ∈
∂F Ω all t in a neighborhood of t0.

• There is constant control u∂ ∈ U and a function q∂(x) such that for all x ∈ ∂F Ω sufficiently close to x0,
(i) the saddle point (18), is given uniquely by q∂(x), u∂ , for some function q∂(x); and
(ii) F is the unique subset of I(x) for which

π(x, q∂(x) −Gu∂) = RF (q∂(x) −Gu∂).

We now draw out some consequences of these and the continuing assumption that V is a C2 saddle point solution
of Hπ(x,DV (x)) = 0. First, the uniqueness of F in (ii) means, by Lemma 1.3, that for each x as in the second
bullet we have strict inequalities:

BF (q∂(x) −Gu∂) > 0, and NT
I(x)\FRF (q∂(x) −Gu∂) > 0.

These inequalities must be preserved for all q sufficiently close to q∂(x) and u ∈ U sufficiently close to u∂ , so
that π(x, q −Gu) = RF (q −Gu). In particular q∂(x), u∂ is a local saddle point of

p(x) · RF (q −Gu) − 1
2
‖q‖2 +

1
2
‖x‖2.

The supq infu separate for this expression, allowing us to deduce that q∂(x) = RT
F p(x). For all such x, including

x0, we have that

0 = Hπ(x, p(x))

= p(x) · RF (q∂(x) −Gu∂) − 1
2
‖q∂(x)‖2 +

1
2
‖x‖2

= Hu∂
(x,RT

F p(x)), (44)
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where, as before, Hu∂
denotes the fixed control Hamiltonian,

Hu∂
(x, p) =

1
2
‖p‖2 − p ·Gu∂ +

1
2
‖x‖2.

Now consider the saddle point extremal (x∗(t), u∗(t), q∗(t)). According to the above, it must be based on
q∗(t) = RT

F p(x), and u∗(t) ≡ u∂:

ẋ = π(x, q∗(t) −Gu∂) = RF (q∗(x) −Gu∂); x(0) = x0.

Notice that this is the same as

ẋ =
∂

∂p
H̃(x, p), where H̃(x, p) = Hu∂

(x,RT
F p(x)). (45)

We want to adjoin to this an equation for q̇∗(t). We know from (44) that

H̃(x, p(x)) = 0

for all x ∈ ∂F Ω close to x0. We can differentiate this in any of the complementary directions ν = νj of Lemma 1.1:
0 = ∂

∂ν H̃(x, p(x)). In Cartesian coordinates, with ν = (γ1, . . . , γn), we can write out the implication as follows:

−ν · H̃x = −
∑

j

γj
∂

∂xj
H̃ =

∑
j,k,l

γj
∂H̃

∂pl
(RF )kl

∂pk

∂xj

=
∑
j,k,l

γj
∂pj

∂xk
(RF )kl

∂H̃

∂pl
, because

∂pk

∂xj
=
∂pj

∂xj
,

=
∑

j

γj
d
dt
pj(x(t)), because of (45).

= ν · ṗ.

This holds for each vector ν = νj , j ∈ F c complementary to ni, i ∈ F as in Lemma 1.1. This identifies ṗ up to
a vector from the span of ni, i ∈ F . However such ni are a basis of the kernel of RT

F , so we know just enough
to identify

q̇∗ = RT
F ṗ = −RT

F H̃x(x, p(x)) = −RT
Fx.

Thus under our hypothesis we are led to the following equations describing the extremal:

ẋ = RF (q∗ −Gu∂), q̇∗ = −RT
Fx. (46)

The equations (46) give us something to work with to construct extremals on edges with F ⊆ I(x). However
tracking q∗ = RT

F p(x) only identifies p(x) up to the the span of ni, i ∈ F . There are some circumstances which
imply that p(x) = q∗(x). According to Lemma 1.4 part c), this is equivalent to the classical oblique derivative
conditions di · p(x) = 0 all i ∈ F . We claim this to be a consequence of the following hypotheses.

• There is a unique u0 which maximizes p(x0) ·Gu over u ∈ U , and
• ni · (p(x0) −Gu0) < 0 for all i ∈ F .

Note that we are not assuming that u0 = u∂ , but will deduce that as a byproduct.
First consider the situation in a single face ∂iΩ: F = I(x0) = {i}. As before, u0 must be one of the extreme

points u0 ∈ U0, and so for all ‖ξ − p(x0)‖ sufficiently small u0 will remain the maximizer of ξ · Gu. We are
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assuming that V ∈ C2(Ω) solves Hπ(x,DV (x)) = 0 in Ω. For all ‖ξ − p(x0)‖ sufficiently small we know that
H(x, ξ) = Hu0(x, ξ), where

Hu0(x, ξ) =
1
2
‖ξ‖2 − ξ ·Gu0 +

1
2
‖x‖2.

In particular,
Hu0(x0, p(x0)) = 0. (47)

Theorem 2.1 tells us that V is a viscosity solution of −H(x,DV (x)) = 0 with the boundary condition −di ·
DV (x) = 0 on ∂iΩ. Now D±

ΩV (x0) = {p(x0) ± cni : c ≥ 0}. Suppose di · p(x0) < 0. Then for all 0 ≤ c <

−di · p(x0) we will have ξ = p(x0) + cni ∈ D+
ΩV (x0) and di · ξ < 0. Thus the subsolution property requires that

H(x0, p(x0) + cni) ≥ 0 for all 0 ≤ c < −di · p(x0). Moreover, for c > 0 sufficiently small H = Hu∗ so that

Hu∗(x0, p(x0) + cni) ≥ 0. (48)

From (47) and (48), by differentiation with respect to c it follows that

0 ≤ ni · ∂
∂p
Hu∗(x0, p(x0)) = ni · (p(x0) −Gu∗).

Supposing di · p(x0) > 0 we can make an analogous argument using that V is a supersolution of the boundary
conditions property to again deduce that 0 ≤ ni · (p(x0) − Gu∗). Thus if 0 > ni · (p(x0) −Gu∗) we are forced
to conclude that di · p(x0) = 0.

This conclusion can be extended to higher order edges by a continuity argument. Consider any i ∈ F .
Applying Lemma 1.1 (with F = {i}) we can perturb x0 slightly to obtain x̃0 arbitrarily close to x0 but with
I(x̃0) = {i}. By continuity u0 will remain the unique maximizer of p(x̃0) ·Gu and ni · (p(x̃0) −Gu0) < 0. The
above argument applies at x̃0 to imply di · p(x̃0) = 0. Passing to the limit as x̃0 → x0 we see that di · p(x0) = 0.

Returning to our extremal (x(t), q∗(t), u∗(t)), the inequality ni · (p − Gu∗) < 0 will remain true for all x(t)
close to x(0) implying that for t near 0, di · p(x(t)) = 0, all i ∈ F , which is equivalent to

p(x(t)) = RT
F p(x(t)). (49)

or q∂(t) = p(x(t)). In that case the q̇∗ equation of (46) becomes ṗ = −RT
Fx. Observe that ni · (p(x̃0)−Gu0) < 0

is what we would expect if the extremals associated with V move from the interior of Ω to the boundary ∂Ω
and then follow the boundary extremal (46). Thus in attempting to construct V in the interior by following
extremals from ∂Ω backwards into the interior, (49) is a natural feature to expect. We also note that (49)
implies that u∂ = u0; the optimal control is the same in the interior and on the boundary.

Although we have made some strong presumptions (•) for this discussion, we have identified the following
equations describing boundary extremals for F ⊆ I(x):

ẋ = RF (p−Gu∗), ṗ = −RT
Fx, (50)

with q∂(t) = p(x(t)). (Observe that (43) is just the special case of F = ∅.) Along such an extremal we also
need the following conditions to insure the validity of the velocity projection RF (p−Gu∗) = π(x, p−Gu∗):

F ⊆ I(x), (51)

BF (p−Gu∗) ≥ 0, (52)

NT
I(x)RF (p−Gu∗) ≥ 0. (53)

Notice that, given x0 ∈ ∂F Ω and x ∈ Ω, an equivalent condition for x ∈ ∂F Ω is that ni · (x − x0) = 0 for all
i ∈ F . This in turn is equivalent to (x − x0) = RF (x − x0) by Lemma 1.4d. Thus ∂F Ω consists precisely of
those x ∈ Ω which are fixed points of

ΦF (x) = x0 +RF (x − x0).
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Now observe that (50) coincides with the Hamiltonian system with Hamiltonian

H̃(x, p) = Hu∗(ΦF (x), RT
F p). (54)

This observation is significant for two reasons. One is that H̃ is constant along solutions to (50). Using
Lemma 1.5 we see that both x = ΦF (x) and p = RT

F p are invariant with respect to (50). Therefore

Hu∗(x(t), p(t)) is constant in t

along solutions of (50). Thus if we can confirm that p(t) = DV (x(t)) and the saddle point conditions for q∗ = p
and u∗, then we will indeed have a saddle point solution of Hπ(x,DV (x)) = 0. (The constant will be 0 because
by hypothesis the extremals in a family E all terminate at x(0) = p(0) = 0.)

Secondly, as is standard in the method of characteristics for first order PDEs, a Hamiltonian system preserves
exactness of the differential form p(x) · dx, which implies that p(x) is indeed the gradient of some function V (x).
See [24] for details. To be more precise, if integrals of p · dx are independent of path within a manifold of
initial conditions for (50), then p · dx remains independent of path in the region covered by the solutions of
the Hamiltonian system with the given initial conditions. This is what guarantees that a function p(x) defined
implicitly by p(x(t)) = p(t) for a family of solutions to (50) will be the gradient of a function p(x) = DV (x),
provided p is compatible with a gradient within the manifold of initial conditions. In an example this reasoning
needs to be applied piecewise over several subregions making up Ω. When we have the specific example of the
following section in front of us this will be easier to explain; see Section 6.3 below.

6. An example in 2 dimensions

In this section we will illustrate how the various results above are used to study a specific example. This
will show that the many hypotheses of Theorem 4.1 and of the results of Section 3 are indeed reasonable and
appropriate for the class of problems under consideration. The example is described in Section 6.1, and technical
hypotheses associated with the Skorokhod problem are verified. Then, in the remaining subsections, we will
carry out the following.
Section 6.2 We describe the family E of extremals (29) providing a simple covering of Ω. This will include

extremals of both types: (43) and (50) for Section 5. Requirements 1 and 2 of Section 4 will be
manifest once E is exhibited.

Section 6.3 We show that E implicitly determines a (Lipschitz) function p(x) on Ω by p(t) = p(x(t)). We will
explain why p(x) is the gradient DV (x) for a function V (x) solving H(x,DV (x)) = 0. We will
verify requirements 3 and 5 of Section 4, as well as requirement 4 on the interior.

Section 6.4 Using the results of Section 3, we show that E does in fact satisfy the saddle point conditions
(30)–(32) on ∂Ω. It follows that V satisfies Hπ(x,DV (x)) = 0. This will account for require-
ment 4 of Section 4 at boundary points. Moreover, by Theorem 2.1 V is a viscosity solution of
−H(x,DV (x)) = 0 with viscosity sense oblique derivative boundary conditions −DV (x) · di = 0,
x ∈ ∂iΩ.

Section 6.5 We will exhibit the set valued function A(x) to complete the hypotheses needed to invoke Theo-
rem 4.1. It will follow that the V constructed is indeed the value of the game. We will exhibit the
optimal control policy.

Closed form expressions will describe all the extremals in E , but some of the extremals involve one or more
changes of form due to switching of the control value u∗(·) or the transition from an interior extremal (43) to a
boundary extremal (50). This renders the full expressions for some extremals quite cumbersome. Rather than
work with those expressions “by hand”, we have used Mathematica to manage, manipulate and evaluate them
as needed to confirm the hypotheses of the various results from Section 3 and to produce Figure 3, showing the
resulting value function V (x). In a few places, where algebraic verification would be excessively burdensome,
we have resorted to numerical evaluation to confirm inequalities. We emphasize however that this is a shortcut
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to ease the exposition. Our primary goal is to exhibit the feasibility and success of the constructive approach in
this example. The example itself is not of enough significance to merit the effort of writing out explicit, closed-
form verifications of every feature. Our extremal family E provides a complicated though explicit parametric
representation of V (not a numerical approximation), the parameters being the time parameters along the
different sections of the different extremals. We have not made the effort to eliminate these parameters from
the representation to obtain an explicit expression for V (x). Although in principle that may be possible, it
would be excessively burdensome, and of little conceptual value.

6.1. The example

We consider an example of (8) in R2. We take

G =
[
2 1/2
1 2

]

with two basic control settings U0 = {e1, e2}. Thus

U = {(u1, u2) : u1 + u2 = 1, 0 ≤ ui}.

We take Ω to be the triangular region defined by

x1 ≥ 0, x2 ≥ 0, 2x1 + 3x2 ≤ 7/2.

To describe Ω in the form (4) we take n1 = (1, 0), n2 = (0, 1), n3 = (−2,−3)/
√

13; c1 = c2 = 0, and c3 = −7
2
√

13
.

To complete the system description we specify the following restoration vectors:

d1 =
[

1
−1

]
, d2 = n2, d3 = n3.

We hasten to note that this example is artificial. Unlike the example of Figure 1, d1 and d2 do not correspond
to the reductions of the two service options (here just the columns of G) associated with empty queues. Thus
this does not model any realistic network. However the differential game associated with an optimal service
policy still makes sense mathematically. The mismatch between the di and G gives rise to boundary extremals,
which are not typical in 2-dimensional examples. The example is interesting for that reason.

Before proceeding, we need to confirm the hypotheses (6) and (7) for the Skorokhod problem. Regarding (6),
a set B satisfying the hypotheses in pictured in Figure 2. The point a is a = (0, 9). The strip between a and −a
bounded by the dashed lines are the points in B for which |z ·n1| < 1. The sides of the boundary of B containing
±a are parallel to d1, so that (6) is satisfied for i = 1. The strips surrounding ±b with b = (7, 0) and ±c with
c = (6,−4) are constructed likewise, for i = 2, 3 respectively. It is obvious from the figure that the hypothesis
is satisfied. Though easily checked explicitly, we omit the calculations. For the coercivity hypothesis (7), it is
sufficient to consider the three corners:

for F = {1, 2}, NT
F DF =

[
1 0
−1 1

]
,

for F = {1, 3}, NT
F DF =

[
1 −2√

13
1√
13

1

]
,

for F = {2, 3}, NT
F DF =

[
1 −3√

13−3√
13

1

]
.

Each of there is easily checked to be coercive.



BOUNDARY-INFLUENCED ROBUST CONTROLS: TWO NETWORK EXAMPLES 687

Figure 2. The set B of hypothesis (6).

6.2. The extremal family

The construction of the extremal family is based on two boundary extremals, one along each coordinate axis.
Along the vertical axis ∂1Ω (x1 = 0) we take

x∂1 (t) =
−3
2
√

2
sin(

√
2t)

[
0
1

]
, p∂1(t) =

3
2
(1 − cos(

√
2t))

[
1
1

]
, τ∂1 ≤ t ≤ 0. (55)

These are the solutions of the boundary extremal equations (50) with F = {1}, u∗ = e1, and terminal conditions
x(0) = p(0) = 0. The value

τ∂1 = −
arcsin( 7

9
√

2
)

√
2

≈ −.41177

is simply the lower bound of t < 0 for which x∂1(t) ∈ Ω, i.e. x∂1 (τ1) · n3 = c3. To confirm the validity as a
boundary extremal one must also check (52) and (53). The expression for (52) works out as

BF (p∂1(t) −Gu∗) =
1√
2
(1 + 3 cos(

√
2t)),

which is seen to be nonnegative for τ∂1 ≤ t ≤ 0. For τ∂1 < t, (53) follows from Lemma 1.4b since I(x) = F so
that NT

I(x)RF = 0.
Anticipating that p∂1(t) = DV (x∂1 (t)), we define v∂1(t) according to d

dtv
∂1 = p∂1 · ẋ∂1 ; v∂1(0) = 0. We can

integrate the expression for p∂1(t) · ẋ∂1 (t) to obtain the parametric expression for v∂1(t) = V (x∂1 (t)) along x∂1 :

v∂1(t) =
9t
4

− 9 sin(
√

2t)
2
√

2
+

9 sin(2
√

2t)
8
√

2
·

The solid curve along the x1 = 0 coordinate plane in Figure 3 is the parametric plot of x∂1 (t), v∂1(t), thus
rendering graph of V along the x2-axis.

The saddle condition (18) will be verified in Section 6.4 below. We should note here that (50) can also be
solved along the vertical face using the other control value, u∗ = e2. However it turns out that the u∗-saddle
condition (18) fails for the resulting extremal. Many such exploratory calculations are behind the discovery of
the extremal family being described here.
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Figure 3. Extremal family for planar example.

Similar calculations lead to a boundary extremal x∂2(t), p∂2(t) on the horizontal boundary ∂2Ω (x2 = 0),
again using u∗ = e1. The resulting expressions are

x∂2 (t) =
[−2 sin(t)

0

]
, p∂2(t) =

[
2(1 − cos(t))

0

]
, τ∂2 ≤ t ≤ 0, (56)

with
τ∂2 = − arcsin(7/8) ≈ −1.06544

and
v∂2(t) = V (x∂2 (t)) = 2t− 4 sin(t) + sin(2t).

Again (52) and (53) are all verifiable explicitly to confirm the validity of this as a boundary extremal. The
parametric plot of these expressions produces the solid curve on the x2 = 0 face in Figure 3.

The next important member of our extremal family is a special interior extremal (43) using the relaxed
control u∗ = ( 5

13 ,
8
13 ), resulting in:

xa(t) =
−7
13

sin(t)
[
2
3

]
, pa(t) =

7
13

(1 − cos(t))
[
2
3

]
, τa ≤ t ≤ 0,

with τa = − arcsin(1/2) ≈ −0.523599 and the following parametric expression for the solution of d
dtv

a = pa · ẋa;
va(0) = 0:

va(t) =
49t
26

− 49 sin(t)
13

+
49 sin(2t)

52
,

which will give va(t) = V (xa(t)). The parametric plot of xa(t), va(t) is the solid curve between regions B and C
in Figure 3.

To describe the next stage of construction, consider the collection of extremals marked A in Figure 3. These
are interior extremals (43) using u∗ = e1, starting with terminal conditions taken from the boundary extremal
x∂2(s) at some τ∂2 < s ≤ 0:

x(0) = x∂2 (s), p(0) = p∂2(s), (57)

and solving (43) for t < 0 as long as the resulting x(t) remains in Ω: τA(s) ≤ t ≤ 0 for some τA(s) depending
on the value of s. The general solution formulae for (43) with u∗(t) ≡ u and terminal conditions x(0) = x0,
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p(0) = p0 are

x(t) = cos(t)x0 + sin(t)(p0 −Gu)

p(t) = − sin(t)x0 + cos(t)(p0 −Gu) +Gu.

We will use an operator notation to denote the state components of the solution:

x(t) = X (i)
t x0,

with i = 1, 2 for the respective control values u = ei. This notation does not indicate the dependence of x(t) on
p0, but it is to be understood that the state component x(t) of every extremal is implicitly accompanied by a
costate counterpart p(t). With this notation, an extremal x(t) with terminal conditions (57) is

x(t) = X (1)
t x∂2 (s).

This produces the two parameter family covering region A:

xA(s, t) = X (1)
t x∂2 (s), τ∂2 ≤ s ≤ 0, τA(s) ≤ t ≤ 0. (58)

Strictly speaking, to describe an extremal in A using a single parameterization x(t) from x(T ) = xA(s0, t0) to
x(0) = 0 we should write T = s0 + t0,

x(t) =

{
X (1)

t−s0
x∂2(s0) T ≤ t ≤ s0

x∂2(t) s0 ≤ t ≤ 0,

or x(t) = xA(t ∧ s0, (t − s0) ∨ 0). However to view xA as a covering of A it is more convenient to use two
parameters.

In like manner, the extremals marked B in the figure use u∗ = e1 but take terminal values xa(s):

xB(s, t) = X (1)
t xa(s), τa ≤ s ≤ 0, τB(s) ≤ t ≤ 0. (59)

Those marked C use u∗ = e2:

xC(s, t) = X (2)
t xa(s), τa ≤ s ≤ 0, τC(s) ≤ t ≤ 0.

Those marked E begin the same way, with terminal values from x∂1(s) and u∗ = e1: xE(s, t) = X (1)
t x∂1(s).

However we find that the u∗-saddle condition (17) only holds for σ(s) ≤ t ≤ 0, where σ(s) is obtained by solving
for t = σ(s) in

pE(s, t) ·Ge1 = pE(s, t) ·Ge2.
This leads to an explicit but complicated expression:

σ(s) = − arcsin

⎛
⎝ 8

√
2√

131 + 60 cos(
√

2 s) − 63 cos(2
√

2 s)

⎞
⎠− arctan

((
5 + 3 cos(

√
2 s)

)
csc(

√
2 s)

6
√

2

)
· (60)

Thus we only consider xE(s, t) defined for σ(s) ≤ t ≤ 0. To extend to t < σ(s) we use the values of xE(s, σ(s))
(and their implicit costate counterparts) as terminal values but switch to u∗ = e2:

xD(s, t) = X (2)
t X (1)

σ(s)x
∂1(s).
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The t-parameter range here is τD(s) ≤ t ≤ 0, where τD(s) is the lower limit of t such that xD(t, s) ∈ Ω. Note
that we have “reset” the t parameter to start at t = 0 in xD, so xD(s, 0) = xE(s, σ(s)). The switching curve
which separates D and E in the figure consists of the points xE(s, σ(s)).

6.3. Coverage of Ω and interior verifications

The five 2-parameter families described above, xA(s, t) – xE(s, t) (and their costate counterparts pA(s, t) –
pE(s, t)) comprise the regular extremal family E associated with the solution to the differential game for our
example, with the time resets described above. To confirm this requires several issues to be checked. First we
need to recognize that Ω is simply covered by this family. Each of our 2-parameterizations covers a specific
subset of Ω. For instance xA(s, t) accounts the subset of x ∈ Ω for which

2x2 ≤ x1.

In fact the expression for xA(s, t) simplifies to

xA(s, t) =
[−2 sin(s+ t)

− sin(t)

]
.

The parameter range of (58) is contained in the enlarged range −π/2 ≤ s+ t ≤ t ≤ 0, on which the expression
for xA(s, t) is easily seen to be one–to–one. The region so covered is the triangle with vertices (0, 0), (1, 1

2 ) and
(7
4 , 0).

The interface between the A and B regions is the line x1 = 2x2, which are the points xA(0, t) = xB(0, t). The
region covered by xB consists of those x ∈ Ω with

x1 ≤ 2x2 ≤ 3x1.

Just as for xA, each x in this part of Ω is x = xB(s, t) for a unique (s, t) in the parameter range of (59). We find
the same situation for the regions of Ω associated with C, D, E, and F. The expressions for xB(s, t), xC(s, t),
and xE(s, t) are relatively simple, as was xA(s, t) above. xD(s, t) is quite complicated, because of the expression
for σ(s) in (60). Consequently the expression for xD(s, t) is not easy to work with in closed form. However the
simple coverage is clear from the figure.

Now, convinced of the simple covering of Ω by our family, the next issue is to see that each of xA(s, t) —
xE(s, t) provides a nonsingular parameterization of the respective region, i.e. that their Jacobians are nonvan-
ishing in the appropriate parameter ranges. This will imply that each has a smooth inverse. In the case of xA

for instance it will follow that
x = xA(s, t) 
→ (s, t) 
→ pA(s, t) = p(x)

is smooth in A. I.e. the function p(x) defined implicitly by the (s, t) parameterization of A will be smooth
in each subregion of Ω and continuous throughout. (Note that xA(s, t), pA(s, t), and each of the other 2-
parameterizations is smooth in its parameter range, as can be seen from the various explicit solution formulae
above.) The nonvanishing of Jacobians can be checked as follows (described for the case of xA). An expression
for the Jacobian J(s, t) = ∂xA/∂(s, t) is computed, and from that, an expression for the maximal t = χ(s) for
which J(s, t) = 0 obtained (in closed form, even in the case of xD, because the t-dependence is always relatively
simple). Then χ(s) and τA(s) are plotted with respect to s. (Recall that τA(s) is the lower limit of t for
which xA(s, t) ∈ Ω.) In all cases (A – E) these graphs confirm that χ(s) < τA(s), so that J(s, t) �= 0 in the
appropriate parameter range. Again, these calculations are not feasible by hand, but with Mathematica they
are quite manageable. In this way we find that our family E determines a continuous function p : Ω → R2 with
piecewise continuous derivatives. In particular, p(x) is Lipschitz continuous, as needed for Theorem 4.1.

Next we need to consider why there exists V ∈ C1 with V (0) = 0 such that DV (x) = p(x) and why
H(x, p(x)) = 0 holds there. This was explained in [6], Section 3.2.1, and [15], p. 286, but we repeat the
reasoning here. In each of the regions A–E, as well as along the two coordinate boundaries ∂iΩ, the values of
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p(x) are obtained by solving a Hamiltonian system (54). As explained at the end of the last section, that means
that if p(x) ·dx is (locally) independent of path within the manifold of initial points for one of these regions, then
it will be independent of path through the region covered by the solution family to (54). For instance p(x) · dx
is (trivially) independent of path within the single point initial manifold {x = 0, p = 0} for the extremal x∂1 ,
p∂1 which covers the vertical axis ∂1Ω. Thus p(x) · dx is independent of path within ∂1Ω. (Since ∂1Ω is one
dimensional we could have started here, rather than with the single point manifold at the origin.) Next, ∂1Ω is
the initial manifold for the xE family covering region E, and hence independence of path holds in E. In particular
independence of path holds within the curve forming the boundary between E and D. This curve is the initial
manifold for the family of extremals covering region D, so independence of path extends to all of D. Likewise
we argue that p(x) · dx is independent of path within each of the individual regions A–E. With continuity of
p(x) across the interfaces, independence of path for the full region Ω follows. A second consequence of (54) is
that Hu∗(t)(x(t), p(t)) is constant along all extremals in our family. Since they all lead ultimately to x(0) = 0,
p(0) = 0, it follows that Hu∗(t)(x(t), p(t)) = 0. Thus once we justify the u∗-saddle conditions, it will follow that
H(x, p(x)) = 0 throughout Ω as well.

Next we need to consider the saddle conditions and positive storage condition in the interior of Ω. The
interior saddle conditions (18) and (19) are largely implicit in the construction above. The interior q∗-saddle
condition is simply that q∗ = p(t), which was the case for our boundary as well as interior extremals. From the
formulae (55) and (56) for p∂1 and p∂2 one easily checks that p∂i · Ge1 ≥ p∂i ·Gu for all u ∈ U . Since u∗ = e1
on both boundary faces this accounts for the interior saddle conditions there. In the region covered by xE the
u∗-saddle point condition is implicit because by construction these extremals are only used to the first time
σ(s) = t when p(t) · (Ge1 −Ge2) ≥ 0 fails; that was the relationship that defined σ(s) and led to (60). Consider
the extension into the region covered by xA. The explicit expression for pA works out to be

pA(s, t) = (2(1 − cos(s+ t)), 1 − cos(t)).

Now calculate that
pA(s, t) · (Ge1 −Ge2) = 3(1 − cos(s+ t)) − (1 − cos(t)).

We have already observed that the parameter range (58) is contained in

−π
2
≤ s+ t ≤ t ≤ 0.

Since 1 − cos(x) is decreasing on [−π
2 , 0] it follows that 1 − cos(t) ≤ 1 − cos(s+ t) and therefore

pA(s, t) · (Ge1 −Ge2) ≥ 2(1 − cos(s+ t)) ≥ 0.

This implies the u∗-saddle condition for u∗ = e1 in the xA section of Ω. Similar calculations are possible for
the regions associated with xB and xC. Explicit expressions for xD and pD are quite cumbersome however, due
to (60). The u∗-saddle condition there is most easily verified numerically.

This is a good place to make another observation about our construction. Since ṗ = −x and the coordinates
of x are nonnegative, it follows that p(x) ≥ 0. Moreover, based on our explicit formulae for p on the two
coordinate faces, we see that p1(x) = 0 only at the origin, and p2(x) = 0 only on the horizontal axis ∂2Ω. For
reference below we indicate this briefly as

p(x) > 0 with equality in both coordinates only for x = 0. (61)

While the saddle-conditions are essentially insured by the correct choice of extremal family E , the positive storage
condition (33) has not influenced the choice of extremals at all. Indeed it arises as a somewhat fortuitous feature
of the geometry of the extremal family. Observe that Hu∗(x, p(x)) = 0 implies that

1
2
(‖p(x)‖2 − ‖x‖2) = p(x) · (p(x) −Gu∗).
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So to check the positive storage condition, since p(x) ≥ 0 it is enough to check that both coordinates of
ẋ = p(x) −Gu∗ are negative. This is visually obvious in Figure 3. Direct algebraic confirmation is possible as
well. For instance in the region for xA we can use the simple expression for pA(s, t) above to see that

pA −Gu∗ = (−2 cos(s+ t),− cos(t)).

The horizontal axis itself corresponds to s < t = 0, so that ẋ1 < 0. Since p1 > 0 we still get strict inequality
p(x) · (p(x)−Gu∗) < 0, except at the origin. Algebraic confirmation is not feasible in the xD region because of
the complicated expressions. In addition to the visual evidence of Figure 3, numerical verification also confirms
the positive storage condition in region D.

We make one last observation before proceeding to the boundary saddle point conditions. Consider any
x ∈ ∂3Ω, except the corners. If x(t), T < t < 0 is the extremal from our family that reaches x(T ) = x, we know
that x(t) ∈ Ω for T < t and so

0 ≤ n3 · ẋ(T+) = n3 · (p(x) −Gu∗(T+)). (62)

6.4. Boundary conditions

Now we consider the saddle point conditions for V (x) for x ∈ ∂Ω, including the corners. This is where
the results of Section 3 are valuable. Our discussion above verifies the interior saddle conditions, which are a
hypothesis for those results.

Along the two coordinate axes, the values of q∗(x) = p(x) are determined by our two boundary extremals:
x∂i(t), p∂i(t). We observed following (54) that p = RT

F p is invariant for the boundary extremal equations. Since
p∂i(0) = 0 it follows that RT

{i}p
∂i(x) = p∂i(x) along each of ∂iΩ, i = 1, 2 respectively. By Lemma 1.4 this means

or di · p(x) = 0 along ∂1Ω and ∂2Ω. (This of course can be checked directly from the explicit formulae (55)
and (56), but we want to point out that this a feature of boundary extremals in general.) Thus Theorem 3.1
applies to show that the saddle point conditions are satisfied on both of the coordinate faces ∂1Ω and ∂2Ω,
excepting possibly the two corners (0, 3.5/3) ∈ ∂{1,3}Ω or (3.5/2, 0) ∈ ∂{2,3}Ω. We will come back to those after
considering the other face.

The third face is the diagonal boundary ∂3Ω, where (2, 3) ·x = 7/2. For each such x, p(x) is the value of p(T )
along an extremal ṗ(t) = −x(t), T < t < 0, with x(t) ∈ Ω. As observed in (61), pi(x) ≥ 0. Both coordinates of
d3 are negative. Therefore d3 · p(x) ≤ 0 for all x ∈ ∂3Ω. Since we know from (62) that n3 · ẋ ≥ 0, Theorem 3.2a
applies to assure us that the q∗-saddle condition holds along this portion of the boundary. This applies to the
corners as well because p · di = 0 for i = 1, 2 respectively. As for the u∗-saddle condition here, Theorem 3.3
part b, will provide what we need. To see this, consider any x ∈ ∂3Ω, except the corners. Observe that our choice
of n3 has the property that n3 ·Gu = −7/

√
5 for all u ∈ U . Thus it follows from (62) that n3 · (p(x) −Gu) ≥ 0

for all u ∈ U , and so Theorem 3.3 part b applies with F = ∅, the inequality p(x0) · Gu0 ≥ p(x0) · Gu being a
consequence of the interior saddle point conditions, which we have already checked.

Now we turn to the u∗-saddle condition at the two (nonzero) corners. Consider the upper-left corner first:

x0 =
[

0
7/6

]
= x∂1(τ1), p(x0) = p∂1(τ1) =

18 −√
226

12

[
1
1

]
.

We will now check explicitly, using Lemma 1.3 that π(x0, p(x0) −Gu) = RF (p(x0) −Gu) with F = {1} for all
u ∈ U , as needed to apply Theorem 3.3 part b). Using u = (u1, 1 − u1) we compute that

B{1}(p(x0) −Gu) =
−12 +

√
226 + 18 u1

6
√

2
,
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which is clearly nonnegative for 0 ≤ u1 ≤ 1. Next, we calculate that

R{1}(p(x0) −Gu) =
[

0
3−√

226−3 u1
6

]
. (63)

From this we check that ni ·R{1}(p(x0)−Gu) ≥ 0 for both i = 1, 3. Thus π(x0, p(x0)−Gu) = R{1}(p(x0)−Gu)
for all u. So to apply Theorem 3.3 part b) we only need to verify that

p(x0) · R{1}(p(x0) −Ge1) ≤ p(x0) · R{1}(p(x0) −Gu),

since u∗ = e1 here. But this is clear from (63) since both coordinates of p(x0) are nonnegative and both
components of R{1}(p(x0) − Gu) are nonincreasing in u1. Thus, Theorem 3.3 part b) implies the u∗-saddle
condition at the upper-left corner x0.

The lower-right corner x0 = x∂2(τ∂2 ) is more complicated:

x0 =
[
7/4
0

]
, p(x0) = p∂2(τ∂2 ) =

[
2 −

√
15
4

0

]
.

Theorem 3.3 part b) does not apply here, the F involved in π(x0, p(x0)−Gu) = RF (p(x0)−Gu) is not constant
over u ∈ U . For smaller values of u1 one finds that F = {2, 3}, but for larger values F = {2}. One can check
the u∗-saddle condition for u∗ = e1 with explicit calculations, since p(x0) · π(x0, p(x0) −Gu) is piecewise linear
in u1. We need to show that this is nonincreasing in u1. For that it is enough to check that the derivative with
respect to u1 is nonpositive for each of F = {2, 3} and F = {2}:

−p(x0)R{2,3}G
[

1−1

]
= 0, and − p(x0)R{2}G

[
1−1

]
=

3
(−8 +

√
15

)
8

,

both of which are indeed nonpositive. Our confirmation of the saddle point conditions for V (x) are now complete.

6.5. Optimality

We have now confirmed almost all the properties of E for Theorem 4.1 to be invoked for this example. We
simply need to present a set-valued A(x) as in the verification theorem. The region Ω is partitioned into three
subregions by the value of u∗ associated with out family E . Referring to the regions A—E of Figure 3, we take

Ω(∗) = (B ∩ C) ∪ (D ∩ E)

Ω(1) = (A ∪B ∪ E) \ Ω(∗)

Ω(2) = (D ∪ C) \ Ω(∗).

Note that Ω(∗) is made up of the two switching curves, B ∩ C consists of the points xE(s, σ(s)), and D ∩ E
is the set of points on the relaxed extremal xa(t). These provide the boundary between the two fixed-control
regions, Ω(i). In terms of these, A(x) for the optimal feedback control is simply

A(x) =

⎧⎪⎨
⎪⎩
{e1} for x ∈ Ω(1)

{e2} for x ∈ Ω(2)

U for x ∈ Ω(∗).
(64)

That A(x) satisfies the consistency condition (35) is clear from the construction, as is the saddle point condi-
tion (34) in each of Ω(i). Since for x ∈ Ω(∗) we have p(x) ·Ge1 = p(x) · Ge2 it is clear that (34) is satisfied for
those points as well. The closure and upper semi-continuity results are obvious. Thus Theorem 4.1 applies to
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confirm that V (x) as defined parametrically by our family E , and illustrated in Figure 3, is indeed that value
of the game for this example.

In concluding this example we note that the optimal strategy is strongly influenced by the Skorokhod dy-
namics. This is evident in the dependence of our expressions above for regions A, D, and E on the boundary
extremals x∂i . On the x1 = 0 face, the optimal strategy takes advantage of the stronger emptying effect for
x2 of R{1}Ge1 = (0, 3) as compared to R{1}Ge2 = (0, 5

2 ). This advantage of u∗ = e1, made possible by the
Skorokhod dynamics on ∂1Ω, influences the optimal strategy into region E of the interior.

7. A small network in 3 dimensions

In this final section we return to the 2-server network of Figure 1. This example has been considered in the
literature previously, but with respect to different performance criteria. Weiss [34] uses this network (with s1 = 1,
s2 = 1

2 , s3 = 2, q(t) ≡ 0, and x(0) = (1, 0, 1)) as an example with draining time T = inf{t ≥ 0 : x(t) = 0}
as the performance criterion. He shows that the LBFS policy is not optimal, but that FBFS is. He also
considers it using total inventory

∫ T

0

∑
xi(t) dt as the performance criterion, taking a constant load of the form

q(t) ≡ (α, 0, 0). In that regard he finds that a constant control is optimal, taking one of three possible values,
depending on the signs of x2 and x3 − γx1 for a certain critical value γ. Eng, Humphrey and Meyn [19] are
concerned with the total inventory problem more generally, and with the use of linear programming calculations
to obtain upper and lower performance bounds. They consider this network as an example, using simulations
to compare their bounds with actual performance. The network also appears as an example in Meyn [28, 30].
The issue there is optimal policies with respect to a long-run (ergodic) cost criterion limT→∞ 1

T

∫ T

0

∑
xi(t) dt.

We use formulation given in Sections 1 and 2, with the specific service rates s1 = s2 = s3 = 1:

G =

⎡
⎣ 1 0

0 1
−1 0

⎤
⎦ .

We take Ω = R3
+. (Since we will only be concerned with features on a small portion of ∂Ω, we will not bother to

specify additional boundaries to reduce Ω to a compact set.) We take ni = ei (i = 1, 2, 3); ci = 0 and restoration
vectors di as specified in (2).

Figure 4 illustrates a family E of extremals for this problem, constructed along the same lines as in Section 6,
although considerably more complicated in this case. Our intent here is merely to look at the portion of ∂Ω
near the x1-axis (∂{2,3}Ω), covered by the extremals labeled E in the figure, to illustrate the application of
Theorems 3.2b and c, and 3.3c, since they were not used in Section 6.

The section of the extremal family of interest to us is

xE(s, t, w) = X (1)
w X (2)

σ(s,t)X ∂2
t xa(s).

We describe the stages of this extremal very briefly. xa(s) is a boundary extremal (50) in the face ∂2Ω, using a
nonconstant relaxed control,

u∗(t) =
[

λ(t)
1 − λ(t)

]
, λ(t) =

5 + cos(
√

6
5 t)

15
·

with terminal conditions xa(0) = pa(0) = 0:

xa(t) = − 1√
30

sin

(√
6
5
t

) ⎡
⎣2
0
1

⎤
⎦ , pa(t) =

1 − cos(
√

6
5 t)

6

⎡
⎣2

1
1

⎤
⎦ ,

defined for τa ≤ t ≤ 0, where τa = −
√

5π
2
√

6
.
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Figure 4. Anatomy of the extremal family.

Next, using terminal points xa(s), pa(s) we follow a boundary extremal

X ∂2
t xa(s)

using u∗ = e2 into the upper portion of ∂2Ω, labeled B in the figure. From the points of X ∂2
t xa(s) we follow an

interior extremal using u∗ = e2 into the interior of Ω:

X (2)
w X ∂2

t xa(s).

Such extremals are labeled C in the figure. For small t we find that X (2)
w X ∂2

t xa(s) encounters a control switching
surface D at w = σ(s, t), much as in (60) above. From there we follow an interior extremal xE(s, t, w) with
control u∗ = e1:

X (1)
w X (2)

σ(s,t)X ∂2
t xa(s)

Given suitable s, t < 0 these continue to w = τ(s, t) at which point xE(s, t, w) contacts either ∂2Ω or ∂3Ω. In
particular, points on or near the edge ∂{2,3}Ω are accounted for by x0 = xE(s, t, τ(s, t)). We want to consider
the q∗- and u∗-saddle conditions at such boundary points.

One can verify all the saddle point conditions along these extremals, as we did in Section 6. We wish only
to examine the points x0 = xE(s, t, τ(s, t)) on ∂Ω. First consider x0 = xE(s, t, τ(s, t)) ∈ ∂3Ω. The q∗-saddle
condition for q∗ = p(x0) on this face follows from the observations following Theorem 3.2 above, since d3 = n3,
and

n3 ·Gu∗ = n3 ·Ge1 = −1 < 0.

The saddle conditions for u∗ = e1 also follow easily: observe that n3 ·Gei ≤ 0 for both i = 1, 2. Therefore, for
all u ∈ U we have

n3 · (p−Gu) ≥ n3 · p ≥ 0,

using the general nonnegativity of p (which follows by the same argument as (61)). Therefore π(x, p − Gu) =
p − Gu for all u, so that the boundary u∗-saddle condition is equivalent to the interior version. (This is
Theorem 3.3 b).)

Next consider those x0 in the face ∂2Ω. Regarding the q∗-saddle condition for q∗ = p(x) at such a point,
since d2 = n2 − n3, Theorem 3.2b says that n2 · Ge1 ≤ e3 · p is sufficient. Since n2 · Ge1 = 0, this reduces to
e3 · p ≥ 0, which we know from general considerations. For the u∗-saddle condition on this face we resort to



696 M.V. DAY

0.2 0.4 0.6 0.8 1

-0.06

-0.04

-0.02

0.02

0.04

Figure 5. Example of u-saddle condition on x1-axis.

numerical examination. According to Theorem 3.3 part c) we only need to compare the two extreme control
values, to verify that

p(τ) · π(x(τ), p(τ) −Ge1) ≤ p(τ) · π(x(τ), p(τ) −Ge2) (65)
at such points. Numerical examination indicates that this condition does hold for x0 = x(τ) sufficiently close
to the x1-axis.

We turn our attention lastly to points on the x1-axis. These points are covered by extremals xE, but
additional considerations are necessary to verify the boundary saddle conditions. This is a situation in which
Theorem 3.2c is useful. It allows us to extend the q∗-saddle condition from the two faces ∂2Ω and ∂3Ω to the
axis, since the saddle point control value u∗ = e1 is constant in a neighborhood of this edge. As explained
following the statement of Theorem 3.2, we just need to check that i) of the theorem fails on the edge ∂{2,3}Ω.
One computes that q̄ = RT

{2,3}p = (p1, 0, 0)T and

B{2,3}(q̄ −Ge1) = (0,−1)T ,

which does have a negative component. Thus, by Lemma 1.3, i) of Theorem 3.2c is not true. Consequently,
the q∗ saddle condition is satisfied at such x0. For the u∗-saddle condition with u∗ = e1 none of our theorems
apply. We must resort to numerical examination. For instance, the extremal that leads to

x(τ) = (0.423358, 0, 0)

produces
p(τ) = (0.211544, 0.0761725, 0.092384).

One can now examine the graph of p(τ)·π(x(τ), p(τ)−G [
1−λ

λ

]
) with respect to 0 ≤ λ ≤ 1, presented in Figure 5.

We see that the minimum value does indeed occur at λ = 0, corresponding to u∗ = e1. Similar calculations
indicate that the u∗-saddle condition is satisfied at all points on this axis. The graph is obviously piecewise
linear, corresponding the changes in the subset F ⊆ {2, 3} for which π(x(τ), p(τ) − Gu) = RF (p(τ) − Gu).
Note also that, as one can just barley see, the graph is non-convex near λ = 0, showing that the components of
π(x, v) need not be convex with respect to v in general.

The above serves to illustrate the applicability of Theorems 3.2 and 3.3c to verify saddle point conditions at
boundary points. At present, the analysis of this example is not complete. It turns out that there is a slender
region just beneath xa(t) (A in the figure) in which the boundary u∗-saddle condition fails (for the family of
Fig. 4). In fact further calculations suggest that the true value function for this example will be nonsmooth
near that region, satisfying the HJI only in the viscosity sense there.

In closing let us come back to the comment in the introduction that the inclusion of boundary extremals
is especially important for multiple server examples. Referring again to Figure 4, the switching curve/surface
labeled F turns out to be described by the naive policy, which is simply to choose the control u(t) to maximize
the rate of decrease of ‖x(t)‖2 (ignoring Skorokhod effects):

d
dt

‖x(t)‖2 = 2x(t) · (q(t) −Gu(t)).
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This policy would simply divide the states into two constant control regions: G (for u = e1) and H (for u = e1),
separated by the hyperplane x1 = x2 + x3. In our figure, F lies exactly on that hyperplane. In the introduction
we anticipated that where one server becomes idle (here near the face ∂3Ω, where x2 = 0) the optimal policy
might be influenced by the Skorokhod dynamics as they modify the behavior of the non-idle server. Indeed we
see this effect in Figure 4 in that the naive switching surface F does not extend all the way to ∂3Ω but in fact
doubles back abruptly as the curve D. Responsible for this is the complicated structure of boundary extremals
xA and xB within the face ∂3Ω.
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