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TOWARDS A TWO-SCALE CALCULUS

Augusto Visintin
1

Abstract. We define and characterize weak and strong two-scale convergence in Lp, C0 and other
spaces via a transformation of variable, extending Nguetseng’s definition. We derive several properties,
including weak and strong two-scale compactness; in particular we prove two-scale versions of theorems
of Ascoli-Arzelà, Chacon, Riesz, and Vitali. We then approximate two-scale derivatives, and define
two-scale convergence in spaces of either weakly or strongly differentiable functions. We also derive
two-scale versions of the classic theorems of Rellich, Sobolev, and Morrey.
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Introduction

Let Ω be a domain of RN (N ≥ 1), and set Y := [0, 1[N . In the seminal work [25], Nguetseng introduced the
following concept: a bounded sequence {uε} of L2(Ω) is said (weakly) two-scale convergent to u ∈ L2(Ω×Y ) if
and only if

lim
ε→0

∫
Ω

uε(x) ψ
(
x,
x

ε

)
dx =

∫∫
Ω×Y

u(x, y) ψ(x, y) dxdy, (1)

for any smooth function ψ : RN×RN → R that is Y -periodic w.r.t. the second argument. It should be noticed
that uε : Ω → R for any ε, whereas u : Ω×Y → R.

This notion was then analyzed in detail and applied to a number of problems by Allaire [1] and others.
It can account for occurrence of a fine-scale periodic structure, and indeed has been and is still extensively
applied to homogenization, see e.g. [2, 5, 8, 13, 17, 20, 21, 26, 35, 36], just to mention some papers of a growing
literature. In the framework of periodic homogenization, two-scale convergence can represent an alternative to
the classic energy method of Tartar, see e.g. [3, 7, 16, 19, 24, 28–31]. Extensions to the nonperiodic setting have
been proposed by Casado-Diaz and Gayte [11, 12] and by Nguetseng [27]. Multi-scale convergence has been
studied by Allaire and Briane [4] and by others.

In this paper we investigate some properties of two-scale convergence, and extend it in several ways. In
Section 1 we set uε = u = 0 outside Ω and define a family of scale transformations Sε : RN ×Y → RN .
Denoting weak one-scale (two-scale, resp.) convergence by ⇀ (⇀

2
, resp.), along the lines of [5, 8, 13, 15, 20, 21]

we set
uε⇀

2
u in L2(Ω×Y ) ⇔ uε ◦ Sε ⇀ u in L2(RN×Y ); (2)
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372 A. VISINTIN

we then prove the equivalence to the standard definition (1). (This procedure has been named periodic unfolding
in [15].) We thus represent two-scale convergence by means of a single function space; we also define strong
two-scale convergence (that we denote by −→

2
) via an analogous characterization. The extension to either weak

and strong two-scale convergence in Lp(RN ×Y ) for any p ∈ [1,+∞] is obvious.
In this theory the periodicity w.r.t. the fine-scale variable y plays an important role. We then denote by Y the

set Y equipped with the topology of the N -dimensional torus. After a simple modification of the discontinuous
transformation Sε, we also define weak and strong two-scale convergence in the Fréchet space C0(RN ×Y).

In Section 2 we derive some properties of two-scale convergence. Some of these results are already known,
cf. e.g. [1, 15, 20, 21, 23, 25]; in particular this is the case for several either equivalent or sufficient conditions for
two-scale convergence in Lp. Here we organize their derivation by using the tool of two-scale decomposition,
and also deal with two-scale convergence in C0 and in D′, with the Fourier transform, and with two-scale
convolution.

In Section 3 we study weak and strong two-scale compactness. We prove a two-scale version of a result of
Chacon, known as the biting lemma, cf. [10]; we characterize strong two-scale compactness in Lp and in C0,
generalizing classic criteria of Riesz and Ascoli-Arzelà. Along the same lines, we also extend Vitali’s convergence
theorem.

Differential properties of two-scale convergence are the main concern of this paper. Even by simple examples
it appears that the gradient of the two-scale limit of uε need not coincide with the two-scale limit of the
gradient of uε. The two-scale limit of sequences bounded in H1(Ω) has already been studied in [1, 25]; the
present analysis moves towards a different direction. In Section 4 we show that it is possible to express the
gradient of the two-scale limit without the need of evaluating the limit itself, via what we name approximate
two-scale derivatives. More specifically, we define an approximate gradient Λε such that, denoting the weak
two-scale limit by limε→0

(2),

lim
ε→0

(2)Λεuε = (∇x,∇y) lim
ε→0

(2)uε in Lp(RN ×Y )2N . (3)

(The fact that ε∇uε⇀
2
∇yu was already known, cf. [1].)

By means of two-scale approximate derivatives, in Section 5 we define two-scale convergence in spaces of
differentiable functions: Wm,p, Cm, Cm,λ, D. For instance, for any Caratheodory function w ∈ Wm,p(RN ×
Y), w(x, x/ε) two-scale converges to w(x, y) in that space. We then derive two-scale versions of the Rellich
compactness theorem and of the Sobolev and Morrey imbedding theorems. Indeed several classic results have
a two-scale counterpart, which does not concern single functions but sequences of functions (loosely speaking,
these properties are dynamic rather than static...).

This paper reports on a research on multi-scale analysis and modelling; some of the present results were
announced in [33]. This point of view induced this author to amend the vector Preisach model of ferromagnetic
hysteresis in [32]. A work apart, [34], deals with the identification of the two-scale limit of first-order differential
operators.

1. Two-scale convergence VIA two-scale decomposition

In this section we introduce a family of variable transformations, and use it to define two-scale convergence,
along the lines of [5, 8, 13, 15, 20, 21].

Throughout this paper we denote by Y the set Y = [0, 1[N equipped with the topology of the N -dimensional
torus, and identify any function on Y with its Y -periodic extension to RN . In passing we notice that D(Y) �=
D(Y ), whereas Lp(Y) = Lp(Y ) for any p ∈ [1,+∞].

Two-scale decomposition. Let B be a complex separable Banach space, denote its norm by ‖ · ‖B and the
duality pairing between B and B′ by 〈·, ·〉. We set p′ := p/(p− 1) for any p ∈ ]1,+∞[, 1′ := ∞ and ∞′ := 1; we
assume that either B is reflexive or B′ is separable, so that

(
Lp(RN ;B)

)′ = Lp′
(RN ;B′) for any p ∈ [1,+∞[,
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cf. e.g. [18]. For any ε > 0, we decompose real numbers and real vectors as follows:

n̂(x) := max{n ∈ Z : n ≤ x}, r̂(x) := x− n̂(x) (∈ [0, 1[) ∀x ∈ R,
N (x) := (n̂(x1), ..., n̂(xN )) ∈ ZN , R(x) := x−N (x) ∈ Y ∀x ∈ RN .

(1.1)

Thus x = ε[N (x/ε) +R(x/ε)] for any x ∈ RN . In applications the variable x often expresses the ratio between
some dimensional quantity and a given scale. If ε represents the ratio between a finer scale and the given one,
N (x/ε) and R(x/ε) may then be regarded as coarse-scale and fine-scale variables, resp. Besides the above
two-scale decomposition, we define a two-scale composition function:

Sε(x, y) := εN (x/ε) + εy ∀(x, y) ∈ RN×Y, ∀ε > 0. (1.2)

As Sε(x, y) = x+ ε[y −R(x/ε)],

Sε(x, y) → x uniformly in RN×Y, as ε→ 0. (1.3)

The next result is at the basis of our approach to two-scale convergence. First let us denote by L(RN ) (B(RN),
resp.) the σ-algebra of Lebesgue- (Borel-, resp.) measurable subsets of RN , define L(Y) and B(Y) similarly,
and set

F :=
{
f : RN×Y → R measurable either w.r.t. the σ-algebra generated

by B(RN)×L(Y), or w.r.t. that generated by L(RN )×B(Y)
}
.

(1.4)

This class includes all Caratheodory functions, cf. e.g. [9], p. 30. Henceforth by writing any sum over ZN we
shall implicitly assume that it is absolutely convergent.

Lemma 1.1. Let f ∈ F , and assume that either f ∈ L1
(Y;L∞(RN )

)
and has compact support, or f ∈

L1
(
RN ;L∞(Y)

)
. Let us extend f(x, ·) by Y -periodicity to RN for a.a. x ∈ RN .

Then, for any ε > 0, the functions RN → R : x �→ f(x, x/ε) and RN ×Y → R : (x, y) �→ f(Sε(x, y), y) are
integrable, and∫

RN

f(x, x/ε) dx = εN
∑

m∈ZN

∫
Y

f(ε[m+ y], y) dy =
∫∫

RN×Y

f(Sε(x, y), y) dxdy ∀ε > 0. (1.5)

For any p ∈ [1,+∞] and ε > 0, the operator Aε : g �→ g ◦ Sε is then a (nonsurjective) linear isometry
Lp(RN ;B) → Lp(RN×Y;B).

Proof. The function x �→ f(x, x/ε) is obviously measurable. The function (x, y) �→ f(Sε(x, y), y) is also
measurable, for the mapping (x, y) �→ (Sε(x, y), y) is piecewise constant w.r.t. x and affine w.r.t. y. As
RN =

⋃
m∈ZN (εm+ εY) and N (x/ε) = m for any x ∈ εm+ εY, we have∫

RN

f(x, x/ε) dx =
∑

m∈ZN

∫
εm+εY

f(x, x/ε) dx = εN
∑

m∈ZN

∫
Y

f(ε[m+ y], y) dy

=
∑

m∈ZN

∫
εm+εY

dx
∫

Y

f(ε[N (x/ε) + y], y) dy =
∫
RN

dx
∫

Y

f(Sε(x, y), y) dy.

Writing (1.5) for f(x, y) = ‖g(x)‖B for a.a. (x, y), we get the final statement for any p ∈ [1,+∞[, and then by
passage to the limit also for p = ∞. The operator Aε is not onto, for g ◦ Sε is piecewise constant w.r.t. x for
any g ∈ Lp(RN ;B). �
Corollary 1.2. Denoting by | · |M the M -dimensional Lebesgue measure, for any measurable set A ⊂ RN of
finite measure and any measurable set C ⊂ Y,

|{x ∈ A : R(x/ε) ∈ C}|N = |{(x, y) ∈ RN×Y : Sε(x, y) ∈ A, y ∈ C}|2N ∀ε > 0. (1.6)
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In particular,
|A|N = |{(x, y) ∈ RN×Y : Sε(x, y) ∈ A}|2N ∀ε > 0. (1.7)

Proof. Let us define the characteristic function

χA(v) := 1 ∀v ∈ A, χA(v) := 0 ∀v ∈ RN \A,
and define χC similarly. By Lemma 1.1, we have

|{x ∈ A : R(x/ε) ∈ C}|N =
∫
RN

χA(x) χC(R(x/ε)) dx

=
∫∫

RN×Y

χA(Sε(x, y)) χC(y) dxdy = |{(x, y) : Sε(x, y) ∈ A, y ∈ C}|2N . �

Two-scale convergence in Lp. In this paper we deal with sequences of functions, which we label by the index
ε, as it is customary in the literature about two-scale convergence. More precisely, ε will represent an arbitrary
but prescribed, positive and vanishing sequence of real numbers; for instance, ε = {1, 1/2, ..., 1/n, ...}. The
results of this paper do not depend on the specific choice of this sequence, that we regard as fixed.

Let B, Y, and Sε be defined as above. Along the lines of [15], for any sequence of measurable functions,
uε : RN → B, and any measurable function, u : RN×Y → B, we say that uε two-scale converges to u (w.r.t. the
prescribed positive vanishing sequence {εn}) in some specific sense, whenever uε ◦ Sε → u in the corresponding
standard sense. In this way we define strong and weak (weak star for p = ∞) two-scale convergence (1 ≤ p ≤
+∞), that we denote by uε −→

2
u, uε⇀

2
u, uε

∗
⇀
2
u (resp.):

uε −→
2
u in Lp(RN × Y;B) ⇔ uε ◦ Sε → u in Lp(RN×Y;B), ∀p ∈ [1,+∞]; (1.8)

uε⇀
2
u in Lp(RN × Y;B) ⇔ uε ◦ Sε ⇀ u in Lp(RN×Y;B), ∀p ∈ [1,+∞[; (1.9)

uε
∗
⇀
2
u in L∞(RN × Y;B′) ⇔ uε ◦ Sε

∗
⇀u in L∞(RN ×Y;B′) (= L1(RN×Y;B)′). (1.10)

For any domain Ω ⊂ RN , two-scale convergence in Lp(Ω×Y;B) is then defined by extending functions to RN\Ω
with vanishing value. We similarly define a.e. (i.e., almost everywhere) two-scale convergence, quasi-uniform
two-scale convergence, two-scale convergence in measure, and so on. In all of these cases the limit is obviously
unique. We refer to the usual convergence over RN as one-scale convergence.

For instance, for any ψ ∈ D(RN×Y), uε(x) := ψ(x, x/ε) −→
2
ψ(x, y). Examples of this sort play an important

role, for they often represent the best behaviour one may expect for this type of convergence. By the next
result, weak and strong two-scale convergence can be regarded as intermediate properties between the usual
(one-scale) weak and strong convergence.

Theorem 1.3. Let p ∈ [1,+∞[, {uε} be a sequence in Lp(RN ;B) and u ∈ Lp(RN ×Y;B). Then

whenever u is independent of y,

uε → u in Lp(RN ;B) ⇔ uε −→
2
u in Lp(RN×Y;B),

(1.11)

uε −→
2
u in Lp(RN×Y;B) ⇒ uε⇀

2
u in Lp(RN ×Y;B), (1.12)

uε⇀
2
u in Lp(RN ×Y;B) ⇒ uε ⇀

∫
Y

u(·, y) dy in Lp(RN ;B). (1.13)

For any Lipschitz-continuous function f : B → B,

uε −→
2
u in Lp(RN ×Y;B) ⇒ f(uε) −→

2
f(u) in Lp(RN ×Y;B). (1.14)
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Proof. For any u ∈ Lp(RN ;B), by Lemma 1.1 we have

‖uε − u‖p
Lp(RN ;B)

=
∫
RN

‖uε(x) − u(x)‖p
B dx

=
∫∫

RN×Y
‖uε(Sε(x, y)) − u(Sε(x, y))‖p

B dxdy = ‖uε ◦ Sε − u ◦ Sε‖p
Lp(RN×Y;B)

.

Hence∣∣‖uε ◦ Sε − u‖Lp(RN×Y;B) − ‖uε − u‖Lp(RN ;B)

∣∣ =
∣∣‖uε ◦ Sε − u‖Lp(RN×Y;B) − ‖uε ◦ Sε − u ◦ Sε‖Lp(RN×Y;B)

∣∣
≤ ‖u− u ◦ Sε‖Lp(RN×Y;B) → 0 (by (1.3)).

(1.11) is thus established. (1.12) and (1.14) are straightforward.
Let us now come to (1.13), assume that uε⇀

2
u in Lp(RN ×Y;B), and fix any (bounded if p > 1) Lebesgue

measurable set A ⊂ RN . Applying Lemma 1.1 to f = uεχA (∈ L1(RN )), we have

∫
A

uε(x) dx =
∫∫

A×Y

uε(Sε(x, y)) dxdy ⇀
∫∫

A×Y

u(x, y) dxdy =
∫

A

dx
∫

Y

u(x, y) dy in B.

As the finite linear combinations of indicator functions χA are dense in Lp′
(RN ), we conclude that uε ⇀∫

Y u(·, y) dy in Lp(RN ;B). �

Remark. For p = ∞ the implication (1.11) may fail. As a counterexample it suffices to select any real a that
is no integral multiple of εn for any n, and set uεn = χ[a,+∞[ for any n ∈ N. This constant sequence does not
two-scale converge in L∞(RN ×Y), as uεn ◦ Sεn is constant w.r.t. x in a small neighbourhood of a for any n.
This shows that strong two-scale convergence in L∞(RN×Y;B) to discontinuous functions is a rather restrictive
property. See however Proposition 1.5 below.

On the other hand it is easy to see that for p = ∞ (1.13) holds with ∗
⇀ ( ∗

⇀
2

, resp.) in place of ⇀ (⇀
2

, resp.),
provided that B is the dual of a separable Banach space.

Limit decomposition and orthogonality. Let p ∈ [1,+∞[, uε⇀
2
u in Lp(RN ×Y;B), and set

u0ε :=
∫

Y

uε(εN (·/ε) + εξ) dξ, u1ε := uε − u0ε

u0 :=
∫

Y

u(·, y) dy, u1 := u− u0

a.e. in RN . (1.15)

Via Lemma 1.1 it is easy to see that

u0ε⇀
2
u0, u1ε⇀

2
u1 in Lp(RN×Y;B).

Notice that uε ⇀ u0 in Lp(RN ;B), for u0 is independent of y, cf. (1.11); hence u1ε ⇀ 0 in Lp(RN ;B). This
yields the limit two-scale decomposition

u(x, y) = u0(x) + u1(x, y) for a.a. (x, y) ∈ RN×Y,

with
∫

Y

u1(x, y) dy = 0 for a.a. x ∈ RN .
(1.16)
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Proposition 1.4. Let p ∈ [1,+∞[, the sequence {uε} and u0, u1 be as above. Assume that ϕε −→
2
ϕ in

Lp′
(RN ×Y;B′), and decompose ϕ in the form ϕ = ϕ0 + ϕ1, with ϕε ⇀ ϕ0 in Lp′

(RN ;B′). Then∫
RN

〈uε(x), ϕε(x)〉dx →
∫∫

RN×Y

〈u(x, y), ϕ(x, y)〉dxdy

=
∫
RN

〈u0(x), ϕ0(x)〉dx +
∫∫

RN×Y

〈u1(x, y), ϕ1(x, y)〉dxdy.
(1.17)

Proof. By Lemma 1.1, by the decomposition formula (1.16) and the analogous formula for ϕ, we have

lim
ε→0

∫
RN

〈uε(x), ϕε(x)〉dx = lim
ε→0

∫∫
RN×Y

〈uε(Sε(x, y)), ϕε(Sε(x, y))〉dxdy

=
∫∫

RN×Y

〈u(x, y), ϕ(x, y)〉dxdy

=
∫
RN

〈u0(x), ϕ0(x)〉dx +
∫∫

RN×Y

〈u1(x, y), ϕ1(x, y)〉dxdy. �

Let us denote the duality mapping B → 2B′
by F . If u0 and u1 are as above, we have the following orthogonality-

type property: ∫
RN

dx
∫

Y

〈F (u0(x)), u1(x, y)〉dy =
∫
RN

dx
〈
F (u0(x)),

∫
Y

u1(x, y) dy
〉

= 0, (1.18)

as
∫

Y u1(·, y) dy = 0. If p = 2 and B is a Hilbert space, the decomposition (1.16) is actually orthogonal: u1 is
the projection of u onto the subspace {v ∈ L2(RN×Y;B) :

∫
Y
u1(x, y) dy = 0 for a.a. x ∈ RN}, and

‖u‖2
L2(RN×Y;B) = ‖u0‖2

L2(RN ;B) + ‖u1‖2
L2(RN×Y;B). (1.19)

Interpolation. Modifications are needed to extend the previous definitions to C0, for in general the function
uε ◦ Sε is discontinuous w.r.t. x and w.r.t. y ∈ Y, even if uε is continuous. We then replace uε ◦ Sε by a
continuous function, Lεuε , that we construct via linear interpolation w.r.t. each coordinate axis as follows. For
i = 1, ..., N , let us denote by ei the unit vector of the xi-axis, set x[i] := x− xiei for any x ∈ R, y[i] := y − yiei

for any y ∈ R (thus 0 ≤ yi < 1), and (cf. (1.1))

(Iε,iw)(x, y) := w(x[i] + εn̂(xi/ε)ei, y)

+r(xi/ε)
[
w(x[i] + εn̂(xi/ε)ei + εei, y) − w(x[i] + εn̂(xi/ε)ei, y)

]
,

(Jiw)(x, y) := w(x, y) − yi

(
limt→1− w(x, y[i] + tei) − w(x, y[i])

)
∀(x, y) ∈ RN×Y, ∀w : RN ×Y → R, for i = 1, ..., N,

Lεv := (J1 ◦ ... ◦ JN ◦ Iε,1 ◦ ... ◦ Iε,N )(v ◦ Sε) ∀v : RN → R.

(1.20)

Thus v ◦ Sε is piecewise constant w.r.t. x, whereas Lεv is piecewise linear and continuous w.r.t. xi for any i.
Moreover

lim
t→1−

(Lεv)(x, y[i] + tei) = (Lεv)(x, y[i]) ∀(x, y) ∈ RN ×Y, ∀i.
If v ∈ C0(RN ;B) then Lεv ∈ C0(RN ×Y;B).

The interpolation procedure that here has been applied w.r.t. x is labelled Q1, and is widely used in the
finite-element theory. A Q1-interpolation was also applied to two-scale convergence in [15].
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Two-scale convergence in C0. It is well known that C0(RN ;B) and C0(RN×Y;B) are Fréchet spaces: e.g.,
C0(RN ;B) is equipped with the family of seminorms {v �→ supK ‖v‖B : K ⊂⊂ RN}.

For any sequence {uε} in the Fréchet space C0(RN ;B) and any u ∈ C0(RN×Y;B), we say that uε strongly
(weakly, resp.) two-scale converges to u in C0(RN ×Y;B) iff (i.e., if and only if)

Lεuε → u (Lεuε ⇀ u resp.) in C0(RN×Y;B) (1.21)

w.r.t. the Fréchet topology. A result (here omitted) analogous to Theorem 1.3 holds in C0(RN ×Y;B).

Proposition 1.5. Let {uε} be a bounded sequence in C0(RN ;B) and u ∈ C0(RN×Y;B). Then
(i) uε −→

2
u in C0(RN ×Y;B) iff uε −→

2
u in L∞(K×Y;B) for any compact subset K of RN .

(ii) uε⇀
2
u in C0(RN ×Y;B) iff uε⇀

2
u in B pointwise in RN×Y.

Proof. Part (i) follows from the definition of convergence in the Fréchet space C0(RN×Y;B). By the continuity
of u, it is easy to see that uε⇀

2
u (i.e., uε ◦ Sε → u) in B pointwise in RN ×Y iff Lεuε ⇀ u in B pointwise in

the same set. This yields part (ii) as, for any compact set K, weak convergence in C0(K×Y) is equivalent to
boundedness and pointwise convergence (under the assumption that the limit is also continuous), cf. e.g. [18],
p. 269. �

Parameters and scales. So far we dealt with sequences indexed by a parameter ε, that we assumed to coincide
with the ratio between two scales. But this coincidence is not really needed: we illustrate this issue dealing
with two sequences of parameters. First let us define the set of all scale sequences, E , namely the set of all
positive vanishing sequences. Let us fix any ε̂ := {ε1, ..., εn, ...}, ε̂′ := {ε′1, ..., ε′n, ...} ∈ E . We say that uε −→

2
u

in Lp(RN×Y) w.r.t. ε′, and write uε
ε′−→
2
u, iff uεn ◦Sε′

n
→ u in Lp(RN×Y) as n→ ∞. For instance, if ε′n := ε2n

for any n, as n→ ∞ we have

cos(2πSεn(x, y)/εn) = cos(2π[N (x/εn) + y]) = cos(2πy)

cos(2πSε2
n
(x, y)/εn) = cos(2πεn[N (x/ε2n) + y]) = cos(2π[x/εn +O(εn)]) ⇀ 0

cos(2πSε2
n
(x, y)/ε2n) = cos(2π[N (x/ε2n) + y]) = cos(2πy)

cos(2πSεn(x, y)/ε2n) = cos(2π[N (x/εn) + y]/εn) ⇀ 0

in the Fréchet space Lp
loc(R

N×Y) for any p < +∞. Hence

cos(2πx/ε) ε−→
2

cos(2πy), cos(2πx/ε) ε2

⇀
2

0

cos(2πx/ε2) ε2

−→
2

cos(2πy), cos(2πx/ε2) ε
⇀
2

0
in Lp

loc(R
N ×Y), ∀p < +∞. (1.22)

Two-scale convergence is indeed invariant upon rescaling: for any ε̂ ∈ E and any strictly increasing function
α : R+ → R+ such that α(v) → 0 as v → 0, setting ε′n = α(εn) for any n, we have ε̂′ ∈ E ; moreover, uε

ε−→
2
u

iff uε′
ε′−→
2
u. Henceforth we deal with a single sequence ε ∈ E , and omit the hat, ˆ.

2. Some properties of two-scale convergence

In this section we study several necessary and/or sufficient properties for two-scale convergence in the
spaces Lp and C0, partially revisiting known results. We then define two-scale convolution, and generalize
two-scale convergence to distributions. Several other notions have a natural two-scale extension: for instance,
a two-scale Fourier transform will be studied apart.
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2.1. Characterization of two-scale convergence in Lp and in C0

We still assume that the Banach space B is separable, and that either it is reflexive or B′ is separable.
Is two-scale convergence invariant upon traslations? For any u ∈ F (cf. (1.4)) let us set u(ε)(x) = u(x, x/ε)

for any x ∈ RN . We wonder whether a relation may be established between uε −→
2
u and uε − u(ε) −→

2
0 either

in Lp(RN×Y;B) (p ∈ [1,+∞[) or in C0(RN×Y;B), and similarly for weak two-scale convergence. We address
this question in Propositions 2.3 and 2.4.

First we notice that if u is just an element of Lp(RN ×Y;B), u(ε) need not be measurable. After [15], we
then define the coarse-scale averaging operator Mε:

(Mεu)(x, y) :=
∫

Y

u(εN (x/ε) + εξ, y) dξ for a.a. (x, y) ∈RN×Y. (2.1)

This function is piecewise constant w.r.t. x; it is also measurable w.r.t. y, for it is the average of a family
of measurable functions. More precisely, Mεu is measurable w.r.t. (x, y), and (Mεu)(x, x/ε) is measurable
as well. For any p ∈ [1,+∞[, Mε is a (linear and) continuous operator in Lp(RN ×Y;B). Indeed for any
u ∈ Lp(RN×Y;B), by Jensen’s inequality,

‖Mεu‖p
Lp(RN×Y;B)

=
∫∫

RN×Y

∥∥∥ ∫
Y

u(εN (x/ε) + εξ, y) dξ
∥∥∥p

B
dxdy

≤
∫∫

RN×Y

(∫
Y

‖u(εN (x/ε) + εξ, y)‖p
B dξ

)
dxdy = ‖u‖p

Lp(RN×Y;B)
.

Lemma 2.1. Let p ∈ [1,+∞[. For any u ∈ Lp(RN×Y;B),

(Mεu)(x, x/ε) −→
2
u(x, y) in Lp(RN ×Y;B). (2.2)

If u ∈ F (cf. (1.4)) the operator Mε may be dropped.

Proof. By the definitions of Mε and Sε (cf. (1.2)), by the Y -periodicity of the function u(x, ·), and by a classic
theorem of Lebesgue on the pointwise convergence of averages, we have

(Mεu)(Sε(x, y), Sε(x, y)/ε) = (Mεu)(x, y) → u(x, y) in B, a.e. in RN×Y.

As {‖Mεu‖p
B} is equi-integrable, Vitali’s theorem yields the convergence in Lp(RN×Y;B), i.e. (2.2).

If u ∈ F then u(Sε(x, y), Sε(x, y)/ε) = u(εN (x/ε) + εy, y) is a measurable function of (x, y). Moreover,
by (1.3) and by Lp-continuity w.r.t. shift of the argument,

u(εN (x/ε) + εy, y) → u(x, y) in Lp(RN×Y;B). �

Lemma 2.2. For any u ∈ C0(RN ×Y;B),

u(x, x/ε) −→
2
u(x, y) in C0(RN×Y;B). (2.3)

Proof. Denoting the modulus of continuity of u by mu and setting uε(x, y) := u(Sε(x, y), y), by (1.20) we have

‖(Iε,iuε)(x, y) − u(x, y)‖B ≤ ‖(Iε,iuε)(x, y) − uε(x, y)‖B + ‖uε(x, y) − u(x, y)‖B

≤ 2mu(ε) ∀(x, y) ∈ RN×Y, for i = 1, ..., N.

Hence ‖(Lεuε)(x, y) − u(x, y)‖B ≤ 2Nmu(ε) → 0, and (2.3) follows. �
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Proposition 2.3. Let p ∈ [1,+∞[. For any sequence {uε} in Lp(RN ;B) and any u ∈ Lp(RN×Y;B),

uε −→
2
u in Lp(RN ×Y;B) ⇔ uε(x) − (Mεu)(x, x/ε) −→

2
0 in Lp(RN ×Y;B), (2.4)

uε⇀
2
u in Lp(RN ×Y;B) ⇔ uε(x) − (Mεu)(x, x/ε)⇀

2
0 in Lp(RN×Y;B), (2.5)

uε −→
2
u in Lp(RN ×Y;B) ⇔ uε(x) − (Mεu)(x, x/ε) → 0 in Lp(RN ;B), (2.6)

uε⇀
2
u in Lp(RN ×Y;B)⇒�⇐ uε(x) − (Mεu)(x, x/ε) ⇀ 0 in Lp(RN ;B). (2.7)

If u ∈ F (cf. (1.4)), then the operator Mε may be dropped.

The equivalence (2.6) was already stated in the second part of Theorem 3 of [15].

Proof. (2.4) and (2.5) directly follow from Lemma 2.1. In view of proving (2.6), let us set wε := uε(x) −
(Mεu)(x, x/ε). By Lemma 1.1, ‖wε ◦ Sε‖Lp(RN×Y;B) = ‖wε‖Lp(RN ;B); thus

wε −→
2

0 in Lp(RN×Y;B) ⇔ wε(x) → 0 in Lp(RN ;B),

and (2.6) is established. Let us now come to (2.7). For any g ∈ Lp′
(RN ;B′), by Lemma 1.1

lim
ε→0

∫
RN

〈wε(x), g(x)〉dx = lim
ε→0

∫∫
RN×Y

〈wε(Sε(x, y)), g(Sε(x, y))〉dxdy

provided that one of these limits exists. As g ◦ Sε → g in ∈ Lp′
(RN ×Y;B′), we conclude that

wε ⇀
2

0 in Lp(RN ×Y;B) ⇒ wε(x) ⇀ 0 in Lp(RN ;B),

that is, the implication “⇒” of (2.7). We show that the converse may fail by means of a counterexample. Let
us set uε(x) = e−x2

sin(2πx/ε) and u(x, y) = 0 for any x ∈ R and any y ∈ [0, 1[. Then uε(x)− (Mεu)(x, x/ε) =
uε(x) ⇀ 0 in Lp(R) for any p ∈ [1,+∞[, but uε⇀

2
e−x2

sin(2πy) in Lp(R×Y). �

Proposition 2.4. For any sequence {uε} in C0(RN×Y;B) and any u ∈ C0(RN×Y;B),

uε −→
2
u in C0(RN×Y;B) ⇔ uε(x) − u(x, x/ε) −→

2
0 in C0(RN ×Y;B), (2.8)

uε⇀
2
u in C0(RN×Y;B) ⇔ uε(x) − u(x, x/ε)⇀

2
0 in C0(RN×Y;B), (2.9)

uε −→
2
u in C0(RN×Y;B) ⇔ uε(x) − u(x, x/ε) → 0 in C0(RN ;B). (2.10)

Proof. (2.8) and (2.9) follow from Lemma 2.2. Let us now set wε := uε(x) − u(x, x/ε), and notice that
‖Lεwε‖C0(RN×Y;B) = ‖wε‖C0(RN ;B). Thus

wε −→
2

0 in C0(RN×Y;B) ⇔ wε(x) → 0 in C0(RN ;B),

and (2.10) holds. �

Remark.
(i) Here we do not address the possible relation between uε⇀

2
u in C0(RN×Y;B) and uε(x)− u(x, x/ε) ⇀ 0

in C0(RN ;B).
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(ii) There exist pathologic functions u ∈ Lp(RN×Y) such that the mapping x �→ u(x, x/ε) is not measurable.
This issue has been investigated in some detail in [1]; see also references therein.

(iii) By Lemmata 2.1 and 2.2, any function of Lp(RN×Y;B) (p ∈ [1,+∞[) or of C0(RN×Y;B) is the two-scale
limit of some sequence.

We now retrieve the original definition of (weak) two-scale convergence of Nguetseng [25], for any p �= ∞.

Proposition 2.5. Let p ∈ [1,+∞[. For any bounded sequence {uε} in Lp(RN ;B) and any u ∈ Lp(RN×Y;B),
uε⇀

2
u in Lp(RN×Y;B) iff

∫
RN

〈uε(x), ψ(x, x/ε)〉dx →
∫∫

RN×Y

〈u(x, y), ψ(x, y)〉dxdy ∀ψ ∈ D(RN ×Y;B′). (2.11)

Proof. For any ψ ∈ D(RN ×Y;B′), 〈uε(x), ψ(x, y)〉 ∈ L1
(
RN ;C0(Y)

)
, so that we can apply Lemma 1.1. As

ψ(Sε(x, y), y) → ψ(x, y) in Lp′
(RN×Y;B′), we have

∫
RN

〈uε(x), ψ(x, x/ε)〉dx −
∫∫

RN×Y

〈uε(Sε(x, y)), ψ(x, y)〉dxdy

=
∫∫

RN×Y

〈uε(Sε(x, y)), ψ(Sε(x, y), y) − ψ(x, y)〉dxdy → 0.

Hence
lim
ε→0

∫
RN

〈uε(x), ψ(x, x/ε)〉dx = lim
ε→0

∫∫
RN×Y

〈uε(Sε(x, y)), ψ(x, y)〉dxdy. �

Remark. As the tensor product D(RN ;B′) ⊗D(Y) is dense in D(RN ×Y;B′), (2.11) is equivalent to∫
RN

〈uε(x), ψ(x)〉ϕ(x/ε) dx →
∫∫

RN×Y

〈u(x, y), ψ(x)〉ϕ(y) dxdy

∀ψ ∈ D(RN ;B′), ∀ϕ ∈ D(Y).

Here ϕ might equivalently be confined to (the real and immaginary parts of) the Fourier basis {φn}n∈ZN , where
φn(y) := exp (2πi n·y) for any y ∈ Y and any n ∈ ZN .

In the next statement we assume that B is a complex Hilbert space equipped with a Hilbert basis {φn}n∈N;
we denote this space by H and its scalar product by (·, ·)H . We also denote by �2H the complex Hilbert space
of square-summable sequences N → H .

Theorem 2.6 (generalized Fourier expansion w.r.t. y). Let {uε} be a sequence in L2(RN ;H), u ∈ L2(RN ×
Y;H), define Sε as in (1.2), and set

an,ε(x) :=
∫

Y

(uε(Sε(x, y)), φn(y))H dy, an(x) :=
∫

Y

(u(x, y), φn(y))H dy

for a.a. x ∈ RN , ∀n ∈ N, ∀ε.
(2.12)

Then
uε(x)⇀

2
u(x, y) in L2(RN×Y;H) ⇔ {an,ε(x)} ⇀ {an(x)} in L2(RN ; �2H), (2.13)

uε(x) −→
2
u(x, y) in L2(RN×Y;H) ⇔ {an,ε(x)} → {an(x)} in L2(RN ; �2H). (2.14)

The examples of (1.22) might be interpreted within this framework.
The statements (2.13) and (2.14) might be reformulated in terms of the (generalized) Fourier expansion

of an,ε and an as functions of x, thus achieving the global Fourier expansion of uε ◦ Sε and u w.r.t. (x, y).
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Proof. The an,ε’s and the an’s are the coefficients of the partial Fourier expansion of uε ◦Sε and u, resp., in the
sense that

uε(Sε(x, y)) =
∞∑

n=0

an,ε(x)φn(y) in L2(RN×Y;H), ∀ε,

u(x, y) =
∞∑

n=0

an(x)φn(y) in L2(RN ×Y;H).
(2.15)

By definition uε⇀
2
u in L2(RN×Y;H) iff uε ◦ Sε ⇀ u in L2(RN ×Y;H), or equivalently

∫
RN

(uε(Sε(x, y)), g(x))H dx ⇀
∫
RN

(u(x, y), g(x))H dx in L2(Y), ∀g ∈ L2(RN ;H).

Setting bg,n,ε :=
∫
RN (an,ε(x), g(x))H dx and bg,n :=

∫
RN (an(x), g(x))H dx for any n, ε, this reads

∞∑
n=0

bg,n,εφn(y) ⇀
∞∑

n=0

bg,nφn(y) in L2(Y), ∀g ∈ L2(RN ;H),

that is, {bg,n,ε} ⇀ {bg,n} in �2H for any g ∈ L2(RN ;H). This means that {an,ε(x)} ⇀ {an(x)} in L2(RN ; �2H),
and (2.13) is thus established.

Let us now come to strong convergence. By (2.15)

‖uε ◦ Sε‖L2(RN×Y;H) = ‖{an,ε}‖L2(RN ;�2H) ∀ε, ‖u‖L2(RN×Y;H) = ‖{an}‖L2(RN ;�2H); (2.16)

thus
‖uε ◦ Sε‖L2(RN×Y;H) → ‖u‖L2(RN×Y;H) ⇔ ‖{an,ε}‖L2(RN ;�2H) → ‖{an}‖L2(RN ;�2H). (2.17)

This statement and (2.13) entail (2.14). �
Proposition 2.7 (norm semicontinuity and continuity). Let p ∈ [1,+∞[ and {uε} be a sequence in Lp(RN ;B).
Then

uε⇀
2
u in Lp(RN ×Y;B) ⇒

lim inf
ε→0

‖uε‖Lp(RN ;B) ≥ ‖u‖Lp(RN×Y;B)

(
≥

∥∥∥ ∫
Y

u(·, y) dy
∥∥∥

Lp(RN ;B)

)
,

uε −→
2
u in Lp(RN×Y;B) ⇒

{
uε⇀

2
u in Lp(RN×Y;B)

‖uε‖Lp(RN ;B) → ‖u‖Lp(RN×Y;B).
(2.19)

If p ∈ ]1,+∞[ and the space B is uniformly convex, then the latter implication can be inverted.

Proof. By Lemma 1.1, ‖uε‖Lp(RN ;B) = ‖uε ◦ Sε‖Lp(RN×Y;B) for any ε. It then suffices to recall the definitions
of weak and strong two-scale convergence and to apply standard properties. �
Proposition 2.8. Let p ∈ [1,+∞[ and {uε} be a bounded sequence in Lp(RN ;B).

(i) If uε −→
2
u in Lp(RN×Y;B), then

∀{vε} ⊂ Lp′
(RN ;B′), if vε ⇀

2
v in Lp′

(RN×Y;B′) ( vε
∗
⇀
2
v if p′ = ∞)

then
∫
RN

〈uε(x), vε(x)〉dx →
∫∫

RN×Y

〈u(x, y), v(x, y)〉dxdy.
(2.20)

(ii) If p = 2 and B is uniformly convex, conversely (2.20) entails uε −→
2
u in Lp(RN ×Y;B).

For p = 2 and B = R, we thus retrieve the definition of strong two-scale convergence of [1].
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Proof. Part (i) directly follows from the definitions of weak and strong two-scale convergence.
Let us come to part (ii). For any ψ ∈ D(RN×Y;B′), by Lemma 2.2 we can take vε(x) := ψ(x, x/ε) in (2.20).

By Proposition 2.5 we then get uε⇀
2
u in L2(RN ×Y;B). Denoting the duality mapping B → 2B′

by F and

taking vε ∈ F (uε) in (2.20), we get ‖uε‖L2(RN ;B) → ‖u‖L2(RN×Y;B). By the final statement of Proposition 2.7,
we conclude that uε −→

2
u in L2(RN ×Y;B). �

Remark. Part (ii) of Proposition 2.8 holds for any p ∈ ]1,+∞[; this will be proved in a work apart, in the
framework of the analysis of the two-scale behaviour of convex functionals.

An analogous characterization holds for weak two-scale convergence, and generalizes Proposition 2.5.

Proposition 2.9. Let p ∈ ]1,+∞[ and {uε} be a bounded sequence in Lp(RN ;B). Then uε⇀
2
u in Lp(RN×Y;B)

iff
∀{vε} ⊂ Lp′

(RN ;B′), if vε −→
2
v in Lp′

(RN×Y;B′), then∫
RN

〈uε(x), vε(x)〉dx →
∫∫

RN×Y

〈u(x, y), v(x, y)〉dxdy.
(2.21)

Proof. The “only if” part is straightforward. To prove the converse, it suffices to choose vε(x) := ψ(x, x/ε)
for any ψ ∈ D(RN ×Y;B′), and then apply Proposition 2.5, since ψ(x, x/ε) −→

2
ψ(x, y) in Lp′

(RN ×Y;B′) by
Lemma 2.1. �

2.2. Some sufficient conditions for two-scale convergence in Lp and in C0

The next statement extends Lemmata 2.1 and 2.2.

Proposition 2.10.
(i) For any sequence {uε} in Lp(RN×Y;B) (p ∈ [1,+∞[), defining Mε as in (2.1),

uε → u in Lp(RN ×Y;B) ⇒ (Mεuε)(x, x/ε) −→
2
u(x, y) in Lp(RN ×Y;B). (2.22)

(ii) For any sequence {uε} in C0(RN×Y;B),

uε → u in C0(RN ×Y;B) ⇒ uε(x, x/ε) −→
2
u(x, y) in C0(RN ×Y;B). (2.23)

Proof.
(i) If uε → u in Lp(RN×Y;B) then Mεuε → u in the same space. Hence

∫∫
RN×Y

‖(Mεuε)(Sε(x, y), y) − u(x, y)‖p
B dxdy =

∫∫
RN×Y

‖(Mεuε)(x, y) − u(x, y)‖p
B dxdy → 0.

Thus (2.22) holds.
(ii) By the hypothesis, uε(εN (x/ε), y) → u(x, y) locally uniformly in RN×Y. Let us set vε(x) := uε(x, x/ε)

for any x ∈ RN . As the function Lεvε linearly interpolates the nodal values {vε(εm+εy) = uε(εm, y) : m ∈ ZN}
w.r.t. the first argument and along the coordinate axes (cf. (1.20)), we infer that Lεvε → u locally uniformly in
RN×Y. Thus vε −→

2
u in C0(RN ×Y;B). �

Analogous statements for weak convergence either in Lp(RN ×Y;B) or in C0(RN ×Y;B) fail. As a coun-
terexample for both, it suffices to take uε(x, y) := cos(2πx/ε) for any (x, y) ∈ ]0, 1[×Y. However, the two next
proposition easily follows from Lemma 1.1.
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Proposition 2.11. Let p ∈ [1,+∞[. For any sequences {uε} in Lp(Y;B),

uε ⇀ u in Lp(Y;B) ⇔ uε(x/ε)⇀
2
u(y) in Lp

loc(R
N ×Y;B), (2.24)

uε → u in Lp(Y;B) ⇔ uε(x/ε) −→
2
u(y) in Lp

loc(R
N×Y;B). (2.25)

This result and (1.11) yield the next statement.

Proposition 2.12. Let p, q, r ∈ [1,+∞[ be such that 1/p + 1/q = 1/r. Let {vε} and {wε} be sequences in
Lp(RN ) and Lq(Y;B), resp. Then

vε → v in Lp(RN) and wε ⇀ w in Lq(Y;B)

⇒ vε(x)wε(x/ε)⇀
2
v(x)w(y) in Lr(RN×Y;B);

(2.26)

vε → v in Lp(RN ) and wε → w in Lq(Y;B)

⇒ vε(x)wε(x/ε) −→
2
v(x)w(y) in Lr(RN×Y;B).

(2.27)

Remark. An analogous result holds if {vε} ⊂ Lp(RN ;B) and {wε} ⊂ Lq(Y). On the other hand, still for
p, q, r ∈ [1,+∞[ such that 1/p+ 1/q = 1/r,

vε ⇀ v in Lp(RN ) and wε → w in Lq(Y)

�⇒ vε(x)wε(x/ε)⇀
2
v(x)w(y) in Lr(RN×Y).

(2.28)

As a counterexample it suffices to take vε(x) = cos(2πx/ε) for any x ∈ R, wε ≡ 1.

2.3. Two-scale convolution

Proposition 2.13. Let p ∈ [1,+∞[, {uε} be a sequence of Lp(Ω) and {wε} be a sequence of L1(RN ) such that

uε⇀
2
u in Lp(Ω × Y), wε −→

2
w in L1(RN × Y). (2.29)

Then

(uε ∗ wε)(x) :=
∫
RN

uε(ξ)wε(x− ξ) dξ ⇀
2

(u ∗ ∗w)(x, y) :=
∫∫

RN×Y

u(ξ, η)w(x − ξ, y − η) dξdη in Lp(Ω × Y).
(2.30)

If moreover uε −→
2
u in L2(Ω × Y) then uε ∗ wε −→

2
u ∗ ∗w in L2(Ω × Y).

We shall refer to u ∗ ∗w as a two-scale convolution. This tool may be used for two-scale regularization.

Proof. First notice that by (1.1)

Sε(x− ξ, y − η) − Sε(x, y) + Sε(ξ, η) = ε[N ((x− ξ)/ε) −N (x/ε) + N (ξ/ε)]

=: Nx,y,ξ,η ε ∀(x, y), (ξ, η) ∈ RN × Y,
(2.31)
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and each component of Nx,y,ξ,η is an element of the set {−1, 0, 1}. By Lemma 1.1 and by Fubini’s theorem,
(2.29) entails that, for any g ∈ Lp′

(Ω × Y),∫∫
RN×Y

(uε ∗ wε)(Sε(x, y))g(x, y) dxdy

=
∫∫

RN×Y

(
g(x, y)

∫
RN

uε(ξ) wε(Sε(x, y) − ξ) dξ
)
dxdy

=
∫∫

RN×Y

(
g(x, y)

∫∫
RN×Y

uε(Sε(ξ, η)) wε(Sε(x, y) − Sε(ξ, η)) dξdη
)
dxdy

=
∫∫

RN×Y

(
uε(Sε(ξ, η))

∫∫
RN×Y

wε(Sε(x, y) − Sε(ξ, η))g(x, y) dxdy
)
dξdη

=
∫∫

RN×Y

(
uε(Sε(ξ, η))

∫∫
RN×Y

wε(Sε(x−ξ, y−η)−Nx,y,ξ,ηε)g(x, y) dxdy
)
dξdη

⇀

∫∫
RN×Y

(
u(ξ, η)

∫∫
RN×Y

w(x − ξ, y − η)g(x, y) dxdy
)
dξdη

=
∫∫

RN×Y

(
g(x, y)

∫∫
RN×Y

u(ξ, η) w(x − ξ, y − η) dξdη
)
dxdy

=
∫∫

RN×Y

(u ∗ ∗w)(x, y)g(x, y) dxdy in Lp(Ω × Y).

(2.32)

(2.30) thus holds. To prove the final statement, we replace g(x, y) by gε(Sε(x, y)) for any weakly two-scale
convergent sequence {gε} of L2(Ω × Y), and apply part (ii) of Proposition 2.8. �

Remark. The final property of Proposition 2.13 can be extended to any p ∈ ]1,+∞[, after the remark that
follows Proposition 2.8.

2.4. Two-scale convergence of distributions

Let us assume that B = R, for the sake of simplicity, and denote by 〈·, ·〉 (〈〈·, ·〉〉, resp.) the duality
pairing between D(RN ) (D(RN ×Y), resp.) and its dual space. For any sequence {uε} in D′(RN ) and any
u ∈ D′(RN×Y), we say that uε two-scale converges to u in D′(RN×Y) iff

〈uε(x), ψ(x, x/ε)〉 → 〈〈u(x, y), ψ(x, y)〉〉 ∀ψ ∈ D(RN ×Y). (2.33)

We similarly define two-scale convergence in the sense of Radon measures, for ψ ∈ C0
c (RN ×Y). By Proposi-

tion 2.5, (2.33) extends the weak two-scale convergence of Lp(RN ×Y). In Section 5 we shall define two-scale
convergence in D(RN×Y) in such a way that ψ(x, x/ε) −→

2
ψ(x, y) in D(RN×Y) for any ψ ∈ D(RN×Y); in (2.23)

we already saw the analogous property for C0(RN ×Y).
For instance, for N = 1, fix any y0 ∈ Y and let {ϕε} be a sequence in L1(Y) such that ϕε(y) ⇀ δy0(y) (the

Dirac measure concentrated at y0) in D′(Y). After extending ϕε to R by Y -periodicity, it is easy to see that
e.g.

uε(x) := xϕε(x/ε) ⇀ x in D′(R),
xϕε(x/ε)⇀

2
xδy0(y) in D′(RN×Y). (2.34)

Let us now denote by 〈·, ·〉Y the duality pairing between D(Y) and its dual, and by 1̂ (∈ D(Y)) the function
identically equal to 1. As 〈〈u(x, y), v(x)〉〉 = 〈(〈u(x, y), 1̂(y)〉Y

)
, v(x)〉 for any v ∈ D(RN ), we get the following

statement, which may be compared with (1.13).

Proposition 2.14. For any sequence {uε} in D′(RN),

uε(x)⇀
2
u(x, y) in D′(RN×Y) ⇒ uε(x) ⇀ 〈u(x, y), 1̂(y)〉Y in D′(RN ). (2.35)
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It would be unnatural to define two-scale convergence in D′(RN×Y ) (with Y in place of Y) by letting ψ range
in D(RN ×Y ) in (2.33). For instance, taking y0 = 0 and defining uε as in (2.34), this would yield uε(x)⇀

2
0

in D′(RN ×Y ).
Other notions have a natural extension to two-scale convergence, and will be dealt apart.

3. Two-scale compactness

In this section we extend some classic compactness theorems to two-scale convergence in the spaces Lp

and C0. Henceforth we confine ourselves to scalar-valued functions, although most of our results take over to
vector-valued functions. We shall say that a sequence {uε} is relatively compact iff it is possible to extract a
convergent subsequence from any of its subsequences. Theorem 1.3 yields the following result.

Proposition 3.1. Let p ∈ [1,+∞[. For any sequence {uε} in Lp(RN ),

if {uε} is strongly one-scale relatively compact in Lp(RN ),

then it is strongly two-scale relatively compact in Lp(RN×Y); (3.1)

if {uε} is strongly two-scale relatively compact in Lp(RN×Y),

then it is weakly two-scale relatively compact in Lp(RN ×Y); (3.2)

if {uε} is weakly two-scale relatively compact in Lp(RN×Y),

then it is weakly one-scale relatively compact in Lp(RN ). (3.3)

The same holds for C0(RN ), and (replacing weak compactness by weak star compactness) for L∞(RN ).

Weak two-scale compactness in Lp

Proposition 3.2. (i) Let p ∈ ]1,+∞]. Any sequence {uε} of Lp(RN ) is weakly star two-scale relatively compact
in Lp(RN ×Y) iff it is bounded, hence iff it is weakly (weakly star if p = ∞) one-scale relatively compact in
Lp(RN ).

(ii) Similarly, any sequence of L1(RN ) is weakly star two-scale relatively compact in C0
c (RN ×Y)′ iff it is

bounded, hence iff it is weakly star one-scale relatively compact in C0
c (RN )′.

(iii) Any sequence of L1(RN ) is weakly two-scale relatively compact in L1(RN×Y) iff it is weakly one-scale
relatively compact in L1(RN ).

Proof. For any p ∈ [1,+∞], by Lemma 1.1, {uε} is bounded in Lp(RN ) iff {uε ◦Sε} is bounded in Lp(RN×Y).
Parts (i) and (ii) then follow from the classic Banach-Alaoglu theorem.

If p = 1, by the classic de la Vallée Poussin criterion, {uε} is weakly relatively compact in L1(RN ) iff there
exists a Borel function ψ : R+ → R+ such that

lim
t→+∞

ψ(t)
t

= +∞, sup
ε

∫
RN

ψ(|uε(x)|) dx < +∞.

By (1.5),
∫
RN ψ(|uε(x)|) dx =

∫∫
RN×Y

ψ(|uε(Sε(x, y))|) dxdy. The property of ψ-boundness then holds for {uε}
in RN iff it holds for {uε ◦ Sε} in RN×Y, and part (iii) follows. �

By the latter result now we derive a two-scale version of the Chacon biting lemma, cf. e.g. [6, 10].
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Theorem 3.3. Let {uε} be a bounded sequence in L1(RN ). There exist u ∈ L1(RN ×Y), a subsequence {uε̃},
and a nondecreasing sequence {Ωk} of measurable subsets of RN such that, denoting by | · |N the N -dimensional
Lebesgue measure, { |RN \Ωk|N → 0 as k → ∞,

uε̃|Ωk
⇀
2
u|Ωk×Y in L1(Ωk×Y), as ε̃→ 0, ∀k ∈ N.

(3.4)

Proof. The standard Chacon’s biting lemma states that there exist û ∈ L1(RN ), a subsequence that we still
denote by uε, and a sequence {Ωk} as above, such that

uε|Ωk
⇀ û|Ωk

in L1(Ωk), as ε→ 0, ∀k ∈ N.

Let us denote by ε(0) the sequence ε, and successively extract subsequences ε(1) ⊃ ε(2) ⊃ ... as follows. By
part (iii) of Proposition 3.2, for any k ≥ 1 there exist ũk ∈ L1(Ωk×Y) and a subsequence ε(k) := {ε(k)n}n∈N

of ε(k − 1) such that uε(k)n
|Ωk

⇀
2
ũk in L1(Ωk×Y) as n→ ∞. (Any function defined on a subset of RN is here

extended to RN with vanishing value.)
As a.a. x ∈ RN is element of Ωk for some k and because of the monotonicity of {Ωk}, by setting u(x) := ũk(x),

u is defined consistently a.e. in RN . Moreover, u ∈ L1(RN ×Y), as the sequence {‖ũk‖L1(Ωk×Y)} is uniformly
bounded as k ranges in N. Finally, a subsequence {uε̃} as in (3.4) is constructed by applying a diagonalization
procedure to the family of sequences {{uε(k)n

} : k ∈ N}. �

Strong two-scale compactness in Lp. (1.22) and other simple examples show that in Lp the relative strong
two-scale compactness is strictly weaker than the relative strong one-scale compactness. Here we provide a
sequential version of the classic Riesz compactness theorem. (Analogous sequential versions can also be given
for other classic theorems: e.g., the Ascoli-Arzelà theorem, see Lemma 3.6 below, the Dunford-Pettis theorem of
weak compactness in L1, and so on.) By means of this result, we then characterize the relative strong two-scale
compactness in Lp, for any p ∈ [1,+∞[.

Lemma 3.4. Let p ∈ [1,+∞[. A sequence {fn} in Lp(RN ) is strongly relatively compact iff it is bounded and

∫
RN

|fn(x+ h) − fn(x)|p dx→ 0 as (h, 1/n) → (0, 0), (3.5)

sup
n∈N

∫
RN\B(0,R)

|fn(x)|p dx→ 0 as R → +∞. (3.6)

Proof. (h, 1/n) → (0, 0) means that h→ 0 and n→ ∞ independently. (3.5) thus reads

∀δ > 0, ∃ñ ∈ N, ∃h̃ > 0 : ∀n > ñ, ∀h ∈ ]0, h̃[,
∫
RN

|fn(x+ h) − fn(x)|p dx ≤ δ.

A priori this inequality might fail for n ≤ ñ. However, for any n ≤ ñ,
∫
RN |fn(x + h) − fn(x)|p dx → 0

as h → 0; hence there exists h̃n > 0 such that the above inequality holds for any h ∈ ]0, h̃n[. Settings
ĥ := min{h̃, h̃1, ..., h̃ñ}, we then get

∀δ > 0, ∃ĥ > 0 : ∀h ∈ ]0, ĥ[, ∀n ∈ N,
∫
RN

|fn(x+ h) − fn(x)|p dx ≤ δ,

i.e., limh→0 supn∈N

∫
RN |fn(x+ h) − fn(x)|pdx = 0. It then suffices to apply the classic Riesz theorem. �
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Theorem 3.5. Let p ∈ [1,+∞[. A sequence {uε} of Lp(RN ) is strongly relatively two-scale compact in Lp(RN×
Y) iff it is bounded and (defining Sε as in (1.2))

∫
RN

|uε(x+ Sε(h, k)) − uε(x)|p dx→ 0 as (h, k, ε) → (0, 0, 0), (3.7)

sup
ε

∫
RN\B(0,R)

|uε(x)|p dx→ 0 as R → +∞. (3.8)

(If we drop the hypothesis (3.8), then {uε} is just strongly two-scale relatively compact in the Fréchet space
Lp

loc(R
N×Y).)

Proof. By Lemma 3.4, the sequence {uε ◦ Sε} is strongly relatively compact in Lp(RN ×Y) iff (3.8) holds and

∫∫
RN×Y

|uε(Sε(x+ h, y + k)) − uε(Sε(x, y))|p dxdy → 0 as (h, k, ε) → (0, 0, 0). (3.9)

Notice that by (1.1)

Sε(x+ h, y + k) − Sε(x, y) + Sε(h, k) = ε[N ((x + h)/ε) −N (x/ε) + N (h/ε)]

=: εNx,y,h,k ∀(x, y), (h, k) ∈ RN ×Y,
(3.10)

and each component of Nx,y,ξ,η is an element of the set {−1, 0, 1}. As (h, k, ε) → (0, 0, 0) iff (h + εJ, k, ε) →
(0, 0, 0), (3.9) is then equivalent to

∫∫
RN×Y

|uε(Sε(x, y) + Sε(h, k)) − uε(Sε(x, y))|p dxdy → 0 as (h, k, ε) → (0, 0, 0),

which is in turn equivalent to (3.7), by Lemma 1.1. �

Strong two-scale compactness in C0. Although this property is strictly weaker than strong one-scale com-
pactness, we can prove a two-scale version of the Ascoli-Arzelà compactness theorem. First we need a sequential
version of this classic result, which can be proved mimicking the argument of Lemma 3.4.

Lemma 3.6. Let K be a compact topological space. A sequence {fn} in C0(K) is relatively compact iff it is
bounded and

sup
x∈K

|fn(x+ h) − fn(x)| → 0 as (h, 1/n) → (0, 0). (3.11)

An argument analogous to that of Theorem 3.5, that we omit here, then yields the following result.

Theorem 3.7. A sequence {uε} of C0(RN ) is strongly two-scale relatively compact in the Fréchet space C0(RN×
Y) iff it is bounded and

sup
x∈K

|uε(x+ Sε(h, k)) − uε(x)| → 0 as (h, k, ε) → (0, 0, 0), ∀compact K ⊂ RN . (3.12)

Remark. In (3.7) ((3.12), resp.) Sε(h, k) := εN (h/ε) + εk cannot be replaced by h + εk. This would make
the hypothesis more restrictive, and would entail the relative strong one-scale compactness of {uε} in Lp(RN)
(C0(RN ), resp.).
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Two-scale Vitali’s theorem

Theorem 3.8. Let p ∈ [1,+∞[, {uε} be a sequence in Lp(RN ), such that supε

∫
RN\B(0,R)

|uε(x)|p dx → 0 as
R → +∞ and uε −→

2
u a.e. in RN × Y . Then

u ∈ Lp(RN × Y), uε −→
2
u in Lp(RN×Y) (3.13)

iff {|uε|p} is equi-integrable, in the sense that, for any sequence {An} of measurable subsets of RN ,

sup
ε

∫
An

|uε(x)|p dx→ 0 as |An|N → 0. (3.14)

(By ε we still denote the running parameter of a vanishing sequence.)

Proof. By the classic Vitali theorem, (3.13) is equivalent to the equi-integrability of the sequence {|uε ◦ Sε|p}.
By the argument of Lemma 3.4, one can see that this is tantamount to∫∫

B

|uε(Sε(x, y))|p dxdy → 0 as (|B|2N , ε) → (0, 0); (3.15)

by the same token, (3.14) is equivalent to∫
A

|uε(x)|p dx→ 0 as (|A|N , ε) → (0, 0). (3.16)

By Lemma 1.1, (3.15) is equivalent to∫
Sε(B)

|uε(x)|p dx→ 0 as (|Sε(B)|N , ε) → (0, 0). (3.17)

Now for any measurable set A ⊂ RN , B := S−1
ε (A) is measurable and |B|2N = |A|N , cf. Corollary 1.2;

hence (3.15) entails (3.16), which is equivalent to (3.14). On the other hand (3.16) entails (3.17), which is
equivalent to (3.15), and thus to (3.13). In conclusion (3.13) is equivalent to (3.14). �

4. Two-scale differentiation I

Let p ∈ [1,+∞[, w ∈ W 1,p(RN ×Y) ∩ F (cf. (1.4)), and set uε(x) := w(x, x/ε) for a.a. x. Although
uε(x) −→

2
w(x, y) in Lp(RN ×Y), in general ∇w(x, y) is not the (weak) two-scale limit of ∇uε(x); actually

this sequence is bounded in Lp(RN)N only if w(x, y) does not depend from y. In this section we show that
nevertheless it is possible to express the derivatives of the two-scale limit without evaluating the limit itself, via
what we name approximate two-scale derivatives.

Preliminarly, for i = 1, ..., N , let us denote by ∇iϕ the partial derivative w.r.t. xi of any function ϕ(x), by
∇xiψ (∇yiψ, resp.) the partial derivative w.r.t. xi (yi, resp.) of any function ψ(x, y), by ei the unit vector of
the xi-axis. Let us also define the shift operator (τξv)(x) := v(x+ ξ) for any x, ξ ∈ RN , set

∇ε,i :=
τεei − I

ε
, ∇α

ε :=
N∏

i=1

∇αi

ε,i , ∇α =
N∏

i=1

∇αi

i ∀α ∈ NN , ∀ε > 0, (4.1)

and define ∇−ε, ∇α
x , ∇α

y similarly. Notice that ∇−ε is the adjoint of −∇ε in RN , for

∫
RN (∇εu) v dx = − ∫

RN u∇−εv dx ∀u, v ∈ H1(RN ). (4.2)
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After [1] it is known that ε∇ approximates ∇y in the sense of two-scale convergence. We intend to show that ∇ε

approximates ∇x.

Lemma 4.1. Let m ∈ N, p ∈ [1,+∞[, w ∈ Wm,p(RN ×Y) ∩ F (cf. (1.4)), and set uε(x) := w(x, x/ε) for any
x ∈ RN . Then

∇α
ε (ε∇)βuε −→

2
∇α

x∇β
yw in Lp(RN×Y), ∀α, β ∈ NN , |α| + |β| ≤ m. (4.3)

Proof. If m ≥ 1, for any ε > 0 by the Y -periodicity of w, for i = 1, ..., N and for a.a. x ∈ RN we have

∇ε,i uε(x) =
w(x+ εei, x/ε) − w(x, x/ε)

ε
=

1
ε

∫ ε

0

(∇xiw)(x + tei, x/ε) dt.

Defining Sε as in (1.2), we then get

(∇ε,iuε)(Sε(x, y)) =
1
ε

∫ ε

0

(∇xiw)(εN (x/ε) + εy + tei, y) dt → ∇xiw(x, y) in Lp(RN ×Y), ∀i,

that is, ∇εuε −→
2

∇xw in Lp(RN ×Y)N . Moreover,

ε∇uε(x) = ε∇xw(x, x/ε) + ∇yw(x, x/ε) −→
2

∇yw(x, y) in Lp(RN×Y)N .

If m ≥ 2, this can easily be extended to second-order derivatives; for instance,

ε∇j∇ε,i uε(x) = (ε∇xj + ∇yj )
1
ε

∫ ε

0

(∇xiw)(x + εy + tei, x/ε) dt

−→
2

∇yj∇xiw(x, y) in Lp(RN ×Y), ∀i, j.

Similarly, one can check that

∇ε,i∇ε,juε(x) −→
2

∇xi∇xjw(x, y), ε2∇i∇juε(x) −→
2

∇yi∇yjw(x, y).

This can easily be extended to higher-order derivatives, too. �

Now we deal with the general case, in which uε need not be of the form uε(x) = w(x, x/ε).

Proposition 4.2. Let p ∈ ]1,+∞[, and α, β ∈ NN . If {uε} is a sequence in W |β|,p(RN ) and

uε⇀
2
u in Lp(RN×Y), sup

ε
‖∇α

ε (ε∇)βuε‖Lp(RN ) < +∞, (4.4)

then, denoting by W β,p(Y) the Banach space of functions v : Y → R such that v,∇βv ∈ Lp(Y),

∇α
xu ∈ Lp

(
RN ;W β,p(Y)

)
, ∇α

ε (ε∇)βuε⇀
2
∇α

x∇β
yu in Lp(RN ×Y). (4.5)

This also holds for p = ∞, provided that ⇀
2

is replaced by ∗
⇀
2

in (4.4) and (4.5).

Proof. By Proposition 3.1(i), there exists z ∈ Lp(RN×Y) such that

∫
RN

[∇α
ε (ε∇)βuε(x)

]
ϕ(x, x/ε) dx→

∫∫
RN×Y

z(x, y)ϕ(x, y) dxdy ∀ϕ ∈ D(RN ×Y).
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On the other hand, as the operator (−1)|α|+|β|∇α
−ε (ε∇)β is the adjoint of ∇α

ε (ε∇)β , cf. (4.2), a formula
analogous to (4.3) yields

∫
RN

[∇α
ε (ε∇)βuε(x)

]
ϕ(x, x/ε) dx = (−1)|α|+|β|

∫
RN

uε(x) ∇α
−ε (ε∇)βϕ(x, x/ε) dx

→ (−1)|α|+|β|
∫∫

RN×Y

u(x, y) ∇α
x∇β

yϕ(x, y) dxdy =
∫∫

RN×Y

∇α
x∇β

yu(x, y) ϕ(x, y) dxdy.

By comparing the two latter formulas we infer that z = ∇α
x∇β

yu a.e. in RN×Y. �

Similar results hold for linear differential vector operators with constant coefficients. Now we see an example;
analogous statements apply to the approximation of ∇x· and to the curl operator. First let us set Lp

div(R
N )N :={

v ∈ Lp(RN )N : ∇·v ∈ Lp(RN )
}

(∇· := div).

Proposition 4.3. Let p ∈ ]1,+∞[. If {uε} is a sequence in Lp
div(R

N )N and

uε⇀
2
u in Lp(RN ×Y)N , sup

ε
ε‖∇·uε‖Lp(RN ) < +∞ (∇· := div), (4.6)

then

∇y ·u ∈ Lp(RN×Y), ε∇·uε⇀
2
∇y ·u in Lp(RN×Y). (4.7)

This also holds for p = ∞, provided that ⇀
2

is replaced by ∗
⇀
2

in (4.6) and (4.7).

If the forward incremental ratio, ∇ε,i, is replaced either by the backward incremental ratio, 1
ε (I − τ−εei ), or

by the centered ratio, 1
ε (τεei/2 − τ−εei/2) (i = 1, ..., N), formula (4.3) and the other results of this section can

easily be extended. One might also approximate ∇x by ∇(ε)v(x) :=
∫
Y ∇v(x + ελ) dλ.

We also define an approximate two-scale Fréchet differential: for any v ∈W 1,1
loc (RN ), at a.a. x0 ∈ RN ,

dεv(x0) : (RN )2 → R : (h, k) �→ v(x0) + ∇εv(x0) · h+ ε∇uε(x0) · k. (4.8)

Two-scale boundedness in Sobolev spaces. Let us now define the approximate two-scale gradient operator
Λε := (∇ε, ε∇). For any p ∈ [1,+∞] we also say that a sequence {uε} is two-scale bounded in W 1,p(RN ×Y)
whenever {uε} and the sequence {Λεuε} are bounded in Lp(RN ) and in Lp(RN)2N , resp. More generally, one
might say that {uε} is two-scale bounded in W 1,p

(
RN ;Lp(Y)

)
(in Lp

(
RN ;W 1,p(Y)

)
, resp.) whenever {uε} is

bounded in Lp(RN ) and {∇εuε} ({ε∇uε}, resp.) is bounded in Lp(RN )N .
In W 1,p two-scale boundedness is strictly weaker than one-scale boundedness, at variance with what we saw

for Lp. For instance, for any w ∈W 1,p(RN ×Y) ∩ F (cf. (1.4)):
(i) the sequence {uε(x) := w(x, x/ε)} of W 1,p(RN ) is two-scale bounded in W 1,p(RN ×Y);
(ii) the same sequence is one-scale bounded in W 1,p(RN ) only if w(x, y) is independent of y.

Now we see that two-scale boundedness in W 1,p(RN ×Y) entails the relative strong two-scale compactness in
the Fréchet space Lp

loc(R
N×Y); however, the latter example shows that this does not entail the relative strong

one-scale compactness in Lp
loc(R

N ).

Theorem 4.4 (two-scale Rellich-type theorem). Let p ∈ [1,+∞]. Any sequence {uε} of W 1,p(RN ) that is
two-scale bounded in W 1,p(RN ×Y) is strongly two-scale relatively compact in Lp

loc(R
N×Y).
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Proof. Let p ∈ [1,+∞[ (the argument for p = ∞ is analogous). Let us fix any i ∈ {1, ..., N}, any h ∈ R, and
any k ∈ [0, 1[. Recalling (1.1) and (1.2), we have

‖uε(x+ Sε(hei, kei)) − uε(x)‖Lp(RN ) = ‖uε(x + εn̂(h/ε)ei + εkei) − uε(x)‖Lp(RN )

≤ ‖uε(x + εn̂(h/ε)ei + εkei) − uε(x+ εn̂(h/ε)ei)‖Lp(RN )

+‖uε(x+ εn̂(h/ε)ei) − uε(x)‖Lp(RN ) =: A1 +A2,

A1 ≤ 1
ε

∫ εk

0

‖ε∇iuε(x+ εn̂(h/ε)ei + tei)‖Lp(RN ) dt,

A2 = ‖(τεei − I)n̂(h/ε)uε‖Lp(RN ) ≤ εn̂(h/ε)‖∇εeiuε‖Lp(RN ) ≤ (h+ ε)‖∇εeiuε‖Lp(RN ).

If {uε} is two-scale bounded in W 1,p(RN ×Y) then A1 + A2 → 0 as (h, k, ε) → (0, 0, 0), and (3.7) holds. By
Theorem 3.5 the sequence {uε} is then relatively compact in the Fréchet space Lp

loc(R
N ×Y). �

The next formulas easily follow from the definitions (1.20).

Lemma 4.5. For any p ∈ [1,+∞] and any v ∈ W 1,p
loc (RN ),

∇xiIε,i(v ◦ Sε) = (∇ε,iv) ◦ Sε

(
= ∇ε,i(v ◦ Sε)

)
∇yiIε,i(v ◦ Sε) = Iε,i[ε(∇iv) ◦ Sε]

(
= Iε,i[∇yi(v ◦ Sε)]

)
,

(4.9)

∇xi(Iε,j ◦ Iε,i)(v ◦ Sε) = Iε,j∇xiIε,i(v ◦ Sε) = Iε,j∇ε,i(v ◦ Sε)

∇yi(Iε,j ◦ Iε,i)(v ◦ Sε) = Iε,j∇yiIε,i(v ◦ Sε) = Iε,jIε,i[∇yi(v ◦ Sε)].
(4.10)

These equalities hold a.e. in RN×Y and for any i, j ∈ {1, ..., N} with i �= j.

The next statement is an easy consequence of these formulas.

Proposition 4.6. Let p ∈ [1,+∞], {uε} be a sequence in W 1,p(RN ), and u ∈ W 1,p(RN×Y). Then (using the
notation (1.20))

uε is two-scale bounded in W 1,p(RN×Y)

⇔ Lεuε is one-scale bounded in this space.
(4.11)

Proof. For the sake of simplicity, let us assume that N = 2. By (4.9) and (4.10),

∇x1Lεuε = (J1 ◦ J2 ◦ Iε,2∇ε,1uε) ◦ Sε, ∇x2Lεuε = (J1 ◦ J2 ◦ Iε,1∇ε,2uε) ◦ Sε,

∇y1Lεuε = ε(J1 ◦ J2 ◦ Iε,1 ◦ Iε,2∇x1uε) ◦ Sε, ∇y2Lεuε = ε(J1 ◦ J2 ◦ Iε,1 ◦ Iε,2∇x2uε) ◦ Sε.
(4.12)

As the interpolation operators Iε,i’s are bounded, and the composition with Sε is an isometry (cf. Lem. 1.1),
(4.11) follows. The extension to N �= 2 is straightforward. �

Two-scale convergence in Euclidean domains. Let Ω be a domain of RN , and B(Ω) (B(Ω×Y), resp.) be a
space (either Lp, or C0, or Wm,p, etc.) of functions over Ω (over Ω×Y, resp.). Generally speaking, we say that
a sequence {uε} of functions of B(Ω) two-scale converges to a function u ∈ B(Ω×Y) iff there exist extensions
ũε : RN → R of uε and ũ : RN×Y → R of u, such that ũε two-scale converges to ũ in B(RN×Y). This applies
to either weak and strong two-scale convergence. Obviously, the regularity that is natural to assume for the
domain Ω depends on the function space under consideration.

Let now Ω be a Lipschitz domain of RN , denote by ν the outward-oriented, unit, normal vector to Γ := ∂Ω,
and by 〈·, ·〉Γ the duality pairing between H−1/2(Γ) and H1/2(Γ). For the sake of simplicity here we assume
that p = 2; however these developments might easily be extended to any p ∈ [1,+∞[.
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We recall the reader that L2
div(Ω)N is a Hilbert space equipped with the graph norm; moreover there exists

a unique linear and continuous trace operator γν : L2
div(Ω)N → H−1/2(Γ) such that γνu = u|Γ · ν for any

u ∈ C1(Ω̄)N , cf. e.g. [22]. A generalized Gauss theorem holds,
∫
Ω
∇·u dx = 〈γνu, 1〉Γ for any u ∈ L2

div(Ω)N , as
well as the following formula of integration by parts:

∫
Ω

(∇·u)v dx+
∫

Ω

u·∇v dx = 〈γνu, v〉Γ ∀u ∈ L2
div(Ω)N , ∀v ∈ H1(Ω).

Now we extend this formula to two-scale convergence (see also Prop. 4.3).

Proposition 4.7. Let a sequence {uε} of L2(RN )N and u ∈ L2(RN×Y)N be such that

uε⇀
2
u in L2(RN×Y)N , ‖∇ε ·uε‖L2(RN ) ≤ Constant. (4.13)

Then

u ∈ L2
(Y;L2

div(R
N )N

)
, ∇ε ·uε⇀

2
∇x ·u in L2(RN×Y). (4.14)

Moreover, for any bounded domain Ω of RN of Lipschitz class and any sequence {vε} of L2(RN ) such that
vε −→

2
v in L2(RN ×Y) and ∇εvε −→

2
∇xv in L2(RN×Y)N , (omitting restrictions)

∫
Ω

(∇ε ·uε(x)
)
vε(x) dx +

∫
Ω

uε(x)·∇εvε(x) dx →
∫∫

Ω×Y

∇x ·[u(x, y)v(x, y)] dxdy

=
∫

Y

〈γνu(·, y), v(·, y)〉Γ dy.
(4.15)

The latter formula can be applied also if uε, vε are defined just in Ω, after they have been suitably extended
to RN . (An extension is needed, for (∇ε·uε)|Ω and (∇εvε)|Ω also depend on the values of uε and vε outside Ω.)
An analogous result holds for the curl operator, with a corresponding formula of integration by parts.

Proof. (4.14) can be proved via the procedure of Proposition 4.2. Notice that

lim
ε→0

∫
Ω

uε(x)·∇εvε(x) dx = lim
ε→0

∑
i

∫
Ω

uε,i(x+ εei)∇ε,ivε(x) dx.

By the above-mentioned extention of the Gauss theorem, we then have

lim
ε→0

(∫
Ω

(∇ε ·uε(x)
)
vε(x) dx +

∫
Ω

uε(x)·∇εvε(x) dx
)

= lim
ε→0

∑
i

∫
Ω

[(∇ε,iuε,i(x)
)
vε(x) + uε,i(x+ εei)∇ε,ivε(x)

]
dx

= lim
ε→0

∑
i

∫
Ω

∇ε,i(uε,ivε)(x) dx =
∫∫

Ω×Y

∇x ·[u(x, y)v(x, y)] dxdy

=
∫

Y

〈γν(uv)(·, y), 1〉Γ dy =
∫

Y

〈γνu(·, y), v(·, y)〉Γ dy. �
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5. Two-scale convergence in spaces of differentiable functions

In this section we define two-scale convergence in spaces of either weakly or strongly differentiable functions,
by means of the approximate two-scale derivatives ∇ε and ε∇ , that we defined in (4.1).

Two-scale convergence in Wm,p(RN×Y). Let m ∈ N and p ∈ [1,+∞]. For any sequence {uε} in Wm,p(RN)
and any u ∈Wm,p(RN ×Y), we say that uε strongly two-scale converges to u in Wm,p(RN ×Y) iff

∇α
ε (ε∇)βuε −→

2
∇α

x∇β
yu in Lp(RN ×Y), ∀α, β ∈ NN , |α| + |β| ≤ m, (5.1)

and similarly for weak (weak star if p = ∞) two-scale convergence. Strong two-scale convergence in Wm,∞(RN×
Y) is rather restrictive, consistently with what we remarked for L∞(RN ×Y) in Section 1.

Generalizing the definition we gave for m = 1 in Section 4, we say that a sequence {uε} in Wm,p(RN ) is
two-scale bounded in Wm,p(RN ×Y) whenever the sequence {∇α

ε (ε∇)βLεuε} is bounded in Lp(RN) for any
α, β ∈ NN such that |α| + |β| ≤ m. Propositions 3.2 and 4.2 entail the following result.

Proposition 5.1. For any m ∈ N and any p ∈ ]1,+∞], any sequence of Wm,p(RN ) that is two-scale bounded
in Wm,p(RN×Y) has a weakly (weakly star if p = ∞) two-scale convergent subsequence in the latter space.

One might also define two-scale convergence in fractional Sobolev spaces, but here we omit that issue.
The property (5.1) does not entail that uε ◦ Sε ⇀ u in Wm,p(RN ×Y); actually in general uε ◦ Sε �∈

Wm,p(RN×Y). For m = 1 however we have the next result.

Proposition 5.2. Let p ∈ [1,+∞[, {uε} be a sequence in W 1,p(RN ), and u ∈ W 1,p(RN×Y). Then (using the
notation (1.20))

uε −→
2
u in W 1,p(RN ×Y) ⇔ Lεuε → u in W 1,p(RN ×Y), (5.2)

uε⇀
2
u in W 1,p(RN ×Y) ⇔ Lεuε ⇀ u in W 1,p(RN×Y). (5.3)

The latter equivalence also holds for p = ∞, with ∗
⇀
2

( ∗
⇀, resp.) in place of ⇀

2
(⇀, resp.).

Proof. By Proposition 4.6 any of these convergences entails that uε is two-scale bounded in W 1,p(RN×Y) and
that Lεuε is one-scale bounded in the same space. By (4.9) and (4.10), this boundedness entails that

∇xiLεv − (∇ε,iv) ◦ Sε → 0, ∇yiLεv − (∇yiv) ◦ Sε → 0 in Lp(RN×Y), ∀i,

for any v ∈ W 1,p(RN×Y). The equivalences (5.2) and (5.3) then follow. �

Weak two-scale convergence in Wm,p(RN ×Y)′ (the dual space of Wm,p(RN ×Y)). Let us fix any integer
m > 0, any p ∈ [1,+∞[, and denote by 〈·, ·〉 (〈〈·, ·〉〉, resp.) the duality pairing between Wm,p(RN) (Wm,p(RN×
Y), resp.) and the respective dual space. For any sequence {uε} in Wm,p(RN )′ and any u ∈ Wm,p(RN ×Y)′,
we say that uε weakly two-scale converges to u in Wm,p(RN×Y)′ iff

〈uε(x), ψε(x)〉 → 〈〈u(x, y), ψ(x, y)〉〉
∀{ψε} ⊂Wm,p(RN ) such that ψε −→

2
ψ in Wm,p(RN×Y). (5.4)

We define the strong two-scale convergence in the same space simply by replacing ψε −→
2
ψ with ψε⇀

2
ψ in (5.4).

The next statement can easily be proved by transposing approximate derivatives, and applying the above
definitions of two-scale convergence in the spaces Wm,p(RN ×Y) and Wm,p(RN×Y)′.
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Proposition 5.3. For any p ∈ ]1,+∞[, any sequence {uε} in Lp′
(RN ) and any u ∈ Lp′

(RN×Y),

uε⇀
2
u in Lp′

(RN×Y) ⇒
∇α

ε (ε∇)βuε⇀
2
∇α

x∇β
yu in W |α|+|β|,p(RN ×Y)′, ∀α, β ∈ NN .

(5.5)

Moreover, any bounded sequence in Lp′
(RN ) is weakly two-scale relatively compact in Wm,p(RN ×Y)′ for any

integer m > 0.

Two-scale convergence in Cm(RN ×Y). For any integer m > 0, any sequence {uε} in Cm(RN ) and any
u ∈ Cm(RN×Y), we say that uε strongly two-scale converges to u in Cm(RN×Y) iff, defining the interpolation
operator Lε as in (1.20),

∇α
ε (ε∇)βLεuε −→

2
∇α

x∇β
yu in C0(RN ×Y), ∀α, β ∈ NN , |α| + |β| ≤ m, (5.6)

and analogously for weak two-scale convergence. The extension of two-scale convergence to the space of infinitely
differentiable functions, C∞(RN×Y), is obvious.

Two-scale convergence in Cm,λ(RN ×Y). For any λ ∈ ]0, 1], any sequence {uε} in C0,λ(RN ) and any
u ∈ C0,λ(RN×Y), we say that uε strongly two-scale converges to u in C0,λ(RN ×Y) iff

Lεuε → u in C0,λ(RN×Y), (5.7)

and analogously for weak and weak star two-scale convergence.
For any integer m > 0, any λ ∈ ]0, 1], any sequence {uε} in Cm,λ(RN ) and any u ∈ Cm,λ(RN ×Y), we then

say that uε strongly two-scale converges to u in Cm,λ(RN ×Y) iff

∇α
ε (ε∇)βLεuε −→

2
∇α

x∇β
yu in C0,λ(RN×Y), ∀α, β ∈ NN , |α| + |β| ≤ m, (5.8)

and analogously for weak and weak star two-scale convergence.
Two-scale convergence can be similarly defined in Cm,λ(RN ×Y), namely the Banach space of functions

RN×Y → R that are uniformly Hölder-continuous of exponent λ (∈ ]0, 1]) with all derivatives up to the order
m.

We also say that a sequence {uε} of Cm,λ(RN) is two-scale bounded in Cm,λ(RN×Y) whenever the sequence
{∇α

ε (ε∇)βLεuε} is bounded in C0,λ(RN ) for any α, β ∈ NN such that |α| + |β| ≤ m. The next statement
follows from the relative weak star (one-scale) compactness of bounded subsets of Hölder spaces.

Proposition 5.4. For any m ∈ N and any λ ∈ ]0, 1], any sequence of Cm,λ(RN) that is two-scale bounded in
Cm,λ(RN ×Y) has a weakly star two-scale convergent subsequence in the latter space.

Two-scale convergence in D(RN ×Y). If {uε} is a sequence in D(RN ) and u ∈ D(RN ×Y), we say that uε

two-scale converges to u in D(RN ×Y) iff

∃ compact K ⊂ RN such that uε ≡ 0 in RN \K for any ε, and
∇α

ε (ε∇)βLεuε −→
2

∇α
x∇β

yu in C0(RN×Y), ∀α, β ∈ NN . (5.9)

E.g., for any w ∈ D(RN ×Y), w(x, x/ε) −→
2
w(x, y) in D(RN ×Y). Similarly, for any w ∈ Cm,λ(RN ×Y)

and any w ∈ Wm,p(RN ×Y) ∩ F (cf. (1.4)), w(x, x/ε) −→
2
w(x, y) in the respective space. This justifies the

definition (2.33) of two-scale convergence in D′(RN ×Y), and allows us to extended to two-scale convergence
classic density results, as stated in the next proposition.
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Proposition 5.5. For any m ∈ N, any p ∈ [1,+∞[ and any u ∈ Wm,p(RN ×Y), there exists a sequence {uε}
in D(RN ) such that uε −→

2
u in Wm,p(RN×Y).

An analogous statement applies to Cm,λ(RN×Y), as well as to weak two-scale convergence in Wm,p(RN×Y)′

and in D′(RN×Y).

Proof. For any u ∈Wm,p(RN×Y) there exists a sequence {un} in D(RN×Y) such that un → u in Wm,p(RN×Y).
As we saw, un(x, x/ε) −→

2
un(x, y) in Wm,p(RN ×Y) as ε → 0, for any n. One can then extract a diagonalized

sequence {ũε := unε} such that ũε(x, x/ε) −→
2
u(x, y) in Wm,p(RN×Y) as ε→ 0. The remainder can be proved

similarly. �

The relation between two-scale and one-scale convergence in Wm,p(RN×Y) is easily established by applying
Theorem 1.3 to the approximate two-scale derivatives. Two-scale convergence in the asymmetric spaces

C0
(Y;Cm,λ(RN )

)
, C0

(
RN ;Cm,λ(Y)

)
, Lp

(Y;Wm,p(RN )
)
, Lp

(
RN ;Wm,p(Y)

)
might also be defined via approximate two-scale derivatives, Λε. Anyway we refrain from adding further gener-
alizations.

Two-scale Sobolev and Morrey imbeddings. We now extend these two classic imbedding theorems to
two-scale convergence.

Theorem 5.6.
(i) For any p ∈ [1, 2N ] there exists a positive constant CN,p such that the following occurs for any q such that

p ≤ q ≤ 2Np
2N − p

if p < 2N, p ≤ q < +∞ if p = 2N. (5.10)

If a sequence {uε} of W 1,p(RN ) is two-scale bounded in W 1,p(RN ×Y) then it is bounded in Lq(RN ), and,
defining Lε as in (1.20),

‖uε‖Lq(RN ) ≤ CN,p‖Lεuε‖W 1,p(RN×Y) ∀ε. (5.11)

(ii) For any p ∈ ]2N,+∞[ there exists a positive constant CN,p such that the following occurs for any
λ ∈ ]0, 1− 2N/p]. If a sequence {uε} of W 1,p(RN ) is two-scale bounded in W 1,p(RN×Y) then it is bounded in
C0,λ(RN), and, defining Lε as in (1.20),

‖uε‖C0,λ(RN )
≤ CN,p‖Lεuε‖W 1,p(RN×Y) ∀ε. (5.12)

Proof. By Proposition 4.6, Lεuε is one-scale bounded in W 1,p(RN ×Y). Under the hypotheses of part (i), the
classic Sobolev inequality then yields ‖Lεuε‖Lq(RN×Y) ≤ C‖Lεuε‖W 1,p(RN×Y), for a suitable constant C that
only depends on 2N (the dimension of RN ×Y) and p. By Lemma 1.1, it is easy to see that ‖uε‖Lq(RN ) ≤
2‖Lεuε‖Lq(RN×Y). Part (i) then follows. The argument of part (ii) is similarly based on the classic Morrrey
theorem. �

Notice that the thresholds p̃ := 2Np/(2N − p) (for p < 2N) and λ̃ := 1−2N/p (for p > 2N) are smaller than
the corresponding one-scale exponents prescribed by the classic Sobolev and Morrey theorems in RN . This
is consistent with the fact that two-scale boundedness in W 1,p(RN ×Y) is a weaker condition than one-scale
boundedness in W 1,p(RN ).



396 A. VISINTIN

Corollary 5.7.
(i) Let 1 ≤ p ≤ 2N , and (5.10) be fulfilled. Then for any sequence {uε} in W 1,p(RN )

uε⇀
2
u in W 1,p(RN×Y) ⇒ uε⇀

2
u in Lq(RN×Y). (5.13)

(ii) Let 2N < p < +∞ and 0 < λ ≤ 1 − 2N/p. Then for any sequence {uε} in W 1,p(RN )

uε⇀
2
u in W 1,p(RN ×Y) ⇒ uε⇀

2
u in C0,λ(RN×Y). (5.14)

The same applies if weak two-scale convergence is everywhere replaced by strong two-scale convergence.

Proof. Under the hypotheses of part (i), by Proposition 4.6 the sequence {Lεuε} is (one-scale) bounded in
W 1,p(RN ×Y). By (5.11) the sequence {uε} is then bounded in Lq(RN ×Y), and (5.13) follows. (5.14) can be
proved similarly.

Let us now assume that uε −→
2
u in W 1,p(RN×Y), whence Lεuε → u in the same space, cf. (5.2). The classic

Sobolev inequality then yields Lεuε → u in Lq(RN ×Y), namely uε −→
2
u in the latter space. Strong two-scale

convergence in (5.14) can be derived similarly. �

Corollary 5.8.
(i) Let 1 ≤ p ≤ 2N and p ≤ q < 2Np/(2N − p) (setting 1/0 := +∞). For any sequence {uε} in W 1,p(RN)

that is two-scale bounded in W 1,p(RN ×Y),

{uε} is strongly two-scale relatively compact in Lq
loc(R

N ×Y). (5.15)

(ii) Let 2N < p < +∞ and 0 < λ < 1−2N/p. For any sequence {uε} in W 1,p(RN ) that is two-scale bounded
in W 1,p(RN×Y),

{uε} is strongly two-scale relatively compact in C0,λ
loc (RN ×Y). (5.16)

Proof. We mimic a standard argument of one-scale convergence. Under the hypotheses of part (i), by Theo-
rem 4.4 the sequence {uε ◦ Sε} is strongly relatively compact in the Fréchet space Lp

loc(R
N ×Y). By (5.11)

{uε ◦Sε} is weakly relatively compact in Lr(RN×Y) for any r ∈ ]q, 2Np/(2N − p)[. By a well-known argument
based on the Egorov theorem, {uε ◦ Sε} is then strongly relatively compact in Lq

loc(R
N ×Y), that is, {uε} is

strongly two-scale relatively compact in this space. (5.15) is thus established. (5.16) can be proved similarly. �
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