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HAMILTON-JACOBI EQUATIONS FOR CONTROL PROBLEMS
OF PARABOLIC EQUATIONS

SoPHIE GOMBAO! AND JEAN-PIERRE RAYMOND'!

Abstract. We study Hamilton-Jacobi equations related to the boundary (or internal) control of
semilinear parabolic equations, including the case of a control acting in a nonlinear boundary condition,
or the case of a nonlinearity of Burgers’ type in 2D. To deal with a control acting in a boundary
condition a fractional power (—A)® — where (A, D(A)) is an unbounded operator in a Hilbert space X
—is contained in the Hamiltonian functional appearing in the Hamilton-Jacobi equation. This situation
has already been studied in the literature. But, due to the nonlinear term in the state equation, the
same fractional power (fA)ﬂ appears in another nonlinear term whose behavior is different from the
one of the Hamiltonian functional. We also consider cost functionals which are not bounded in bounded
subsets in X, but only in bounded subsets in a space Y — X. To treat these new difficulties, we show
that the value function of control problems we consider is equal in bounded sets in Y to the unique
viscosity solution of some Hamilton-Jacobi-Bellman equation. We look for viscosity solutions in classes
of functions which are Holder continuous with respect to the time variable.
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1. INTRODUCTION

In this paper we study the uniqueness and existence of viscosity solution of the Hamilton-Jacobi-Bellman
equation
ov

Pt x) - (Dmv (t,2) | A:C)X + (va (t,2) | (~A)° F (t,A:c))

ot X

+H (t,x, (=A)’ Do (¢, :c)) =0 in(0,7T)x X, (1.1)
v(T,z) =g (x) in X.

In this setting X is a real Hilbert equipped with the inner product (- | -) y and the norm |-| 4, A is an unbounded
operator with domain D (A) in X, it is supposed to be self-adjoint and strictly dissipative in X, (fA)B is the
pB-fractional power of (—A), and 0 < 8 < 1, A is a bounded linear operator from D((—A)®) into Xy with

0 < a < %, X, is another real Hilbert space equipped with the inner product (- | - and the norm || ,
2 Xo Xo
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F € C([0,T] x Xo; X), the Hamiltonian functional H is continuous in [0,7] x X x X, and the mapping g is
Lipschitz continuous in X. Precise assumptions are stated in Section 2.

Equation (1.1) is related to optimal control problems of semilinear parabolic equations (including in particular
the case where the control acts in a nonlinear boundary condition). More precisely, for all t € [0,7] and z € X,
consider an optimal control problem of the form

(Pr.z) min {J (t,u,y) | ue M(t,T;U) and (y,u) is solution of equation (1.2)},

where the cost functional J is defined by

J(tyu) = / L(r, y(r), u(r) dr + g(y(T)),

and the state equation is

y' = Ay+ (A’ [Bu—F(,Ay)], y(t) ==z (1.2)
The control space M(t,T;U) is a set of bounded measurable functions with values in U, and U is a bounded
subset in X, X is a Banach space, B € £(Xr, X). In Section 3 we prove that equation (1.1) admits at most
one viscosity solution. In Section 4, we prove that the value function of problem (P ) is the unique viscosity
solution of equation (1.1), when H is defined by

H(t,l‘,p) :igg[*(p|BU)X*L(t,QL’,U)}

Applications are discussed in Section 5. Before presenting what is new in the present paper, observe that by
setting

H(t,l‘, (*A)BDIU(ta Z)) - H(ta Z, (7A)ﬁDzv(t7x)) + ((7A)BD$U(ta :L') | F(thx))Xa

equation (1.1) can be written in the form

f% (t,) — (Dmv (t,7) | Ax)X +H (t, z,(—A)? Do (t, z)) =0 in(0,T)x X. (1.3)
Equation (1.3) seems to be simpler to handle than equation (1.1). However assumptions on F(t, Az) and on
H(t,z,p) are different and we cannot simplify the presentation of the paper by considering equation (1.3) (see
e.g. the estimates involving H and F in the proof of Th. 3.5).

During the eighties and the nineties several fundamental advances have been made in the study of Hamilton-
Jacobi equation in infinite dimension. These equations were first studied by Barbu and Da Prato (see e.g. [2]),
mainly in classes of convex functions. The method of viscosity solutions has been extended to infinite dimension
by Crandall and Lions in a series of papers [10-14]. All these papers correspond to the case when § = 0.
Other contributions are due to Cannarsa and Frankowska [5], Ishii [20], Soner [27], Tataru [28,29], Crandall and
Lions [15,16], Cannarsa and Tessitore [6-9] in order to deal with boundary controls. In particular equations
of the form (1.3) with 0 < 8 < 1 are studied in [6], [8] to treat Neumann boundary controls. The case of
Dirichlet controls is considered in [7,9], it corresponds to the situation when % < < 1 and has to be studied
independently. More recently the case of the Navier-Stokes equations has been studied in [18,26].

The main motivation of the present paper is to characterize the value function of control problems governed
by semilinear parabolic equations, including the case of equations with a nonlinear boundary condition, or the
case of nonlinearity of Burgers’ type in two dimension, and with cost functionals whose growth is quadratic
or even higher than quadratic. For example we study the case of partial differential equations with nonlinear
boundary conditions of the form:

— —Ay+y=f in |t,T[x 9, ?Jrﬁ(y):u on |t,T[x T, y(t) =z in Q, (1.4)
n
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with cost functionals of the type
~ T o~
Tt = [ Lyt ur)) dr + (D)),
t

where 7 is any regular nondecreasing function obeying ?L(O) = 0, and where L and g may be quadratic cost
functionals. Many thermal processes lead to the kind of model corresponding to equation (1.4) (see [23]). The
papers mentioned above do not include this model in their possible applications. If the initial condition x belong
to X = L?(€2), equation (1.4) is well posed and it admits a unique weak solution belonging to C([0,77; X) (the
solution also belongs to L2(0,T; H'(£2))). We can write equation (1.4) in the form

y = Ay+ (-A) [Bu—F(,Ay)], y(t)=u, (1.5)

by defining A as the trace mapping on I':

A y—yr.
In this example A is bounded from H?*(Q) = D((—A)®) into Xo = L*(T) for all 1 < o < 3, D(A) = {y €
H?(Q) g—f’l = 0}, Ay = Ay, and we have to take % < B < % For a parabolic equation with a nonlinearity of
Burgers’ type we can take 3 = % Let us denote by y; 4., the solution to equation (1.5). To characterize the
value function ¥(¢, x) of the problem

(ﬁtl) min {j(t, u,y) |u € M(t,T;U) and (y,u) is solution of equation (1.5)},

we have to study the dependence of y; ;. ., and of Ay ;. with respect to ¢ and to 2. Due to the nonlinear term
in equation (1.5), we can prove continuity properties for y. 5 ,, and Ay. , ,, and Lipschitz properties for y; . ,, and
Ay:,.,, when the initial condition x stays in bounded subsets in Y, for a space Y < X, but these properties are
not true if we consider only bounded subsets in X. Therefore it is natural to study the properties of the value
function ¥(¢, ) when x remains in bounded subsets of Y, and to look for solutions to equation (1.4) in a space
of the type C([0,T];Y) or at least L3(0,T;Y) (the space of bounded and weakly measurable functions from
(0,T) into Y).

Another difficulty comes from the cost functional. In the literature on Hamilton-Jacobi-Bellman equations,
it is often assumed that the cost functionals either are bounded or satisfy a linear growth condition [6,8,18,20].
Thus the case of quadratic cost functionals is not treated in these papers.

To overcome the two difficulties mentioned above, the one coming from the nonlinearity in the state equation
and the other one due to the growth condition of the cost functional, we suggest to proceed as follows. First,
we show that, for an initial condition in By (Mp) (the ball in Y centered at the origin and with radius M), the
solution y of equation (1.2) satisfies y(-) € By (Rr) in (¢,T) for some Ry = R(My,T) which can be explicitly
estimated independently of ¢ € (0,7). Next, we associate with the mappings E(t, - u), g and ﬁ(t,AJ, other
mappings L(t,,u), g and F(t, A-) which are identical to the previous ones in the ball By (Rr), but which satisfies
some global boundedness and Lipschitz properties. Let us consider the problem (P ;) — the one introduced
at the beginning of the introduction — defined with L(t,-,u), g and F(t,A-). We are able to show that value
function v(¢,z) of problem (P;,) obeys V(t,z) = v(t,x) for t € (0,T) and = € By (Ry). We show that v is
the unique viscosity solution of the Hamilton-Jacobi equation (1.1). Thus ¥ is not the viscosity solution to
equation (1.1), but it is equal to the viscosity solution of equation (1.1) in bounded sets in (0,7) x Y.

Sections 2, 3 and 4 are devoted to the study of equation (1.2), equation (1.1), and the value function of
problem (P; ;). In these sections, only the mappings L(¢,-,u), g and F (¢, A-) intervene. The assumptions are
precisely stated in Section 2. The definition of the mappings L(¢,-,u), g and F(¢, A-) from E(t, u), g and
F (t,A-) is treated in examples of Section 5 by using projection operators. Three examples are considered. The
first one is a control problem for the state equation (1.4), and the two others correspond to problems for a two
dimensional scalar equation of Burgers’ type. The interest of the third example is to show that the method
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using a projection operator in the cost functional and the state equation is flexible enough to involve different
kind of projections adapted to the nonlinearity and to the functionals we have to deal with.

Let us finally mention that the definition of viscosity solutions that we take is not totally standard. Indeed
we consider viscosity solutions which are Holder continuous with respect to the time variable. This Holder
continuity condition, which is a new argument in the definition of viscosity solutions — see Definition 3.2 — plays
a major role in the proof of uniqueness to estimate the nonlinear term F. A preliminary version of the present
paper corresponds to a part of the Ph.D. thesis by the first author [17].

2. PRELIMINARIES ON THE EVOLUTION EQUATION
In this section we want to study properties of solutions of the evolution equation
y = Ay + (—A)B [Bu - F (-,Ay)] in (¢,7), y (t) =z, (2.1)
where t € [0,T).

2.1. Assumptions

Throughout the paper we make the following assumptions.
(i) The unbounded operator A, with domain D(A) in X, is a closed and densely defined selfadjoint operator
in X, such that (Az | z) < —w |x|§( for all z € D (A), where w > 0.
(ii) B € L(Xr,X).
(iii) The linear operator A is bounded from D ((—A)%) into X, for some « € [0, %[, that is:
Az|y, < Col(=A)" x|y forallze D((-A)"). (2.2)

The exponent (3 € [0, %] is given fixed.
(iv) F is a continuous mapping from [0,7] x Xy into X, which satisfies:

IF (t2) = F (ty)lx < Krlz—yly, . and |[F(t,2)]x < M, (2.3)
for all t € [0,T1], and all z, y € Xy. Moreover, there exists 1 € ]0, 1] such that:
|F (t,x) = F (s,x)|x <Myp(1+]z[y,) [t —s". (2.4)
In addition, we assume that either g < %, or 3= % and
D((—A)}) = Xo,

|F(t,:£)|D((_A)50) <M (ﬂo, |:E|D((—A)%))
(—A)»B e L(Xr,X), forsome0<fy<f=3,

for all t € [0,7] and all z € D((—A)2), (2.5)

where M (60, |£L'|D((_A)%)) > 0 only depends on fy and |:c|D((_A)%).

(v) The control u belongs to M(¢,T;U), the space of measurable functions from (¢,T") into U, where U is
a nonempty, bounded and closed subset of X, such that

lulx, < My forall ueU. (2.6)

We now state assumptions needed in Section 3 to study equation (1.1).
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(vi) The mapping g € C'(X) is Lipschitz continuous and bounded in X, i.e.:
lg(z) —g ()| < Kglz—yly and |g(z)| <M, foralzyelX.
(vii) The Hamiltonian functional H satisfies
|H (t,2.p) = H (5,y,9)] < Kn ([t = 5[ + |z —ylx +|p—dlx)- (2.7)

In Section 4, we make the following additional assumption.

(viii) The Hamiltonian functional H : [0,7] x X x X — R is defined by:

H(t,z,p) = sup [— (| Bu)y — L(t,z,u)], (2.8)

where the functional L € C ([0,T] x X x U) satisfies:
|L(t,z,u) — L (s,y,u)| < Kr ([t —s|™ +|z—yly) and |L(tz,u)l <M,

for all t,s € [0,T], all z,y € X, and all uw € U, with 0 < 7y < 1.
Observe that if H is defined by (2.8) and if L satisfies the estimate stated in (viii), then

|H (t,x,p) — H(s,y,q)| < Ku (Jt —s|™ + |z —ylx +Ip—dlx),

with Ky = max (K, ||B|| My) . Thus assumption (vii) is automatically satisfied in that case.
Due to assumption (i), (4, D(A)) is the infinitesimal generator of a strongly continuous analytic semigroup
of contractions on X which satisfies

e 2x) < e (2.9)

Moreover (see [19], Th. 1.4.3, Chap. 1 and [3], Prop. 5.1, Chap. 1), for all § > 0, there exists a constant M;
such that, for all £ > 0:

H(—A)‘5 At . Mst=°. (2.10)
If0<d<1,and z € D((—A)?), we have:
(M~ 1) |, < %Ml,gﬁ‘(%)“x‘x. (2.11)
Besides, for all § < v and all z € D((—A)7), one has:
[~ 2] < Mo | (=) 01 Jaly ™ (212)

With Young’s inequality the last estimate implies that, for all § € ]0, % [, and all ¢ > 0, there exists a con-
stant Cs , such that:

=

‘(—A)‘Sz‘ <o ‘(—A)% x‘X +Csolaly  for z € D((—A)?). (2.13)
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2.2. Properties and regularities of mild solutions of equation (2.1)

Theorem 2.1. For all x € X and all u € M(t,T;U), equation (2.1) admits a unique mild solution Y 4., in
LY(t,T; D((—A)®)), it obeys:

Yo () = els™DAy 4 (—A)ﬁ/ els—mA [Bu(r) — F (r, Ayt 2 (r)) |dr, (2.14)
t
for all s € [t,T). Moreover y 5, belongs to C([t,T]; X) and satisfies the estimate
lytzulleqmx) < CA+ |zlx + lull L@ ru))-

Proof. Let t; € (t,T] be such that Co KrMayg (b —t)t (2 F8)

i S 1/2. Let us set E = L' (t,t1; D((—A)®)), and let

us show that the mapping

y— (W) (5) = e+ (-2)” "4 [Bu(r) - F (r, Ay ()] dr,

t

is a contraction in E. First we have:

/tl|(fA)a (Wy) (s)] ds </t (—A)? oA ‘ds+/ / (=)™ =4 [Bu(r) = F (1, Ay (1)) dr ds
< M, |;E|X( +Ma+ﬁ/ / - W [1B]| My + Mg] drds
(t — t)l“" (ty —t)* P

< Ma |z[x + Mo [ Bl My + M)

1- (- (a+BI2-(a+p)]

Thus, if y € E, Yy belongs to E. Moreover if y1, y» € E, we can write
t1
(e} (e}
[ 147 (W) 6) = (=) (0 (5] ds
t
t1 S
< [ A A g (1) = P (1) drds
" +8
O(
/ / a+5KF|Ay1 (r) = Ay2 (r)|x, drds
t1 Ma
—KF/ |[Ay1 (1) — Ays (7“)|X0/ 7+5+ﬁdsdr
t T (S— )
(tl _ ,r)l_(a'i‘ﬁ)

< CalkrMoey [ 1=4)" 0 () = (=4)" e ()] B

/t (=A% g () — (= A) g () -

dr

(tl )1 (a+8)

Thus W is a contraction in F, and it admits a unique fixed point in E, which is the unique solution y in F
to equation (2.1). In addition y belongs to C([t,1]; X) and formula (2.14) is satisfied for all s € [t,#;]. We
can repeat this process on the interval [t1,2t1], and step by step, we prove that equation (2.1) admits a unique
solution in L (¢, T; D((—A)%)), which belongs to C([t,T]; X) and satisfies formula (2.14). O
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Proposition 2.2. Assume that x € D ((—A)®). Then the solution y; . . of (2.1) satisfies:
|AYtzu(s) — Azl — 0 uniformly with respect to u € M(t,T;U) when s\ t. (2.15)
Proof. Let x be in D ((—A)®). With inequality (2.2) we have
AWtz () = 2)|x, < Cal(=4)" Yrau(s) = 2)lx-

Due to (2.14), we can write

(A e (5) =2 < (=) (40 —a)| (2.16)

N ‘( APt /t TN By (1) — F (1, Ageen ()] dr

X

We can estimate the two terms in the right hand side of (2.16) as follows:

‘(—A)“ (e<5*t>% - m) ‘X - ‘ (e<5*t>A - 1) (—A)" x‘x, (2.17)
and
s _ p\1-(atp)
‘(A)ﬁ+a/t e(s—T)A [Bu (7") — F (7’, Ayt,z,u (7’))] dr N S Ma+ﬁ(51—t(Tﬁ) (MF —+ ||B|| MU) . (218)

The two terms (2.17) and (2.18) go to 0 uniformly with respect to u € M(¢,T;U) when s \, ¢, because
(a+pB) <1 O

Proposition 2.3. Let y; 4., be the weak solution of (2.1). There exists a constant C1(3), independent of u,
such that

Yt (S) — e(s_t)A:c‘X < Ci(B) (s — t)lfﬁ for all x € X. (2.19)

Proof. Let y; 4., be the weak solution of equation (2.1). With the integral formulation (2.14), we have

Yomn (3) — < 2| < | [ DA Bu () - F (r, Ay ()] dr
X t X

From (2.3) and (2.10) it follows that

[t B - Pl < 7 2

< J¢ o5 [IBI My + My] dr
X

(s —t)'~7
e

The proof is complete. O

< Mg ||| B|| My + MF]

Proposition 2.4. We assume that § = % and that the corresponding additional conditions of assumption (iv)

independent of u, such that

is satisfied. There exists a constant Cy (ﬁo, |x|D((_A)%)),

_ a(s—t)A _ 1\3+Bo _ A\
Yoo (5) — e x‘chl (ﬂo,|m|D((7A)%)>(s )35 for all & € D((—A)*). (2.20)
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Proof. Assume that 2 € D((—A)2). Let y;,. be the weak solution of equation (2.1). By using the integral
formulation (2.14), we have

ona (5) = €704a] < () [ [ Bu() - (APF Ay )] ar

X

With (2.5) and (2.10) we have

(s [ Ay Bulr) - (- AV F (r Ay ()] dr

X

s
SAWG%%%%E[MAW”””@*]M(%JMM<AﬁQ}m
(s — t)1=F+8
1 =5+ fo
The proof is complete. O

< Mgy [|(=A* BIMy + M (fo. el 3 )]

To prove the other propositions, we need the following theorem.
Theorem 2.5 (1] Th. 3.3.1, Chap. 2). Let § and v be in [0,1] and € > 0. If the mapping
teJ R tPul(t),

[e%S)
loc

belongs to L2 (J;R), and if there exist two positive constants a, b such that

u(t)gat_6+b/t(tT)’YU(T)dT, for a.e. t € J* = J\{0},
0

then there exits a positive constant ¢ := ¢ (0,7, €) independent of a and b such that

u(t) <at™® (1 + cbtl_’ye(1+6)k(7’b)t> for a.e. t € J*,

where k (v,b) := (T (1 — ) b)),

Proposition 2.6. Let x and zg be in X, uw € M(t,T;U), and let Yi 0 and Yt 0,0 be the corresponding solutions
to equation (2.1). Then, for all 0 € [0,1 — «f, there exists a constant Ca(c, 3,0) such that:

Co(a, 3,0 _
s 7) = Mo O, < 23 |7 (= 0)] (2.21)

for allr € (¢t,T]. (The constant Co(c, 3,0) is explicitly given in (2.24).)

Proof. Using the integral formulation (2.14) for y¢ 5. and y 2.4, and (2.2), we obtain

|Ayt,z,u (T) - Ayt,azg,u (T)|X0 S Ca

(A lr=04 (- 4) (@ — a0)
¥ (2.22)
+C,

-
(A [ IR (5 A () = F (5 A (D] ]

t X
Setting # = 0 in this estimate, we first obtain

CaM,
(r—)"

2CaMa+ﬁMF
1—(a+p)

(7’ _ t)l—(a+ﬁ) )

|AYt 20 (1) = AYt 20,0 (T)|X0 < |z — m0|X +
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. . 0
Multiplying both sides by (r — t)OHr we have

(r— t)a+9 [AYtou (1) = AYtwo,u (r)|X0

20 Mot s M
(T = )° Co My & — wo|  + 20t

LB oo (T
Tatp (L0 TELTETIR). (223)

Next with (2.22) we write

|Ayt,az,u (T) - Ayt,zo,u (T.)|X0

CaMa+9 -0 " CaMﬁ—i-a
S m ‘(—A) ($ - IO)‘X + /t WKF |Ayt7g;7u (S) — Ayt,xo,u (S)|X0 ds.
Since the function r — (r —t)**? |AYt,z,u (1) = AYt,zo,u (r)] x, Delongs to L (¢,T), we can use Theorem 2.5

with for example e = 1, and we obtain (2.21) by setting
) (Oé, ﬁa 9) = Cona-i-G (1 + Cﬁ+a,a+9 (C CaMﬁKF) TliﬁJraeQ k(ﬁJra’KFcaMﬁJra)T) (2'24)

where c is the constant appearing in Theorem 2.5. O

Proposition 2.7. Let x and x¢ be in X, u € M(t,T;U), and let Yt 5 and yi z,.u be the corresponding solutions
to equation (2.1). Then, for all 8 € [0,1 — «f, there exists a constant Cs(a, 3,0) such that

My Cs(a, 3,0) 1—(a+B+0) —0
Yt () = Ytz (1) < <(Tt)9 + 1 @1 0) (r — )t ) ‘(—A) (2 — o) - (2.25)

(The constant Cs(a, 5,0) is explicitly given in (2.27).)
Proof. With Proposition 2.6, we have:

_ "M,
s ) = B () < [(=4)" o0 (- ) o= )]+ [ S A (9) = Ao ()], ds
t

(r—s
My -0 _0 /T 1 1
< —A - MsK 0)|(—A — d
< g A )|+ MaKeCata 5 0) [ o a0 [ g s
My " 1 1
< + MgKp C a,ﬂ,@/ ds A T —x
(v—we Sy Ar )‘( e
By using the integral formula of the beta function we have:
" 1 FA-p)r1—(a+0)) 1-(a+0+8)
ds = r—t . 2.26
/ e T ey Y (226)
By setting

ra-g)rd—-(a+9)
Fr2-(a+0+7)

C3(Oé,ﬁ,9) = MﬁKF 02(0675,9), (227)

and

M Cs(e, 6,0 ~(a
C4(Oé,ﬁ,9,t;’l") = ((7" 7915)0 + 1 3(?04*9)) (T - t)l ( +ﬁ+9)> ’ (228)
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we obtain
|yt,a;,u (’I") — Yt,xo,u (r)|X S C14(057 ﬁa 97 ty T) (_A)_e (I - xo) X. O

Proposition 2.8. Let x be in X, s,t € [0,T), and uw € M(min (¢,s),T;U). Let us denote by yi v and Ys zu
the solutions of equation (2.1) respectively corresponding to the initial data (t,x) and (s,x). Then there exist a
constant Cs(«, B) and a continuous mapping a (t,s,x) (independent of ) such that, for all r € Jmax (s,t),T],

we have: Cs(a. )
5\, _
— < . .
|Ayt,z,u (7’) Ays,x,u (7")|X0 > (’I“ ~ max (t, S))a a (t, S, 33) (2 29)

The function s — a(t,s,x) goes to 0 when s goes to t, for all fired x € X. (The constant Cs(«, 3) and the
mapping a are explicitly defined in (2.34) and (2.35).)

Proposition 2.9. With the same assumptions and notation as in the previous proposition, there exists a
constant Cg(c, 3) such that, for all r € [max (s,t),T], we have:

Yeau (1) = Ysau ()| x < Cola, B)a(t, s, z). (2.30)

(The constant Cg(a, ) is explicitly defined in (2.36).)

Proof of Proposition 2.8. Consider the case where s < t. The case t < s can be treated in a similar way. Let
be r >t > s, with estimate (2.2) and with (2.14), we have

A r) —A r <O, [(—A)* DA (plt=slAy _ 4 2.31
| yt,z,u( ) yS,z,u( )|X0 R ( ) x ( )
+ Cy / (—A)* TP =D A By (0) — F (0, Ays 2. (0))] do (2.32)
s X
+ Cy / (=A)* TP DA (0, Ayt 4.0 (0)) = F (0, Ays.p (0))] do| . (2.33)
t b'e
Now we can write oM
231) < ZelleJ(g=sta _ 1)
( 3)_(7“—750‘ (e )x’X
Since (r —t)* < (r —o)® for all o € (s,t), we have
b de CoaMeuis (Mp + | B||My) [* do
2.32) < CuMo 5 (Mg + | B| M / < Lalla . / .
( ) +ﬁ( F || H U) . (T*O’)aJrﬁ (T—t) . (7’70’)6

Similarly, for all o € (s,t), we have (r — 0)6 > (t— 0)6. Then

[ e [t s

CaMaJrﬁ (MF + ”B”MU) |t o S|1*5
(r=1t)%(1-7) '

and therefore we obtain

(2.32) <

The last term can be estimated as follows

(2.33) < [/ % IAYt 2w (0) = Ays .z (0)y, do
CoMassKr [T 1
< a(rjt§“ /t — Y00 (0) = Ao ()], do

r—o)




HAMILTON-JACOBI EQUATIONS FOR CONTROL PROBLEMS OF PARABOLIC EQUATIONS 321

From the estimates obtained for (2.31), (2.32), (2.33), we deduce that the function r ~—
(r =) AYtzw (r) — AYszu (r)|x, belongs to L>(¢,T'). Applying Theorem 2.5, we obtain

C15 Oé,ﬁ) _
A ()~ A ), € 20D 1,5,
°~ (r—t)

with

Cs(a, B) = 2C, max (fg MW“V’IF_;”B”MW) (1 Y C(XMBJWKFT(I’B)eCT) , (2.34)
where ¢ and C are given in Theorem 2.5, and

at,s,x) = ‘e‘f—sl% — x‘X - s P (2.35)

The function s — a (¢, s, z) goes to 0 when s goes to ¢, for all z fixed in X. O

Proof of Proposition 2.9. Consider the case where 0 < s < t. We have:

|yt,m,u (T) — Ys,xu (T)|X

- Mp (Mp + || B||My) 1-5 _ " Mg 1
§‘e‘t S‘A:Ef:c‘ 4 =8 t—s + Cs(a, B)KFr a t,s,x/ —do.
X 1-p (=) (e ) ( ) ¢ (r—o)(c—1t)
From (2.26) with 6 = 0, it yields:
/r 1 i 1 do< P =BT~ @) 11 (ats) < ATV (o4P)
¢ (r—o)(c—1) L'2-(a+p)
Hence
Mg (MF + || B|| M “(a _
|yt,x,u (T) - ys,m,u (r)|X S (1 + p ( Fl _ |6 ” U) + 05 (Oé, ﬁ)KF4T1 ( +ﬁ)) a (t, S, .73) . (236)
The proof is complete. O

Proposition 2.10. Let x and x¢ be in X, t € [0,T), andu € M(t,T;U). Let us denote by Yt v and Yt 5. the
solutions of equation (2.1) respectively corresponding to the initial data (t,x) and (t,x0). Then, for allr € [t,T]
and all s € |t, T, we have:

C7(a,
IAgta (5) — Adta e (5) . < % & — ol (2.37)
and
|yt,x,u (T) — Yt,zo,u (T)|X < 08(04; ﬁ) |I — Zo|x- (238)

Proof. The function w = Yt ».u — Yt,20,u Satisfies

M o [° (o
A0 (6l < g5 o= ol + AP [T (1 A (1)~ F A ()]
t X
M, s 1
< —z— MoK ——|A dr.
< Gy e ol Masak [ g ) dr
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Estimate (2.37) now follows from Theorem 2.5. We can also obtain the estimate

T 1 Cq
|w(T)|X§|l‘*£E0|X+KF/ ( x — x|y ds.
t

r—s)ﬁ(sft)a|

By the same calculation as in the proof of Proposition 2.7, we have
lw(r)]y < [1 + KFC'QTI_(‘”'B)} |z — xo] x,
and (2.38) is established. O

3. VISCOSITY SOLUTIONS AND UNIQUENESS RESULT

In this section we study the uniqueness of solution to equation (1.1). It is well known that, by a change of
variable in time, the terminal value problem (1.1) is equivalent the Hamilton-Jacobi-Bellman equation

% (t,z) = (Dav (t,2) | Az)  + ((—A)° Do (t,2) | F (t,Az) )
+H (t,z,(—A)’ Dy (t,2)) =0, ¥ (t,x)€]0,T]x X, (3.1)
v(0,z) =g (x).

Let C (J0,T[ x X) be the set of all functions ® (called test functions) satisfying the following conditions:
(a) e C(10,T[x X).
(8) D.® (-, z) is constant (in ¢) and D, ® (¢,-) is Lipschitz on X, i.e.:

|D,® (t,z) — D, ® (tay)|X < Koz — y|X :

(y) For all 6 € [0,1 — af, D,® (t,z) belongs to D((—A)?) if and only if x € D((—A)?).
(§) The mapping x — Dy ®(t,z) is continuous from D((—A)z) into itself.

Remark 3.1. Since D,®(t,x) does not depend on ¢, from the last condition we can infer that the mapping
1

(t,x) — D, ®(t, ) is continuous from [0, 7] x D((—A)z) into D((—A)2).
Definition 3.2. Consider functions w satisfying:
(i) we C([0,T] x X) and |w (¢, )| < My, for all (¢,z) € [0,T] x X.
(i) Jw(t,z) —w(t,y)| < Ky |z —y|y forallt € [0,T], and all z, y € X.
(ili) |w (t,2) —w (t,y)| < Cro|(=A)~ (z — y)| ., forallt €]0,T],all 2,y € X, and all 0 € [0,1 — af, where
the constant Cy ¢ is bounded on all compact subset of |0, T7].

(iv) w (-, z) is Holder continuous in time of exponent 0 < 7 < 1, for all z € D((—A)z). More precisely there
exists a constant M; ,, such that:

lw (t,z) — w(s,2)| < My (1 n ‘(—A)%x’X) It —s|".
We say that a function w satisfying (i)-(iv) is a viscosity subsolution of (3.1) on [0,7] if, for every ® €
C% (10,7 x X), the conditions («;) and (B;) are satisfied, where:

Cr;_(f (t,x) + H (t,:c, (—A’ D, (t,z))
(o) (D (1) | (~A)ka) + (-4 Du (12) | F (1, A2)) <O

for all (t,z) € (]0, T[ x D((—A)%)) Nargmax (w — P),
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(61) lim sup [w (¢, 2) - g (¢42)] " = 0.

(Recall that [f]* = max (f,0) and [f]” = min (f,0).)
We say that a function w satisfying (i)-(iv) is a viscosity supersolution of (3.1) on [0, 7] if, for every ® €
C% (10, T x X), the two conditions (a2) and (32) are satisfied, where:

%—f (t,z)+ H (t, z, (—A)° D, (t, I))
(a2) + (D0 (o) | (~A)ke) + ((“A)D. (t,2) | F(tAx)) >0

for all (t,z) € (]0,T7 x D((—A)%)) Narg min (w — @),
; o (otANTT
(B2) Jim sup [w (t,z) — g (e"'z)] =0.
Finally, w is a viscosity solution of (3.1) if it is both a subsolution and a supersolution of equation (3.1).

Remark 3.3. If (¢,z) belongs to ]0,T[ x D((—A)z), then Az is well defined and F (¢, Az) is meaningful.

Remark 3.4. If in place of equation (3.1) we consider equation (1.1), the conditions (aq), (a2), (1), and (B2)
have to be modified accordingly (see Sect. 4).

Theorem 3.5. Assume that (i) — (vii) of Section 2 hold. Let w be a viscosity subsolution and v be a viscosity
supersolution of the Hamilton-Jacobi-Bellman equation (3.1). Then

w(t,x) <v(t,z)  forall (t,z) €[0,T] x X. (3.2)

Before proving this theorem let us state a useful lemma.

Lemma 3.6. Assume that ¢ and 1 € C} (]0,T[ x X), and let w and v be two continuous functions in [0,T] x
X. If

(to, zo) € argmaxy, (w — @) and (so,yo) € argming, (v — ), (3.3)
where O is an open set of |0, T[ x X, then

Dy (to, o) C Diw (to,z0) and Dyt (so,y0) C Dy v (s0,y0)- (3.4)
Proof. We establish the result only for the function ¢. Due to (3.3), for all z € X, we have:
w (to, ®) — w (to, wo) — [¢ (to, x) — ¢ (to, z0)] < 0.
With the condition (3) in the definition of CY (]0,T[ x X), we have:
|0 (to, ) = @ (to, 20) — (Dap (o, x0) | & — 20) x| < Ka|z — 2o|*.
Combining this estimate with the previous inequality, we obtain:

w (to, r) — w (to, v0) — (Datp (o, To) | © — x0)

X <. O
[(z — 20)]

hmsup\zf:n(ﬂ*»o

Let us recall Young’s inequality. For all p, ¢ > 1 such that % + % =1, we have:

AP 1
ab< —aP +—>b% forall A >0, and all a, b > 0. (3.5)
p g



324 S. GOMBAO AND J.-P. RAYMOND

Proof of Theorem 3.5. We are going to use the same kind of proof as in [6]. The proof is divided in five steps.
Step 1. Since w,v € C([0,T] x X), it is enough to prove that

Wy (t,2) < vy (t,x) for all (¢t,2) €10, T[ x X and all ¢ > 0, (3.6)

where

and v, (t,z) = v (t,x) + S

Wy (t,x) = w(t,z) — T—t

o
Tt
As w is a subsolution of (3.1), then w, is a subsolution of

oWy

(t,x) — (Dywo (t,x) | Az)x + ((—A)?Dywg (t, ) | F (t,Az))

ot o i
+H (t,z,(—A)PDyw, (t,2)) = T < ~7a (3.7)
wy (0,2) = g (2) = 7
Similarly, v, is a supersolution of
% (t,z) — (Davo (t,x) | Ax)  + ((—A)BDQ.UU (t,x) | F (t,Ax))X
+H (t, 3, (~A)P Dy, (t,2)) = ﬁ > % (3.8)

v (0,2) = g (a) + 7

Step 2. Let 0 < n < 1 be an exponent such that v(-,z) and w(-,z) be Holder continuous of exponent 7
(Condition (iv) in Def. 3.2). We set

7= min (1,71, 72) . (3.9)
Let € and p be in ]0,1]. For all (¢,z) and all (s,y) in |0, T[ x X, we define
= 1 A)-1 (t— 5)2 H 2 2
@57lt(t,s,x,y)—wg(t,x)—va(s,y)—Q—((— ) (x—y)|(x—y))X— 2 _5 |x|X+|y|X .
€ 2en
Let 7 be a small parameter satisfying 0 < 7 < %, and set @, = [r,T — 7] x X. From condition (iii) in

Definition 3.2, v and w are weakly continuous in @,. Thus v, and w, are weakly continuous in @,. Moreover
the mapping
1 -1 K2 Koo
(2,9) = o (A @ —9) | 0= 9)  + Sloli + Sl
is convex, and continuous (for the strong topology of X x X). Therefore ®. , is weakly lower semicontinuous
in Q2. Besides for all couples (¢,7), (s,y) € Q-

., (t,s,z,y) < My, + M, — % (|x|§( + |y|§() — —oo when max (|z|x, |y|x) — +oc.

Thus there exists (te,u, Te s Se s Ye,u) € Q? such that

b, (ta,;u Se, s Le,us ye,u) = mex q)a,;t-

T T

Let us verify that if 7 is small enough (0 < 7 < 7,), then ¢, ,,, 5., < T — 7. Indeed, from the inequality

o o
o (L) = v (8,y) < My + My — — — ;
Wy (t,2) — ve (8,Y) w + M, T3 T_s
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it follows that

lim  (w, (t,2) — v (8,y)) = —00 uniformly w.r. to x and y.
max(s,t)—T

Hence we have shown that there exists (t ., ey, Se,us Ye,u) € ([T, T — T[><X)2 such that

b, (ta,;u Se, s Le,us ye,u) = mex (I)E,;t'

T T

Step 3. We are going to obtain some a priori estimates on tc ., Se,u, Te,u, Ye,pu- SincCE

ey (e teps Teps Teu) + Peyp (Se,s Seups Yeus Yeu) < 2P i (Fe s S Teys Ye,u) 5

then

W (te, s Te,p) — Vo (te,ps Tep) + Wo (Se s Yeu) — Vo (S, Ye o)

1 _ (tey — s2)°
< 2(wy (t‘f’“’xgvlt) — Vo (557#7?]57#)) T e ((_A) ! (xau - yau) | ($5,u - yf,u))X -k =E
9

=i

Consequently we obtain

(e — Ses)”

1 _
- ((_A) ' (Teyu = Yeu) | (Tep — ye,u))X + z
en
< wg (ts,ua xs,u) — Wo (Se,m ys,u) + Vo (tsym xs,u) — Vo (Swu ye,u) (3.10)
We deduce that
|ts,p, - Ss,p,| § 05% (311)
(=) e —ye)| | < OVE (3.12)
Now let us show that ) )
il{?)ﬂ (‘xa(;t),;t|x + |y6(;t),;t|X) = 07 (313)

where 0 < e(p) < 1 is any function of p. For all x € X, we have:

ey (e teus T, @) < Py (Fe s ey Teys Yeou) 5

i.€.

1 _
W (te,uy T) — Vo (tgwx) - NM?X < We (te,uy Tep) — Vo (Se,uvyau) 9 ((_A) ! (Teu = Yeu) | (xau - ya,;t))x

(e — 5&#)2 K 2 2
- 2 9 |Ze,ulx + [Ye,ulx ) -
en
By taking = = 0, we deduce that

1
B} (|x€u|§( + |ysu|§() <2(My + M,).

Thus, § (|meu|§( + |ysﬂ|§() is bounded independently of ¢ €]0,1] and p €]0, 1]. We are going to use this property
to prove (3.13).
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We define now ¥, on @, x @, by:

Ve (t5,2,) = w0 (18) o (5,9) + 5 (A7 (&) | (&~ 3)

The function ¥, is bounded from above (independently of ¢):
U, < My + My,
and upper semicontinuous. So, for every § > 0, there exists (t. s, Zc.s5, 52,5, Ye.5) € Q2 such that
U, (te,5, 86,5, Te,5,Ye,5) = Ve (t,85,2,y) — 0 V(¢ 2),(s,9) € Qr.

The point (te 5, Se,5, Te 6, Ye,6) corresponds to a supremum (and a priori not a maximum), because we have not
proved that ¥, — —oo when max (|z|x, |y|y) — oo. Starting from the inequality

(I)a,u (ta,;u Se,us Le,ps ye,u) > (I)E,u (t€,5; Se,8,Le,dy ya,é)

it follows that

v, (ta,67 Se,8,Le,5s xe,é) - g (|xa,6|§( + |ya,6|§()

v, (ta,;u Se,us Le,ps ye,u) —0— % (|$€,5|§( + |y6,6|§(> .

Y

n
Ve (te 8o e o) = 5 (12enl + el )

v

Hence we have
- + < = + + 5 f()I all 5 0
9 (|1'5,;L|X |y5,p,|)() =9 |1'5,6|X |ys,6|X > 0.

This inequality is satisfied for all € > 0. In particular if 0 < e(u) < 1 is a function of p, we can write

7 7 2
E (el + lveal) <5 ([wemoly + 1vemsly) +6 < 15 (M +24,) +6.

Thus
. Iz 2 2
hmlsti% 5) (‘:EE(H),AX + |yg(,¢),u\x) = 0.

We take the limit when 6 — 0 to obtain (3.13).
Let us prove that

_1 2 |Te = Ve, |2 1% 2
% (—A)72 (Tep — Ye,u) e W +2MJeN + 5 |Ze,ul s (3.14)

for all constant A > 0. From the inequality

D (teous Seups Tepr Teop) < Py (Fe s Seous Tepus Yeou) »

we deduce

1

_ 1Y 2
2_5 ((7"4) ! (1’6,# - yE,M) | (1'6,# - ys,u))X § Vo (Ss,u; 1’6,#) — Vo (Se,uays,u) + 5 |:L'6,;L|X'
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With (ii) in Definition 3.2 we have:

(Tep = Yeu) X <2My |Te o — Yeul + N|m€,u|§(-

Estimate (3.14) follows from Young’s inequality.

Step 4. We are going to show that min(t. ,, s ,) = 7. If it is not true, then ¢, , > 7 and s. , > 7. Let ¢ and
1 be two mappings defined by:

1 _ t—s..)
0 (1) = o (e es) + 5 (~A)7 @ = 9es) | (@ o)  + L2204

H 2 2

Z 1zl + s
92 ) (| 5% |ya,; |X)
1 - (tew—9)°
1/) (tay) = Wqo (tﬁyuvx&u«) - 2_6 ((7‘4) ! (me,u - y) | (1'6,/,14 - y))X - Mgg 5

(Ioenlk +lul%) -
The mappings ¢, ¥ belong to C} (]0,T[ x X). Indeed
(i) ¢ € C'(10,T[x X) and Dap (t,2) = 2(=A) " (z = ye,u) + pa-

(ii) Dy (-, ) is constant in ¢, and & — D, (t,z) is Lipschitz from X into X because (—A)~*
continuous operator from X into X:

is a linear and

1, _ 2 C
Dap(t2) = Dup ()l <2 (2147 @ =l +alo—ol ) <2 (et S ) o= ol

(iii) It is clear that for all § € [0,1 — [, Dy (t,2) € D((—A)?) < = € D((—A)?)

(iv) Moreover the mapping @ — D, p(t, ) is continuous from D((—A)2) into itself.
The mappings ¢, ¥ have been chosen to satisfy:

(teurTen) € argmax (we — @), and  (Seu, Ye,u) € argrgin (ve — ). (3.15)

Since v, and w, satisfy (iii) in Definition 3.2, with [5, Cor. 3.4], D} we (tcu,®c,) and Dy ve (S, Ye,u)

are included in D((—A)?) for all 0 € [O,%[. Due to Lemma 3.6, Dy (te,®ey) C Diwg (te,,xe,) and
Do) (Sepy Ye,u) € Dy Vo (Se,p, Ye,u)- Hence, we have

Dap (te s @e) , Dot (Se i yeu) € D((—A)?) for all 6 € [0,1 — af.

Therefore x. , and y. , belong to D ((—A)e) for all # € [0,1 — «f, and in particular z. ,,y., € D((—A)%)

Since w, is a viscosity subsolution of (3.7), and (., 2. ) belongs to (]0, T[x D((—A)2)) Narg max (wy — ),
we have:

bey —

Se 1 _
2 2 +H (te,/u Le,ps (_A)ﬁ (g(_A) ! (xa,;t - ya,u) + an,;t))
en
1 1 — 1
(0 (A = ) ) |-
X
1 _

(0 (2 @ o) 4 ) | F (1 hoc))

X
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In the same way, since v, is a viscosity supersolution of (3.8), with (3.15) we have:

tey — Se,n 1
Sk ek + H (55 o Ye s (_A)B (_(_A) ! (xa,;t - ye,u) - :uye,u))

cn
( % ( )71 (we,u - ye,u) - :uye,u) | (_A)%ya,u)
X
< ( )71 (1’6,# - yE,M) + Mys,p,> | F (Se,pn Aye,p,))
g

X
T
Substracting the previous two inequalities we obtain
g (1 -1
H (tep, xep, (—A) g(*A) (T = Yeu) + B
~H _a (Lo - -
Se, s Ye, s ( ) - ( ) (IE,M ya,;t) HYe,
1 1 _ 1
(A0 (A =100 L2 =120
X
1 2 1 2
o[ A) | +u\< Aty
< ( me,u - ye,u)) | F'(teu, Awe ) — F (5,5 Aye,u))
X
+p (( A) Te,p | F' (e uaAfEe u))X — M ((*A)ﬁys,u | I (SE,uaAyE,u))X
20
<

Thus we have

1 2 1 2
+u ‘(_A)de,u‘X + - |Te = Yeul x

1
p| (A bae|
20
< T2 + Kn (|t€7M - 857M|n2 + |:E€,M - y€,#|X +p ‘(*A)ﬁ (me,u + ys,u)|X)

1 _
+g |(*A)ﬁ ! (Te,u — ysyu)|X |F (te, s Ae ) — F (S AYe )|

+p |(—A)ﬁm€’#|x |F (ts,ua Ame,u”x +p |(—A)ﬁy€’#|x |F (SE,MAZJE,M”X
Estimates of (3.17)—(3.19):

Estimate of (3.17). With (3.11) and Young’s inequality we can write

12 2 |Te, — y€7M|X.

[te — Seu|” < Cem < Ce and K ley — yeuly < 2¢K3 + ”

(3.16)
(3.17)

(3.18)
(3.19)

(3.20)
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For all o > 0, with (2.13), we have:

W | (=4 (e + v < 1 (|24 2]y + (A e )
< ukn [o (|(=Faeu| + (30| )+ Cor (enly + el

1 1 2 1 2
< pKy [50 <‘(A)2x€,u‘x + ‘(*A)z ysyu‘x + 2) +Cso (|x€,u|X + |y€7M|X):| :
Choosing 0 = %H we have:
8 1 1 2 1 1 2
0971 |(_A) (xwt + yf,u)‘x <pu {5 (_A)2$E,IL‘X + 3 ‘(_A)2 ye,u’X +1+ KHCBJ/KH (|I€,H|X + |y6,u|X)]
(321)
With (3.20) and (3.21), we have:
2 |xa,;¢ - ye,uﬁ(
(317) < KyCe + 2K}, 4 12t X
1 1 2 1 1 2
+1 [5 ‘(fA)WE,M‘X +3 ‘(*A)2 yw‘x + 1+ KuCpuyry (|2eulx + |ys,u|X)} ~
Estimate of (3.18). We first write
]. 1 _1
(3:18) < = ||(= P | | (=) 7% @ = )| 1P (o Aics) = F (e Ay - (3:22)
From (2.2) and (2.4), it yields
[F (tei Awe ) = F (Se s Aye)l x < Mip (L4 [Aze il x,) [te — Seu™ + Kp |Aze,, — Ayf,u|Xo
< MI,F (1 + 01/2 (7A)%x€’#‘x) |t5# - 557M|771
+KpCa [(—A)" (Te,p — Yeu) | x-
Then, choosing oy > 0 such that a + ay < %, we obtain
()7 e = )| ()2 (20— 1
(3.18) < C — x [CA (e =y | (3.23)
gt geo
‘(—A)—% (e — Yeou) It — Se.u|™
X 1 e, &,1b
pol e (14 (At | ) Len=seal” a24)

Estimate of (3.23). We first estimate the factor ‘(fA)’% (e — Ye,p) ‘X /et~ From inequality (3.10) it follows

that )
1 1
L o= e[ 0 ) =0 () 0 () = 1)

As t.,, Sep € [1,T — 7] and [7,T — 7] is compact, with properties (iii) and (iv) in Definition 3.2, setting

C(v,w) = My, + My, and C(7) = supyeir, 1) Ct.172,0 + Cr1 /2,0, We have

2 !
< 2C(v,w) (1 + ‘(—A)§x67u

1 1 1
= ‘(_A) 2 (e, — yf,u)‘ X) lte — Seul” + C(T) [(=A) 72 (2, — Yeou) <

X
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As
_1 2
Cr)| (=) (e = pe)|, < (0 (m;: veu] + oy,
then
% ‘(—A)*% (@ —ye)| <400, w) (1 n ‘(—A)%xe,u‘ ) (e — 50"+ £C(7)7.

Hence, we obtain:

1
517040

(—A)72 (zep — ye,u)‘x < 2\/C(v, w) (1 + ‘(—A)%:ce,u‘x> ltese = sel* + e 0(7). (3.25)

1
gz 0

We now estimate the factor [(—A)* (ze,, — Ye )|y /€¥°. With (2.12), we have:

1-2
20 ey — Yeul x a.

X 5%‘“0

1

gxo

(= A)® (e = o)l < Majo |[(=A)F (@ep = pe)

Applying Young’s inequality (3.5) to the left hand side and taking ¢ = 1/ (1 — 2a), p = 1/2a, g\? = £37 T8
then );Tp = Ce(1-2a—200)/42 3nd we obtain:

1 Tep — Ye,ul X Com 1
= |(_A)a (x&lt _ y&u)'X < %17/;“ + Ce(1—2a—2a0)/4cx (_A)2 (Ie,u — ye,u) " (3.26)

The exponent of (1 — 2a — 2ap)/4a of € is positive because a + ag < 3.
With (3.25), (3.26), and with Young’s inequality we can write

| _ n
(3.23) < [C (1+ ‘(—A)E IE,H‘X) Mo = Seul” | 200y

5172010

|Tep — Yeoulx (1=20—-20a0) i
+ — &% + Ce 2a (—A)z (xs,u _ ye,u) R

With (3.11) one has

n

n
|t€,ll4 — S€,M| <C en < C€2a0
s )

51—2050 - 51—2050

which gives

2
2 _
)+s2a00(7)+7|m6’“ berly  (397)

(3.23) < C (20 47757 <1 + ‘(fA)%me,#‘Q (=) ¥y =

X X

Estimate of (3.24). We finally estimate (3.24) with (3.25), (3.26) and (3.11), and we have

+m1

1 3/2 [ |te n — Se 2
(324) < () (1+ ‘(_A)éxe,u‘X) (%

+ [te — 36,u|m>

< C(r)e (1 n ‘(—A)% zﬂ‘i) . (3.28)
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We complete the estimate of (3.18) with (3.27) and (3.28):

. 2
(3.18) < C (5 + g% 4 5(1—20‘—%0)/2@) (1 + ‘(—A)ixaw

+ ’(_A)%ya,;t

’ ) (3.29)

X X

|x5 “w Ye /,L|2
C €2a0 5 HIX

Estimate of ( 8.19). Since F' is bounded, as in (3.17), and with (3.21) we obtain

2 1 1 1 2 2 2
x + 3 + 3 ‘(_A)2y€,H‘X + (|xa,;¢|X + |ya,;t|X) +C.

N

Le,p

319) < |5]-4)

End of step 4
Collecting the different estimates of the terms in the right hand side of (3.16) we obtain:

ooy [t

1 2
O R e L
< *3% + ,LLC (1 + |l‘57u|§( + |y€,u|§() —+ C(T) [5% + 52040}
(3.30)

We take £(p) small enough to have C (52% + E(I*QQ’QO‘O)/QO‘) < %ﬁ, and we take the limit when p tends to zero.
We obtain the contradiction 0 < —%—". Thus the equality min (¢, ,,s. ) = 7 is established.

Step 5. We are going to conclude with the initial data. We argue by contradiction. If (3.6) does not hold, then
there exists (t9, o) € ]0,T[ x X such that

0 < wes (to,l’o)f’ug (to,l’o) = dp. (331)
We choose 7 and & small enough to have (o, x9) € Q-, and

[w(t,z) —g (etAJc)]Jr < % and [v(t,z)—g (etAx)] < %O

)

8

for all z € X and all t € [0, 7 + Ce'/7], where C is the constant in (3.11). One has

(I)E,;t (tO; to, xo, IO) < (I)E,u (te,/u Se,us Le,py ya,;t) < we (ta,;u xa,u) — Vo (Sa,;w ye,u) y

i.€.

IN

We (tO; 550) — Vo (tO; IEO) — M |x0|§( Wo (te,;u ze,u) — Vo (Se,m ys,u)

g

= t -
[wa ( T xe,u) + T—t.,

g g ) g ()

g

T — s,

g (o

~tr Gegoten)| - 75—+ 7

+ |:g (esa,uAyE,u) + -
—tep

IN

[ (s Te) — g (etfv“A:EE,M)]—|r + K, |etE*“Aac57M - esff“AyE,#| (3.32)

+ [U (Ss,ua ys,u) -9 (esa'MAye,u)}

Since 0 < 7 = min(t: 4, sc,u) and [tz — se,pu] < Ce'/ we have

) - 6
[w (te,us Teyu) — 9 (eta’“Axsyu)Tr <2 go.

g and [U (Se,pn ys,u) -9 (esa’uAyEvM)] <
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Still using 7 = min(t. ., s. ), with (2.11), we can write

|et5’“Ax67u - esa’“Ay67;t|X < ‘(eta’“A - esa’“A) xe,ﬂ‘x + ‘eswA (Teu — yau)‘x

) L BRGNS Co e CE A

c _1
< Mo [te — Sepl ‘AGTA$51H|X + Nz ‘(_A) 2 (Teu — yf,u)‘
C

X

C 1
< — € ts — 9¢ _‘*A7§ £ — Ye ‘
= T|m,u|x| S 5,u|+\/;( )72 (Ten y,u)X
c e, Cer  C
< = 4 — < ——— + —+/c.
< Tlaeulx et + VeSS Do+ Ve

(The last inequality is obtained with (3.12).) We choose p < 22, and next ¢ such that

ik,
Cer  C
T tEYES
We obtain:
elendy, , — esf'”Aya,u‘X sps 46—I29.

Then with (3.32), (3.31) and this inequality we have:

0 1) 1) 0
2 2 0 0 0 0
do — i |wo|y = we (to, To) — vo (to, o) — pt|woly < 5 + K, (4—1(9) ts =3

By passing to the limit when p tends to zero, we obtain a contradiction. Therefore we have proved that
w(t,z) <wv(t,z) forall (t,z) € Q. O

4. PROPERTIES OF THE VALUE FUNCTION AND EXISTENCE RESULTS

For all t € [0,T] and = € X, we consider the optimal control problem
(Pt.a) min {J (t,y,u) | u€ M(t,T;U) and (y,u) is solution of equation (2.1)},

where the cost functional J is defined by

J(tyu) = / Lr,y(r), ulr)) dr + g(y(T)).

We assume that assumptions (i)—(viii) of Section 2 are satisfied. Let v(t,x) be the value function of prob-
lem (P ), that is

U(ta I) = inqu/\/l(if,T;U)J(ﬁa Yt,z,u, U’)

In the following it will be convenient to use the notation

It,z (U) = J(ta Yt,x,us u)
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4.1. Properties of the value function

Proposition 4.1. For all x, zg € X, and all t € [0,T], the value function v satisfies:

[v(t,x) —v(t,zo)| < Ky |z — o]y, (4.1)
with K, independent of t.
Proof. With estimate (2.38), we have
t —v(? = inf Ii — f
v(t:@) —v(two) WEM(E.T0) ta(1) ue/\/%](% TU) Loz (1)
< sup (Lt () = Ttz (u))
ueM(t,T;U)
T
< sup / 1L (3 yt,0,us ) = L (5 Ytwo,us W) AT + |9 (e, (T) = 9 Weaou (T))]
ueM(t,T;U) t
T
< sup / Kyt (1) = Yewo.u (1) x 7 + Ko [Yo.0,0 (T) = Yowou (Dlx ¢ (4:2)
ueM(t,T;U) t
< sup  (KLT + Kg) [|yt,z,u — yt,xo,uHLoo(o,T;X)
ueM(t,T;U)
< (KLT+K9) Cg(a,ﬁ) |I—Iolx. (43)
By permuting z and zg, we obtain estimate (4.1) with K, = (KT + K,) Cs(a, ). O

Proposition 4.2. The value function v is continuous and bounded in [0,T] x X.

Proof. Let us show that v is bounded. As L and ¢ are bounded, we have:

v(t,x) = inf Ii o (u) < My +TMy = M,.
ueM(t,T;U)
Moreover,
v(t,x)>—  sup  |Lip(u()|>—(My+TMy) =—M,.
ueM(t,T;U)

Hence we have

[v(t,z)| < M, forall (t,z) €[0,T] x X.
Let (t,z) € [0,T] x X be fixed, and first show that the function ¢ — v (¢, ) is continuous. Let 0 < s < ¢, we
have:

T
”U(t,ﬂ?) 71}(571‘) § sup (/ |L( ytmuau) 7L('ays,z,uau)|dr+ |g(yt,z,u(T)) g(ys,x,u(T)H)

ueM(t,T;U)

sup /|L 2 Ys,zus )| dr

uEM(t T;U)
< sup  (K.T + Ky) [[yt,au — ys,w,uHLoo(t,T;X) + [t — [ M.
ueM(t,T;U)

By permuting s and ¢, and with Proposition 2.9 we have

|’U (ta 1') -V (Sa :L')| < CG(aa 6) (KLT + Kg) a (tv va) + |t - 5| Mrp. (44)
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Hence with (4.1) we obtain
|v (t,l‘) -V (Sa 1'0)| < [Cﬁ(aa 6)(KLT + Kg) a (ta S, 1') + Kﬂ |:L' - 930|x] + |t - S| ML'

The proof is complete. O

Proposition 4.3. For allt € [0,T[, and all x, xo € X, the value function satisfies
v (t,x) — v (t,z0)| < Cla, 8,0,t) | (—A) % (x — x0) o Jorallf€[0,1-af. (4.5)

The constant C(a, 3,0,1) is explicitly given in (4.7), it blows up when t — T and when a4+ 6 — 1, but it stays
bounded on all compact subset of [0,T7].

Proof. We have

v(t,z) —v(t ) < Sup {/ K |yt T,u — Ytzo,u u (T )lX dr+ K, |yt,x,u (T) - Yt,zo,u (T)|X} .
weEM(t,T;U)

With estimate (2.25), we obtain
v (t,x) — v (¢, o) {/ KrCu(a, 8,0, 7)dr + K,Cy(a, 3,0, t; T)} ‘( A)° (x—xo)‘x,

where Cy(a, 5,0,t;7) is given in (2.28). As 1 — (a+ S +6) > —1, then function r — (r —t)l_(a+6+9) is
integrable over (¢,T"). So, one has

’ . _ T My C3(a, B,0) 1—(a+8+6)
/t K1Ca(a, 8,0, 1) <r>derL/t <<7~_t>9 U e ) dr

My 1-0 C3(a, 8,0) 2— (atf+0)
=K T—-1 T—-1 .
[T T s T
(4.6)
Setting
Cla, B,0,t) = (4.6) + KyCu(a, 5,0, T), (4.7)
we can write
v (t,2) = v (to) < Cla B,0,8) | (=4) " (@ = a0)|
And permuting x and zy we obtain (4.5). O

Proposition 4.4. For all z € D((—A)?) and all s, t € [0,T] there exists a constant C, independent of x, t
and s, such that

lv(t,z) — v (s, )] SC(l—i—‘(—A)%x‘X) |t—s|%. (4.8)
Proof. Let us recall (4.4):
lv(t,z) —v(s,z)| < Cola, B) (KT + Kg)a(t,s,x)+ |t —s| My,

where a (¢, s,2) = |e‘t*5‘A:E - :L'|X + |t — s|*=F. With (2.11), if z € D((—A)2), we get:

‘(e‘tfslA —I) x‘ <Clt- s|%
X

(—A)% x‘

x .
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Since 8 < 1/2, we have
a(ts,2) < CB,T) (1+|(~A) a| ) It =l

Hence
o (t,z) — v (s,2)] < [cﬁ(a,ﬁ) (KLT—i—Kg +C(8,T) (1 + ‘(_A)% x‘X>) + MLT%} It — s|2.
The proof is complete. O

4.2. Existence results

Theorem 4.5. Assume that assumptions (1)—(viii) of Section 2 hold. Then the value function v is a viscosity
solution of the Hamilton-Jacobi-Bellman equation (1.1) in the sense of Definition 3.2.

The proof is split into three steps:
Step 1. We show that v satisfies the condition (a1) in the definition of subsolutions.
Step 2. We show that v satisfies condition (az) in the definition of supersolutions.
Step 3. We show that v satisfies both terminal conditions (1) and (052) .
Proof. We only treat the case 0 < 8 < % The case f = % can be treated with obvious modifications by using
estimate (2.20) in place of (2.19).
Step1l. Let ® € C4 (]0,T[ x X), and (t,z) € (]O,T[XD((fA)%)) Nargmaxy, pixx (v —®). Letu(:) =u e U
be a constant control. For all s > ¢ we have

v(t,x) — @ (t,x) =max (v —P) > v (8, Yr.zu () — P (s, Yt,zu(s)). (4.9)

By the dynamic programming principle it yields
v(t,x) < /S L(r,ytza(r),uw)dr+v(s,yrea(s)), forallael.
t
This inequality holds true in particular for u. From (4.9) we deduce
O (t,x) —P(s,ytanu(s) <v(t,r) —v(s,Ytzu(s)) < /ts L(r,yepu (r),u)dr,

hence
D (t,x) —P(s,2) +D(s,2) — P (S, Ytpu (5)) — /ts L(r,ytpu(r),u)dr <O0. (4.10)

With assumption (viii) of Section 2 satisfied by L and a classical calculation we obtain:

lim

s\t

D (t,x) — P (s,2) 1 0
s—t s—t

- / L(ryizmu (r),u)dr} = —E(t,ac) —L(t,z,u). (4.11)
t
On the other hand,

D (s,2) — (s, Y10u(s)  P(s,z)— @ (s,es=D4g) N ® (5,67 D42) — @ (5,y.0.u (5))

4.12
s—t s—t s—t ( )
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So,

[} (S, e(sft)A,fL') -9 (57 Yt,xu (8)) _ 1 (qu) (5 g (5)) | e(s_t)ACL' — Yt,zu (8))

s—1 s—t X
1 s—t)A s—t)A
= (qu)(s, els=t) z) | e o (s))X (4.13)
1 s—t)A s—t)A
+S — (qu)(s,«f(s)) — Dxtb(s,e( t) x) | els—hA, Ytz (s))X,

where
£(s) = A(s) e Dz + (1= A(8) Yrau (),

for a function A : [t,T] — ]0,1[. We denote by Kg the Lipschitz constant of D,® (¢,-) in X (condition (8) in
the definition of C'}(]0,T[xX)). With estimate (2.19), we have

1 _ s
L (Do, () Do) [ (9) |
1
< - tK<I> ‘f (s) — 6(5%)14%‘)( ‘e(S%)Aﬂf — Ytzu (5)‘){
1 - 2
= EK@ (1=X(s)) ‘e(é DR T (s)‘X
1 _ 2
< — Ko ‘e(é % — o (8)‘
s — t|2(1*ﬁ)
< Ci(B)Ke———— =Cls - t1'72% = 0 when s \\t, as B < 1/2,  (4.14)

1
29

Ch (6, |:c|D((_A)%)) Kg|s — t[?%0 in place of Cs — t|*~2. For the term (4.13), we have

and C is independent of u (C depends only on My). In the case when § = using (2.20) we obtain

(s—t)A (s—t)A,.

- (DmCI)(s,e z) |e T— Ytou (s))X

—1 / A By — F (r, Ayoa ()] dr) . (4.15)
¢

= ((A)BDzCD(s,e(S_t)A:E) |
s—t x

We know that e(*=94z tends to 2 in D((—A)z) when s \, . Thus using condition (§) in the definition of
C1(]0, T[x X) and Proposition 2.2, we can pass to the limit in (4.15), when s \ ¢, and we obtain

) (s, e(s_t)Ax) — D (s, yt.0u(5)) 5
lim — S ((—A) D,® (t,z) | Bu— F (t, A:E))X . (4.16)
Moreover
P (s,2) — @ (5,0l DAy x —els—Ay
( ) - (Do) 1 22 (417)
s—t s—t x
where

n(s) =A(s)e* Dz + (1 - X(s))x, (4.18)
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for a fonction A : [t,T] — ]0,1[. We remark that 7 (s) € D((—A)2) as = € D((—A)2). Thus D,® (s, (s)) €
D((—A)2) due to () in the definition of C'} (J0, T x X). The right hand side of (4.17) can be written as follows

(D sunton 1 = /()”Ae’“%dr); L[ (Cape ) Caets)

s—1 s—1t
- ((—A)% D& (t,z) | (—A)? z)X when s \ £, (4.19)
because the mapping (s, z) — D,® (s, x) is continuous from [0, T]x D((—A) 2 ) into D((—A)?). Hence with (4.10),
(4.11), (4.12), (4.16) and (4.19), we conclude that
0> =22 t,0) L) + ((~4) De® (10) | F (1, A0))

_ _ I _ 1 _ 1
(( A’ Do (t,7) | Bu)X + (( A)2 D@ (t,2) | (—A)* x)X .
By passing to the supremum with respect to u € U we have:
0P 1 1
> _A)2 —_A)2
0> -2 (ta) + (( A2 D (t,x) | (—A) x)X
n ((—A)ﬁ D& (t,z) | F (L, Ax)) T H (t, z(—A)° D, (t, :c)) .
X
Thus the condition (o) in the definition of subsolutions of equation (1.1) is satisfied.
Step 2. Let ® bein CY (J0,T[x X), and (t,z) € ]0, T[x D((—A)2)Nargmin (v — ®) . For all u (-) € M(0,T;U)
we have

v () = v (s Yraw(s) <P (Ex) =P (s,yr2u(s))- (4.20)
Thanks to the dynamic programming principle, for all € > 0, there exists a control u. (-), e—optimal, such that

e(s—t)+ult,z)> / L(r Y. (1) ue (1) dr +0 (8, Y120, (5)) - (4.21)
t
Setting u = . in (4.20), and substracting (4.21), we obtain:
P (t,x) — (s, Yt () te(s —1t) — / L(r,ytzu. (r),ue (r))dr = 0,
t

that is:

2D =St o L L i, () e () 2 0. (1.22)
- - t

There exist a function n; : [0, —t] — R, a function Ag : [t,T] — [0,1], and a function Ag : [t,T] — [0,1]
such that

P (t,z) — D (s, Yo ()  P(t,x)—P(s,2) N P (s,x) — ® (s,e7DAg) N D (5,6 DA2) — @ (5, Y00, (5))

s—1t s—1t s—t s—1t
0P x—els—DAg
— -GG+ (D () | )
! <D1<I>(s e(S*t)A:E) | eG4 — s o (s)) (4.23)
s—t ’ e b'e
1

+ (Dx(I) (s,m3(s)) — Dm(ﬁ(s7 e(s_t)Aac) | els—hA, Yt.2,u. (s))

s—t X
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where
m(s—t) =0 when sN\t,  1a(s) = Aa(s)eC™D Az + (1 - Ay(s))z,
n3(s) = A3(s)e ™4z + (1 = A3 ())ye.o,u. () -

As in (4.14) we have

1
s—t

‘(Dl-@(S, 13 (5)) — Do ®(s,el D 42) [ DA — gy o, (5)>X‘ < C1(B)Ko|s—t|""27 — 0 when s \, L.

In (4.19) we have shown that

(Do ()| Z25E) (A D (1) | () 0) s =)

where 74 (s —t) — 0 when s \ t.
Due to the definition of H, we can use the inequality

— ((—A)ﬁ (s=1AD (s els—)A ) | Bue (r )) — L (" e, (), e ()

< H (7‘, Ytwue (), (—A)ﬁ =AD& (s,e(sft)Ax)) .

Thus
. i ” (Dxtb(s, e(s_t)Ax) | eG4 — s e s))
_ (Dl.(I)(s,e(S 1A 1t / A [Bu (1) — F (r, Ayp o, ()] dr)
<[ |m (r v (1) (=4 €D, (5,0~ 9%2) ) 4 L (i (1) e ()] dr
+S i ; /tS ((—A)B e(S*T)Aqu)(s,e(sft)Ax) | F (7, AYt o 0. (7“))) dr.

By collecting together all the terms in (4.22), we obtain

et / H (r e (1), (~4) 64D, (5,600 47)) (4.24)
t

s —
8<I>
ot
1
s—1

() 4 m (s =) (s =)+ () D (t.2) | ()2 )

/ ((714)5 e(s—T)Aqu)(S’ e(s_t)Ag;) | r (7,’ Ayt,z,ug (7")))
t

> —C1(B)Ko|s — |27

X

(If p = %, we have to replace the last line by —Cy (ﬁ, |]

have

D((_A)%)) Ko |s — t|"27.) With Proposition 2.2 we

Ayt 4. (1) — Az uniformly w.r. to u, when r — ¢.
By passing to the limit in the previous inequality when s — ¢, and after when ¢ — 0, we obtain:
0P 1 1
0<% (ta)+ ((—A)z D,® (t,z) | (—A)? :c)
+H (t,x(_A)ﬁ Dl.(I)(t,:c)) + ((_A)ﬁ D,® (t,7) | F(t,Ax))X

X
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Step 3. Let us show that

li T —t,z)—g(ez)| = 0.
fug sup [0 (7' = t,2) = g (¢"2)|

From the definition of v(T — t, z), it follows that
T
v(T —t,x)—g (etA:E) < / L(r,yr—tzu(r),u(r))dr+ K, ‘yT,m,u (T) — etA:E|X,
T—t
for all u € M(T —t,T;U). Due to estimate (2.19), there exists a constant C' independent of ¢ and u such that
‘yT,m,u (T) — etA:E| < ot A.

Then we have

T
v (T —t, x) -9 (etAx) < /T L (’I“, Yr—tz,u (T) U (T)) dr + KgCt17B
—t

for all u(-) € M(T —t,T;U). Since L is bounded we obtain

. _ o (atA
}1\1% Sgg [v(T —t,z) — g (e"'z)] < 0. (4.25)

For the opposite inequality, we choose a control us (-) € M(T —t,T;U), §-optimal, such that
T
DT = ta) 45> [ L () s () dr+ 9 (s (7)),

T—t

where Y5 = Yr—+,z,us- As L is bounded, for ¢t small enough we have
v(T—t,x)+6>—-0+g(ys (T)).

We can write
9(ys (1) = =g (y5 (T)) — g () | + g ("),

and
v (T —t,z) — g (e"z) > —26 — K, |lys (T) — etAx‘X > 25 — K,Ct' 7P,
Hence
lim sup [v (T —t,z) — g (e!4z)] > —26. 4.26
fim s [0 (7' £,7) = (¢47)] > (420
We can pass to the limit when 6 tends to zero, and we have shown that conditions () and (32) of Definition 3.2
are satisfied by v. O

5. EXAMPLES OF OPTIMAL CONTROL PROBLEMS

In this section we study the value function of problems of the form

(73”) min {j(t, u,y) | u e M(t,T;U) and (y,u) is solution of equation (5.1)}.
where R

y'=Ay+ (-4 [Bu-F(.Ay)] inT),  y(t)== (5.1)
and

Tt yu) = / L(r, y(r), ulr) dr + Gy (T)).
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We do not assume that F , L and g obeys the assumptions of Section 2. But we consider examples such that,
for all w € M(t,T;U), and all z € Y — where Y is a suitably chosen Banach space — equation (5.1) admits a
unique solution which satisfies

lyllLeo,yyy < R(Mo,T) and  [[AyllLe(o,13v,) < B(Mo,T) if |z]y < Mo,
for all My > 0, where R(My, T) is a function of My and T, Yy is a subspace of X such that A is continuous from
D((—A)*)NY into Yy. We denote by v(t, z) the value function of problem (’ﬁtx) We introduce a projection
operator Py, from X on the ball By (R(My,T)) in Y, centered at the origin and with radius R(My,T), and
a projection operator Pl(\)/lo from Xy on the ball By,(R(My,T)) in Yy, centered at the origin and with radius
R(My,T). We set

FMU('aAy) :ﬁ(aPJ(\)loAy)a LMO(Tvyau) :E(Tvaoyau)a and gMo(y) :E(PMOZJ)

In the different examples we verify that Fyy,, Las,, and g, obeys the assumptions of Section 2 (with constants
depending on My). We denote by (77%0) the problem (P; ) of Section 1, corresponding to Fiz,, Las,, and gas,,
and by v, (¢, z) its value function. We verify that

o(t,x) = vpg, (t,x) forallz €Y such that |z|y < M.

Due to Theorems 3.5 and 4.5, we know that vy, is the unique viscosity solution of equation (1.1) corresponding
to Fay, Ly, and gar,. Due to the definition of problem (’P%U), it is obvious that

ua, (6, x) = vag, (8, 2)  for all z € Y such that |z]y < Mo,

if My > My. Thus, to characterize v(¢,z) when x € Y, it is enough to characterize vy, (¢, ) for all M.
And vy, (¢, ) is characterized as the unique viscosity solution of equation (1.1) corresponding to Faz,, L,
and gaz, -

In the following  is a bounded open subset in RY, with a regular boundary T, and we set Q; 7 =]t, T[xQ
and X, p =¢, T[xT.

5.1. State equation of example 1

Consider the equation

oy ~

0
_y - Ay + Yy = f in Qt,T7 % + h’(y) =u on Et,T} y(t) = X0 in Qv (52)

ot
where & is a regular nondecreasing function satisfying h(y) = 0 (e.g. the well known ‘Stefan-Boltzmann radiation

condition’ corresponds to h (y) = kr |y|3 y + key, k. is the radiation coefficient and k. the convection coefficient
[23]). We make the following assumptions.

(A1) U is a closed bounded convex and nonempty subset in L%(T") for some ¢ > 2, and it obeys the condition
g>N -1, |ulp2ry < My and  |u|pery < My for allu € U.
(A2) The function f belongs to C%™ ([0, T]; LP(£2)) for some p > 2, and it obeys the condition

p>N/2, | flleqorir) < My, and | flleqor;rz) < My.
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Let be X = L?(Q), Xr = L?(I'), Xo = L?(T'), and let us define the unbounded operator A in X by
2 Oz
D(A) = :EEH(Q)|6—:O on I' and Ax = Az —x forall x € D(A).
n

Assumption (i) of Section 2 is clearly satisfied. We define the Neumann operator N € £(Xr; X) by Nu = z,
where 2z is the solution of the boundary value problem

—Az4+2=0 1in, %:u on I
on

The operator N is also bounded from Xt into H*/?(Q), and from Xp into D((—A)) for all 0 < a < 3 (see
[21]). With the extrapolation method, the semigroup (e*4);>o can be extended to (D(A*))" = (D(A))’. Denoting
by (e!4);>0 the corresponding semigroup, (/T, D(/T)), its infinitesimal generator, is an unbounded operator in

-~

(D(A*))" with domain D(A) = X. Thus the operator (—A)N is bounded from Xt into (D(A*))’. The operator

A is the trace operator. It satisfies assumption (iii) of Section 2 for all o €], 1[. It is well known — see e.g. [4]
— that equation (5.2) can be rewritten in the form
y =Ay+f+(AHN[u-h(Ay)] i @T),  y®) =0 (5.3)

We define the operator B by B = (72)1_5N for some (3 given fixed in ]1/4,1/2[. Due to the regularizing
properties of N, mentioned above, we can also verify that B € £(Xr, X). We set F(t,y) = (—A)"P f(t)+ Bh(y).
Equation (5.3) is nothing else than

y =Ay+ (-4 [Bu-F(Ay)|  (tT),  y(t) =20 (5.4)

As in [24], Theorem 3.1, we can prove the following result.

Theorem 5.1. For all o € L>®(Q2) and all u € M(t,T;U), equation (5.2) admits a unique weak solution in

C([t,T); L3(R))). This solution belongs to Cyp(]t, T] x ) and it satisfies the estimate

191l oo (2, 7y F 1Yl oo (5, ) < @0l L0 (0) + C(pvﬁafbdaQvT)(Hf”Lﬁ(t,T;LP(Q)) + ||u||L§(t,T;L‘1(F)))7 (5.5)

where the exponents 1 < p < 0o and 1 < ¢ < 0o obeys

N+1<1 d N*1+1<1
— + = an = < -,
2p D 2q q 2

and the constant C(p,p,q,q,Q,T) depends on N, p, p, q, G, Q, T, but is independent of t.

From Theorem 5.1, and assumptions (A;) and (Az), we deduce
||y||L°°(Qt,T) < |1'0|L°°(Q) + C(paﬁa q, qa Qv T) ((T - t)l/ﬁMf + (T - t)l/qMU) .

5.2. Setting of the control problem for example 1
For all t € [0, T, and all g € L*(Q)), we study the following control problem

(’//)\tﬂ-o) min {j(t, u,y) |u € M(t,T;U) and (y,u) is solution of equation (5.2)},
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where the cost function J is of the form
Jtu= [ [ Gecoones+ [ [ Rousodads+ [ Heu@one 60
t Ja t Jr Q

We make the following assumptions on the data of problem (’f)\tlo)

(As) For all (t,y) € [0,T] x R, G (t,-,y) is measurable in Q. For almost all £ € Q, G (-,£,-) is continuous in
[0,T] x R, and we have the estimates:

Cq <G (t6y) <G &) xn(ly),
G (t,6) — G (s,6,2)] < Ca(©) (nllyl) + n(l=D) (1t = 5™ + Iy  21),

where G € L* (1), G2 € L?(Q), and 7 an increasing function from R* in R¥.
(A4) For all (t,u) € R2, K (t,-,u) is measurable in T. For a.e. (t,0) € %, K (t,0,-) is convex. For a.e. o € T,
K (-,0,-) is continuous in R2 and we have the estimates:

~

Cp < I?(t,a,u) < K (0) +colu/? and I?(t,a, u) — I?(s,a,u)‘ < (I?l (o) + co |u|q) [t —s|™,

where K, € L' (I).
(As) For all y € R, k(-,y) is measurable in Q. For a.e. £ € Q, k(&,-) is continuous in R and we have the
estimates:

Cr <Ry <k ©xnlyl) and k(€ y) —F (€ 2)| <Ra€)(n(lyD) +n(12D) Iy - 2,
where ky € L' (), ko € L2 (), and 7 as in (A;).
The value function of problem (ﬁt,wo) is defined by

O(t, m0) = il J(t, Tt 1), (5.7)

where Ui, 4 is the solution of equation (5.2).

5.3. Existence of solution to (ﬁt,xo)

We have the following theorem [23, Th. 6.1].

Theorem 5.2. For allt € [0,T, all zo € L>*(Q2), problem (ﬁt,zo) admits at least one solution.

By setting
Lty u /Gtey d§+/Ktou §<y>=/9k(§,y<£>>d£,

we notice that problem (Pt zo) 18 an optimal control problem of the form of problems studied in Section 4.
However L g, and F do not satisfy assumptions of Section 2. Thus we cannot apply Theorem 4.5 to the
value functlon v, and we cannot claim that ¥ is the viscosity solution to Hamilton-Jacobi-Bellman equation
corresponding to E, g, and F'. To overcome this drawback, we introduce in the next section a family of problems
whose value function is locally equal to ¥ and is the unique viscosity solution to a Hamilton-Jacobi-Bellman
equation.
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5.4. Definition of a problem (P ,,) equivalent to (7/515710)

For all My > 0, we set R(My,T) = My + C(p,p,q,4, % T)(TY My + TYP M), where C(p,p,q,q,Q,T) is
the constant appearing in (5.5). We set

Tr(Mo,T) (y) = min (R(MO, ), maX(—R(MO,T),y)) for all y € R.
In this example Y = L>(Q), Yy = L>®(T'), Py, (respectively PJ; ) is the projection operator from L?(Q) (re-

spectively L?(I")) into the ball in L>°(Q) (respectively L>°(T)), centered at the origin and with radius R(My, T),
defined by

Priyy(€) = Trino,m) ((€))  for ace. £€ Q0 (resp. Py y(€) = Trowy,m) (y(€))  for a.e. £€T).

We set
G(t,&,y(€) = G(t, &, Papy(€)) and  k(&,y(€)) = k(&, Paryy(€))  for all y € L2(),

and h(y(&)) = A(P&Oy(f))) for all y € L*(T"). The mappings h, G, and k clearly depend on M. We have not
noticed this dependence in order not to load the notation. We set

L(tyou) = /Q G (6,9 (€)) de + / R(to,u(0))do, g(y) = /Q R(Ey(€)de, and F(y) = hy).

Proposition 5.3. The mappings L, g and F' satisfy the assumptions of Section 2.
Proof. With (A3), (A4), and the definition of G, for all (t,y,u) € [0,T] x L? () x L?(I'), we have:

L (t,y,u)] < /QIG(t,g,y(f)ﬂngr/‘f{(t,g,u(g))‘da
r
= 77(]“B(MO’T))|(A’71|L1(Q) + |IA(1|L1(F) +coMp = M, .

With (As) and Cauchy-Schwarz inequality, we have

L)~ Lol = | [ (€606 - G e ae) | [ (R (touto)ao - R (s.00u(o))) do

< 20(R(Mo, T))(1Ga |21y + |Galrr () (v — 2|2y + |t — 5™) + (IK1| L1 ry + coMG) |t — s|™,

that is

|L (ta yvu) —L (57 Z’u)l < KL(ly - Z|L2(Q) + |t - Slm)'
The estimates for g can be obtained in a similar way with (As). The estimates for F' directly follows from the
definition of h. O

For all t € [0, T[, and all g € L?(f2), we consider the optimal control problem
(Ptzo) min {J (t,u,y) | u € M(t,T;U) and (y, u) is solution of equation (5.8)},

where the cost function J is defined by

T
J(t ) = / L (s, y(s), u(s)) ds + g(y(T))

and the state equation is

0 0
8_31 —Ay+y=f inQr, a—z +h(Ay)=u on X p, y(t) =z in Q. (5.8)
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Equation (5.8) can be written in the form
v =Ay+(-A)°[Bu-F(Ay)]  in (LT),  y(t) =,

where F(t,y) = (—A)=Pf(t) + Bh(y) satisfies assumption (iv) of Section 2. The value function of problem
(Pt,z,) s defined by

v(t, zp) = J (Yt m0us W) (5.9)

inf
ueM(t,T;U)
where y; 4., is solution of equation (5.8). From Theorems 3.5 and 4.5, we deduce that v is the unique viscosity
solution of equation (1.1) corresponding to F', L, and g.

Theorem 5.4. Lett be in [0,T[ and assume that |xo|p-(q) < Mo. A pair (y,u) is a solution of problem (73,579,;0)
if and only if it is a solution of (Pyz,)-

Proof. If |xo|pe(q) < Mo, with Theorem 5.1 we can easily verify that, for all u € M(t,T;U), the solution
Yt.z0,u Of equation (5.2) obeys HZ/J\LQ;O’HHLOO(QLT) < R(My,T). Thus F(Ut,eon) = F Ut.zon), and Yi .z, is also
the solution of (5.8). That is Yt.zo.u = Yt,z0,u- Lhus we do not distinguish ¢ 5,4 and y¢ g, up to the end of
the proof. Assume that (yi,z,,a,%) is a solution of (P 4, ), then for all u € M(¢,T;U), we have

~ ~

J(t, Yt,xo,u5 ’U) = J(t7 Yt,xo,as ’Q) S J(t7 Yt,zo,us u) = J(t, Yt,xo,us u)7

that is (ys.zg.a, @) is a solution of (Py4,). We prove that any solution of (Py4,) is a solution of (P;4,) in a
similar way. 0

Corollary 5.5. For all t € [0,T[ and all xq satisfying |zo| o) < Mo, we have 0(t,x0) = v(t, x0).
5.5. State equation of example 2
Consider the following Burgers type equation in 2-D:

— — Ay + 0x1(y2) =uX, nQr, y=0 onr, y(t) =z in Q. (5.10)

In this example, w is an open subset in €, x,, is the characteristic function of w, and (A;) is replaced by

(A}) U is a closed bounded convex and nonempty subset in L'%(w) and it obeys the condition
|U|L10(w) < My foralluel.

Set X = L?(Q), Xr = L?(w), Xo = L? (), a = 0, and let A be the identity in X. We now define the
unbounded operator A in X by

D(A)=H?>(QNH}Q) and Azr= Az forall 2 € D(A).
Equation (5.10) can be rewritten in the form
y =Ay+ (-A)F [Bu-F(hy)| i T),  y@) =, (5.11)

where

=

Fl(y

In this example we take § = %

= 2(7A)_% (y0z,y) and Bu=(—-A)"

~—

(uxw) -
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Theorem 5.6. For all xy € L>(Q) and all uw € M(t,T;U), equation (5.10) admits a unique weak solution in
C([t,T); L3()). This solution belongs to L>=°(|t, T[xS) and it satisfies the estimate

1Yl o< (00 ) < C(Q,T) (|0 Loo () + |0[F oo () + Null 10,1y xw) + 1211017y ) - (5.12)

Proof. Tt is well known that equation (5.10) admits a unique weak solution in C([t, T]; L?(2)) N L2(¢, T; HL(Q))
and that

lvllcqeri2@) + 19ll2e @) < 2lzolr2) + CEullz2(t,7) xw)-

If we multiply equation (5.10) by |y|?P~2y, and if we integrate over (¢,7) x €, after integration by parts, we
formally obtain:

1 T _ 1 T _
L / ()2 + / / (2p — 1)|Vy Pyl 2 = / l20f?” + / / alyl?2y.
2p Jo t Ja 2p Jo t Jw

This identity leads to the estimate:
Yl Lo e, ms220(0)) < C(Q,p) (|zolp2e () + Ul 2o (1) %))  for all 1 < p < 5.
This formal estimate can be justified (see [22], Th. 5). Thus we have
91| Loo (.15 00 () < C(|=’E0|2L2p(9) + HUH%QP((t,T)Xw))'

Passing the term ,, (y?) in the right hand side of the equation and using regularity results for the heat equation,
we obtain:

Iyl Lo ey < CL(p, D) (|0l Loy + lull Lo, ryxw) + 192 | Lo, ))
< C2(,p,8) (lzol e (o) + lull Lot 1) xw) + |$0|2L2p(sz) + ||u||2L2P((t,T)><w))’

foralll <p<2andall 1l <p<5. In addition we have:
Y 0w, yll Lo, ner2)) < WYllLoe(e,7ine)) |02, Yl Lo (e, 10 (02)) -
Using this estimate and regularity results for the heat equation we can write:
Iyl Lo (.r) < [zolzee () + C(2, 0, B) (lull Lot 1y xw) + 19 Oy Ull Lot 102 ()

provided that % + % < 1. Choosing p =5, p = %5, and combining the previous estimates we obtain the desired
result. O

From Theorem 5.6, and assumption (A} ), we deduce
19l Lo 0 ) < C(QvT)(|fU0|Lw<n> + 10[F oo 0y + (T — )My + (T — t)3/10M§’;>.

5.6. Setting of the control problem for example 2
For all ¢t € [0, T, and all zy € L>°(Q2), we study the following control problem

(’//)\tﬂ-o) min {f(t,u, y) | ue M(t,T;U) and (y,u) is solution of equation (5.10)}7
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where the cost function J is

3t u,v) / / 5,€,y(s,©))deds + / : /w R(s,€,u(s, ))deds + /Q R(E, y(T, ©)de.

We assume that G obeys (As), k obeys (As), and that K obeys

(A}) For all (t,u) € R, K (t,-,u) is measurable in w. For a.e. (t,§) € R X w, I?(t,f, -) is convex. For
a.e. £ €w, K (+,&,) is continuous in R? and we have the estimates:

~

Cr <K (tEu) <Ky (€)+colul! and ‘f{(t,g,u) - f((s,g,u)\ < (1?1 (€) + co |u|q) It —s|™,

where ¢ = 10, K; € L' (w).
For all My > 0, we set

R(My, T) = C(Q,T) (Mo + M2+ TYOMy + T3 10M5) ,

and we define the truncated problem in a similar way as in example 1, with obvious modifications. More
precisely, Y, P, G, k, and g are defined as in Example 1,

L(t,yu /G t.&y €))d§+/ (t,&u(®)ds, and  F(y) =2(=A)"? (Payy O, Pary),
for all y € L?(2). We can take any f3y in (0,1/2). For example setting 3y = 1/4, we have

FO ety < C|(Pay)® ayk) < Clul, for all y € D((—4)2) = Hy(2),

(—A)%)

and the additional condition in assumption (iv) when § = 3 is satisfied. The other conditions in assumption (iv)
are also satisfied. We can define (P z,) similarly as in Example 1. In particular the state equation for (P, ) is

Y =Ay+(~=A)7 [Bu—F(Ay)]  in (T),  y(t) = zo.

Denoting by 0(t, z9) the value function of problem (731571‘0)5 and by v(t, zo) the value function of problem (P ),
as in example 1, we can prove the following Theorem.

Theorem 5.7. The value function v(t,zo) is the unique viscosity solution of the Hamilton-Jacobi-Bellman
equation (1.1) associated with (Pt x,). For all t € [0,T[ and all xo € X satisfying |vo|p-~) < Mo, we have
(t, x0) = v(t, zo).

5.7. Example 3

We counsider the same equation as in Example 2, and now (A;) is replaced by
(AY) U is a closed bounded convex and nonempty subset in L8(w) and it obeys the condition

|ulrs)y < My for allu € U.

Set X = L2 (Q), Xr = L? (w), Xo = Hg/4 (Q), a = 2, and let A be the identity in Xo (thus A is considered as an
unbounded operator in X). We define the unbounded operator (A, D(A)) in X as in Example 2. Equation (5.10)
can be rewritten in the form

Y =Ay+ (-7 Bu-Fy)] i LT), y) =, (5.13)
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where )
£

F(y)=2(—A)"% (y02,y) and Bu = (—A)*%(uxw) , with0 <& <1
In this example, we take § = %' (below we choose £’ = 5/8).

Theorem 5.8. For all zy € Hg“(ﬂ) and all w € M(t,T;U), equation (5.10) admits a unique weak solution in
C([t,T7; H3/4(Q)), and it satisfies the estimate

190 ooy < COTI 0l gy + ol g + el + lulauryy) (514)
Proof. Observe that H3/4(Q) — L8(Q). As in Example 2, we have

192 2o 7520 () < C (1707200 + 10l Z20 (1.1 x0))

Iyl Lo e @) < 02(Q,p,13)(|930|m(9) + lull L2e e,y xw) + |=’E0|2L2p(g) + ||U||2L2p((t,T)Xw)),
foralll<p<2andalll<p<4,and

1y O Yl Lo(e, 7 nr2(02)) < NYlloe (b 10 () 1020 Yl L5t 130 (02)) if in addition 2 <p < 4.

Using this estimate and regularity results for the heat equation we can write:

HyHC([t,T];Hg/‘L(Q)) < C(Qvﬁ)(|z0|H8/4(Q) + ”u”LQ((t,T)Xw) + ”y a931y||Lf’(t,T;L2(Q))) , (5.15)
if % < %. Thus, choosing p =4, p = %, and combining the above estimates, we obtain:
1l ge 3@y < CO T (0] 7y + 10lfysra ) + lull ooy ey + Nalze e,y ) (5.165)

From Theorem 5.8, and assumptions (A7) and (As), we deduce
||y|| 3/4 < C(Q T)(|x0| 3/4 + |I0| 3/4 +(T—t)1/8MU+(T—t)3/8Mg).
C([t,TT:Hy " () Hy" ()

Now we set

R(Moy, T) = C(Q,T)(Mo + Mg + T3 My + T35 M3).

Let us denote by P&O the orthogonal projection in Hg/ 4(Q) on the ball centered at zero and with radius
R(My,T). Let us set

F(y) = Q(fA)*%/ (PZ(\)/IOy Oz, (P&Oy)) for all y € Hg“(Q).
Let us show that F' is bounded and Lipschitz from Hg/ *(Q) into X. We have
|F(Y)|L2() = 2|P1?40y Oz, (P&Oy) |H*E/(Q) = 2|P1(\)/10y Oz, (Pz%y) |B;;/(Q)'
Using the product estimate [25], page 171
Byt () By 4, () — By (),

with
3 32

5
si=-€=-3g, s2=£=,, p=1p P2=pP=2, @1=q=q=2,
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we have
[F(W)20) < CIPR,YlBs )10z, (Phgyy) |B;15/2(Q)-
Recall that

’ ’ —6/ B /
B5o(@) = H(Q), B3 ()= H (@), and B,5(Q) = (B 4@)

where py = p1/(p1 — 1). Moreover
By 2() = By 1 (@) = WS 71(Q) — HY(Q),

. We choose € = % and ¢/ = 2

A " / : _ 2p} 9
forall ¢ <&’ <é¢',andif 2 =5 6

P s we have H~¢(Q) — B;lf;(Q), and we
obtain

|F(y)|L2(Q) < C|P&0y|H§/4(Q)|8M (PI?/IO:U) |H*f’(Q) < C|PI?/IO:U|H§'/4(Q)|PJ?40:U|H§/4(Q)'
Thus F' is bounded from X into X. Let us verify that F' is Lipschitz. We have

F )~ FEen < 2P0 (Phs) — Pl (P2) Lo
2Py Ony (Proy = Piry2) lir—er (o) + 21PRgy 2 Oy (Pgyy — Piso2) lir—r (o

IN

IN

C (|P1?40y|Hg/4(Q) -+ |P1?40y|Hg/4(Q)) |P1?40y - P]?402|H3/4(Q)
<C <|PJ(3401/|H3/“(9> + |Pf?4oy|H3/“(Q>) v = 2l )

To obtain the last inequality we have used the Lipschitz continuity of PI?/[O from HS / 4(9) into itself. We define
(Pi.ay) as in Example 2, and we assume that G obeys (AY), k obeys (AY), and K obeys (AY), where (Af),
(AY), and (AJ) respectively correspond to (As), (As), and (A}), where n(ly|) = |y|", 1 <r <4, G1 € L"*(Q),
Go € LP2(Q), k1 € LP*(Q), kg € LP2(Q2), and ¢q = 8, with ¢ + p—ll =1land g+ p% = 1. We define (Py4,) as in
Example 2. Next we define (P ,) with the state equation

y' = Ay+ (-A)7 Bu-F(Ay)] i (1T),  y(t) =,

and with G, k, g, and L defined as in example 2, but where Py, is now the projection in L?(Q) on the ball in
HO3/4(Q) centered at zero and with radius R(My,T). Recall that Py, is Lipschitz continuous from L?(2) into
itself. Since the embedding from H; / 4(Q) into L¥(2) is continuous, with assumptions (AY), (A%), and (AY), we
easily verify that assumptions of Section 2 are satisfied by L, g, and F. Denoting by 0(t, zo) the value function
of problem (731571‘0)5 and by v(t, o) the value function of problem (P s,), we can prove the following Theorem.

Theorem 5.9. The value function v(t,zo) is the unique viscosity solution of the Hamilton-Jacobi-Bellman

equation (1.1) associated with (Pyy,). For all t € [0,T[ and all xo satisfying |x0|H3/4(Q) < My, we have
0

o(t, x0) = v(t, zo).
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