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ON ERGODIC PROBLEM FOR HAMILTON-JACOBI-ISAACS EQUATIONS
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Abstract. We study the asymptotic behavior of λvλ as λ → 0+, where vλ is the viscosity solution of
the following Hamilton-Jacobi-Isaacs equation (infinite horizon case)

λvλ + H(x,Dvλ) = 0,

with
H(x, p) := min

b∈B
max
a∈A

{−f(x, a, b) · p − l(x, a, b)}.
We discuss the cases in which the state of the system is required to stay in an n-dimensional torus, called
periodic boundary conditions, or in the closure of a bounded connected domain Ω ⊂ R

n with sufficiently
smooth boundary. As far as the latter is concerned, we treat both the case of the Neumann boundary
conditions (reflection on the boundary) and the case of state constraints boundary conditions. Under
the uniform approximate controllability assumption of one player, we extend the uniform convergence
result of the value function to a constant as λ → 0+ to differential games. As far as state constraints
boundary conditions are concerned, we give an example where the value function is Hölder continuous.
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1. Introduction

We investigate the limiting behavior of the viscosity solution vλ of the following stationary Hamilton-Jacobi-
Isaacs (HJI for short) equation (infinite horizon case)

λvλ +H(x,Dvλ) = 0, (1.1)
where

H(x, p) := min
b∈B

max
a∈A

{−f(x, a, b) · p− l(x, a, b)},
is called Hamiltonian function and the constant λ > 0 is called discount factor. Here, A and B are compact
metric spaces and x belongs to a closed set Ω ⊂ R

n, that we will specify later. The function f takes values in R
n,

it is bounded and Lipschitz continuous in all variables, while l is a bounded real-valued Lipschitz continuous
function. We discuss the cases in which the state of the system is required to stay in an n-dimensional torus,
Ω = T

n, called periodic boundary conditions (B.C.), or in the closure of a bounded connected domain Ω ⊂ R
n

Keywords and phrases. Hamilton-Jacobi-Isaacs equations, viscosity solutions, asymptotic behavior, differential games, boundary
conditions, ergodicity.

1 SISSA/ISAS via Beirut, 2-4 - 34013 Trieste, Italy; bettiol@ma.sissa.it

c© EDP Sciences, SMAI 2005

Article published by EDP Sciences and available at http://www.edpsciences.org/cocv or http://dx.doi.org/10.1051/cocv:2005021

http://www.edpsciences.org/cocv
http://dx.doi.org/10.1051/cocv:2005021


ON ERGODIC PROBLEM FOR HAMILTON-JACOBI-ISAACS EQUATIONS 523

with a sufficiently smooth boundary ∂Ω. As far as the latter is concerned, we treat the case of the Neumann B.C.
(case of reflection on the boundary) and an example of state constraints B.C. The existence and the uniqueness
results for the HJI equations with the above conditions have been obtained in the Viscosity Solutions framework:
see the textbooks of Bardi and Capuzzo-Dolcetta [8] and Barles [10] for general results (cf. also [17–20]; while
for the Neumann B.C. and for the state constraints B.C. we refer to the articles of Lions [30] and Koike [27],
respectively.

The state constraints problem was first treated via viscosity solutions approach by Soner in [34] for determin-
istic optimal control problems, where the associated value function satisfies first order Hamilton-Jacobi-Bellman
PDE’s. In this paper, he proposed an appropriate boundary condition for the PDE’s under which the value
function is the unique continuous viscosity solution. For further development see [5, 13, 32] for single player
problems and [24] for the general setting of differential inclusions. More recently, in [27] Koike gives repre-
sentation formulas for the viscosity solution of the Hamilton-Jacobi-Isaacs equation with infinite horizon and
he proves the uniqueness of the solutions under natural boundary conditions. For pursuit-evasion differential
games with state constraints, we refer to the articles [9, 14].

Here, we use an approach developed in the author’s joint work with Cardaliaguet and Quincampoix [12],
where a Bolza problem for state constrained differential games is treated. By suitably applying some adapted
results, we are able to obtain the Hölder regularity of the value function in our state-constrained example: this
is crucial for our proof of the ergodic property. The main idea is to apply a selection argument for strategies
combined with a L1-estimate on these strategies.

By v(x, t) we denote the solution of the time dependent HJI equation (finite horizon case)

∂tv(x, t) +H(x,Dxv(x, t)) = 0 (1.2)

with the boundary condition v(x, 0) = 0.
We remind the reader that finding the solutions of the above HJI equations (1.1) and (1.2) corresponds to

studying the differential game problems that follow. Let us denote the set of the controls of the first player
and of the second player by A := {a : [0,+∞[−→ A measurable} and B := {b : [0,+∞[−→ B measurable},
respectively. Once the controls a(·) ∈ A and b(·) ∈ B are fixed, for the periodic B.C. the ODE is{

ẏ(t) = f(y(t), a(t), b(t))

y(0) = x x ∈ T
n

(1.3)

where T
n = R

n/Zn; while in the Neumann type B.C. the ODE is




y(t) = x+
∫ t

0

f(y(s), a(s), b(s)) ds−
∫ t

0

γ(y(s))dLs

y(t) ∈ Ω, ∀t ≥ 0;Lt is continuous, nondecreasing on [0,∞[

Lt =
∫ t

0

1∂Ω(y(s)) dLs, for t ≥ 0.

(1.4)

Finally, in state constraints B.C. we have the ODE

ẏ(t) = f(y(t), a(t), b(t))

y(0) = x x ∈ Ω

y(t) ∈ Ω ∀t ≥ 0.
(1.5)

The existence and uniqueness of the solution of the ODE (1.4), called the solution of the Skorokhod problem,
can be found in [31] in the more general context of SDE’s. For any starting point x we denote by yx(·) =
yx(·, a(·), b(·)) the solution of the ODE (1.3), (1.4) or (1.5) controlled by a(·) and b(·).
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The value functions vλ(x) and v(x, t) are given by

vλ(x) := inf
α∈∆

sup
b∈B

∫ ∞

0

l(yx(s), α[b](s), b(s))e−λs ds λ > 0, x ∈ Ω,

v(x, t) := inf
α∈∆

sup
b∈B

∫ t

0

l(yx(s), α[b](s), b(s)) ds t ≥ 0 x ∈ Ω,

where ∆ denotes the nonanticipating strategies set of the first player, i.e. the set of the maps α : B −→ A such
that if, for any t > 0 and b(·), b′(·) ∈ B, b(s) = b′(s) ∀s ≤ t implies α[b](s) = α[b′](s) ∀s ≤ t.

Here, we want to study the so-called ergodic problem, namely the convergence (to a constant) of λvλ(x) as
λ −→ 0+ and the convergence of the term 1

T v(x, T ) as T −→ ∞ (cf. Chap. 7 of [8] for an introduction on
Hamilton-Jacobi-Bellman equations). There is a relationship between the ergodic problem and the notion of
ergodicity in the Dynamical Systems Theory (see also [1–3]). Indeed, let us consider, for a moment, the ordinary
differential equations obtained by the controlled systems (1.3), (1.4) or (1.5), where we fix the controls a(·) ∈ A
and b(·) ∈ B. In this case the ergodicity is traditionally formulated in terms of measure theory: denoting the
evolution of the system as φt(x) : x �→ yx(t) with t ∈ R≥0 from Ω into Ω (where yx(·) = yx(·, a(·), b(·)) is the
solution of (1.3), (1.4) or (1.5)), taking a measure µ which is invariant under the flow φt ∀t ≥ 0, the system is
ergodic with respect to the measure µ when

lim
T→∞

1
T

∫ T

0

l(yx(t)) dt =
∫

Ω

l(z) dµ(z) for µ− a.e. x ∈ Ω

holds for any function l ∈ L1(Ω, µ) (see [16]). By recalling the following known relationship

lim
λ→0+

λ

∫ ∞

0

l(yx(t))e−λt dt = lim
T→∞

1
T

∫ T

0

l(yx(t)) dt,

provided that at least one side is meaningful (Abelian-Tauberian Theorem in [33]), we see that the convergence
properties limλ→0+ λvλ(x) and limT→∞ 1

T v(x, T ) to a constant are related to the ergodic theory of dynamical
systems. We study the stronger property of uniform convergence in Ω to a constant, and this is equivalent to
the ergodicity property coupled with the uniqueness of the invariant measure (see [1, 2, 16]). Such a dynamical
system is called uniquely ergodic.

As far as HJI equations are concerned, for Neumann B.C. case, Lions in [30] proves an ergodic theorem under
the following assumptions on the Hamiltonian H(x, p):

H(x, p) → ∞ as |p| → +∞, uniformly in x ∈ Ω (1.6)

and H ∈ C(Ω×R
n). In a different framework (see [1]), Alvarez and Bardi treat the periodic B.C. case using the

condition of exact controllability instead of (1.6). Here, we extend the convergence result of the value function
λvλ(x) for periodic B.C., for Neumann B.C. and in an example for state constraints B.C., under a uniform
approximate controllability assumption of the first player. This notion was first introduced by Arisawa in [4]
for optimal control problems with a single player. Ergodic optimal stochastic control problems are studied in
the article [6].

The paper is organized as follows. Section 2 is devoted to some basic definitions and preliminary assumptions.
In Section 3, we treat the periodic and the Neumann B.C. cases; while in Section 4 we deal with the state
constraints boundary conditions. In Section 5, we give an Abelian-Tauberian Theorem, that provides equivalent
characterizations of the notion of ergodicity. Finally, in the appendix, we treat some estimates concerning the
solutions to the Skorokhod problem.
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2. Basic definitions and assumptions

We deal with controlled systems given by (1.3), (1.4) or (1.5) where

f : R
n ×A×B −→ R

n

(x, a, b) �−→ f(x, a, b),

A and B are compact metric spaces, A := {a(·) : [0,+∞[−→ A measurable} and B := {b(·) : [0,+∞[−→
B measurable} are the sets of the controls of the first player and of the second player, respectively. As usual,
we denote an element of A (resp. B) by a(·) (resp. b(·)) or simply by a (resp. b) when it is clear we are using
measurable functions. As far as the function f is concerned, we assume the existence of a positive constant M
such that for any x, x′ ∈ R

n, a, a′ ∈ A, b, b′ ∈ B

{ ||f(x, a, b)||∞ ≤M

|f(x, a, b) − f(x′, a′, b′)| ≤M(|x− x′| + |a− a′| + |b− b′|).
(2.1)

We recall that by t �→ yx(t; a, b) = yx(t; a(t), b(t)) we denote the unique Carathéodory solution of the controlled
system. Sometimes, in order to simplify the notations, we simply write yx(·) when the choice of the controls a(·)
and b(·) is evident.

We consider games where the first player tries to minimize the cost functional J∞
λ (x, a(·), b(·)), where for all

T ≥ 0

JT
λ (x, a(·), b(·)) :=

∫ T

0

l(yx(t), a(t), b(t))e−λt dt, (2.2)

while the second player tries to maximize J∞
λ . Here, λ is a positive constant and l : R

n × A × B −→ R is
a continuous function satisfying the same regularity conditions of f : ∃M positive constant such that for all
x, x′ ∈ R

n, a, a′ ∈ A, b, b′ ∈ B

{ ||l(x, a, b)||∞ ≤M

|l(x, a, b) − l(x′, a′, b′)| ≤M(|x− x′| + |a− a′| + |b− b′|). (2.3)

We recall the reader that by ∆ we denote the nonanticipating strategies set of the first player: it is the set
of the maps α : B −→ A such that if, for any t > 0 and for any control b(·) and b′(·) ∈ B, which coincides
almost everywhere (a.e.) on [0, t], then α[b](s) = α[b′](s) a.e. on [0, t]. Analogously we have the nonanticipating
strategy set of the second player Γ := {β : A −→ B : a(s) = a′(s) ∀s ≤ t implies β[a](s) = β[a′](s) ∀s ≤ t}.

We define the lower and upper values as follows

vλ(x) := inf
α∈∆

sup
b∈B

∫ ∞

0

l(yx(t), α[b](t), b(t))e−λt dt, (2.4)

uλ(x) := sup
β∈Γ

inf
a∈A

∫ ∞

0

l(yx(t), a(t), β[a](t))e−λt dt. (2.5)

Let us consider the Hamiltonian functions

H(x, p) := min
b∈B

max
a∈A

{−f(x, a, b) · p− l(x, a, b)}, (2.6)

H̃(x, p) := max
a∈A

min
b∈B

{−f(x, a, b) · p− l(x, a, b)}. (2.7)



526 P. BETTIOL

It is well known, through the classical theory, that vλ and uλ are the viscosity solutions in R
n of the following

HJI equations (see [8, 30])

λvλ +H(x,Dvλ) = 0

λuλ + H̃(x,Duλ) = 0,

respectively. Of course, in order to treat the three distinct cases of boundary conditions, we need to add more
hypotheses and suitable modifications to the system and to the functions l and f . In fact, we will discuss these
details below, case by case.

3. The periodic and the Neumann type B.C.

In this section, we prove an ergodic theorem for two classes of spaces:
1) the game state space is an n-dimensional torus (Ω = T

n);
2) the game state space is the closure of a smooth bounded connected domain Ω ⊂ R

n and the trajectories
of the system are reflected at the boundary ∂Ω.

3.1. Preliminaries

The Hamilton-Jacobi-Isaacs equation for the first problem (Ω = T
n) is coupled with periodic boundary

conditions. We suppose that both f and l are periodic in x and the state of the system is defined to be the
solution of (1.3).

In the second case, the Hamilton-Jacobi-Isaacs equation is coupled with Neumann boundary conditions:

Dvλ

Dγ
= 0 on ∂Ω,

where γ = γ(x) is a smooth vector field on ∂Ω pointing outwards i.e.

∃ν > 0 s. t. ∀x ∈ ∂Ω 〈n(x), γ(x)〉 ≥ ν.

In this problem, we suppose that the boundary ∂Ω is sufficiently smooth such that the distance function from
the boundary ∂Ω itself is at least of class C1 in a neighborhood of ∂Ω; in particular, we suppose that ∂Ω ∈ C1

and that Ω satisfies the uniform exterior ball condition, i.e.

∃r > 0 such that Ω ∩B(x+ rn(x), r) = ∅ ∀x ∈ ∂Ω, (3.1)

where n(x) denotes the outer unit normal of ∂Ω at x and B(z, r) is the sphere of R
n with center in z and

radius r. For conditions on the regularity of the distance function (in a suitable neighborhood of Ω) we refer
the reader, for instance, to the book [25] or to the article [22].

In the second game, once a(·) ∈ A and b(·) ∈ B are given, the state of the system yx(t) is governed by the
following ordinary differential equation with reflection on the boundary



yx(t) = x+
∫ t

0

f(yx(s), a(s), b(s)) ds−
∫ t

0

γ(yx(s))dLs

yx(t) ∈ Ω, ∀t ≥ 0;Lt is continuous, nondecreasing on [0,∞[

Lt =
∫ t

0

1∂Ω(yx(s)) dLs, for t ≥ 0.

(3.2)

This is one of the simpler ways of realizing state constraints by specific boundary action on the system. Heuris-
tically speaking, this dynamic problem corresponds to a usual controlled ordinary differential equation (as
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for example (1.3)) while yx(t) lies in Ω; but, when yx(t) crosses ∂Ω, yx(t) is pushed back along the direc-
tion γ(yx(t)) with a force dLt. We recall that the above Skorokhod problem admits a unique solution (yx(t), Lt)
where yx(·) ∈ C([0,∞[,Ω) and Lt ∈ BV (0, T ) ∀T <∞, where BV (0, T ) is the set of bounded variation functions
on [0, T ] (see for instance [31]).

For both games, constants λ0 > 0 and K ≥ 1 exist such that

|yx(t; a(t), b(t)) − yz(t; a(t), b(t))| ≤ Keλ0t|x− z| (3.3)

∀x, z ∈ Ω, a(·) ∈ A, b(·) ∈ B and t ≥ 0. For the periodic case the proof can be found in [8] or [28], while, here
(see appendix), we prove the estimate (3.3) considering the Skorokhod problem given by the ODE (3.2).

The property (3.3) implies that, in both the periodic and the Neumann boundary conditions, we have the
following Hölder estimate about the (lower) value function vλ, defined in (2.4).

Lemma 3.1. For all λ > 0 such that λ < λ0, we have the following estimate

|λvλ(x) − λvλ(z)| ≤ C|x− z| λ
λ0 ∀x, z ∈ Ω (3.4)

where C > 0 is a constant which does not depend on λ.

Proof. The proof is classical, but we write it here for the sake of completeness; in particular, we want to point
out that the constant C does not depend on λ and how using that Ω is bounded. For any ε > 0 there exists α̃
such that

λvλ(z) + λε ≥ λ sup
b∈B

{∫ T

0

l(yz(t), α̃[b](t), b(t))e−λt dt+ e−λT vλ (yz(T ; α̃[b], b))

}

for all T > 0. Hence, we can choose b̃ ∈ B so that

λvλ(x) − λvλ(z) − 2λε ≤ λ

∫ T

0

[
l(yx(t), α̃[b̃](t), b̃(t)) − l(yz(t), α̃[b̃](t), b̃(t))

]
e−λt dt+ 2Me−λT

because l is uniformly bounded by M . The function l is also Lipschitz in x, uniformly in a and b, therefore, we
obtain

|λvλ(x) − λvλ(z)| ≤ 2λε+ λM

∫ T

0

∣∣∣yx(t; α̃[b̃](t), b̃(t)) − yz(t; α̃[b̃](t), b̃(t))
∣∣∣ e−λt dt+ 2Me−λT

≤ 2λε+ λMK

∫ T

0

e(λ0−λ)t|x− z|dt+ 2Me−λT

≤ 2λε+
λMK

λ0 − λ
|x− z|

[
e(λ0−λ)T − 1

]
+ 2Me−λT ,

where in the second inequality we use the estimate (3.3). Without loss of generality, we can suppose that
|x− z| < 2

K and take T0 = 1
λ0

log
(

2
K|x−z|

)
> 0, which minimizes the function

G(T ) :=
λMK

λ0 − λ
|x− z|

[
e(λ0−λ)T − 1

]
+ 2Me−λT ,

obtaining

|λvλ(x) − λvλ(z)| ≤ 2λε+
λ0

λ0 − λ
M21− λ

λ0 K
λ

λ0 |x− z| λ
λ0

≤ 2λε+ 2MK|x− z| λ
λ0 .

The proof in the periodic case is the same considering K = 1. �
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3.2. The asymptotic behavior

In this subsection, our purpose is to prove the uniform convergence of the value function vλ (defined in (2.4))
to a constant in the whole Ω. This property characterizes the ergodicity in differential games. Therefore, we
start introducing the following notion.

Definition 3.2 (ergodic game). The differential game is called ergodic if there exists a (unique) constant real
number χ0 such that for all x ∈ Ω, we have

lim
λ→0

λvλ(x) = χ0.

We extend the notion of uniform approximate controllability to differential games; this notion was given by
Arisawa in [4] for the (one player) control theory.

Definition 3.3. Let Ω be a domain in R
n. We say that a point x ∈ Ω is approximately controllable by the

first player to a point z ∈ Ω with the estimate δ(ε;x, z) if for any ε > 0 fixed there exists a strategy of the first
player, α̃ ∈ ∆, such that ∀b(·) ∈ B ∃T (ε;x, z, α̃, b(·)) ≥ 0 we have

|yx(T (ε;x, z, α̃, b(·))) − z| < ε, T (ε;x, z, α̃, b(·)) ≤ δ(ε;x, z),

where it is understood that yx(T ) = yx(T, α̃[b(·)], b(·)).
Definition 3.4 (uniform approximate controllability). The (controlled) system (1.3) ((1.4) respectively) has
the property of being uniformly approximately controllable by the first player if κ ∈ [0, 1) and N > 0 exist such
that any point x ∈ Ω is approximately controllable to any point z ∈ Ω with an estimate δ(ε;x, z) such that

δ(ε;x, z) ≤ N(− log ε)κ ∀ε > 0, ∀x, z ∈ Ω.

We recall that we have a Dynamic Programming Principle for the (lower) value vλ (see for instance the book
[8] and for the Neumann case see [30]): for all T > 0

vλ(x) = inf
α∈∆

sup
b∈B

{∫ T

0

l(yx(t), α[b](t), b(t))e−λt dt+ e−λT vλ (yx(T ; α̃[b], b))

}
. (3.5)

The following notion will be useful for the proof of the ergodicity result.

Definition 3.5. A functional
σ : A× B −→ [0,∞]

is nonanticipating if

a(t) = â(t), b(t) = b̂(t) for a.e. 0 ≤ t ≤ σ(a(·), b(·)) =⇒ σ(a(·), b(·)) = σ(â(·), b̂(·)).

Theorem 3.6 (ergodicity for periodic and Neumann boundary conditions). If the system (1.3) ((1.4) respec-
tively) is uniformly approximately controllable (by the first player), then the differential game is ergodic.

Proof. By the uniform approximate controllability for any x, z ∈ Ω and ε > 0 there exists a strategy (of the
first player), say α̃, such that ∀b ∈ B ∃T (ε;x, z, α̃, b) ≥ 0 satisfying

|yx(T (ε;x, z, α̃, b) − z| < ε and T (ε;x, z, α̃, b) ≤ N(− log ε)κ.

Suppose that x, z ∈ Ω and ε > 0 are fixed, let us define T̃ (α, b) as the minimum T such that the above condition
holds. Hence, T̃ (α, b) is a nonanticipating functional and we can apply a generalized version of the Dynamic
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Programming Principle (see Th. 3.1 in [21]). Using the estimate (3.4) of Lemma 3.1 we obtain

∣∣∣λvλ(yx(T̃ )) − λvλ(z)
∣∣∣ ≤ C

∣∣∣yx(T̃ ) − z
∣∣∣ λ

λ0 ≤ Cε
λ

λ0 . (3.6)

On the other hand, by (3.5) and using the strategy α̃, we get (with T̃ = T̃ (α̃, b))

vλ(x) ≤ sup
b∈B

{∫ T̃

0

l(yx(t), α̃[b](t), b(t))e−λt dt+ e−λT̃ vλ

(
yx(T̃ ; α̃[b], b)

)}
.

Hence ∀δ > 0 there exists b̃ ∈ B such that

vλ(x) ≤
∫ T̃

0

l(yx(t), α̃[b̃](t), b̃(t))e−λt dt+ e−λT̃ vλ

(
yx(T̃ ; α̃[b̃], b̃)

)
+ δ.

For yx(T̃ ) = yx(T̃ ; α̃[b̃], b̃) we obtain

vλ(x) − vλ(yx(T̃ )) ≤
∫ T̃

0

l(yx(t), α̃[b̃](t), b̃(t))e−λt dt+
(
e−λT̃ − 1

)
vλ(yx(T̃ )) + δ

and, hence, ∣∣∣λvλ(x) − λvλ(yx(T̃ ))
∣∣∣ ≤ 2M

(
1 − e−λT̃

)
+ λδ, (3.7)

where T̃ ≤ N(− log ε)κ (κ ∈ [0, 1)).
By (3.6) and (3.7) we conclude with the following estimates

|λvλ(x) − λvλ(z)| ≤
∣∣∣λvλ(x) − λvλ(yx(T̃ ))

∣∣∣ +
∣∣∣λvλ(yx(T̃ )) − λvλ(z)

∣∣∣
≤ λδ + C

(
1 − e−λT̃ + ε

λ
λ0

)
,

(3.8)

(C ≥ 2M : see the proof of Lem. 3.1). Now, choosing ε = exp(−λ−(1+ω)) with 0 < ω < 1
κ − 1, the last term on

the right hand side of (3.8) goes to zero as λ→ 0+. Therefore, for some subsequence λ0 → 0+ of λ→ 0+, there
exists a constant χ0 such that

lim
λ0→0+

λ0vλ0(x) = χ0 uniformly in x ∈ Ω.

In order to prove the uniqueness of the constant χ0, we use a standard argument based on the Comparison
Principle (cf. [4, 30] or [8]). Assume that limλ1→0+ λ1vλ1(x) = χ1 uniformly in x ∈ Ω, where χ1 �= χ0 and
λ1 → 0+ is another subsequence of λ → 0+. We can suppose that χ0 < χ1, for instance. Now, take v0 and v1
viscosity solutions of H(x,Du)+χ0 = 0 and H(x,Du)+χ1 = 0, respectively; we can assume v0 < v1 because v0
and v1 are defined up to a constant. Then, choose ε > 0 sufficiently small so that

χ1 − εv1 > χ0 − εv0 on Ω.

Since v0 is a supersolution of H(x,Du) + χ0 = 0, then it is also supersolution of

H(x,Du) + χ1 + εv0 − εv1 = 0 in Ω (3.9)

with the corresponding boundary conditions (periodic or Neumann type). Now, v1 is a viscosity subsolution
of (3.9). Thus, thanks to Comparison Theorems (see [28] or [8] for periodic case and [30] for Neumann B.C.)
we get v1 ≤ v0 that is a contradiction. So, we get χ0 = χ1. �
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Remark 3.7. Instead of considering in the HJI equation (1.1) the so-called “lower Hamiltonian” H , defined
in (2.6), with the corresponding lower value vλ(x), defined in (2.4), one can consider the upper Hamiltonian H̃ ,
given by (2.7) and the upper value function uλ(x) (see (2.5)). Therefore, we obtain the same result of ergodicity.
In the latter case, we must change the definition of uniform approximate controllability of the first player by
just switching controls and strategies: we should say that a point x ∈ Ω is approximately controllable by the
first player to a point z ∈ Ω with the estimate δ(ε;x, z) if for any ε > 0 fixed there exists a control of the first
player, ã(·) ∈ A, such that for all strategies β ∈ Γ ∃T (ε;x, z, ã(·), β) ≥ 0 we have

|yx(T (ε;x, z, ã(·), β)) − z| < ε, T (ε;x, z, ã(·), β) ≤ δ(ε;x, z).

4. The state constraints B.C.

In this section, the state space is still the closure of a smooth bounded connected domain Ω ⊂ R
n (as

in Neumann B.C.); but, in state constraints boundary conditions, we have to face quite different difficulties.
Actually, in all the results of the first two Subsections, we do not need that Ω is bounded or connected. Recall
that, in the state constraints case, the ODE is (1.5). Let us start with some basic assumptions and preliminary
results.

4.1. Preliminaries: an example of state constrained game

We suppose that A,B ⊂ R
m are compact sets and that A is convex. Moreover, we assume that the set Ω is

described by a function φ ∈ C2(Rn,R)

Ω = {x ∈ R
n | φ(x) ≤ 0} with ∇φ(x) �= 0 for any x ∈ ∂Ω. (4.1)

Here, the dynamic is given by the function f so defined:

f(x, a, b) = f1(x)a+ f2(x, b)

where f1 is an invertible matrix such that ||f1||∞, ||f−1
1 ||∞ ≤M1 for a suitable positive constant M1. We recall

the reader that M > 0 is the Lipschitz constant of the function f and we have ||f(x, a, b)||∞ ≤M , too. So, for
any starting point x ∈ Ω and for any couple of controls (a(·), b(·)) ∈ A× B the system we consider is given by



ẏ(t) = f1(y(t))a(t) + f2(y(t), b(t))
y(0) = x
y(t) ∈ Ω.

(4.2)

We also have to introduce the notions of admissible controls and strategies; for any x ∈ Ω we define:

AD(x) :=
{
(a(·), b(·)) ∈ A× B | yx(t; a(t), b(t)) ∈ Ω ∀t ≥ 0

}
A(x) := {a(·) ∈ A | ∃b(·) ∈ B s. t.(a(·), b(·)) ∈ AD(x)}
B(x) := {b(·) ∈ B | ∃a(·) ∈ A s. t.(a(·), b(·)) ∈ AD(x)}
∆(x) := {α ∈ ∆ | (α[b], b) ∈ AD(x) ∀b(·) ∈ B(x)} .

Moreover, we need a viability condition:

∃η > 0 such that ∀x ∈ ∂Ω, b ∈ B there exists ax,b ∈ A with 〈f(x, ax,b, b),∇φ(x)〉 < −η < 0. (4.3)
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Remark 4.1.
a) If Ω is bounded, then (4.3) is equivalent to

∃η > 0 such that ∀x ∈ ∂Ω, b ∈ B there exists ax,b ∈ A with
〈
f(x, ax,b, b),

∇φ(x)
|∇φ(x)|

〉
< −η < 0.

But, in any case (even if Ω is not bounded), once we fix a control b(·) ∈ B, we define the set-valued map

(t, x) �→ Fb(t, x) := f(x,A, b(t)) = ∪a∈Af(x, a, b(t)).

Notice that under the above condition (4.3), since we always get a control ax,b(t) ∈ A such that

〈
f(x, ax,b(t), b(t)),

∇φ(x)
|∇φ(x)|

〉
≤ 0 ∀x ∈ ∂Ω,

by applying the Measurable Viability Theorem of [23], there exists a solution to the problem


ẏ(t) ∈ Fb(t, y(t))
y(0) = x

y(t) ∈ Ω.

Therefore, the hypothesis (4.3) implies that ∀x ∈ Ω B(x) �= ∅ (in fact B(x) = B) or, equivalently, A(x) �= ∅.
b) In what follows, we will show how to construct not only admissible controls for the first player, but also
“good” strategies, which play a crucial role in proving regularity results on the value function.

In this example, for any starting point x ∈ Ω and ∀(a(·), b(·)) ∈ AD(x) the cost functional is the same as
before:

JT
λ (x, a(·), b(·)) =

∫ T

0

l(yx(t; a(t), b(t)), a(t), b(t))e−λt dt,

where the Lagrangian l : R
n ×A×B −→ R is bounded and Lipschitz continuous (of constant M).

Let us define the (lower) value function as follows (cf. [27]):

Vλ(x) = inf
α∈∆(x)

sup
b∈B(x)

J∞
λ (x, α[b], b). (4.4)

If K ⊂ R
n is a closed convex set, we denote the projection map on K by πK : R

n �→ K; πK is well defined
(see for example [7]). Now, suppose that the couple of controls (a1(·), b1(·)) ∈ A×B is admissible for the point
x1 ∈ Ω; then, we consider the system:{

ẏ(t) = πFb1 (t,y(t))∩TΩ(y(t))

(
f(y(t), a1(t), b1(t))

)
y(0) = x2 ∈ Ω,

(4.5)

where we recall that Fb1(t, y) := f(y,A, b1(t)) (cf. Rem. 4.1), TΩ(x) is the usual tangent half-space at x to the
set Ω with a smooth boundary and x2 (x2 �= x1) is a new starting point.

In the system (4.5), roughly speaking, whenever the controls a1(·) and b1(·) do not push outside to Ω the
trajectory starting from x2, the first player continues to use the control a1(·). Otherwise, he chooses a control
such that the velocity of the trajectory is precisely the unique projection of the vector field f(y(·), a1(·), b1(·))
on the closed convex set Fb1(·, y(·)) ∩ TΩ(y(·)). This happens, for example, when the trajectory yx2(t) is on ∂Ω
at time t and

〈f(y(t), a1(t), b1(t)),∇φ(y(t))〉 > 0.
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Thanks to the injectivity of f1, there exists only one control ā(t, x) ∈ A such that

f(x, ā(t, x), b1(t)) = πFb1 (t,x)∩TΩ(x)

(
f(x, a1(t), b1(t))

)
.

In the following four lemmas, we just adapt some arguments developed in [12] to our case; we recall that, in
the article [12], the dynamics are given by a function of the following kind: f(x, a, b) = {g(x1, a)} × {h(x2, b)}
where (x1, x2) = x, x1 ∈ R

n1 and x2 ∈ R
n2 with n1 +n2 = n. Actually, what we need is to extend the approach

of [12] to vector fields depending also on time. Here, we write the proofs with essential modifications in short.
We refer the reader to [12] for further details.

Lemma 4.2. Assume (4.1) and (4.3). Then, for any starting point x ∈ Ω system (4.5) admits solutions.

Proof. System (4.5) is equivalent to system



ẏ(t) ∈ F̃ (t, y(t))
y(t) ∈ Ω
y(0) = x2 ∈ Ω,

(4.6)

where

F̃ (t, x) :=

{
f(x, a1(t), b1(t)) if x ∈ Int(Ω)

co {f(x, a1(t), b1(t)); f(x, ā(t, x), b1(t))} if y ∈ ∂Ω

(here, if Y ⊂ R
n, then co Y denotes the closed convex hull of Y ). The set-valued function (t, x) �→ F̃ (t, x)

is upper semicontinuous with respect to x and measurable with respect to t. Therefore, by the Measurable
Viability theorem of [23], we obtain that system (4.6) admits solutions for any starting point x2 ∈ Ω. �

An immediate consequence is the following corollary.

Corollary 4.3. For any x ∈ Ω we have B(x) ≡ B and ∀b(·) ∈ B we get (a(·), b(·)) ∈ AD(x) by choosing a(·)
such that

f(x, a(t), b(t)) = πFb(t,x)∩TΩ(x)

(
f(x, a1(t), b(t))

)
.

Proof. Take b(·) ∈ B. For all x ∈ Ω, consider system (4.5) with b1(·) = b(·), x2 = x and any a1(·) ∈ A. Then,
system (4.5) admits solutions and, by choosing the control a(·) that realizes the projection in (4.5), permits us
to get also an admissible couple of controls (a(·), b(·)) ∈ AD(x). �

The following lemma provides the crucial estimate on controls.

Lemma 4.4. Under assumptions (4.1) and (4.3), there exists a positive constant Ĉ such that for any x1, x2 ∈ Ω,
for any admissible couple of admissible controls (a1(·), b1(·)) ∈ AD(x1), it is possible to find an admissible control
a2(·) ∈ A(x2), which is admissible with the same control b1(·) ∈ B(x1) and

∫ t

0

|a1(s) − a2(s)| ds ≤
(
|x1 − x2| +

∫ t

0

|yx1(t; a1, b1)(s) − yx2(t; a2, b1)(s)| ds
)
.

The long proof is exactly as in [12], to which we refer the reader; we only underline the fact that a2(·) is so that
it realizes the projection in system (4.5).

Lemma 4.5. Assume that (4.1) and (4.3) hold true. Then, there exists some positive K0 such that for any
x1, x2 ∈ Ω, for any couple of admissible controls (a1(·), b1(·)) ∈ AD(x1), it is possible to find a control a2(·) ∈
A(x2), which is admissible with the same control b1(·) ∈ B(x1), such that ∀t ≥ 0 we have

|yx1(t; a1, b1) − yx2(t; a2, b1)| +
∫ t

0

|a1(s) − a2(s)| ds ≤ K0|x1 − x2|eK0t.
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Proof. By the construction of the trajectories, we get

|yx1(t; a1, b1) − yx2(t; a2, b1)| ≤ |x1 − x2| +
∫ t

0

|f(yx1(s), a1(s), b1(s)) − f(yx2(s), a2(s), b1(s))| ds

≤ |x1 − x2| +M

∫ t

0

|a1(s) − a2(s)| ds+M(CA + CB + 1)
∫ t

0

|yx1(s) − yx2(s)| ds,

where CA := maxa∈A |a| and CB := maxb∈B |b|. �

But, using the previous Lemma 4.5 and a suitable selection argument, we obtain the same estimate also by
suitably choosing admissible strategies for the first player.

Lemma 4.6. Assume (4.1) and (4.3). Then, there exist a positive real number K0 such that for any x1, x2 ∈ Ω
and ∀t ≥ 0 and for any strategy α1 ∈ ∆(x1), there is a nonanticipative strategy α2 : B(x2) −→ A(x2) with the
following property: for any b(·) ∈ B(x2) we have

|yx1(t;α1[b], b) − yx2(t;α2[b], b)| +
∫ t

0

|α1[b](s) − α2[b](s)| ds ≤ K0|x1 − x2|eK0t.

Proof. For any (a1(·), b(·)) ∈ AD(x1), we can find a control a2(·) ∈ A(x2) such that the following system is
satisfied {

ẏ(t) = f(y(t), a(t), b(t)) = πFb(t,y(t))∩TΩ(y(t))

(
f(y(t), a1(t), b(t))

)
y(0) = x2 ∈ Ω.

(4.7)

Let us consider the set-valued map Σ : AD(x1) −→ A(x2) defined by:

Σ(a1(·), b(·)) := {a2(·) ∈ A(x2) | (4.7) is satisfied}.

This set-valued map is nonexpansive with nonempty (*)-closed values (in the sense of [15]), and, hence, by the
Plaskacz Lemma (see Lem. 2.7 of [15]) it turns out that there exists a nonanticipative selection α with the
following property: α(a1(·), b(·)) ∈ Σ(a1(·), b(·)) for any (a1(·), b(·)) ∈ AD(x1). We recall that ∀b(·) ∈ B there
exists a control a1(·) ∈ A(x1) such that (a1(·), b(·)) ∈ AD(x1) (see Rem. 4.1 and Cor. 4.3). For all b(·) ∈ B
we set α2[b] := α(α1[b], b). Notice that α2 belongs to ∆(x2) since α1 and α are nonanticipative: indeed, if
b1(·) = b2(·) on [0, t] then α1[b1(·)] = α1[b2(·)] on [0, t] and so α2[b1(·)] = α2[b2(·)] on [0, t].

Finally, we just apply the previous Lemma 4.5 with a1(·) = α1[b(·)](·) and a2(·) = α2[b(·)](·). �

4.2. Regularity of the value function

We recall that for the (lower) value function Vλ, defined in (4.4), the Dynamic Programming Principle holds.
The statement, we use, is a slightly different version of the Koike’s one in [27]: we need to adapt it to our
problem. The proof is quite the same (see, for instance, [11]).

Lemma 4.7. For any x ∈ Ω and T > 0, we have

Vλ(x) = inf
α∈∆(x)

sup
b∈B

{∫ T

0

l(yx(t;α[b](t), b(t)))e−λt dt+ e−λTVλ (yx(T ;α[b], b))

}
. (4.8)

We get an Hölder estimate of the term λVλ(x) similarly as in Lemma 3.1; however, here, we have to be careful
in the choice of the admissible strategies and controls..
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Proposition 4.8 (Hölder continuity). Assume (4.1) and (4.3). For any λ > 0, λ < K0, we have the following
estimate

|λVλ(x1) − λVλ(x2)| ≤ M̃ |x1 − x2|
λ

K0 ∀x1, x2 ∈ Ω (4.9)
where the constant M̃ > 0 does not depend on λ.

Proof. By the Dynamic Programming Principle (Lem. 4.7) we have that ∀T > 0 ∀x1 ∈ Ω:

Vλ(x1) = inf
α∈∆(x1)

sup
b∈B

{∫ T

0

l(yx1(t;α[b](t), b(t)))e−λt dt+ e−λTVλ (yx1(T ;α[b], b))

}
.

Hence for any ε > 0 there exists a strategy α1 : B(x1) −→ A(x1) such that

Vλ(x1) + ε ≥ sup
b∈B

{∫ T

0

l(yx1(t;α1[b](t), b(t)))e−λt dt+ e−λTVλ (yx1(T ;α1[b], b))

}
. (4.10)

By applying the strategy α2 : B(x2) = B −→ A(x2) of Lemma 4.6 we have

Vλ(x2) ≤ sup
b∈B

{∫ T

0

l(yx2(t;α2[b](t), b(t)))e−λt dt+ e−λTVλ (yx2(T ;α2[b], b))

}

and ∀ε > 0 ∃b2(·) ∈ B such that

Vλ(x2) − ε ≤
{∫ T

0

l(yx2(t;α2[b2](t), b2(t)))e−λt dt+ e−λTVλ (yx2(T ;α2[b2], b2))

}
.

On the other hand, using b2(·) ∈ B in (4.10), we have

Vλ(x1) + ε ≥
∫ T

0

l(yx1(t;α1[b2](t), b2(t)))e−λt dt+ e−λTVλ (yx1(T ;α1[b2], b2)) .

Finally, we obtain

λVλ(x2) − λVλ(x1) − 2λε ≤ λ

∫ T

0

[l(yx2(t;α2[b2](t), b2(t))) − l(yx1(t;α1[b2](t), b2(t))] e−λt dt+ 2Me−λT

and, so

λVλ(x2) − λVλ(x1) ≤ 2λε+ λMK0eK0T 1 +K0

K0 − λ
|x2 − x1| + 2Me−λT .

The conclusion of the proof is exactly as in Lemma 3.1. �

4.3. The asymptotic behavior

In this section, treating a state constrained problem, we have to be more precise with the concept of approxi-
mate controllability by specifying the choice of the strategy of the first player; moreover, we consider a stronger
condition than before: the time T (·) does not depend on the control b(·).

Finally, we recall that in this subsection Ω is a bounded connected subset of R
n with property (4.1).

Definition 4.9 (approximate controllability with state constraints). A point x ∈ Ω is strong approximately
controllable by the first player to a point z ∈ Ω with the estimate δ(ε;x, z), if for any ε > 0 fixed there exists a
strategy of the first player, α̃ ∈ ∆(x), and a time T (ε;x, z, α̃) ≥ 0 such that ∀b(·) ∈ B(x) we have

|yx(T (ε;x, z, α̃)) − z| < ε, T (ε;x, z, α̃) ≤ δ(ε;x, z).
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For any (x, b) ∈ Ω ×B we define the following subsets:

A(x, b) :=
{
a ∈ A | ∃r > 0 s. t. yz(t, a, b) ∈ Ω for t ∈ [0, r] and z ∈ Ω ∩B(x, r)

}
and

F−(x, b) := co {f(x, a, b) | a ∈ A(x, b)} ,
namely, F−(x, b) is the convex hull of the set f(x,A(x, b), b).

Let us introduce a new assumption (cf. [27]):


There are r, s > 0 such that, if b̂ ∈ B and b(·) ∈ B satisfy

|b(t) − b̂| < r a.e. on [0, s], and x ∈ ∂Ω, then

A(x, b̂) �= ∅ and yx(t, a, b(·)) ∈ Ω for t ∈ [0, s] and a ∈ A(x, b̂).

(4.11)

Notice that under conditions (4.1) and (4.3) of Section 4.1 we get ax,b ∈ A(x, b) and, therefore, A(x, b) �= ∅ for
all (x, b) ∈ Ω ×B.

Suppose that condition (4.11) holds true, then the (lower) value function Vλ defined in (4.4) is a viscosity
solution to the following HJI equation (cf. [27])

λuλ + H(x,Duλ) = 0, (4.12)

where
H(x, p) := min

b∈B
max

a∈A(x,b)
{−f(x, a, b) · p− l(x, a, b)}.

Moreover, if also the following assumption holds true

inf
x∂Ω,b∈B

{ξ | ξ ∈ F−(x, b)} > 0 (4.13)

then we obtain a Comparison Theorem (see [27]), thus Vλ is the unique viscosity solution of (4.12). Since by
Proposition 4.7 the (lower) value function Vλ is such that ∀x, z ∈ Ω

|λVλ(x) − λVλ(z)| ≤M∗|x− z| λ
λ∗ (4.14)

for some positive constants λ∗ and M∗, then, analogously to Theorem 3.6, we get an ergodicity result.

Theorem 4.10 (ergodicity for state constraints). Suppose that (4.1), (4.3), (4.11) and (4.13) hold true and
that the system (4.2) is strong uniformly approximately controllable by the first player. Then, the differential
game is ergodic; namely, λVλ(x) converges uniformly to a (unique) constant as λ→ 0+.

5. The Abelian-Tauberian problem

Finally, we point out the fact that it is possible to obtain a result that gives equivalent characterizations of the
notion of ergodicity. It was proved by [6] for the optimal control problem by using the Dynamic Programming
Principle (cf. also [4, 8]). For the Neumann B.C., in particular, we refer to the article of P.L. Lions [30].
Successively, in [2] (see also [1]) Alvarez and Bardi give a proof which is valid in the periodic case for an
arbitrary Hamiltonian only using the comparison principle and the viscosity solutions theory.

In the following proposition, we simply show that the same arguments (with some adaptations) of the authors
above can be used also for the Neumann boundary conditions. We recall that the function vλ(x) denotes the
viscosity solution of the problem 


λvλ +H(x,Dvλ) = 0 in Ω

Dv

Dγ
= 0 on ∂Ω.

(5.1)
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Let v(x, t) be the viscosity solution of time dependent problem with Neumann B.C.:



vt +H(x,Dv) = 0 in Ω × (0,+∞)

v(x, 0) = 0 in Ω

Dv

Dγ
= 0 on Ω × (0,+∞),

(5.2)

and let u(x) be the viscosity solution of the cell problem for a constant χ ∈ R:



χ+H(x,Du) = 0 in Ω

Du

Dγ
= 0 on ∂Ω.

(5.3)

Recall that in our case the Hamiltonian is given by H(x, p) := minb∈B maxa∈A{−f(x, a, b) · p− l(x, a, b)}.
Proposition 5.1. Let us suppose that one of the following conditions holds

a) λvλ(x) −→ χ0 as λ −→ 0+ uniformly in x;
b) 1

t v(x, t) −→ χ1 as t −→ +∞ uniformly in x;
c) sup{χ | ∃u subsolution of (5.3)} = inf{χ | ∃u supersolution of (5.3)}.

Then, we have that also the other assertions are true and, moreover,

χ0 = χ1 = χ2

where χ2 is the constant defined by c).

Remark 5.2. Let us denote by χI and χS the infimum and supremum in c) of Proposition 5.1, respectively:
namely,

χI := inf{χ | ∃u supersolution of (5.3)}
χS := sup{χ | ∃u subsolution of (5.3)}.

We claim that χS ≤ χI (we use the argument of [2]). Indeed, suppose that there exists two real constant µ0, µ1

and two functions v0, v1 ∈ C(Ω) such that µ0 < µ1, v1 is a subsolution of (5.3) corresponding to µ1 and v0 is a
supersolution of (5.3) corresponding to µ0. Since v0 and v1 are defined up to a constant and Ω is a compact set,
then we may assume that v0 < v1. By applying the same comparison argument of Theorem 3.6 (see the part of
the proof dealing with the uniqueness of the constant χ0), we get that v1 ≤ v0, reaching a contradiction. Thus,
we have χS ≤ χI .

Proof of Proposition 5.1. a) ⇒ b). Here we use the representation formula of the viscosity solutions of (5.1)
and (5.2) (see [30] and cf. [4]):

vλ(x) := inf
α∈∆

sup
b∈B

∫ ∞

0

l(yx(s), α[b](s), b(s))e−λs ds λ > 0, x ∈ Ω

and

v(x, t) := inf
α∈∆

sup
b∈B

∫ t

0

l(yx(s), α[b](s), b(s)) ds t ≥ 0 x ∈ Ω.

Recall that by assumptions (2.1) M is an upper bound for |f(x, a, b)|. Let ε > 0 be an arbitrary small (fixed)
number. Take T > 0 and let us chose λ = ε

T . For any x ∈ Ω, by using the Dynamic Programming Principle,
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we get

λvλ(x) = inf
α∈∆

sup
b∈B

{
λ

∫ T

0

l(yx(s), α[b](s), b(s))e−λs ds+ λe−λT vλ(yx(T ))

}

= inf
α∈∆

sup
b∈B

{
ε

T

∫ T

0

l(yx(s), α[b](s), b(s)) ds

+
ε

T

∫ T

0

(e−λs − 1)l(yx(s), α[b](s), b(s)) ds+
ε

T
e−εvλ(yx(T ))

}

and, so, dividing by ε in the equality above, we get

λ

ε
vλ(x) = inf

α∈∆
sup
b∈B

{
ε

T

∫ T

0

l(yx(s), α[b](s), b(s)) ds

+
1
T

∫ T

0

(e−λs − 1)l(yx(s), α[b](s), b(s)) ds+
1
ε
λe−εvλ(yx(T ))

}
.

Now, notice that ∣∣∣∣∣ 1
T

∫ T

0

(e−λs − 1)l(yx(s), α[b](s), b(s)) ds

∣∣∣∣∣ ≤ M

ε
(1 − ε− e−ε),

and therefore sending T → +∞, by the uniform convergence of λvλ to χ0 as λ→ 0+, we have

−M
ε

(1 − ε− e−ε) ≤ lim inf
T→+∞

∣∣∣∣ 1
T
v(x, T ) − 1 − e−ε

ε
χ0

∣∣∣∣ ≤ lim sup
T→+∞

∣∣∣∣ 1
T
v(x, T ) − 1 − e−ε

ε
χ0

∣∣∣∣ ≤ M

ε
(1 − ε− e−ε).

Letting ε go to 0+ we obtain c) with χ1 = χ0.
b) ⇒ c). We just follow the argument for a construction of a suitable viscosity subsolution (and supersolution)

that is given in [2]: actually, what we have to check here is that the Neumann boundary conditions are satisfied for
such a function. Choose an arbitrary χ such that χ < χ1. Let us consider a smooth function h : [0,+∞) −→ R

such that 

h(0) = 0, h′(t) ≥ χ ∀t ≥ 0,
infx∈Ω v(x, t) > h(t) for some t > 0,
supx∈Ω v(x, t) < h(t) for t large enough.

The function
w(x) := sup

t≥0
{v(x, t) − h(t)}

is well defined and continuous, moreover, there exists a compact set K ⊂ (0,+∞) such that ∀x ∈ Ω ∃tx ∈ K
with the following property:

w(x) = v(x, tx) − h(tx) = sup
t∈K

{v(x, t) − h(t)}.
It turns out that w(x) is a viscosity subsolution of χ + H(x,Dw(x)) = 0 in Ω (see [2] for the details). As far
as the boundary conditions are concerned, if x0 is a local minimum for w(x) − φ(x) where φ is a smooth test
function, then we get that (x0, tx0) is a local maximum for

v(x, t) − (
h(t) + φ(x)

)
,

where, now, h(t) + φ(x) is the new test function. Indeed, for any (x, t) close to (x0, tx0) we have

v(x0, tx0) − h(tx0) − φ(x0) ≥ v(x, tx) − h(tx) − φ(x) ≥ v(x, t) − h(t) − φ(x),
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by the definition of w(x) and the properties of h(x). By hypothesis v(x, t) is the viscosity solution of (5.2), and,
so, we obtain

〈D(h(tx0) + φ(x0)), γ(x0)〉 ≥ 0
and, hence,

〈D(φ(x0)), γ(x0)〉 ≥ 0.
Thus, w(x) is a viscosity subsolution of (5.3) and, since χ is an arbitrary number so that χ < χ1, we obtain that
χ1 ≤ χS . Similarly, one can prove that χI ≤ χ1 and since χS ≤ χI (see Rem. 5.2), then we have χ1 = χI = χS .
c) ⇒ a). Take a constant χ such that v is a corresponding subsolution of (5.3); we can assume that v ≤ 0 by

subtracting a suitable constant. Setting wλ := v + χ
λ we have:

λwλ +H(x,Dwλ) = λv + χ+H(x,Dv) ≤ 0 on Ω

and, moreover, if x0 ∈ ∂Ω then 〈Dwλ(x0), γ(x0)〉 ≥ 0. By using the comparison principle (see Th. 6 in [30]) we
have λwλ ≤ λvλ. Thus, we get lim infλ→0 λvλ ≥ χ and, taking the supremum over χ,

lim inf
λ→0+

λvλ ≥ χS .

Analogously, we obtain:
lim sup
λ→0+

λvλ ≤ χI

and, so, by c),
lim

λ→0+
λvλ = χI = χS .

�

Remark 5.3. If we define the function wλ(x) := vλ(x) − vλ(x0) where x0 ∈ Ω, then we get

lim
λn �→0+

wλn = w0 uniformly in Ω

for some λn → 0+ and w0 = w0(x) is a viscosity solution of


χ0 +H(x,Dw) = 0 in Ω

Du

Dγ
= 0 on ∂Ω.

Remark 5.4. As far as the state constraints B.C. is concerned, it is possible to prove an analogous equivalence
between a), b) and c) of the Proposition 5.1 (with χ0 = χ1 = χ2), just by using the argument of [2]. In order
to prove a) ⇔ b) one can the approach based on the representation formula of the viscosity solution and on the
Dynamic Programming Principle as in [6] (cf. also [4]).

6. Appendix: Estimates on the trajectories of the Skorokhod problem

The appendix is devoted to prove the estimate (3.3) on the trajectories which are solutions of system (3.2).
We will follow some ideas of Lions in [29] (see also [30]).

Here, the set Ω ⊂ R
n is a domain (not necessarily bounded or connected) such that Ω satisfies the uniform

exterior ball condition (see 3.1).
For simplicity of exposition, we prove the case of normal reflection: γ(x) = n(x) for any x ∈ ∂Ω where n(x)

denotes the outer unit normal of ∂Ω. It is possible to prove that analogous results still hold when we consider
the Skorokhod problem with oblique reflection, i.e., when instead of the unit outward normal to the boundary,
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n(x) ∀x ∈ ∂Ω, we have an oblique vector γ(x) with the following property: there exists ν > 0 such that
n(x) · γ(x) ≥ ν ∀x ∈ ∂Ω. The extension to the general case is classical (cf. [29–31]).

Let us start with a easy well-known result.

Lemma 6.1. If ∂Ω ∈ C1 and (3.1) holds, then
i) there is a constant C0 > 0 such that ∀x ∈ ∂Ω ∀y ∈ Ω we have

n(x) · (x − y) + C0|x− y|2 ≥ 0; (6.1)

ii) ∀x ∈ ∂Ω, if ∃C ≥ 0, ∃ξ ∈ R
n such that ∀y ∈ Ω

ξ · (x− y) + C|x− y|2 ≥ 0,

then ξ = θn(x) for some θ ≥ 0.

Proof. The proof is standard: see for instance [29] or [26]. �
Remark 6.2. Multiplying (6.1) by any constant θ ≥ 0, we obtain that ∀x ∈ ∂Ω, ∀y ∈ Ω and ∀ξ ∈ N(x) :=
{θn(x) : θ ≥ 0} the following fundamental inequality holds

ξ · (x− y) + C0|ξ||y − x|2 ≥ 0 (6.2)

where C0 = 1
2r ·

Consider a nonempty set E ⊂ R
n, we denote by dist(x,E) := inf{|x− y| : y ∈ E} the distance of x from E

on R
n.

Let us introduce a regular function on Ω, that coincides with the distance from the boundary in a neighbor-
hood of ∂Ω:

d̃(x) := ψ(dist(x, ∂Ω)), (6.3)
where ψ is a function in C∞([0,∞),R) that satisfies


ψ(t) = t if 0 ≤ t ≤ ε0

2
0 ≤ ψ′ ≤ 1, for t ≥ 0
ψ′ = 0 if t ≥ ε0,

with ε0 > 0 sufficiently small such that dist(x, ∂Ω) is differentiable on the set

Γε0 :=
{
x ∈ Ω : dist(x, ∂Ω) < ε0

}
.

We get ψ ≡ ψ0 ≤ ε0 ∀t ≥ ε0. We remind that the regularity of the boundary can give sufficient conditions for
the required smoothness of dist(x, ∂Ω) (see the book [25] or [22]); for example if Ω is bounded and ∂Ω ∈ C2

then dist(x, ∂Ω) ∈ C2(Γε0) (and the uniform exterior ball condition is also satisfied).

Lemma 6.3. Consider any couple of controls
(
a(·), b(·)) ∈ A × B and let (yx(t), Lt) be the solution of (3.2).

Then, there exist positive constants C1 and C2 such that

Lt ≤ C1 + C2t.

Proof. Let d̃ be the function defined by (6.3). We recall that |∇d̃| ≤ 1 in Ω and d̃(x) = d(x, ∂Ω) in a suitable
neighborhood of ∂Ω. Just applying the fundamental theorem of calculus (we recall that the controls a(·) and b(·)
are chosen)

d̃(yx(t)) = d̃(x) +
∫ t

0

f(yx(s), a(s), b(s)) · ∇d̃(yx(s)) ds−
∫ t

0

∇d̃(yx(s)) · n(y(s))1∂Ω(yx(s)) dLs
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and observing that ∇d̃(x) = ∇d(x) = −n(x) on ∂Ω, we get:

d̃(yx(t)) = d̃(x) +
∫ t

0

f(yx(s), a(s), b(s)) · ∇d̃(yx(s)) ds+
∫ t

0

1∂Ω(yx(s)) dLs,

and, hence,

Lt = d̃(yx(t)) − d̃(x) −
∫ t

0

f(yx(s), a(s), b(s)) · ∇d̃(yx(s)) ds.

Finally we obtain
Lt ≤ C1 + C2t

where C1 = ε0 and C2 = sup |f(x, a, b) · ∇d̃(x)| = M . �

Lemma 6.4. Consider any couple of controls
(
a(·), b(·)) ∈ A×B. Then the trajectories yx(·) of the Skorokhod

problem (3.2) satisfy the estimate (3.3).

Proof. By denoting Lx
t =

∫ t

0
1∂Ω(yx(s))dLs (x ∈ Ω is the starting point) and recalling that (y1−y2)·(f(y1, a, b)−

f(y2, a, b)) ≤M |y1 − y2|2, by the fundamental theorem of calculus we have

|yx(t) − yz(t)|2e−2Mt−2C0{Lx
t +Lz

t } = |x− z|2 + 2
∫ t

0

[
(yx(s) − yz(s)) ·

(
f(yx(s), a(s), b(s))

−f(yz(s), a(s), b(s))
)
e−2Ms−2C0{Lx

s+Lz
s}

]
ds

−2
∫ t

0

e−2Ms−2C0{Lx
s +Lz

s} (yx(s) − yz(s)) · (n(yx(s)) dLx
s − n(yz(s)) dLz

s)

−2M
∫ t

0

|yx(s) − yz(s)|2 e−2Ms−2C0{Lx
s +Lz

s} ds

−2C0

∫ t

0

|yx(s) − yz(s)|2 e−2Ms−2C0{Lx
s +Lz

s} {Lx
s + Lz

s}

≤ −2
∫ t

0

e−2Ms−2C0{Lx
s +Lz

s}
[
(yx(s) − yz(s)) · (n(yx(s)) dLx

s − n(yz(s)) dLz
s)

+C0 |yx(s) − yz(s)|2 {Lx
s + Lz

s}
]
≤ 0,

(6.4)
where the last inequality is given by the property (6.2). Hence, by Lemma 6.3 and the above estimate, we
obtain

|yx(t) − yz(t)| ≤ |x− z|eMt+C0{Lx
t +Lz

t }

≤ |x− z|eMt+2C0(C1+C2t)

≤ K|x− z|e(M+2C0C2)t,

with K = e2C0C1 . �
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(1998) 1–24.

[5] M. Arisawa and P.L. Lions, Continuity of admissible trajectories for state constraints control problems. Discrete Cont. Dyn.
Systems 2 (1996) 297–305.

[6] M. Arisawa and P.L. Lions, On ergodic stochastic control. Commun. Partial Differ. Equations 23 (1998) 2187–2217.
[7] J.P. Aubin and A. Cellina, Differential inclusions. Set-valued maps and viability theory. Grundlehren der Mathematischen

Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin 264 (1984) XIII+342.
[8] M. Bardi and I. Capuzzo-Dolcetta, Optimal control and viscosity solutions of the Hamilton-Jacobi equations. Birkhäuser,
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