ESAIM: COCV ESAIM: Control, Optimisation and Calculus of Variations
July 2006, Vol. 12, 371-397 www.edpsciences.org / cocv
DOI: 10.1051/cocv:2006012

TOWARDS A TWO-SCALE CALCULUS

AUGUSTO VISINTIN'

Abstract. We define and characterize weak and strong two-scale convergence in LP, C° and other
spaces via a transformation of variable, extending Nguetseng’s definition. We derive several properties,
including weak and strong two-scale compactness; in particular we prove two-scale versions of theorems
of Ascoli-Arzela, Chacon, Riesz, and Vitali. We then approximate two-scale derivatives, and define
two-scale convergence in spaces of either weakly or strongly differentiable functions. We also derive
two-scale versions of the classic theorems of Rellich, Sobolev, and Morrey.
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INTRODUCTION

Let Q be a domain of RY (N > 1), and set Y := [0, 1[". In the seminal work [25], Nguetseng introduced the
following concept: a bounded sequence {u.} of L?(Q) is said (weakly) two-scale convergent to u € L*(QxY) if
and only if
i [ o) v(n, ) do = [[ uley) vy dody 1)

Q € axy

e—0

for any smooth function 1 : RN xR~ — R that is Y-periodic w.r.t. the second argument. It should be noticed
that u. : 2 — R for any ¢, whereas u: QxY — R.

This notion was then analyzed in detail and applied to a number of problems by Allaire [1] and others.
It can account for occurrence of a fine-scale periodic structure, and indeed has been and is still extensively
applied to homogenization, see e.g. [2,5,8,13,17,20,21, 26,35, 36], just to mention some papers of a growing
literature. In the framework of periodic homogenization, two-scale convergence can represent an alternative to
the classic energy method of Tartar, see e.g. [3,7,16,19,24,28-31]. Extensions to the nonperiodic setting have
been proposed by Casado-Diaz and Gayte [11,12] and by Nguetseng [27]. Multi-scale convergence has been
studied by Allaire and Briane [4] and by others.

In this paper we investigate some properties of two-scale convergence, and extend it in several ways. In
Section 1 we set u. = u = 0 outside  and define a family of scale transformations S. : RV xY — RN.
Denoting weak one-scale (two-scale, resp.) convergence by — (?, resp.), along the lines of [5,8,13,15,20,21]

we set
Ue U in L2(QxY) < w.0S —u in L*(RYxY); (2)
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we then prove the equivalence to the standard definition (1). (This procedure has been named periodic unfolding
in [15].) We thus represent two-scale convergence by means of a single function space; we also define strong
two-scale convergence (that we denote by ?) via an analogous characterization. The extension to either weak

and strong two-scale convergence in LP(RY xY') for any p € [1,+oc] is obvious.

In this theory the periodicity w.r.t. the fine-scale variable y plays an important role. We then denote by ) the
set Y equipped with the topology of the N-dimensional torus. After a simple modification of the discontinuous
transformation S., we also define weak and strong two-scale convergence in the Fréchet space C°(RY x ).

In Section 2 we derive some properties of two-scale convergence. Some of these results are already known,
cf. e.g. [1,15,20,21,23,25]; in particular this is the case for several either equivalent or sufficient conditions for
two-scale convergence in LP. Here we organize their derivation by using the tool of two-scale decomposition,
and also deal with two-scale convergence in C° and in D’, with the Fourier transform, and with two-scale
convolution.

In Section 3 we study weak and strong two-scale compactness. We prove a two-scale version of a result of
Chacon, known as the biting lemma, cf. [10]; we characterize strong two-scale compactness in L? and in C?,
generalizing classic criteria of Riesz and Ascoli-Arzela. Along the same lines, we also extend Vitali’s convergence
theorem.

Differential properties of two-scale convergence are the main concern of this paper. Even by simple examples
it appears that the gradient of the two-scale limit of u. need not coincide with the two-scale limit of the
gradient of u.. The two-scale limit of sequences bounded in H'(Q) has already been studied in [1,25]; the
present analysis moves towards a different direction. In Section 4 we show that it is possible to express the
gradient of the two-scale limit without the need of evaluating the limit itself, via what we name approzimate
two-scale derivatives. More specifically, we define an approximate gradient A. such that, denoting the weak
two-scale limit by lim._,o @,

lim P Acue = (V, V) lim @ue - in PR 5 V)Y, (3)

E—

(The fact that eVu, S V,u was already known, cf. [1].)

By means of two-scale approximate derivatives, in Section 5 we define two-scale convergence in spaces of
differentiable functions: W™P C™ C™> D. For instance, for any Caratheodory function w € W™P(RN x
Y), w(z,z/e) two-scale converges to w(z,y) in that space. We then derive two-scale versions of the Rellich
compactness theorem and of the Sobolev and Morrey imbedding theorems. Indeed several classic results have
a two-scale counterpart, which does not concern single functions but sequences of functions (loosely speaking,
these properties are dynamic rather than static...).

This paper reports on a research on multi-scale analysis and modelling; some of the present results were
announced in [33]. This point of view induced this author to amend the vector Preisach model of ferromagnetic
hysteresis in [32]. A work apart, [34], deals with the identification of the two-scale limit of first-order differential
operators.

1. TWO-SCALE CONVERGENCE VIA TWO-SCALE DECOMPOSITION

In this section we introduce a family of variable transformations, and use it to define two-scale convergence,
along the lines of [5,8,13,15,20,21].

Throughout this paper we denote by ) the set Y = [0, 1["V equipped with the topology of the N-dimensional
torus, and identify any function on ) with its Y -periodic extension to R". In passing we notice that D()) #
D(Y), whereas LP(Y) = LP(Y) for any p € [1, +0o0)].

Two-scale decomposition. Let B be a complex separable Banach space, denote its norm by || - ||z and the
duality pairing between B and B’ by (-,-). We set p’ :=p/(p—1) for any p € |1, +o0[, 1’ := 0o and oo’ := 1; we
assume that either B is reflexive or B’ is separable, so that (LP(RN; B))/ = Lp/(RN; B’) for any p € [1, 400,
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¢f. e.g. [18]. For any € > 0, we decompose real numbers and real vectors as follows:

n(z) :=max{n € Z:n <z}, 7(z):=z—n(x)(€[0,1]) Vz € R, (1.1)
= (A(x1),...,n(zn)) €ZN, R(z):=x—-N(x)e) VreRN. '

=
&
|

Thus x = [N (x/¢) + R(z/e)] for any x € RY. In applications the variable = often expresses the ratio between
some dimensional quantity and a given scale. If € represents the ratio between a finer scale and the given one,
N(z/e) and R(x/e) may then be regarded as coarse-scale and fine-scale variables, resp. Besides the above
two-scale decomposition, we define a two-scale composition function:

S.(x,y) :==eN(x/e) +ey  V(x,y) € RN xY, Ve > 0. (1.2)
As Sc(z,y) = = +ely — R(z/e)],
S.(x,y) — o uniformly in RN x Y, as ¢ — 0. (1.3)

The next result is at the basis of our approach to two-scale convergence. First let us denote by L(RY) (B(RY),
resp.) the o-algebra of Lebesgue- (Borel-, resp.) measurable subsets of RV, define £()) and B()) similarly,

and set
F = {f : RV xY — R measurable either w.r.t. the o-algebra generated

by B(RY)x L(Y), or w.r.t. that generated by L(R™)xB(Y)}.
This class includes all Caratheodory functions, cf. e.g. [9], p. 30. Henceforth by writing any sum over Z~ we
shall implicitly assume that it is absolutely convergent.

Lemma 1.1. Let f € F, and assume that either f € L' (y;L‘X’(RN)) and has compact support, or f €
LY (RN;L>=(Y)). Let us extend f(z,-) by Y -periodicity to RN for a.a. v € RV.

Then, for any € > 0, the functions RN — R: 2+ f(z,2/e) and RV xY — R: (x,9) — f(S:(z,v),y) are
integrable, and

(1.4)

f(:cac/s dxfsNZ/f elm+y),y)dy = // y)dady Ve > 0. (1.5)

mezZN Nxy

For any p € [1,400] and € > 0, the operator A, : g — go Sc is then a (nonsurjective) linear isometry
LP(RYN; B) — LP(RN xY; B).

Proof. The function x +— f(xz,z/e) is obviously measurable. The function (z,y) — f(S:(z,y),y) is also
measurable, for the mapping (z,y) — (S:(z,y),y) is piecewise constant w.r.t. z and affine w.r.t. y. As
RY =, ,czv (em +¢Y) and N(x/e) = m for any & € em + €}, we have

faafsde = S [ ERCECLEEDS | #elm sy

meZN € mezZN
/ dx/f N(z/e) +yl,y dy—/ dx/f (z,9),
em—+eY

Writing (1.5) for f(x,y) = |lg(z)||p for a.a. (z,y), we get the final statement for any p € [1, +oo], and then by
passage to the limit also for p = co. The operator A, is not onto, for g o S, is piecewise constant w.r.t. z for
any g € LP(R"N; B). O

RN

meZN

Corollary 1.2. Denoting by | - |ar the M-dimensional Lebesgue measure, for any measurable set A C RN of
finite measure and any measurable set C C Y,

Hz e A:R(z/e) € CYn = |{(z,y) e RN xY: S.(z,y) € A, y € C}an Ve > 0. (1.6)
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In particular,
|Alxy = {(z,y) e RN xY: S.(x,y) € A}|an Ve > 0. (1.7)

Proof. Let us define the characteristic function
xa(v):=1 Vv € A, xa(v) =0 YveRN\A4,

and define x¢ similarly. By Lemma 1.1, we have
o€ 4 Rafe) € O = | xale) xelR(w/o)do
R

= //RN YXA(Sa(:B,y)) xc(y)dzdy = |{(z,y) : Sc(x,y) € A,y € C}an. 0

Two-scale convergence in LP. In this paper we deal with sequences of functions, which we label by the index
€, as it is customary in the literature about two-scale convergence. More precisely, € will represent an arbitrary
but prescribed, positive and vanishing sequence of real numbers; for instance, ¢ = {1,1/2,...,1/n,...}. The
results of this paper do not depend on the specific choice of this sequence, that we regard as fixed.

Let B, Y, and S: be defined as above. Along the lines of [15], for any sequence of measurable functions,
u. : RN — B, and any measurable function, v : RV¥x) — B, we say that u. two-scale converges to u (w.r.t. the
prescribed positive vanishing sequence {e,}) in some specific sense, whenever u. o S. — w in the corresponding
standard sense. In this way we define strong and weak (weak star for p = co) two-scale convergence (1 < p <
+00), that we denote by u. S U Ue MU Ue %u (resp.):

us > u in LP(RN xY;B) & w.0S.—u in LP(RYN xY;B), Vpe€[l,+o0]; (1.8)
ue >u in LPRY xY;B) & w.0S.—u in LP(RYxY;B), Vpe|[l,+oof; (1.9)
Ue ?u in L°RY xV;B) & w.08.>u in L°RN xY; B') (= L* RN xY; B)'). (1.10)

For any domain  C R, two-scale convergence in LP(Q2x); B) is then defined by extending functions to RV\Q
with vanishing value. We similarly define a.e. (i.e., almost everywhere) two-scale convergence, quasi-uniform
two-scale convergence, two-scale convergence in measure, and so on. In all of these cases the limit is obviously
unique. We refer to the usual convergence over RV as one-scale convergence.

For instance, for any ¢ € D(RY xY), u. () := ¢(x,z/e) 5 ¥(x,y). Examples of this sort play an important

role, for they often represent the best behaviour one may expect for this type of convergence. By the next
result, weak and strong two-scale convergence can be regarded as intermediate properties between the usual
(one-scale) weak and strong convergence.

Theorem 1.3. Let p € [1,+oc[, {u:} be a sequence in LP(RN; B) and u € LP(RN xY; B). Then

whenever u is independent of y,

1.11

u. —u in LP(RY;B) < Ue o u in LP(RN x)); B), (1.11)

ue > u in LP(RVxY:B) = ue >u in LP(RN xY; B), (1.12)

Us U in L’ (RN xY;B) = ueé/ u(,y)dy in LP(RY; B). (1.13)
Y

For any Lipschitz-continuous function f : B — B,

ue > in LPRNxY:B) = flue) 5 f(u) in LP(RN xY; B). (1.14)



TOWARDS A TWO-SCALE CALCULUS 375

Proof. For any u € LP(RY; B), by Lemma 1.1 we have

e =l iy = [ ) = u(a)fy da
RN

= //way [us(Se (2, ) — u(Se (@, )| dzdy = [ue 0 Se —uo Se |}, gy

Hence

|Hu€ 05 — U”LP(RNXJ?;B) = Jlue — U||LP(RN;B)| = |Hu€ 0Se — U”LP(RNXJ?;B) — |luc 0 Se —wo SEHLP(Rny;B)
< H“ —uo SEHLP(RNXJJ;B) —0 (by (1-3))'

(1.11) is thus established. (1.12) and (1.14) are straightforward.
Let us now come to (1.13), assume that u. S in LP(R™ xY; B), and fix any (bounded if p > 1) Lebesgue

measurable set A C RY. Applying Lemma 1.1 to f = u.xa (€ LY(RY)), we have

/Aua(x)d:v://Axyue(se(x,y))dxdyA/Axyu(ac,y)dxdy:/Adac/yu(x,y)dy in B.

As the finite linear combinations of indicator functions x4 are dense in )i (RN ), we conclude that u. —
fyu(-,y)dy in LP(RN;B). O

Remark. For p = co the implication (1.11) may fail. As a counterexample it suffices to select any real a that
is no integral multiple of e, for any n, and set u., = X[4,+o0[ for any n € N. This constant sequence does not
two-scale converge in L (RN x))), as u., oS-, is constant w.r.t. z in a small neighbourhood of a for any n.
This shows that strong two-scale convergence in L= (R~ x); B) to discontinuous functions is a rather restrictive
property. See however Proposition 1.5 below.

On the other hand it is easy to see that for p = oo (1.13) holds with - (%, resp.) in place of — (?, resp.),

provided that B is the dual of a separable Banach space.

Limit decomposition and orthogonality. Let p € [1, +o0], u S in LP(RN xY; B), and set

Upe = / uc(eN(-/e) +e£)dE, upe := ue — uge
¥ a.e. in RY. (1.15)

ug = / u(+y)dy, w1 =u—uo
Y
Via Lemma 1.1 it is easy to see that

Uoe S* U0, Ule U1 in Lp(Rny;B).

Notice that u. — ug in LP(RY; B), for ug is independent of y, cf. (1.11); hence u;. — 0 in LP(RY; B). This
yields the limit two-scale decomposition

u(z,y) = uo(z) + ui(z,y) for a.a. (z,9) € RN xY,

(1.16)
with / ui(z,y)dy =0 for a.a. x € RV,
Y
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Proposition 1.4. Let p € [1,+o0[, the sequence {u:} and ug,u; be as above. Assume that . - n

LY (RN x Y; B'), and decompose @ in the form o = oo + o1, with @ — o in LP (RN; B'). Then

(ue (), pe(x)) dz — (u(z,y), p(x,y)) dedy
/RN //RNXY (1'17)

= /RN<UO(30)7<PO($)>dx+//Rnywl(x,y),gol(x,y)>d:vdy.

Proof. By Lemma 1.1, by the decomposition formula (1.16) and the analogous formula for ¢, we have

tim [ (@)@ do =t [ () (5. ) dody

e—0 RN e—0

:/ /RNXYW% y), (x,y)) dady
:/RNQm(m), @o(x)) da +/[Rny<u1(x,y), ©1(,y)) dedy. O

Let us denote the duality mapping B — 28 l by F. If ugp and u; are as above, we have the following orthogonality-
type property:

/RN dx/y<F(UO(I)),u1($,y)>dy=/RN dx <F(uo(x)),/yu1(x,y)dy> =0, (1.18)

as [y ui(-,y)dy = 0. If p = 2 and B is a Hilbert space, the decomposition (1.16) is actually orthogonal: u; is
the projection of u onto the subspace {v € L2(RN xYV; B) : [, u1(z,y) dy = 0 for a.a. z € RV}, and

||U||%2(Rny;B) = HUOH%z(RN;B) + Hulﬂiz(Rny;B)- (1.19)

Interpolation. Modifications are needed to extend the previous definitions to C?, for in general the function
ue 0 Se is discontinuous w.r.t. x and w.r.t. y € ), even if u. is continuous. We then replace u. o S. by a
continuous function, L.u. , that we construct via linear interpolation w.r.t. each coordinate axis as follows. For
i=1,...,N, let us denote by e; the unit vector of the x;-axis, set ;) := x — x;e; for any x € R, y; := y — yie;
for any y € R (thus 0 < y; < 1), and (¢f. (1.1))

(I.iw)(z,y) == w(zpy + en(xi/e)es, y)
+r(zi/e) [wzy + enlwi/e)e; + eei,y) — w(ay + enlwi/e)ei, y)],
(Jiw)(@, ) = wa,y) =y (limg 1 wle,y + te) = wie,y)) (1:20)
V(z,y) e RN xY,Vw: RN xY - R, fori=1,..,N,
Lov:=(Jio..oJyol.j0..0l n)(volS,) Yo : RN - R.

Thus v o S; is piecewise constant w.r.t. x, whereas L.v is piecewise linear and continuous w.r.t. x; for any .
Moreover

Jim (Lev)(z, g +tei) = (Lev)(z,yy)  V(zy) € RY %P, Vi.

If v € C°(RY; B) then L.v € CO(RYN x); B).
The interpolation procedure that here has been applied w.r.t. = is labelled ()1, and is widely used in the
finite-element theory. A Qi-interpolation was also applied to two-scale convergence in [15].
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Two-scale convergence in C°. It is well known that C°(R"; B) and C°(RN xY; B) are Fréchet spaces: e.g.,
C°(RY; B) is equipped with the family of seminorms {v +— supy ||v|]|z : K cC RN},

For any sequence {u.} in the Fréchet space C°(R”Y; B) and any u € C°(RY xY; B), we say that u. strongly
(weakly, resp.) two-scale converges to u in CO(RYN x Y; B) iff (i.e., if and only if)

Leue —u  (Leue — w resp.) in C°(RN xY; B) (1.21)

w.r.t. the Fréchet topology. A result (here omitted) analogous to Theorem 1.3 holds in C°(RY x)); B).

Proposition 1.5. Let {u.} be a bounded sequence in CO(RY; B) and u € C°(RN xY; B). Then
(i) ue U in CO(RN xY; B) iff u. U in L=°(K xY; B) for any compact subset K of RV .

(ii) ua?u in CO(RN xY; B) iff ua?u in B pointwise in RN x ).

Proof. Part (i) follows from the definition of convergence in the Fréchet space C°(RY xY; B). By the continuity
of u, it is easy to see that u. ;\u (i.e., uc 0 S; — u) in B pointwise in RV xY iff L.u. — u in B pointwise in

the same set. This yields part (i) as, for any compact set K, weak convergence in C°(K x))) is equivalent to
boundedness and pointwise convergence (under the assumption that the limit is also continuous), ¢f. e.g. [18],
p- 269. O

Parameters and scales. So far we dealt with sequences indexed by a parameter ¢, that we assumed to coincide
with the ratio between two scales. But this coincidence is not really needed: we illustrate this issue dealing
with two sequences of parameters. First let us define the set of all scale sequences, £, namely the set of all
positive vanishing sequences. Let us fix any € := {e1,...,en, ...}, & = {&],...,&l, ...} € E. We say that u. U

5 Ens

’
. . g . . . .
in LP(RY xY) w.r.t. ¢, and write u. 5 iff ue, 0 S — win LP(RV xY) as n — oco. For instance, if €], := &2

for any n, as n — oo we have

cos(27Se, (z,y)/en) = cos(2mN (z/en) + y]) = cos(2my)
cos(2mSez (v,y)/en) = cos(2men [N (2/€2) + y]) = cos(27[z /e, + O(en)]) — 0
cos(2mS.2 (z,y)/en) = cos(2m[N (x/€5) + y]) = cos(2my)
cos(2mS., (x,y)/2) = cos(2n[N(x/e,) +y]/en) — O

in the Fréchet space L (RN xY) for any p < +o00. Hence

loc

2
cos(2mx/¢e) % cos(2my), cos(2mx/e) %\0

: p
in Ly,

) (RN xY),Vp < +oc. (1.22)
cos(2mx/e?) % cos(2my), cos(2mx/e?) % 0

Two-scale convergence is indeed invariant upon rescaling: for any é € £ and any strictly increasing function
a:RY — RT such that a(v) — 0 as v — 0, setting ¢, = a(e,) for any n, we have & € £; moreover, u. % U

iff we % u. Henceforth we deal with a single sequence ¢ € £, and omit the hat, ~.

2. SOME PROPERTIES OF TWO-SCALE CONVERGENCE

In this section we study several necessary and/or sufficient properties for two-scale convergence in the
spaces LP and C°, partially revisiting known results. We then define two-scale convolution, and generalize
two-scale convergence to distributions. Several other notions have a natural two-scale extension: for instance,
a two-scale Fourier transform will be studied apart.
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2.1. Characterization of two-scale convergence in L? and in C°

We still assume that the Banach space B is separable, and that either it is reflexive or B’ is separable.
Is two-scale convergence invariant upon traslations? For any u € F (cf. (1.4)) let us set u(.)(z) = u(z,z/¢)
for any = € RY. We wonder whether a relation may be established between u,. 5 u and ue — u() 5 0 either

in LP(RVxY; B) (p € [1,+0o0[) or in C°(RN xY; B), and similarly for weak two-scale convergence. We address
this question in Propositions 2.3 and 2.4.

First we notice that if u is just an element of LP(RY x)); B), u(s) need not be measurable. After [15], we
then define the coarse-scale averaging operator M.:

(M.u)(z,y) ::/Yu(zs./\/(ac/e) +¢e€,y)d¢ for a.a. (z,y) ERN x ). (2.1)

This function is piecewise constant w.r.t. x; it is also measurable w.r.t. y, for it is the average of a family
of measurable functions. More precisely, M u is measurable w.r.t. (z,y), and (M.u)(z,z/e) is measurable
as well. For any p € [1,+o0o[, M. is a (linear and) continuous operator in LP(R"™ x ); B). Indeed for any
u € L”(RN xY; B), by Jensen’s inequality,

IMeull? gy = //RNXYH/Yu(sj\/'(x/e)+€§,y)d£H2dxdy

< //Rny </Y lu(eN (z/e) + &, y)|I% d§> dady = [[ull], mry:m)-

Lemma 2.1. Let p € [1,+00[. For any u € LP(RN xY; B),
(M.u)(z,z/¢€) > u(z,y) in LP(RN xY; B). (2.2)

Ifu e F (cf. (1.4)) the operator M. may be dropped.

Proof. By the definitions of M, and S, (¢f. (1.2)), by the Y-periodicity of the function u(z,-), and by a classic
theorem of Lebesgue on the pointwise convergence of averages, we have

(Mew)(S-(2,9), 5c(2,9)/€) = (Mew)(z,9) — ulz,y)  in B ace. in RN x Y.
As {||Mcu||%} is equi-integrable, Vitali’s theorem yields the convergence in LP (RN xY; B), i.e. (2.2).
If w € F then u(Sc(z,y), Se(z,y)/e) = uw(eN(x/e) + ey, y) is a measurable function of (z,y). Moreover,
by (1.3) and by LP-continuity w.r.t. shift of the argument,
u(eN(x/e) + ey, y) — u(z,y) in LP(RN x ; B). O
Lemma 2.2. For any u € C°(RN xY; B),
u(z, z/€) Y u(z,y) in C°(RN xY; B). (2.3)

Proof. Denoting the modulus of continuity of w by m,, and setting u.(z,y) := u(S:(z,v),y), by (1.20) we have

[(Leiue) (@, y) —u(z, y)lls < |(Leiue)(z,y) — ue(z, 9)|| B + [Jus(z,y) — w(z,9)|5
< 2my,(e) V(z,y) € RN xY, fori=1,...,N.

Hence ||(Leue)(z,y) — u(z, y)||l B < 2Nm,(e) — 0, and (2.3) follows. O
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Proposition 2.3. Let p € [1,+00[. For any sequence {u.} in LP(RY; B) and any u € LP(RN xY; B),

Ue - u in LP(RN xY; B) & u.(x) — (Mou)(z, z/€) > 0 in LP(RN xY;B), (2.4)
Us St in LP(RN xY; B) & u.(z) — (M.u)(x,x/e) ?0 in LP(RN xY; B), (2.5)
Ue o u in LP(RN xY; B) & u.(z) — (Mou)(x,z/e) — 0 in LP(RY; B), (2.6)
Us St in LP(RN x Y, B)zug(x) — (Mou)(z,2/e) = 0 in LP(RY; B). (2.7)

Ifu e F (cf. (1.4)), then the operator M. may be dropped.
The equivalence (2.6) was already stated in the second part of Theorem 3 of [15].

Proof. (2.4) and (2.5) directly follow from Lemma 2.1. In view of proving (2.6), let us set w. = uc(x) —
(Meu)(z,x/e). By Lemma 1.1, [|w. o Sel oo (mmny.s) = | | o z: ths

we -0 in IPRYxY;B) & w.(z) -0 in L?(RY;B),
and (2.6) is established. Let us now come to (2.7). For any g € L? (RV; B’), by Lemma 1.1

tim [ v g)do = lin [] (5.0 (5. (o) dady

e—0 RN e—0
provided that one of these limits exists. As go S. — g in € LPI(RN x Y; B'), we conclude that
we 0 in LPRYxY;B) = w.(z) =0 in LP(RY;B),

that is, the implication “=” of (2.7). We show that the converse may fail by means of a counterexample. Let

us set u.(z) = e sin(2nz/e) and u(x,y) = 0 for any € R and any y € [0,1[. Then u.(z) — (Mcu)(z,x/e) =
2

ue(z) — 0 in LP(R) for any p € [1, 400, but u, ?efz sin(27y) in LP(RxY). O

Proposition 2.4. For any sequence {u.} in CO(RN xY; B) and any u € C°(RN xY; B),

Ue —u in C/RNxY;B) & wu.(x) —u(z,z/e) Py 0 in C°(RN xY;B), (2.8)
Ue U in CO (RN xY; B) & u.(x) — u(x,x/e) ?0 in C°(RN xY; B), (2.9)
Us - u in C/(RN xY; B) & u.(z) —u(z,2/e) — 0 in CO(RN;B). (2.10)
Proof. (2.8) and (2.9) follow from Lemma 2.2. Let us now set w. := u-(z) — u(x,x/e), and notice that

||L5w5||co(RN><y;B) = ||'UJEHCO(RN;B). Thus
we 0 in C%RMxY;B) & w.(zx)—0 in C°RY;B),

and (2.10) holds. 0

Remark.
(i) Here we do not address the possible relation between u. S in C°(RY xY; B) and u.(x) — u(z,2/e) — 0

in CO(RY; B).
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(ii) There exist pathologic functions u € LP(RY x)) such that the mapping x + u(x, z/¢) is not measurable.
This issue has been investigated in some detail in [1]; see also references therein.

(iii) By Lemmata 2.1 and 2.2, any function of LP(R¥xY; B) (p €1, +o0|) or of CO(R¥ xY; B) is the two-scale
limit of some sequence.

We now retrieve the original definition of (weak) two-scale convergence of Nguetseng [25], for any p # oo.

Proposition 2.5. Let p € [1,+o0|. For any bounded sequence {u.} in LP(RY; B) and any u € LP(RN xY; B),
Us St in LP(RN xY; B) iff

/<us<z>,w<x,x/s>>dw// (u(e.y). bz, y) dedy ¥ € DRN xV; B). (2.11)
RN RAVXY

Proof. For any ¢ € D(RN xY; B'), (us(z),v¥(z,y)) € L*(RY;C°(Y)), so that we can apply Lemma 1.1. As
W(Se(z,y),y) = v(z,y) in LP (RN x Y; B), we have

[ @ ia/eyde = [[ (s o) dedy
— [[ |, {ue(Se(o.). 6(Sce,0).v) — (e ) dady — 0
RNXY

Hence

lim (ue(x),Y(z,2/e)) de = lim //RNxY ue (Se(x,y)), ¥ (x, y)) dedy. O

e—0 RN e—0

Remark. As the tensor product D(RY; B') ® D()) is dense in D(RN x Y; B’), (2.11) is equivalent to

| @ s@etae e =[] tula). v@het) dody
Vi € D(RN; B'),Yo € D(Y).

Here ¢ might equivalently be confined to (the real and immaginary parts of) the Fourier basis {¢y, } ez~ , where
én(y) := exp (2min-y) for any y € Y and any n € Z".

In the next statement we assume that B is a complex Hilbert space equipped with a Hilbert basis {¢y, tnen;
we denote this space by H and its scalar product by (-,-)g. We also denote by ¢%, the complex Hilbert space
of square-summable sequences N — H.

Theorem 2.6 (generalized Fourier expansion w.r.t. y). Let {u.} be a sequence in L>(R™; H), u € L>(RN x
Y;H), define Se as in (1.2), and set

o) = /Y (e (e 9)), u@))ir dy,  an(z) == /Y (uz, ), b () dy

(2.12)
for a.a. x € RN, ¥n € N, Ve.
Then
ue(x) ?u(x,y) in PRYxY;H) < Hanc(2)} — {an(x)} in L2RN;03), (2.13)
ue () > u(z,y) in PRYxY;H) & anc(x)} — {an(x)} in L2RN;6%). (2.14)

The examples of (1.22) might be interpreted within this framework.
The statements (2.13) and (2.14) might be reformulated in terms of the (generalized) Fourier expansion
of an. and a, as functions of z, thus achieving the global Fourier expansion of u. o S. and u w.r.t. (z,y).
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Proof. The a, ’s and the a,,’s are the coeflicients of the partial Fourier expansion of u. o S, and u, resp., in the
sense that

ue(Se(z,y)) = Z e (T)Pn(y) in LQ(RN xY; H), Ve,
o 70 (2.15)

u(m,y) = Zan(x)¢n(y) in LQ(RNXy§H)'
n=0

By definition u, S in L2(RYxY; H) iff u. 0 S. — uin L2(RN xY; H), or equivalently

[ S ga@nde = [ (e o@hads i L20).Yg € PR H)

Setting by e == [ga (ane(x),g(x)) g dz and by, := [gn(an(z), g(2)) g dz for any n, e, this reads
D boncn(y) = D bonduly)  in L*(Y),¥g € LARN; H),
n=0 n=0

that is, {byn.c} — {bgn} in €% for any g € L*(R™N; H). This means that {a,.(z)} — {an(z)} in L2(RV;(2),
and (2.13) is thus established.
Let us now come to strong convergence. By (2.15)

e o Sell L2y = {an 2wz Ve, ullLz@ysymy = [{an} | L2@yiez, ) (2.16)
thus

l[ue © Sell 2@y = lullLz@vsy;my & ||{an,€}HL2(RN;Z§{) - H{an}HH(RN;egy (2.17)
This statement and (2.13) entail (2.14). O

Proposition 2.7 (norm semicontinuity and continuity). Let p € [1,4oc[ and {u.} be a sequence in LP(RY; B).
Then

Ue St in L”(Rny;B) =

lim inf {|ue[o@v:m) 2 [lullLr@y:s) (Z H /Yu(vy)dy‘ LP(RN;B),

N ue —u in LP(RY xY; B)
ue —u in LP(RY"xY;B) = 2 (2.19)
2 [uello@v:zy = llull Lo @vxy:m)-
If p € ]1,+00] and the space B is uniformly convezx, then the latter implication can be inverted.

Proof. By Lemma 1.1, |luc||rg~;5) = [[tue © SellLr(m¥xy;p) for any e. It then suffices to recall the definitions
of weak and strong two-scale convergence and to apply standard properties. O

Proposition 2.8. Let p € [1, 400 and {u.} be a bounded sequence in LP(RN; B).
(i) If u. - U in LP(RN xY; B), then

V{va}CL”/(RN;B'),ifUEE\U in LV (RN xY; B') (Uaév if p = 00)

2.20
ten [ tuenas— [[ o)t dody —

(i) If p =2 and B is uniformly convex, conversely (2.20) entails u. U in LP(RN xY; B).

For p =2 and B = R, we thus retrieve the definition of strong two-scale convergence of [1].
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Proof. Part (i) directly follows from the definitions of weak and strong two-scale convergence.
Let us come to part (ii). For any ¢ € D(RY xY; B), by Lemma 2.2 we can take v.(x) := 9 (z,x/¢) in (2.20).
By Proposition 2.5 we then get u, S in L2(RN x Y; B). Denoting the duality mapping B — 25 by F and

taking v € F(uc) in (2.20), we get ||luc||L2m~,5) — ||ullL2(mVxy;B)- By the final statement of Proposition 2.7,
we conclude that u, - U in L2(RN xY; B). O

Remark. Part (ii) of Proposition 2.8 holds for any p € ]1,4o0[; this will be proved in a work apart, in the
framework of the analysis of the two-scale behaviour of convex functionals.

An analogous characterization holds for weak two-scale convergence, and generalizes Proposition 2.5.

Proposition 2.9. Letp € |1, +0co[ and {u.} be a bounded sequence in LP(RN; B). Then u. S in LP(RNXY; B)

ilf
V{v.} ¢ L RN B'), if v. v in LY (RNxY;B), then
(2.21)
[ e v@yde = [[ o). o) dody
RN RVXY
Proof. The “only if” part is straightforward. To prove the converse, it suffices to choose v.(x) = (x,x/¢)
for any ¢ € D(RY xY; B'), and then apply Proposition 2.5, since v(x, z/¢) 5 Y(x,y) in L (RN xY; B') by
Lemma 2.1. (]
2.2. Some sufficient conditions for two-scale convergence in L? and in C°
The next statement extends Lemmata 2.1 and 2.2.
Proposition 2.10.
(i) For any sequence {u.} in LP(RN xY; B) (p € [1,+00|), defining M. as in (2.1),
ue —u in PRV xY;B) = (M.oug)(x,x/¢) 5 u(z,y) in LP(RY xY; B). (2.22)
(ii) For any sequence {u.} in CO(RN xY; B),
ue —u in CORNxY;B) = wc(z,z/e) Y u(z,y) in CO(RN xY; B). (2.23)

Proof.
(i) If ue — u in LP(RN xY); B) then M.u. — u in the same space. Hence

/ / (Metie)(Se (2, ), ) — ulz, y)|% dedy = / / (Meus)(z, y) — u(z, 4| dady — 0.
RNXY RNXY

Thus (2.22) holds.
(ii) By the hypothesis, uc(eN(z/¢€),y) — u(z,y) locally uniformly in RN x Y. Let us set v.(z) := u.(z, z/e)
for any € R™. As the function L.v. linearly interpolates the nodal values {v.(em+ey) = us(em,y) : m € ZV}

w.r.t. the first argument and along the coordinate axes (cf. (1.20)), we infer that L.v. — u locally uniformly in
RN x Y. Thus v. - U in C°/(RN x); B). O

Analogous statements for weak convergence either in LP(RN xY; B) or in C°(RY xY; B) fail. As a coun-
terexample for both, it suffices to take u.(x,y) := cos(2mz/e) for any (z,y) € ]0,1[xY. However, the two next
proposition easily follows from Lemma 1.1.
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Proposition 2.11. Let p € [1,+o0[. For any sequences {uc} in LP(); B),

ue ~u i LP(Y;B) & ue(z/e)?u(y) in LP (RN xY;B), (2.24)

loc

us —u inLP(Y;B) & ue(ac/e)?u(y) in LY

loc

(RN xY; B). (2.25)

This result and (1.11) yield the next statement.

Proposition 2.12. Let p,q,r € [1,+00[ be such that 1/p+ 1/q = 1/r. Let {v.} and {w.} be sequences in
LP(RYN) and L9(Y; B), resp. Then

ve — v in LP(RYN) and w. — w in LY(Y;B)

ve — v in LP(RY) and w. — w in LI(Y; B)

= ve(2)w:(z/e) 5 v(@)w(y) in L' (RN xY; B). (2.27)

Remark. An analogous result holds if {v.} C LP(RY;B) and {w.} C L%Y). On the other hand, still for
p,q,7 € [1,+00[ such that 1/p+1/q=1/r,

ve = v in LP(RY) and w. — w in L4())

# ve(@)we(z/e) 3 o(@)w(y) in L' (RY <), (2.28)

As a counterexample it suffices to take v.(x) = cos(2mx/e) for any = € R, w, = 1.
2.3. Two-scale convolution
Proposition 2.13. Let p € [1,+oo[, {u:} be a sequence of LP(Q) and {w.} be a sequence of L*(RN) such that
ue S u in LP(Q x ), we - w in LYRN x V). (2.29)
Then
(e s w2)e) i= [ u@uele - de
R (2.30)
()= [[ - unule-gy-ndedy  inL@xY),
RN XY
If moreover wu. - u in L2(Q x Y) then u. * w. S kW in L2(Q x Y).
We shall refer to u * xw as a two-scale convolution. This tool may be used for two-scale reqularization.

Proof. First notice that by (1.1)

Se(x =&y —n) — Se(w,y) + Se(&;n) = eN((z - §)/e) = N(z/e) + N(&/e)]

N (2.31)
= Nayene V(z,y),(n) € RN xY,
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and each component of Ny ¢, is an element of the set {—1,0,1}. By Lemma 1.1 and by Fubini’s theorem,
(2.29) entails that, for any g € L (Q x ),

//szxy ue * we ) (Se(z, y))g(z, y) dedy
//Rw g ue(§) we (S: (2, y) —§)d§)dxdy

(o |,
//RNXY <g oy //RNXY 1)) we(Se (2, y) — Ss(é,n))dfdn) dzdy

/ /RNW(“E / /wae(ss(% y) — S=(&m))g(x,y) d:Edy) dedy

(ue we (Se(x—&,y—n)—Nuyene)g(w,y) dwdy) d¢dn
RNXY RNxY

;//way u(&:n) //Rny w(z =&y —n)g(z,y) dxdy) dédn
= /[RNXY <g(x,y)/ffwxyu(§,n) w(z —&y—n) dfdn)dxdy

- (u s 5w)(, y)g(w,y) dady  in LP(Q x V).
RNXY

(2.32)

(2.30) thus holds. To prove the final statement, we replace g(z,y) by g-(Sc(z,y)) for any weakly two-scale
convergent sequence {g.} of L2(€2 x ), and apply part (ii) of Proposition 2.8. O

Remark. The final property of Proposition 2.13 can be extended to any p € ]1,4o0], after the remark that
follows Proposition 2.8.

2.4. Two-scale convergence of distributions

Let us assume that B = R, for the sake of simplicity, and denote by (-,-) ({({-,-)), resp.) the duality
pairing between D(RY) (D(RY x ), resp.) and its dual space. For any sequence {u.} in D'(R") and any
u € D'(RN xY), we say that u. two-scale converges to u in D'(RN x ) iff

(Ue(x)a ’(ﬁ(x,l'/f:‘)) - <<’U,(I, y)vw(ma y)>> Vi € D(RN Xy) (233)

We similarly define two-scale convergence in the sense of Radon measures, for v € CY(RY x)). By Proposi-
tion 2.5, (2.33) extends the weak two-scale convergence of LP(RY x ). In Section 5 we shall define two-scale
convergence in D(RYx))) in such a way that ¢ (z, z/¢) Py Y(z,y) in D(RYxY) for any 1 € D(RVN x)); in (2.23)

we already saw the analogous property for CO(RN x ).

For instance, for N = 1, fix any yo € Y and let {¢.} be a sequence in L'()) such that ¢.(y) — d,,(y) (the
Dirac measure concentrated at yo) in D'(Y). After extending . to R by Y-periodicity, it is easy to see that
e.g.

ue(z) == zpe(x/e) = x in D'(R),
1pe(a/e) a8y, (y) i DRV X V). (2:34)

Let us now denote by (-,-)y the duality pairing between D()) and its dual, and by 1 (€ D(})) the function
identically equal to 1. As ((u(z,y),v(x))) = (((u(z,y), i(y)>y),v(:£)> for any v € D(RY), we get the following
statement, which may be compared with (1.13).

Proposition 2.14. For any sequence {u.} in D'(RV),

ue () ?u(:c,y) in D'RY%Y) = u(x) = (u(z,y),1(y))y in D'RN). (2.35)
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It would be unnatural to define two-scale convergence in D'(R xY') (with Y in place of )) by letting 1) range
in D(RY xY) in (2.33). For instance, taking yo = 0 and defining u. as in (2.34), this would yield u.(x) ?0

in D'(RY xY).
Other notions have a natural extension to two-scale convergence, and will be dealt apart.

3. TWO-SCALE COMPACTNESS

In this section we extend some classic compactness theorems to two-scale convergence in the spaces LP
and CY. Henceforth we confine ourselves to scalar-valued functions, although most of our results take over to
vector-valued functions. We shall say that a sequence {u.} is relatively compact iff it is possible to extract a
convergent subsequence from any of its subsequences. Theorem 1.3 yields the following result.

Proposition 3.1. Let p € [1,+oc[. For any sequence {u.} in LP(RN),

if {uc} is strongly one-scale relatively compact in LP(RY),

then it is strongly two-scale relatively compact in LP(RN xY); (3.1)
if {uc} is strongly two-scale relatively compact in LP(RN x))),

then it is weakly two-scale relatively compact in LP(RN xY); (3.2)
if {uc} is weakly two-scale relatively compact in LP(RYN x ),

then it is weakly one-scale relatively compact in LP(RYN). (3.3)

The same holds for C°(RY), and (replacing weak compactness by weak star compactness) for L>(RN).

Weak two-scale compactness in LP

Proposition 3.2. (i) Let p € |1, +00]. Any sequence {u.} of LP(RY) is weakly star two-scale relatively compact
in LP(RN x ) iff it is bounded, hence iff it is weakly (weakly star if p = oo) one-scale relatively compact in
LP(RY).

(ii) Similarly, any sequence of L*(RY) is weakly star two-scale relatively compact in CO(RN x V)’ iff it is
bounded, hence iff it is weakly star one-scale relatively compact in CO(RN)'.

(iii) Any sequence of L*(RN) is weakly two-scale relatively compact in L* (RN xY) iff it is weakly one-scale
relatively compact in L*(RY).

Proof. For any p € [1,+0cc], by Lemma 1.1, {u.} is bounded in LP?(RY) iff {u. 0 S.} is bounded in L?(RN xY).
Parts (i) and (ii) then follow from the classic Banach-Alaoglu theorem.

If p = 1, by the classic de la Vallée Poussin criterion, {u.} is weakly relatively compact in L*(R”) iff there
exists a Borel function ¢ : RT — RT such that

4
lim 0 = +o0, sup Y(Jue(z)]) dz < 4o00.
t—+oo ¢ e RN

By (1.5), [g~ ¥(Juc(z)]) dz = [[gnyy ¥(|ue(Se(x,y))|) dzdy. The property of 1-boundness then holds for {u.}
in RY iff it holds for {u. 0 S.} in RY x ), and part (iii) follows. O

By the latter result now we derive a two-scale version of the Chacon biting lemma, cf. e.g. [6,10].
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Theorem 3.3. Let {u.} be a bounded sequence in L*(RYN). There exist u € L*(RN x)), a subsequence {uz},
and a nondecreasing sequence {Qx} of measurable subsets of RN such that, denoting by |-|n the N-dimensional
Lebesgue measure,

RVM\Qxly — 0 ask — oo,
(3.4)

us|o, ?ukzkxy in LY(Q xY), as € — 0,Vk € N.

Proof. The standard Chacon’s biting lemma states that there exist 4 € L*(R"), a subsequence that we still
denote by u., and a sequence {2} as above, such that

U, — Ulq, in L'(Q), as e — 0,Vk € N.
Let us denote by £(0) the sequence €, and successively extract subsequences £(1) D €(2) D ... as follows. By

part (iii) of Proposition 3.2, for any k > 1 there exist @ € L'(% xY) and a subsequence &(k) := {e(k)n }neN
of e(k — 1) such that u.(), |, ;\dk in L1(Q, xY) as n — oo. (Any function defined on a subset of R" is here

extended to RY with vanishing value.)

Asa.a.x € RY is element of Oy, for some k and because of the monotonicity of {4}, by setting u(z) := @ (z),
u is defined consistently a.e. in RY. Moreover, u € L'(RY xY), as the sequence {||@x|r1(a,xy)} is uniformly
bounded as k ranges in N. Finally, a subsequence {us} as in (3.4) is constructed by applying a diagonalization
procedure to the family of sequences {{u.y),} : k¥ € N}. O

Strong two-scale compactness in LP. (1.22) and other simple examples show that in L? the relative strong
two-scale compactness is strictly weaker than the relative strong one-scale compactness. Here we provide a
sequential version of the classic Riesz compactness theorem. (Analogous sequential versions can also be given
for other classic theorems: e.g., the Ascoli-Arzela theorem, see Lemma 3.6 below, the Dunford-Pettis theorem of
weak compactness in L', and so on.) By means of this result, we then characterize the relative strong two-scale
compactness in LP, for any p € [1,4o0].

Lemma 3.4. Let p € [1,+00[. A sequence {f,} in LP(R™N) is strongly relatively compact iff it is bounded and

/ u(z+ ) — fu(@)Pdz—0  as (h1/n) — (0,0), (3.5)
RN
sup / | fn(x)|Pde — 0 as R — +o0. (3.6)
neN JRMB(0,R)

Proof. (h,1/n) — (0,0) means that h — 0 and n — oo independently. (3.5) thus reads
V6 > 0,37 € N,3h > 0:Vn > n,Vh €0, h], / |fulz +R) — fr(z)Pdz < 4.
RN

A priori this inequality might fail for n < n. However, for any n < 7, fRN |folx + h) = fo(z)|Pde — O
as h — 0; hence there exists hn, > 0 such that the above inequality holds for any h € ]O,izn[. Settings
h :=min{h, hq, ..., hz}, we then get

V6 >0,3h > 0:Vh €]0,h[,¥n € N, / |fo(@ + h) — fo(z)|P dz <6,
RN

i.e., im0 sup,en Jg | fu(@ + ) — fn(z)[Pdz = 0. It then suffices to apply the classic Riesz theorem. O
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N

Theorem 3.5. Letp € [1,+0o[. A sequence {u.} of LP(RY) is strongly relatively two-scale compact in LP(RN x

V) iff it is bounded and (defining Se as in (1.2))

/ lue(@ + Se(h k) — ue(@)Pdz — 0 as (b k) — (0,0,0), (3.7)
RN
sup/ |ue(z)|P de — 0 as R — +o0. (3.8)
e JRMB(0,R)
(If we drop the hypothesis (3.8), then {u.} is just strongly two-scale relatively compact in the Fréchet space
L (RN xY).)

Proof. By Lemma 3.4, the sequence {u. o S.} is strongly relatively compact in LP(RY x ) iff (3.8) holds and
J[ S by ) = S P dsdy — 0 as (hk2) = 0,0,0) (39)
RNXY

Notice that by (1.1)

Se(w+h,y+k) = Se(z,y) + Se(h, k) = eN((z +h)/e) = N(z/e) + N(h/e)]

. (3.10)
= eNgynit V(z,y),(hk)eRY XY,

and each component of N, , ¢, is an element of the set {—1,0,1}. As (h,k,e) — (0,0,0) iff (h +eJ, k,e) —
(0,0,0), (3.9) is then equivalent to

//RN Y |u€(S€(CEa y) + Se(hﬂ k)) - UE(SE(xay)”p dl’dy —0 as (ha k,&) - (Oa 07 0);

which is in turn equivalent to (3.7), by Lemma 1.1. O

Strong two-scale compactness in C°. Although this property is strictly weaker than strong one-scale com-
pactness, we can prove a two-scale version of the Ascoli-Arzela compactness theorem. First we need a sequential
version of this classic result, which can be proved mimicking the argument of Lemma 3.4.

Lemma 3.6. Let K be a compact topological space. A sequence {f,} in C°(K) is relatively compact iff it is
bounded and

:g}g|fn(x+h)ffn(z)| —0 as (h,1/n) — (0,0). (3.11)

An argument analogous to that of Theorem 3.5, that we omit here, then yields the following result.

Theorem 3.7. A sequence {u.} of CO(RY) is strongly two-scale relatively compact in the Fréchet space CO(RNx
Y) iff it is bounded and

sup |ue(z + Sz(h, k) — ue(z)] — 0 as (h, k,e) — (0,0,0),Ycompact K ¢ R". (3.12)
zeK

Remark. In (3.7) ((3.12), resp.) S:(h,k) := eN(h/e) + ek cannot be replaced by h + ek. This would make
the hypothesis more restrictive, and would entail the relative strong one-scale compactness of {u.} in LP(R”Y)
(CO(RN), resp.).
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Two-scale Vitali’s theorem

Theorem 3.8. Let p € [1,+00[, {uc} be a sequence in LP(RY), such that sup, fRN\B(O R [ue(@)[P dz — 0 as

R — +o00 and u, - w ae. in RN xY. Then
ue LP(RYN x ), ue o uin LP(RN xY) (3.13)
iff {|uc|P} is equi-integrable, in the sense that, for any sequence {A,} of measurable subsets of R,

sup/ |ue(z)|Pdz — 0 as |Ap|ny — 0. (3.14)
e Ja

(By & we still denote the running parameter of a vanishing sequence.)

Proof. By the classic Vitali theorem, (3.13) is equivalent to the equi-integrability of the sequence {|u. o S:|P}.
By the argument of Lemma 3.4, one can see that this is tantamount to

//B |ue (Se(z,y))|P dedy — 0 as (|Blan,e) — (0,0); (3.15)
by the same token, (3.14) is equivalent to
/A (@) Pdz — 0 as (JAlx.e) — (0,0). (3.16)
By Lemma 1.1, (3.15) is equivalent to

/ e@)Pdz — 0 as (IS-(B)y,e) — (0,0). (3.17)
Se(B)

Now for any measurable set A C RN, B := S-!(A) is measurable and |Blay = |A|y, ¢f Corollary 1.2;
hence (3.15) entails (3.16), which is equivalent to (3.14). On the other hand (3.16) entails (3.17), which is
equivalent to (3.15), and thus to (3.13). In conclusion (3.13) is equivalent to (3.14). O

4. TWO-SCALE DIFFERENTIATION I

Let p € [1,4+oc[, w € WYP(RN xY) N F (cf (1.4)), and set u.(z) := w(z,z/e) for a.a. x. Although
ue () Py w(z,y) in LP(RN x ), in general Vw(z,y) is not the (weak) two-scale limit of Vu.(z); actually

this sequence is bounded in LP(R™)" only if w(z,y) does not depend from y. In this section we show that
nevertheless it is possible to express the derivatives of the two-scale limit without evaluating the limit itself, via
what we name approximate two-scale derivatives.

Preliminarly, for ¢ = 1,..., N, let us denote by V,¢ the partial derivative w.r.t. z; of any function ¢(z), by
Va0 (Vy, 0, resp.) the partial derivative w.r.t. x; (y;, resp.) of any function ¢ (z,y), by e; the unit vector of
the z;-axis. Let us also define the shift operator (7¢v)(z) := v(x + &) for any z,& € RV, set

N N
e — 1
Vo= 0o ve=J]ves, ve=[[ve VaeNVve>o, (4.1)

€ ] .
=1 =1
and define V_., Vg, V¥ similarly. Notice that V_¢ is the adjoint of —V. in RY, for

Jony (Vew)vde = — [y uV_cvde Yu,v € HY(RN). (4.2)
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After [1] it is known that ¢V approximates V, in the sense of two-scale convergence. We intend to show that V.
approximates V.

Lemma 4.1. Let m € N, p € [1,+oo[, w € W™P(RN x V)N F (cf. (1.4)), and set uc(x) := w(x,z/e) for any
x € RN, Then
Ve (eV)Pu. > A v in LP(RY xY),Ya, 8 € NV |a| + 8] < m. (4.3)

Proof. If m > 1, for any € > 0 by the Y-periodicity of w, for i = 1,..., N and for a.a. x € R" we have

Vi) = w(z +ee¢,x/? —w(w,x/e) _ é/o (Vo) (& + tes, 2/2) dt.

Defining S: as in (1.2), we then get
(Ve )8 a,00) = & [ (Vaw)(eA(w/e) +y-+ i)t = V(o) n (RN ),
that is, V. u. - V,w in LP(RY x Y)N. Moreover,
eVue(z) = eVyw(z,x/e) + Vyw(z, z/e) - Vyw(z,y) in LP(RY x )V,

If m > 2, this can easily be extended to second-order derivatives; for instance,

€

1
eV;Veiuc(x) = (Va, + Vy,) E/ (Vy,w)(x + ey + te;,x/e) dt
0
> Vy, Ve, w(z,y) in LP(RN x ), Vi, j.

Similarly, one can check that
ve,ive,jUE(m) ;’ vmivmjw(xay)a 52vivjus(x) ? Vyivij(xay)'

This can easily be extended to higher-order derivatives, too. (]

Now we deal with the general case, in which u. need not be of the form u.(x) = w(x, z/¢).

Proposition 4.2. Let p € |1, 400, and o, f € NN, If {u.} is a sequence in WIPLP(RN) and

ue u i LPRY%Y),  sup|[VE(eV) ue| Lrmny < +oo, (4.4)

then, denoting by W5P(Y) the Banach space of functions v :Y — R such that v, VPv € LP(Y),

Veu e LP(RN; WAP(Y)), Ve (eV)Pu. ﬁvgvgu in LP(RN x ). (4.5)

This also holds for p = oo, provided that > is replaced by %\ in (4.4) and (4.5).

Proof. By Proposition 3.1(i), there exists z € LP(R~ x ) such that

/ [V? (EV)ﬁuE(x)} plz,z/e)dr — // 2(z,y)p(z, y) dedy Vo € D(RN x ).
RN RNXY
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On the other hand, as the operator (—1)I*+18IV*_(¢V)? is the adjoint of V& (¢V)?, c¢f. (4.2), a formula
analogous to (4.3) yields

/RN [ve (EV)ﬁua(x)} olx,x/e)de = (—1)‘0‘”‘[3'/ ue(x) VO (eV)Pp(z, z/e) dx

RN

 (~1)leltis // ul(,y) VEVBo(z,y) dady = // VOVPu(z,y) plx,y) dedy.
RNXY RNXY

By comparing the two latter formulas we infer that z = nggu a.e. in RN x Y. (I

Similar results hold for linear differential vector operators with constant coefficients. Now we see an example;
analogous statements apply to the approximation of V.- and to the curl operator. First let us set Lgiv(RN )N =
{ve LP(RN)N :V.we LP(RN)} (V-:=div).

Proposition 4.3. Let p € |1, +oo[. If {u.} is a sequence in LE, (RN)N and
Uue > u in LP(RN x )N, sup €[|V-uc|lppmyy < 400 (V- :=div), (4.6)

then
Vyu € LP(RN x ), eViue >Vyu in LP(RN xY). (4.7)

This also holds for p = oo, provided that > is replaced by % in (4.6) and (4.7).

If the forward incremental ratio, V. ;, is replaced either by the backward incremental ratio, %(I — T_ce; ), OF
by the centered ratio, %(Taei/Q —T_ze;/2) (i =1,...,N), formula (4.3) and the other results of this section can
easily be extended. One might also approximate V, by V(,v(z) := fy Vo(x +eX)dA.

We also define an approximate two-scale Fréchet differential: for any v € Wﬁ)’cl (RM), at a.a. zg € RV,

dov(xo) : (RN)? — R: (hy k) v(xg) + Vev(wo) - h + eVue (o) - k. (4.8)

Two-scale boundedness in Sobolev spaces. Let us now define the approximate two-scale gradient operator
A; := (V.,eV). For any p € [1,+0c] we also say that a sequence {u.} is two-scale bounded in WHP(RN x )
whenever {u.} and the sequence {A.u.} are bounded in LP(RY) and in LP(RY)?V  resp. More generally, one
might say that {uc} is two-scale bounded in WP (RN; LP(Y)) (in LP(RN; W'P(Y)), resp.) whenever {u.} is
bounded in LP(RY) and {V.u.} ({eVu.}, resp.) is bounded in LP(RM)V.

In WHP two-scale boundedness is strictly weaker than one-scale boundedness, at variance with what we saw
for LP. For instance, for any w € WP (RN x V)N F (cf. (1.4)):

(i) the sequence {u.(z) := w(x,z/e)} of WHP(RY) is two-scale bounded in WP (RN x Y);

(ii) the same sequence is one-scale bounded in W1P(RY) only if w(z,y) is independent of y.
Now we see that two-scale boundedness in WP (R” x )) entails the relative strong two-scale compactness in
the Fréchet space LT (R x))); however, the latter example shows that this does not entail the relative strong

loc
TP (RN
one-scale compactness in Ly, (R™).

Theorem 4.4 (two-scale Rellich-type theorem). Let p € [1,+00]. Any sequence {u.} of WHP(RY) that is

two-scale bounded in WHP(RN xY) is strongly two-scale relatively compact in L}, (RN x ).
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Proof. Let p € [1,400| (the argument for p = oo is analogous). Let us fix any ¢ € {1,..., N}, any h € R, and
any k € [0, 1[. Recalling (1.1) and (1.2), we have
luc(x + Se(hes, kei)) — ue(z)|| Lomyy = |luc(z +en(h/e)e; + cke;) — ue ()| Le m)
< ue(x + en(h/e)e; + eke;) — ue(x + en(h/e)ei)| Lrmy)
Hue(x 4 en(h/e)ei) — ue(x)| L@y =: A1 + A,

1 ek
A < - / leViue(z +en(h/e)e; + te)|| Lo mry)y dt,
0

Az = [[(Tee, — I)ﬁ(h/E)UaHLP(RN) < Eﬁ(h/g)nvaeiuaHLP(RN) < (h"'E)HVeseq,uaHLP(RN)'

If {u.} is two-scale bounded in WHP(RY x ) then A; + Ay — 0 as (h,k,e) — (0,0,0), and (3.7) holds. By
Theorem 3.5 the sequence {u.} is then relatively compact in the Fréchet space LT (RY xY). O

The next formulas easily follow from the definitions (1.20).

Lemma 4.5. For any p € [1,+00] and any v € I/V1 P(RYN),

VI i(vo = (V.v)05, ( Vei(volS;) )
(4.9)
VyIei(voSe ) I i[e(Viv) 0 S (= 1,i[Vy, (vo S.)]),
Vmi IE’- OIe,i ’UOSE :Ieﬁ'vazil’e,i ’UOSE :IE,'ve,i ’UOSE
(I ) ) j ( ) i Vel ) (4.10)

Vy,(Le,j o Lei)(vo Se) = I jVy I i(vo Se) = I j 1. i[Vy, (v o Sc)].
These equalities hold a.e. in RN xY and for any i,j € {1,..., N} with i # j.
The next statement is an easy consequence of these formulas.

Proposition 4.6. Let p € [1,+00|, {u.} be a sequence in WP (RN), and u € WLP(RN xY). Then (using the
notation (1.20))
ue is two-scale bounded in WHP(RN x )

(4.11)
< L.u. is one-scale bounded in this space.
Proof. For the sake of simplicity, let us assume that N = 2. By (4.9) and (4.10),
vazlLsue = (Jl o J2 o IE,QVE,IU‘E) o SE; vaszeus = (Jl o J2 o Ie,lve,Qus) o Ssa (4 12)

vylLaua = E(Jl oJyo Ia,l o I€,2va:1ue) 0S¢, vygLeua = E(Jl oJyo Ia,l o I€,2va:gue) oS;.

As the interpolation operators I, ;’s are bounded, and the composition with S. is an isometry (c¢f. Lem. 1.1),
(4.11) follows. The extension to N # 2 is straightforward. O

Two-scale convergence in Euclidean domains. Let Q be a domain of RY, and B(f2) (B(Q2x)), resp.) be a
space (either LP, or C°, or W™P, etc.) of functions over  (over 2x Y, resp.). Generally speaking, we say that
a sequence {u.} of functions of B(2) two-scale converges to a function u € B(2x ) iff there exist extensions
@. : RY — R of u. and @ : RV x) — R of u, such that . two-scale converges to % in B(RY x))). This applies
to either weak and strong two-scale convergence. Obviously, the regularity that is natural to assume for the
domain 2 depends on the function space under consideration.

Let now € be a Lipschitz domain of R, denote by v the outward-oriented, unit, normal vector to I' := 99,
and by (-,-)r the duality pairing between H~/2(T") and H'?(T). For the sake of simplicity here we assume
that p = 2; however these developments might easily be extended to any p € [1,4o0].



392 A. VISINTIN

We recall the reader that thv(Q)N is a Hilbert space equipped with the graph norm; moreover there exists
a unique linear and continuous trace operator v, : L3, ()Y — H~ Y2(T') such that y,u = u|p - v for any
ue CHVN, ¢f. e.g. [22]. A generalized Gauss theorem holds, [, V-udz = (y,u,1)r for any u € L3 (Q)V, as
well as the following formula of integration by parts:

/(V~u)vd:ﬂ +/ u-Voder = (yu,v)r Vu € L3, (Q)N, Vv € HY(Q).
Q Q

Now we extend this formula to two-scale convergence (see also Prop. 4.3).

Proposition 4.7. Let a sequence {u.} of L2 (RN)N and u € L2(RN x V)N be such that
Ue S u in L2 RN x )V, Ve uc| p2mny < Constant. (4.13)

Then
ue L*(Y; L3, RM)N), Veue >Voou in L* RN x ). (4.14)
Moreover, for any bounded domain Q of RN of Lipschitz class and any sequence {v.} of L*(RY) such that
Ve 0 in L*(RN xY) and Vv, . Vv in L2RN x V)N, (omitting restrictions)
[ (Vo) @ do+ [ wclae) Veosoyde = [ Volute,pola, )] dody
Q Q axy

(vwu(,y),v(-, y)r dy.
Y

(4.15)

The latter formula can be applied also if u.,v. are defined just in 2, after they have been suitably extended
to RM. (An extension is needed, for (V.-u.)|q and (V.v.)|q also depend on the values of u. and v. outside Q.)
An analogous result holds for the curl operator, with a corresponding formula of integration by parts.

Proof. (4.14) can be proved via the procedure of Proposition 4.2. Notice that

gil,% Qua(yc).vav8 dx—ili% Z/ Ue,i (T + €€;) Ve jve(x) da.

By the above-mentioned extention of the Gauss theorem, we then have

lim (/Q(Vgug(:c)) ve () d:EJr/Que(:E)~V€v€(x) d:c)

e—0
= lim Z/Q [(Vmue,i(x))ve(x) + ue i(x + Eei)Vw-UE(x)} dz

e—0

~ iy Y /Q V(1002 () i = / /Q  Velu(e ot y) drdy
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5. TWO-SCALE CONVERGENCE IN SPACES OF DIFFERENTIABLE FUNCTIONS

In this section we define two-scale convergence in spaces of either weakly or strongly differentiable functions,
by means of the approximate two-scale derivatives V. and £V, that we defined in (4.1).

Two-scale convergence in W™P(R¥x)). Let m € N and p € [1, +00o]. For any sequence {u.} in W™P(R"N)
and any u € W™P(RN x ), we say that u. strongly two-scale converges to u in W™P(RN x ) iff

Ve (eV)Pu. Y Veviu in (RN xY),Va, 3 € NV |a| + 8] < m, (5.1)

and similarly for weak (weak star if p = 0o0) two-scale convergence. Strong two-scale convergence in W™ (RN x
) is rather restrictive, consistently with what we remarked for L> (R~ x))) in Section 1.

Generalizing the definition we gave for m = 1 in Section 4, we say that a sequence {uc} in W™P(RM) is
two-scale bounded in W™P(RY x))) whenever the sequence {V¢ (¢V)?L.u.} is bounded in LP(RY) for any
a, 8 € N¥ such that |a| + |3| < m. Propositions 3.2 and 4.2 entail the following result.

Proposition 5.1. For any m € N and any p € ]1,+00], any sequence of W™P(RN) that is two-scale bounded
in WmP(RN xY) has a weakly (weakly star if p = 00) two-scale convergent subsequence in the latter space.

One might also define two-scale convergence in fractional Sobolev spaces, but here we omit that issue.
The property (5.1) does not entail that u. o S. — wu in W™P(RY x ))); actually in general u. o S. ¢
WmP(RN x)). For m = 1 however we have the next result.

Proposition 5.2. Let p € [1,+0c0[, {u.} be a sequence in WHP(RY), and u € WHP(RN xY). Then (using the
notation (1.20))

ue puin WIPRN%Y) & Lo —u in WHP(RN %)), (5.2)
ueu in WYPRN%Y) & Louc—u in WHP(RN x ). (5.3)
The latter equivalence also holds for p = oo, with % (i, resp.) in place of;\ (—, resp.).

Proof. By Proposition 4.6 any of these convergences entails that u. is two-scale bounded in W?(R" x))) and
that Lcu. is one-scale bounded in the same space. By (4.9) and (4.10), this boundedness entails that

Ve Lev— (Vew)0S. — 0,  V,,Lev— (Vyv)08. —0 in LP(RN x )), Vi,

for any v € WHP(RY x ). The equivalences (5.2) and (5.3) then follow. O

Weak two-scale convergence in W™?(RY x))’ (the dual space of W™P(RN x))). Let us fix any integer
m > 0, any p € [1, +oo[, and denote by (-,-) (({-,-)), resp.) the duality pairing between W™?(RN) (W™P? (RN x
), resp.) and the respective dual space. For any sequence {u.} in W™P(RY) and any u € W™P(RN x))’,
we say that u. weakly two-scale converges to u in W™P(RN x ) iff

(ue (), ve (@) — ((ulz,y), ¥ (z,y)))
{g} © WTP(RY) such that . > & in WP(RY x ). (5.4)

We define the strong two-scale convergence in the same space simply by replacing . 5 1 with ? Y in (5.4).

The next statement can easily be proved by transposing approximate derivatives, and applying the above
definitions of two-scale convergence in the spaces W™P(RN xY) and W™P(RN x V).
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Proposition 5.3. For any p € |1, +00[, any sequence {u.} in L (RN) and any u € L (RV %),

ue?u in L”l(RNx)}) =
5.5
Ve (eV)Pu, - VeV in WIEHIPPRN x V) Va, B € NV, (5:5)

Moreover, any bounded sequence in LPI(RN) is weakly two-scale relatively compact in W™P(RN x )" for any
integer m > 0.

Two-scale convergence in C™ (R x ). For any integer m > 0, any sequence {u.} in C™(R”) and any
u € C™(RN x)), we say that u. strongly two-scale converges to u in C™ (R x)) iff, defining the interpolation
operator L. as in (1.20),

Ve (eV)P Leu, > AV in CORN xY),Va, 3 € NV |a| + 8] < m, (5.6)

and analogously for weak two-scale convergence. The extension of two-scale convergence to the space of infinitely
differentiable functions, C>°(RY x ), is obvious.

Two-scale convergence in C™*(RYM x ). For any A € ]0,1], any sequence {u.} in C®*(R") and any
u € COMNRN x ), we say that u. strongly two-scale converges to u in COMNRN x ) iff

Lou. — u in CO* RN %)), (5.7)

and analogously for weak and weak star two-scale convergence.
For any integer m > 0, any A € |0, 1], any sequence {u.} in C"™*(RY) and any u € C"™*(RY x)), we then
say that u. strongly two-scale converges to u in C™ RN x ) iff

Ve (eV)P Leu, > Veviu in COMNRN xY),Va, 3 € NV |a| + 8] < m, (5.8)

and analogously for weak and weak star two-scale convergence.

Two-scale convergence can be similarly defined in Cm’A(Wx Y), namely the Banach space of functions
R”Y x) — R that are uniformly Holder-continuous of exponent A (€ ]0, 1]) with all derivatives up to the order
m.

We also say that a sequence {u.} of C™*(RY) is two-scale bounded in C™* (R~ x))) whenever the sequence
{V2(eV)PL.u.} is bounded in CO*RY) for any o, 3 € NV such that |a| 4+ |3| < m. The next statement
follows from the relative weak star (one-scale) compactness of bounded subsets of Holder spaces.

Proposition 5.4. For any m € N and any X € ]0,1], any sequence of C™*(RYN) that is two-scale bounded in

C™MNRN xY) has a weakly star two-scale convergent subsequence in the latter space.

Two-scale convergence in D(RYN x ). If {u.} is a sequence in D(RY) and u € D(RY x))), we say that u.
two-scale converges to u in D(RN x ) iff

3 compact K C R¥ such that u. =0 in RV \ K for any ¢, and
Ve (V) Lou. - VEViu  in CORN x V), Vo, # € NV, (5.9)

E.g., for any w € D(RN xY), w(z,x/¢) Y w(z,y) in D(RYN x ). Similarly, for any w € C™*RY x )
and any w € W™P(RN x V)N F (cf. (1.4)), w(z,x/¢) 5 w(z,y) in the respective space. This justifies the

definition (2.33) of two-scale convergence in D'(R™ x ), and allows us to extended to two-scale convergence
classic density results, as stated in the next proposition.
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Proposition 5.5. For any m € N, any p € [1, +oo[ and any u € W™P(RYN x ), there evists a sequence {u.}
in D(RN) such that u. S wmP(RN xY).

An analogous statement applies to C™(RNxY), as well as to weak two-scale convergence in W™P(RNxY)’
and in D' (RN x ).
Proof. For any u € W™P(RNx)) there exists a sequence {u, } in D(R"x))) such that u,, — u in W™P(RNx)).
As we saw, up,(z,z/€) . up(z,y) in W™P(RN xY) as ¢ — 0, for any n. One can then extract a diagonalized
sequence {U. := u,_} such that . (x,z/¢) > u(z,y) in W™P(RN x)) as ¢ — 0. The remainder can be proved

similarly. (I

The relation between two-scale and one-scale convergence in W™P (R~ x))) is easily established by applying
Theorem 1.3 to the approximate two-scale derivatives. Two-scale convergence in the asymmetric spaces

CO(y;cmMRY)), CORN;C™AY)), LP(Y;WTP(RY)),  LP(RN; WTR(Y)

might also be defined via approximate two-scale derivatives, A.. Anyway we refrain from adding further gener-
alizations.

Two-scale Sobolev and Morrey imbeddings. We now extend these two classic imbedding theorems to
two-scale convergence.

Theorem 5.6.
(1) For any p € [1,2N] there exists a positive constant Cn ,, such that the following occurs for any q such that

< 2Np
P=49=5N—

if p<2N, p<qg<+oo if p=2N. (5.10)
If a sequence {u.} of WHP(RYN) is two-scale bounded in WHP(RN x ) then it is bounded in LY(RY), and,
defining L. as in (1.20),

[tellLamn) < OnpllLetellwrrmusy) Ve (5.11)

(i) For any p € |2N,+oo[ there exists a positive constant Cy ), such that the following occurs for any
A €]0,1—2N/p|. If a sequence {u.} of WLP(RN) is two-scale bounded in WHP(RN x ) then it is bounded in
COMNRN), and, defining L. as in (1.20),

HUEHCO,A(W) < CN,p”LEUEHWLP(Rny) Ve. (5.12)

Proof. By Proposition 4.6, L.u. is one-scale bounded in W!?(RY x ). Under the hypotheses of part (i), the
classic Sobolev inequality then yields ||Leuc||pomnxyy < Cl|Letellwrp(myxy), for a suitable constant C' that
only depends on 2N (the dimension of RY x ) and p. By Lemma 1.1, it is easy to see that ||uc||pamy) <
2||Leue|| Lagrxyy- Part (i) then follows. The argument of part (ii) is similarly based on the classic Morrrey
theorem. O

Notice that the thresholds p := 2Np/(2N — p) (for p < 2N) and X := 1 —2N/p (for p > 2N) are smaller than
the corresponding one-scale exponents prescribed by the classic Sobolev and Morrey theorems in RY. This
is consistent with the fact that two-scale boundedness in W1 P(RY x ))) is a weaker condition than one-scale
boundedness in WP(RY).
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Corollary 5.7.
(i) Let 1 < p < 2N, and (5.10) be fulfilled. Then for any sequence {u.} in WHP(RY)

us >u - in WLP(RN %)) = us >uin LYRN x ). (5.13)
(i4) Let 2N < p < +00 and 0 < A <1 —2N/p. Then for any sequence {u.} in WHP(RN)
Ue —uin WIPRNxY) = wu Suin COARN xY). (5.14)

The same applies if weak two-scale convergence is everywhere replaced by strong two-scale convergence.

Proof. Under the hypotheses of part (i), by Proposition 4.6 the sequence {L.u.} is (one-scale) bounded in
WhP(RN xY). By (5.11) the sequence {u.} is then bounded in LY(RY x)), and (5.13) follows. (5.14) can be
proved similarly.

Let us now assume that wu, 5 U in WHP(RN x)), whence L.u. — u in the same space, cf. (5.2). The classic

Sobolev inequality then yields L.u. — u in LY(R™ x)), namely u. U in the latter space. Strong two-scale

convergence in (5.14) can be derived similarly. O

Corollary 5.8.
(i) Let 1 < p < 2N and p < q < 2Np/(2N — p) (setting 1/0 := +o00). For any sequence {u.} in WHP(RN)
that is two-scale bounded in WhP(RN x ),

{ue} is strongly two-scale relatively compact in LL (RN x V). (5.15)
(i) Let 2N < p < 4+oc and 0 < A < 1—2N/p. For any sequence {u.} in WP(RN) that is two-scale bounded

in WP (RN x V),
{uc} is strongly two-scale relatively compact in CONRN x P). (5.16)

loc

Proof. We mimic a standard argument of one-scale convergence. Under the hypotheses of part (i), by Theo-
rem 4.4 the sequence {u. o S.} is strongly relatively compact in the Fréchet space L (R™ x)). By (5.11)

loc
{uc 0 S.} is weakly relatively compact in L™ (R xY) for any r € ]q,2Np/(2N — p)[. By a well-known argument
based on the Egorov theorem, {u. o S.} is then strongly relatively compact in LI (R™ x ), that is, {u.} is
strongly two-scale relatively compact in this space. (5.15) is thus established. (5.16) can be proved similarly. O
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