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A NONLOCAL SINGULAR PERTURBATION PROBLEM WITH PERIODIC
WELL POTENTIAL

Matthias Kurzke1

Abstract. For a one-dimensional nonlocal nonconvex singular perturbation problem with a noncoer-
cive periodic well potential, we prove a Γ-convergence theorem and show compactness up to transla-
tion in all Lp and the optimal Orlicz space for sequences of bounded energy. This generalizes work of
Alberti, Bouchitté and Seppecher (1994) for the coercive two-well case. The theorem has applications
to a certain thin-film limit of the micromagnetic energy.
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1. Introduction

Alberti, Bouchitté and Seppecher [1] considered on L1(I), I ⊂ R an interval, the functionals

Fε(u) = ε

∫∫
I×I

∣∣∣∣u(x) − u(y)
x− y

∣∣∣∣2 dxdy + λε

∫
I

W (u)dx, (1.1)

where W : R → [0,∞] is continuous, W−1(0) = {α, β}, W (t) ≥ C(t2 − 1) with some C > 0, and λε satisfies
ε logλε → K ∈ (0,∞) as ε→ 0.

Here, the double integral represents (up to constants) the nonlocal H1/2 seminorm of u. Similar functionals
with local energies were studied before, see e.g. Modica [8], where the Dirichlet integral is used instead of
the H1/2 seminorm, and the scaling λε ∼ 1

ε leads to a Γ-convergence result. The study of (1.1) is motivated by
the research [2], where Alberti et al. combine interior and boundary phase transitions. Regarding the Dirichlet
integral as a functional on the boundary leads to the H1/2 seminorm.

We study a different problem that also leads to essentially the same functional, just with a periodic poten-
tial W : Kohn and Slastikov [5] derived a reduced model for thin soft ferromagnetic films, and could show that
certain rescalings of the full micromagnetic functional Γ-converge to functionals of the type

Eα(m) = α

∫
Ω

|∇m|2 +
1
2π

∫
∂Ω

(m · n)2, (1.2)
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where n denotes the normal to ∂Ω, in the space of m ∈ H1(Ω, S1), for a simply connected domain Ω ⊂ R
2.

We will analyze the behavior of 1
α| log α|E

α as α → 0. To simplify the analytic setting, we set m = eiu with
u ∈ H1(Ω) and n = ieig, with a function g that is as smooth as n except for a single jump of height −2π. This
leads to the functionals

1
| logα|

∫
Ω

|∇u|2 +
1

2πα| logα|
∫

∂Ω

sin2(u − g).

Considering this functional only on harmonic functions (which corresponds to replacing the Dirichlet integral by
the H1/2 seminorm of the boundary values) and generalizing to arbitrary periodic wells, we have the following
result:

Theorem 1.1. Let Ω ⊂ R
2 be a simply connected C1,β domain and denote the harmonic extension of a function

v : ∂Ω → R to Ω by hv : Ω → R. Set for u ∈ L1(∂Ω)

Gη(u) :=

⎧⎨⎩η
∫

Ω

|∇hu|2 + µη

∫
∂Ω

W (u− g) if u ∈ H1/2(∂Ω)

+∞ else,
(1.3)

where W : R → [0,∞) is a continuous, π-periodic function with W−1(0) = πZ, η, µη > 0, and g : ∂Ω → R is
a function with a jump of height 2πd such that eig can be extended as a H1(N,S1) map to a neighborhood N
of ∂Ω, so g has (after possibly moving the jump point) extensions to H1(Ω \ Bρ(a)) for any a ∈ ∂Ω, ρ > 0.
Assume that η logµη → K ∈ (0,∞) as η → 0 and set

G(u) =

{
K ‖D(u− g)‖ (∂Ω) if u− g ∈ BV (∂Ω, πZ)
+∞ else.

(1.4)

Then we have:
(i) Compactness up to translation:

If Gη(uη) ≤M <∞ then there exists a sequence of zη ∈ πZ such that for 1 ≤ p <∞

‖uη − zη‖Lp(∂Ω) ≤ C(p) <∞. (1.5)

Furthermore, (uη − zη) is relatively compact in the strong topology of L1(∂Ω), and every cluster point u
has the property that u− g ∈ BV (∂Ω, πZ).

(ii) Lower bound:
If uη → u in L1(∂Ω), then

G(u) ≤ lim inf
η→0

Gη(uη). (1.6)

(iii) Upper bound / Construction:
Let u ∈ L1(∂Ω). Then there exists a sequence uη → u in L1(∂Ω) such that

G(u) = lim
η→0

Gη(uη). (1.7)

Here we have replaced 1
| log α| of our previous notation by η → 0 and 1

2πα| log α| by µη → ∞.
Note that this is an extension of the result in [1], since the energy of a harmonic function can be calculated

via the H1/2 norm of its boundary trace, see Section 2 where we reduce the functional to a form more similar
to (1.1). Unlike the two-well potential in [1], our periodic potential W cannot yield any a priori coercivity.
However, we can still obtain compactness up to translation in all Lp and even determine up to constants an
optimal Orlicz type space in which compactness holds, see Proposition 2.11 and Remark 2.12. The proof uses
a more elaborate rearrangement result than the simple two-set rearrangement used in [1].
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It is also possible to derive the Γ-convergence part of Theorem 1.1 from the result of [1] by a cutoff argument
like in [3], but this approach does not lead to the compactness results obtained here.

Corollary 1.2. The functionals Gη are equicoercive (this means “compactness”) up to translation and Γ-
converge to G with respect to all strong Lp topologies, 1 ≤ p <∞.

Proof. Γ-convergence and equicoercivity in L1 is the content of Theorem 1.1. For Lp, we note that strong
compactness in Lp is by interpolation a consequence of strong compactness in L1 and weak compactness in Lq

for q > p, which holds by (i). The construction used for the proof of the upper bound part holds in all Lp. �

2. Localization of the functional

We look at the case Ω = B1(0), in which case we have an explicit expression for the energy of the harmonic
extension, i.e. the H1/2 seminorm of the boundary trace.

Proposition 2.1. If the results of Theorem 1.1 hold for B1(0), they hold for every simply connected C1,β

domain.

Proof. Let u : ∂Ω → R with harmonic continuation hu : ∂Ω → R. Let ψ : B1(0) → Ω be a conformal map. By
the Kellogg-Warschawski theorem (see e.g. [12], Th. 3.6), ψ ∈ C1,β(B1(0)).

Since the Dirichlet integral is invariant under conformal transformations, we have for ũ = u ◦ψ that hũ = h̃u

and can calculate by the change of variables formula

Gη(u) = η

∫
B1(0)

|∇hũ|2 + µη

∫
S1
W (ũ− g̃)

∣∣∣∣ ∂∂τ ψ
∣∣∣∣ .

Now there are c1, c2 > 0 with c1 ≤ ∣∣ ∂
∂τ ψ

∣∣ ≤ c2 since ψ and its inverse are C1 on the boundary. Thus we have
that Gη is bounded from above and below by functionals

η

∫
B1(0)

|∇hũ|2 + ciµη

∫
S1
W (ũ− g̃),

and since η log(ciµη) → K as η → 0 for i = 1, 2, we obtain the equality of the Γ-limits for these functionals. From
this we can deduce the theorem for the ũη, but these converge if and only if the corresponding uη converge. �

Proposition 2.2. Let u ∈ H1/2(S1) and hu ∈ H1(B1) be its harmonic continuation. Then∫
B1(0)

|∇hu|2 =
1
8π

∫
S1×S1

∣∣∣∣ u(x) − u(y)
sin 1

2 (x− y)

∣∣∣∣2 · (2.1)

This can be proved by expanding u as a Fourier series and doing some clever summations, see e.g. [10],
Section 311. Another proof by using the periodic Hilbert transform can be found in [14], Section 3.

Definition 2.3. For η > 0, A ⊂ S1, and u ∈ L1(A), set

Fη
g (u;A) =

⎧⎪⎨⎪⎩
η

8π

∫
A

∫
A

∣∣∣∣ u(x) − u(y)
sin 1

2 (x− y)

∣∣∣∣2 dxdy + µη

∫
A

W (u(x) − g(x))dx if this is finite

+∞ else,
(2.2)

and

Fg(u;A) =

{
K ‖D(u − g)‖ (A) if u− g ∈ BV (A, πZ)
+∞ else.

(2.3)
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We also set Fη := F
η
0 and F := F0, and write

J(u;A) =
1
8π

∫
A

∫
A

∣∣∣∣ u(x) − u(y)
sin 1

2 (x− y)

∣∣∣∣2 dxdy

for the localized form of the H1/2 norm.

For these functionals we will prove the results corresponding to those for Gη = F η
g (·;S1) and G = Fg(·;S1).

Our main tool will be a rearrangement inequality. We use in the following the terms “decreasing” and “increas-
ing” in the weak sense, i.e. denoting what is often called “non-increasing” and “non-decreasing”, respectively.

Definition 2.4. For a measurable f : A→ R we define its distribution function λf by

λf (s) = |{x ∈ A : |f(x)| > s}|.
Definition 2.5. For a function u : A → R, A = (a, b) ⊂ R an interval, its decreasing rearrangement u∗ is
given by

u∗(x) = inf {s : λu(s) ≤ x− a} .
Similarly the increasing rearrangement u∗ is defined by

u∗(x) = inf {s : λu(s) ≤ b− x} .
Clearly, u∗ is decreasing and u∗ increasing. Also, the rearrangement is equimeasurable, i.e. λu = λu∗ = λu∗ .
See e.g. [7], Chapter 3.3.

Theorem 2.6. Let A ⊂ S1 be an interval of length |A| < π. Then

J(u∗;A) = J(u∗;A) ≤ J(u;A). (2.4)

Proof. This follows from Theorem I.1 in Garsia and Rodemich [4]. �

2.1. Lp and Orlicz space estimates

Proposition 2.7. Let A ⊂ S1 be an interval of length |A| < π. Assume η → 0 and let uη be a sequence
in L1(A) such that Fη(uη) ≤M <∞. Then there exist zη ∈ πZ such that

‖uη − zη‖Lp(A) ≤ C(p,A,K,M,W ). (2.5)

Proof. We choose a sequence of zη ∈ πZ such that |{uη < zη}| ≥ |A|
4 and |{uη > zη − π}| ≥ |A|

4 . It suffices to
show the Lp bounds for vη := (uη − zη)+ and wη := (uη − (zη − π))−. As this cutoff obviously decreases energy
by the assumptions on W , we have Fη(vη) ≤ Fη(uη) ≤ M and Fη(wη) ≤ Fη(uη) ≤ M . It therefore suffices to
assume uη ≥ 0 and |{uη = 0}| ≥ |A|

4 . Finally, since
∫

A
W (u) =

∫
A
W (u∗) and by Theorem 2.6, we can assume

all uη to be increasing.
We will assume uη to be nonnegative, increasing, and satisfying the bound |{uη = 0}| ≥ |A|

4 for the rest of
this subsection.

Let λη denote the distribution function of uη. The Lp norm of uη over A can then be calculated as

‖uη‖p
p = p

∫ ∞

0

tp−1λη(t)dt.

Now by the Orlicz space estimate of Proposition 2.11 this is estimated as

‖uη‖p
p ≤ C1

∫ ∞

0

tp−1 exp(−C2t)dt ≤ C(p,M,K,W,A). �
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The following lemma contains the main computations that lead to the lower bound and compactness results.

Lemma 2.8. Let δ ∈ (0, π
2 ) and s ∈ N. For u ∈ H1/2(A), set a0 :=

∣∣{x : u(x) < δ}∣∣, as :=
∣∣{x : u(x) > sπ−δ}∣∣,

and ρ :=
∣∣{x : dist(u(x), πZ) > δ}∣∣. Let

L(z) := log sin
z

2
− log sin

|A|
2

·

Then

J(u;A) ≥ πs2(L(a0 + ρ) + L(as + ρ)) − πs

(
1 − 2δ

π

)2

L(ρ). (2.6)

Proof. By (2.4) we can assume u to be increasing. We set

A0 := {x : u(x) < δ},
Aj := {x : u(x) ∈ (jπ − δ, jπ + δ)} for j = 1, . . . , s− 1,

As := {x : u(x) > sπ − δ}

and

Pj := {x : u(x) ∈ [jπ + δ, (j + 1)π − δ]} for j = 1, . . . , s− 1.

We also define ak := |Ak| and ρj = |Pj | for k = 0, . . . , s and j = 1, . . . , s − 1 respectively. By assumption we
have a0 ≥ 1

4 |A|.
Using the monotonicity of u, we can then estimate the H1/2 norm as follows:

J(u;A) ≥ 1
4π

∑
0≤j<k≤s

∫
Aj

∫
Ak

(u(x) − u(y))2

sin2(1
2 (x− y))

dxdy, (2.7)

and using the definitions of Ak we arrive at

J(u;A) ≥ 1
4π

∑
0≤j<k≤s

(π(k − j) − 2δ)2
∫

Aj

∫
Ak

1
sin2(1

2 (x− y))
dxdy. (2.8)

For β1 < β2 < α1 < α2, we evaluate the integral∫ α2

α1

∫ β2

β1

1
sin2(x−y

2 )
dxdy = 4 log

sin(α1−β1
2 ) sin(α2−β2

2 )

sin(α1−β2
2 ) sin(α2−β1

2 )
· (2.9)

As u is an increasing function, the positions of the Aj and Pj are determined by their measures only, and
so (2.8) and (2.9) lead to the estimate

J(u;A) ≥ π
∑

0≤j<k≤s

(k − j − 2
δ

π
)2
(
L(aj + ρj + · · · + ak−1 + ρk−1)

+ L(ρj + aj+1 + · · · + ρk−1 + ak) − L(aj + ρj + · · · + ρk−1 + ak)

− L(ρj + aj+1 + · · · + ak−1 + ρk−1)
)
,

which can be further estimated below by replacing all terms of type
∑k−1

i=j ρi by ρ :=
∑s−1

i=1 ρi, as follows
from (2.9) since this essentially amounts to moving Aj and Ak further apart, and z �→ 1

sin2 z
2

is decreasing in z.
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We introduce the further abbreviations

Qd :=
(
d− 2

δ

π

)2

and

T k
j := L

⎛⎝ρ+
k∑

i=j

ai

⎞⎠ .

Note that by definition of the empty sum, we have T k
j = L(ρ) if j > k.

We now calculate

1
π

J(u;A) ≥
s−1∑
j=0

s−j∑
d=1

Qd(T
j+d−1
j + T j+d

j+1 − T j+d
j − T j+d−1

j+1 )

=
s−1∑
j=0

s−j−1∑
d=0

Qd+1T
j+d
j +

s∑
j=1

s−j+1∑
d=1

QdT
j−1+d
j −

s−1∑
j=0

s−j∑
d=1

QdT
j+d
j −

s∑
j=1

s−j+1∑
d=1

QdT
j+d−2
j

=
s−1∑
j=0

s−j−1∑
d=0

Qd+1T
j+d
j +

s∑
j=1

s−j∑
d=0

Qd+1T
j+d
j −

s−1∑
j=0

s−j∑
d=1

QdT
j+d
j −

s∑
j=1

s−j−1∑
d=−1

Qd+2T
j+d
j

=
s−1∑
j=1

s−j−1∑
d=1

(2Qd+1 −Qd −Qd+2)T
j+d
j +

s−1∑
j=1

Q1T
j
j +

s−1∑
d=0

Qd+1T
d
0 +

s−1∑
j=1

Qs−j+1T
s
j

+Q1T
s
s −

s−1∑
j=1

Qs−jT
s
j −

s∑
d=1

QdT
d
0 −

s−1∑
j=1

0∑
d=−1

Qd+2T
j+d
j −Q1T

s−1
s

=
s−1∑
j=1

s−j−1∑
d=1

(2Qd+1 −Qd −Qd+2)T
j+d
j +

s−1∑
j=1

(Q1 −Q2)T
j
j −

s∑
j=1

Q1T
j−1
j +Q1T

0
0

+Q1T
s
s −QsT

s
0 +

s−1∑
j=1

(Qj+1 −Qj)T
j
0 +

s−1∑
j=1

(Qs−j+1 −Qs−j)T s
j .

Taking into account that 2Qd+1−Qd−Qd+2 = −2 and Qk+1−Qk = 2k+1−4 δ
π this can be further simplified to

1
π

J(u;A) ≥ −2
s−1∑
j=1

s−j−1∑
d=1

T j+d
j − (3 − 4 δ

π )
s−1∑
j=1

T j
j − (s− 2 δ

π )2T s
0

+
s−1∑
j=1

(2j + 1 − 4 δ
π )(T j

0 + T s
s−j) + (1 − 2 δ

π )2(T 0
0 + T s

s ) − sQ1L(ρ). (2.10)

As T k
j ≤ 0, the inequality still holds when we omit the first three terms in (2.10). For the same reason, we

can omit δ in all terms but the last one. Using further 1 +
∑s−1

j=1(2j + 1) = s2 and estimating T j
0 ≥ T 0

0 and
T s

s−j ≥ T s
s , we obtain

J(u;A) ≥ πs2(T 0
0 + T s

s ) − πsQ1L(ρ) (2.11)

and by the definitions of T and L we arrive at the claim. �
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Lemma 2.9. There is a constant η1 = η1(A) > 0 such that for all η < η1, the distribution function λη of uη

satisfies for all s ∈ N with s < 1
πη the inequality

λη(πs) ≤ 8|A|1− 1
s exp

M + C0 − sK

πηs2
(2.12)

for some C0 = C0(W ) > 0.

Proof. Choose a δ > 0 small and set σ = min{W (t) : δ ≤ t ≤ π − δ} > 0. Using Lemma 2.8 and the notation
used there, we can estimate

M ≥ Fη(uη;A) = ηJ(u;A) + µη

∫
A

W (uη)

≥ ηπs2(T 0
0 + T s

s ) − sηπQ1L(ρ) + µησρ.

From the estimate log x ≤ x we deduce

Bz ≥ log
2Bz
2

= log(2B) + log
z

2
≥ log sin

z

2
+ log(2B)

so setting L0 := log sin |A|
2 we have −L(z) +Bz ≥ log(2B) + L0, and we obtain

M ≥ πs2η(T 0
0 + T s

s ) + πsηQ1 log
2µησ

πsηQ1
+ πsηQ1L0

from which it follows that

T 0
0 + T s

s ≤ 1
πηs2

(
M − πsQ1η logµη − πsηQ1 log

1
πsηQ1

− πsηQ1(L0 + log(2σ))
)
. (2.13)

By the inequality x log 1
x > 0 for 0 < x < 1, we can omit the term πsηQ1 log 1

πsηQ1
in (2.13) as long as s < 1

πQ1η ,
in particular for s < 1

πη . We choose δ sufficiently small so πQ1 >
4
3 (this also defines σ) and η1 so small that

η logµη <
3
4K for η < η1, so πQ1η logµη > K. For s < 1

πQ1η , we can also estimate −πsQ1 log(2σ) < − log(2σ).
Using the definitions of T , L, and L0, we obtain that

sin
1
2
(as + ρ) sin

1
2
(a0 + ρ) ≤ sin2 |A|

2
exp

(
M − log(2σ) − sK

πηs2
− Q1L0

s

)
≤
(
sin |A|

2

)2− 1
s

exp
M − log(2σ) − sK

πηs2
·

Since 1
4z ≤ sin 1

2z <
1
2z for z < π and a0 ≥ 1

4 |A|, this shows for s ≥ 1 that

as < 8|A|1− 1
s exp

M − log(2σ) − sK

πηs2
(2.14)

and this finishes the proof (with C0 = − log(2σ)) since λη(πs) ≤ λη(πs− δ) = as. �
Lemma 2.10 (Trudinger-Moser inequality). There are constants γ, C > 0 such that every function u ∈
H1/2(S1) with suppu ⊂ A ⊂ S1, A a small interval, satisfies the inequality∫

A

exp
(

γu2

J(u;A)

)
≤ C|A|. (2.15)
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Proof. For a function v supported in a fixed interval, say [0, 1], the Trudinger-Moser inequality (see e.g. [13],
Chap. 13.4) yields ∫

[0,1]

exp

(
γv2

‖v‖2
H1/2(R)

)
≤ C.

Using an appropriate Poincaré inequality, we can replace, by changing γ appropriately, the full H1/2 norm by
the seminorm ‖·‖Ḣ1/2 . From the scaling invariance of this seminorm, we obtain for a function supported in [0, r]
that ∫

[0,r]

exp

(
γv2

‖v‖2
Ḣ1/2(R)

)
≤ Cr, (2.16)

and this estimate stays valid if we calculate the seminorm on [0, r] instead or all of R. For |A| = r sufficiently
small, the square of this seminorm is equivalent to J(u;A), and we obtain (2.15). �

Proposition 2.11. There are constants C1, C2 > 0 depending on A, M , K, W such that the distribution
function λη of uη satisfies for η sufficiently small the estimate

λη(t) ≤ C1e−C2t. (2.17)

Proof. For t > 4M+C0
K , C0 the constant from Lemma 2.9, we set s = t− 2M+C0

K ≥ t
2 .

From Lemma 2.9 that we use on a suitable integer N close to 2M+C0
K and Lemma 2.10 applied to (uη −N)+

on the interval {uη ≥ N}, we then obtain

λη(t) ≤ c1 exp
(
−c2
η

− c3ηs
2

)
≤ c1 exp(−c4s) ≤ c1 exp

(
−c4

2
t
)

by the inequality a
η + bη ≥ 2

√
ab. Combining this with the trivial estimate λη(t) ≤ |A| for t ≤ 4M+C0

K , we arrive
at (2.17). �

Remark 2.12. It is possible to construct examples showing that there can be no uniform L∞ bounds for
sequences of bounded energy, and that the decay estimate given in Proposition 2.11 is essentially optimal. We
define for k ∈ Z the sequence uk : R

2 → R by

uk(z) =

⎧⎪⎨⎪⎩
k if |z − 1| ≤ e−2k,

log 1
|z−1| − k if e−2k < |z − 1| < e−k,

0 if |z − 1| ≥ e−k.

(2.18)

It is easy to check that ‖∇uk‖2
L2(R2) = k. With g = 0 and vk = uk

∣∣
∂B1(0)

, we obtain for any W satisfying the
hypotheses of Theorem 1.1 that

H1({x ∈ S1 : W (vk(x) − g(x)) 
= 0} ≤ ce−k.

We set η = 1
k and µη = ek so η logµη = 1. The functions vk now satisfy

Fη(vk) ≤ 1
k
‖∇uk‖2

L2(R2) + ekce−k supW ≤ c supW + 1,

so their energy is uniformly bounded, but the L∞ norm converges to +∞. The distribution function of λk of
vk satisfies λk(k) ≈ e−2k, which corresponds up to constants to the result of Proposition 2.11.
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2.2. The lower bound

Proposition 2.13. Let A ⊂ S1 and uη ∈ L1(A) be a sequence such that Fη(uη) ≤ M < ∞ and uη ⇀ u in
some Lp, 1 ≤ p <∞. Then (uη) is relatively compact in the strong topology of L1(A).

Additionally, we have that for every sequence uη → u in L1(A),

F(u) ≤ lim inf
η→0

Fη(uη), (2.19)

so every cluster point u belongs to BV (A, πZ).

Proof. Let (νx)x∈A be the Young measure generated by uη. Since
∫

AW (uη) ≤ M
µη

→ 0, the sequence W (uη)
is relatively compact in L1(A), and so we can apply the fundamental theorem on Young measures (see [11],
Th. 6.2 or [9], Th. 3.1) which shows ∫

R

W (t)dνx(t) = 0 for a.e. x ∈ A. (2.20)

and by the assumptions on uη we also have

u(x) =
∫

R

tdνx(t) for a.e. x ∈ A. (2.21)

As W ≥ 0, W (z) = 0 exactly for z ∈ πZ, (2.20) shows that supp νx ⊂ πZ for a.e. x ∈ A. Since νx is a
probability measure a.e., we can find for each j ∈ Z a measurable function

θj : S1 → [0, 1] (2.22)

such that ∑
j∈Z

θj(x) = 1 for a.e. x ∈ S1 (2.23)

and
νx =

∑
j∈Z

θj(x)δπj . (2.24)

We will show that these functions θj are of class BV (A, {0, 1}). To this end, we define the set

S :=
{
x ∈ A : there is a j ∈ Z such that ap lim

y→x
θj(y) /∈ {0, 1}

}
(2.25)

and consider an x0 ∈ S. By (2.22) and (2.23) it is clear that there are s1 < s2 ∈ Z such that the corresponding
approximate limits of θs1 and θs2 are neither 0 nor 1. In a small interval J ⊂ A centered around x0, we use
Lemma 2.8 with

s = s2 − s1,

a0
η = |{x ∈ J : uη(x) < πs1 + δ}|,
as

η = |{x ∈ J : uη(x) > πs2 − δ}|,
ρη = |{x ∈ J : dist(uη(x), πZ) ≥ δ and uη(x) ∈ (s1π, s2π)}|.

We obtain with Q1 = (1 − 2δ
π )2 and L(z) := log sin z

2 − log sin |J|
2 the inequality

lim inf
η→0

Fη(uη, J) ≥ η(πs2(L(a0
η + ρη) + L(as

η + ρη)) − πsQ1L(ρη) + µησρη.
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As can be seen by suitable integrations over νx (take a continuous function that is 1 for x < πs1 and 0 for
x > πs1+δ), lim infη→0 a

0
η ≥ ∫J θs1 > 0 and similarly lim infη→0 a

s
η > 0, and so we have we have limη→0 ηL(a0

η +
ρη) = limη→0 ηL(as

η + ρη) = 0. The limit estimate thus can be simplified to

lim inf
η→0

Fη(uη, J) ≥ lim inf
η→0

(−πsQ1ηL(ρη) + µησρη).

Using the estimate −L(z) +Bz ≥ log(2B) + log sin |J|
2 , this shows

lim inf
η→0

Fη(uη, J) ≥ lim inf
η→0

πsQ1η

(
−L(ρη) +

µησ

πsQ1η
ρη

)
≥ lim inf

η→0
πsQ1η log

2µησ sin |J|
2

πsQ1η
,

where the last term converges for η → 0 since η logµη → K and η log C
η → 0 for any C > 0, so we obtain

lim inf
η→0

Fη(vη, J) ≥ πsQ1K. (2.26)

Letting δ → 0 we have Q1 → 1 so we even have

lim inf
η→0

Fη(vη, J) ≥ πsK. (2.27)

By the assumption Fη(vη) ≤M , we see that s = s2 − s1 must be bounded. Using the superadditivity of Fη, we
also see that S must be finite. This also shows that at almost any x ∈ S1, only one of the functions θj can be
nonzero. In particular, νx is a Dirac measure everywhere. This shows u ∈ BV (S1, πZ), and the limit estimate
follows from adding up (2.27) with the maximum possible s around every x ∈ Su.

If uη has only been converging weakly in some Lp, then the fact that νx is Dirac improves this to strong
convergence in L1 as claimed. �

3. Extension to g 
= 0

Here we show how the lower bound from Theorem 1.1 (in its localized form) follows from the special case for
g = 0 that was treated above.

Let A ⊂ S1 be an intervals of length |A| < π. We can choose a representative for g that has no jump in A.
Setting vη := uη − g, we have that

Fη
g (uη;A) = Fη(vη) + η

∫
A

∫
A

(uη(x) − uη(y))2 − (vη(x) − vη(y))2

sin2 1
2 (x− y)

dxdy.

Now we calculate (with uη(x) =: u1 and uη(y) =: u2 etc.)

(u1 − u2)2 − (u1 − g1 − (u2 − g2))2 = 2(u1 − u2)(g1 − g2) − (g1 − g2)2. (3.1)

By Cauchy-Schwarz inequality, we estimate∣∣∣∣∣
∫

A

∫
A

(u(x) − u(y))(g(x) − g(y))
sin2 1

2 (x − y)
dxdy

∣∣∣∣∣
≤
(∫

A

∫
A

(u(x) − u(y))2

sin2 1
2 (x− y)

dxdy

) 1
2
(∫

A

∫
A

(g(x) − g(y))2

sin2 1
2 (x− y)

dxdy

) 1
2

≤
√
M

η
c(g),
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since Fη(u) ≤ M and g has a H1 extension to a domain containing A in its boundary, so the g-integral is
bounded. This and (3.1) show

Fη(uη;A) −
√
ηM − ηc(g)Fη

g (u;A) ≤ Fη(uη;A) +
√
ηM + ηc(g) (3.2)

so Fη
g(·;A) and Fη(·;A) have the same compactness behaviour and Γ-limits.

We can now obtain the Γ-lim inf and compactness results on S1 by covering it with small intervals Ai on
which we use the lower bound from Proposition 2.13. This yields a lower bound for the functional on S1 since Fη

g

is superadditive.

4. The upper bound

Here we prove part (iii) of Theorem 1.1 in the case of S1, which by Proposition 2.1 is enough to prove the
general case. Let u be such that v = u − g ∈ BV (S1, πZ) is a function with jump set S. Let x0 ∈ S be
a jump point with approximate limits v(x−) = πs1, v(x+) = πs2, s1, s2 ∈ Z, where we can assume w.l.o.g.
s2 − s1 = r > 0. For δη → 0 and κη → 0 to be chosen later, we define vη in a neighborhood of x0 as

vη(x) =

⎧⎪⎨⎪⎩
πs1 if x < x0

π(s1 + j) if x ∈ (x0 + j(δη + κη), x0 + j(δη + κη) + κη) (1 ≤ j ≤ r − 1)
πs2 if x > x0 + r(δη + κη),

(4.1)

and linear interpolation in the remaining parts. Proceeding like this around every x0 ∈ S, it is easy to see that
we obtain a sequence (vη) with uη = vη + g → u in all Lp, 1 ≤ p <∞.

Calculating Fη(uη), we obtain for the single integral a bound∫
S1
W (uη − g)dx ≤ Cδη, (4.2)

where C = C(S, ‖u‖∞).
We split the double integral over S1 ×S1 for the H1/2 norm up into integrations over the finitely many pairs

of definition intervals. Analogously to what we did in (3.2) we can use vη instead of uη for the calculations as
long as the H1/2-norms stay bounded.

Most of the integrals over two definition intervals of vη are easily seen to be O(1) in δη, so they will go to 0
when multiplied with η. The only interesting terms are those arising from the constancy intervals of vη near a
jump point. Their contribution around one jump point can then be written (by appropriate change of variables
and using the shorthand δ = δη, κ = κη) as

π

2

∑
0≤j<k≤r

(k − j)2
∫ j(δ+κ)+κ

j(δ+κ)

∫ k(δ+κ)+κ

k(δ+κ)

1
sin2(x−y

2 )
dxdy, (4.3)

which can be approximated using sin z ∼ z as

2π
∑

0≤j<k≤r

(k − j)2 log
(k − j)2(κ + δ)2

(k − j)2(κ + δ)2 − κ2
·

We can rewrite
(k − j)2(κ + δ)2

(k − j)2(κ + δ)2 − κ2
=

1
1 − 1

(k−j)2(1+ δ
κ

)2

,
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so we see that for δ
κ

→ 0, the terms in (4.3) with k − j > 1 will be O(1). Considering the k − j = 1 terms
gives us

log
(κ + δ)2

(2κ + δ)δ
= log

(
(1 + δ

κ
)2

(2 + δ
κ

)
κ

δ

)
·

Calculating for r > 1 the contribution of the integral over the “long” intervals on both sides of a multiple jump,
we have a term of the form

πr2

2

∫ 0

−a

∫ a

r(δη+κη)

1
sin2(x−y

2 )
dxdy ∼ 2πr2 log

a

2r(δη + κη)
= 2πr2 log

1
κη

+O(1).

Combining everything, we see we arrive at the assertion of the theorem if only

κη → 0,
δη
κη

→ 0, η log
1

κη
→ 0 and η log

κη

δη
→ K.

A possible choice is
κη = η and δη =

η

µη
· (4.4)

This finishes the proof of the upper bound part of Theorem 1.1. �
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