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ASYMPTOTIC BEHAVIOUR, NODAL LINES AND SYMMETRY PROPERTIES
FOR SOLUTIONS OF SUPERLINEAR ELLIPTIC EQUATIONS NEAR

AN EIGENVALUE ∗

Dimitri Mugnai
1

Abstract. We give the precise behaviour of some solutions of a nonlinear elliptic B.V.P. in a bounded
domain when a parameter approaches an eigenvalue of the principal part. If the nonlinearity has some
regularity and the domain is for example convex, we also prove a nonlinear version of Courant’s Nodal
theorem.

Mathematics Subject Classification. 35B40, 35J65.

Received March 30, 2004. Revised November 30, 2004.

1. Introduction

In a celebrated paper, Z.Q. Wang proved that, if Ω is a bounded and smooth domain of R
N and g : R −→ R

is a C1 superlinear and subcritical function such that g(0) = g′(0) = 0, then the nonlinear Dirichlet problem
{ −∆u = g(u) in Ω,

u = 0 on ∂Ω,
(1.1)

has at least three nontrivial solutions (see [23]). In the same spirit, in [19] it was proved that, if g : Ω×R −→ R

is a superlinear and subcritical Carathéodory’s function, then there exists δi > 0 such that ∀λ ∈ (λi − δi, λi),
i ≥ 2, the problem { −∆u − λu = g(x, u) in Ω,

u = 0 on ∂Ω,
(1.2)

has at least three nontrivial solutions (here (λi)i denotes the sequence of eigenvalues of −∆ on H1
0 (Ω)). In

particular in [19] it was proved that two of such solutions have positive energy, approaching 0 as λ → λ−
i .

In this paper we want to prove that such solutions have some finer properties, inherited by the fact that λ is
near an eigenvalue and by the fact that their energy approaches 0. In particular our results are related to the
behaviour of the nodal lines of such solutions (see Th. 2.1) and to some symmetry properties when g and Ω
have some symmetries (see Th. 2.2).
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To our knowledge, there are not many results concerning nodal lines of sign-changing solutions, as the ones
we are considering. For sure, remarkable results can be found in [4, 6, 7, 10]. In [6], the authors assume to deal
with a function g : Ω × R −→ R of class C1 such that

(g1) g(x, 0) = 0 for all x ∈ Ω;
(g2) ∃ p ∈ (2, 2∗) such that |g′t(x, t)| ≤ C(1 + |t|p−2) for all x ∈ Ω, t ∈ R;
(g3) g′t(x, t) > g(x, t)/t for all x ∈ Ω, t �= 0;
(g4) ∃R > 0 and θ > 2 such that 0 < θG(x, t) ≤ tg(x, t) for all x ∈ Ω, |t| ≥ R, where G(x, t) =

∫ t

0 g(x, s) ds.

Under these assumptions, they prove that problem (1.1) has one changing sign solution with exactly two nodal
domains and Morse index 2, provided the second eigenvalue of −∆ − g′t(x, 0) is strictly positive. Note that in
the case of problem (1.2) it means λ < λ2. Under similar assumptions, in [10] the existence of one solution to
problem (1.1) which changes sign exactly once and has connected nodal domains, is proved.

Moreover, in [7] the authors consider a problem similar to (1.2), but with λ < 0; this means that such
a problem is substantially similar to problem (1.1), since −∆ − λ induces a positive definite quadratic form
whenever λ < λ1. In this case they deal with an autonomous function g = g(t) and they make assumptions
analogous to (g1) − (g4) for the autonomous case, with R = 0 in (g4), proving the existence of three nodal
solutions, but with the further assumption that Ω is big enough.

Finally, in [4], several existence results are given for problem (1.1) with an autonomous g, according to
the assumptions made on g, g′ and the growth conditions at infinity (superlinear or asymptotically linear).
Concerning the superlinear case, they results can be stated in the following way: if g is of class C1 with
g(0) = 0, λi < g′(0) < λi+1, i ≥ 1, if sign changing solutions are isolated, then there exists a sign changing
solution to problem (1.1).

Therefore, Theorem 2.1 in Section 2 can be considered as a counterpart of the results stated above. In fact,
no regularity assumption is made on the nonautonomous function g (so no condition is made on its derivative),
no restrictions are made on Ω, a multiplicity result is always given and λ can be as big as desired, provided it
is close to an eigenvalue of −∆. The novelty of Theorem 2.1 with respect to the results of [19], is that here
we give a precise behaviour of the solutions uλ for λ ∼ λi, showing that such solutions change sign and giving
some properties of their nodal lines (see Ths. 2.1 and 2.2 and their corollaries).

It is also worth mentioning the problem (in the entire space)

{ −∆u + a(x)u = g(x, u) in R
N ,

u ∈ H1(RN ),

studied in [5]. Therein, the existence of one sign changing solutions is proved when g is subcritical and superlinear
and a satisfies some suitable assumptions. In addition, if g is odd in u, the existence of a sequence uk of nodal
solutions with at most k + 1 nodal regions is proved.

Concerning symmetry properties of solutions of nonlinear subcritical homogeneous boundary problems, de-
pending on the geometry of Ω, there are plenty of results. But in such cases the authors assume to deal with
positive solutions in presence of functions g’s of class C1 (for example, see [12,16,20] and the references quoted
therein). For example, in [12] the authors consider the problem




−∆u − λu = g(u) in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

where Ω is convex in the xi-direction, symmetric w.r.t. the hyperplane x1 = 0 and g(0) ≥ 0; using the maximum
principle they show that any solution v in H1

0 (Ω) of the linearized problem −∆v−λv = g′(u)v is even-symmetric
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in x1. In [20] the author considers the problem

{ −∆u = g(x, u) in Ω,

u = 0 on ∂Ω,

where g is even in x1 and convex in u, and she shows that any positive solution u is even in xi. Moreover, she
also proves that, if Ω is an annulus or a ball, g(|x|, ·) is strictly convex, u is a solution of index 1, then u is axially
symmetric. The author underlines the fact that such a result is not easily applicable to changing sign solutions,
since changing sign solutions generally have Morse index greater than 1. Regardless of the Morse index, in
Theorem 2.2 we will prove such a symmetry result for the solutions under investigation of problem (1.2).

Of course, more general problems can be considered. For example, in [16] it is shown that solutions u of the
problem 


−∆u = g(u) in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

where Ω is a small perturbation of a symmetric domain for which the Gidas, Ni and Nirenberg symmetry result
holds, and g is subcritical or critical, are even-symmetric.

The most natural generalization of the previous problems is obtained in presence of the p-Laplace operator,
when the typical problem is the following:


−∆pu = g(u) in Ω,

u > 0 in Ω,

u = 0 on ∂Ω.

Under suitable assumptions on g (typically g of class C1, convex, and symmetric in the direction ν), symmetry
results of the type

Ω symmetric w.r.t. a direction ν =⇒ u is even in the direction ν (1.3)

are given, for example, in [13, 14]. In this sense our results complement the results given in the papers quoted
above.

Another aspect of this paper is a contribution to a nonlinear version of Courant’s nodal theorem. More
precisely, our result is in the spirit of [11], in which the author proves the following: if Ω is a bounded (possibly
nonsmooth) domain of R

N which is convex and symmetric w.r.t. k orthogonal directions, 1 ≤ k ≤ N , then the
nodal lines of the eigenfunctions e2, . . . , ek+1 of the problem

{ −∆u = λu in Ω,

u = 0 on ∂Ω,

intersect the boundary. In Theorem 2.1, only assuming Ω smooth enough, we prove that the sign changing
solutions found when λ belongs to a suitable left neighborhood of λi, behave like the eigenfunction ei. Therefore,
for example, if i = 2 and Ω is convex, in Corollary 2.1, we prove that the solutions have exactly two nodal
domains and the nodal line touches the boundary of Ω.

For completeness, we also recall a version of Courant’s nodal theorem for the p-Laplacian found in [15], and
that in the case of sublinear elliptic problems in R

N , in [2] the authors prove the existence of radial compactly
supported solutions with any given number of nodes.

Finally, in Theorem 2.2, we show a result of symmetry in the spirit of (1.3), showing that both the solutions
under considerations, i.e. for λ close to λi, have the same symmetry as Ω.
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2. Assumptions and main results

Throughout this paper, we will consider a bounded domain Ω ⊂ R
N which is so smooth that the classical

regularity results for solutions of elliptic equations can be applied. To this purpose it is enough to assume, for
example, that ∂Ω is of class C2.

Moreover, we will assume some usual conditions for a standard superlinear and subcritical nonlinearity:
(g1) g : Ω × R −→ R is a Carathéodory’s function;
(g2) there exist constants a > 0, s > 1 (and s < N+2

N−2 if N ≥ 3) such that ∀t ∈ R and for a.e. x ∈ Ω

|g(x, t)| ≤ a|t|s;
(g3) ∀t �= 0 and for a.e. x in Ω

0 < µG(x, t) ≤ g(x, t)t,

where µ = s + 1 and G(x, t) =
∫ t

0
g(x, σ) dσ;

(g4) there exists c1 > 0 such that G(x, t) ≥ c1|t|µ ∀t ∈ R and for a.e. x ∈ Ω.
Such assumptions are quite natural and common when one studies nonlinear subcritical problems (see [1,17,21],
the papers quoted above, . . . ).

Remark 2.1. In order to get existence of nodal solutions, in the papers quoted in the introduction, the authors
always assume to deal with a regular function g (at least of class C1), usually even independent of x. Here we
only assume g to be continuous in the second variable.

Remark 2.2. We remark that, usually, in (g3) one requires only µ > 2. But by (g2) and (g4), one immediately
gets µ ≤ s + 1 (and so s > 1). Therefore a stronger assumption is made on µ; however such an assumption is
satisfied whenever g(x, t) “behaves” like |t|s−2t.

Remark 2.3. If g is continuous on Ω × R, condition (g4) comes by integration of (g3), with the constant c1

replaced by a function c1(x).

From now on, we will denote by ei any nontrivial element of Eλi with ‖ei‖L2 = 1, where Eλi denotes the
eigenspace of −∆ on H1

0 (Ω) associated to the eigenvalue λi. Since Ω is of class C2, it is a classical fact that ei

is smooth.
We are now able to state the first result of this paper.

Theorem 2.1. Under hypotheses (g1)−(g4), for any i ≥ 2 there exists τi > 0 such that for any λ ∈ (λi−τi, λi),
problem (1.2) has at least two distinct continuous nontrivial sign-changing solutions u1

λ and u2
λ such that, for

any k = 1, 2,
(a) uk

λ → 0 in H1
0 (Ω) as λ → λ−

i ;

(b) for any sequence (µn)n ⊂ (λi − τi, λi) converging to λi, the sequence
(

uk
µn

‖uk
µn

‖

)
n

is compact in H1
0 (Ω)

and the set of its limits points is contained in the set {e ∈ Eλi : ‖e‖ = 1√
λi
};

(c) ∃C = C(i) > 0 such that ‖uk
λ‖∞ ≤ C‖uk

λ‖.
Here ‖u‖ denotes the norm of u in H1

0 (Ω), i.e. the L2-norm of Du.

Remark 2.4. A straightforward corollary of (a) and (b) of Theorem 2.1 is that uk
λ → 0 uniformly in Ω as

λ → λ−
i for any k = 1, 2.

A remarkable consequence of the previous theorem is the following nonlinear version of Courant’s Nodal
theorem.

Corollary 2.1. Assume that Ω ⊂ R
N , N ≥ 2, is such that the Courant’s nodal theorem holds, that g : Ω×R −→

R is of class C1 and that t2 ∂g
∂t (x, t) > tg(x, t) for all (x, t) ∈ Ω × R. Moreover, assume that λ2 is simple and

that (g1) − (g4) hold. Then the solutions uλ’s found in Theorem 2.1 for i = 2 have exactly two nodal domains
and the nodal line of each uλ intersects ∂Ω.
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Remark 2.5. According to Theorem 1.1 in [11], the Courant’s nodal theorem holds, for example, if Ω ⊂ R
N

is convex and symmetric w.r.t. k orthogonal directions, 1 ≤ k ≤ N .

Proof of Corollary 2.1. Since each eigenvalue of −∆ has finite multiplicity and λ2 is simple, we have λ1 < λ <
λ2 < λ3. Since each uλ is found by a linking structure involving the decomposition H1

0 (Ω) = Span(e1) ⊕
Span(e2) ⊕ Span(e3, . . .) (see [19]), it is a classical fact that i(uλ) ≤ 2 (see [8]) and #{nodal regions} ≤ i(uλ),
where i(uλ) denotes the Morse index of uλ (it is enough to adapt the proof of [8] under the assumptions on gt,
similarly to [3]). We remark that, since uλ ∈ C(Ω), no further growth assumption on g′t are needed. Moreover,
since each uλ changes sign, for uλ

‖uλ‖ → t0e2 (t20 = 1/λi), we get that each uλ has exactly two nodal domains.
Let us set Ω+ = {x ∈ Ω : t0e2(x) > 0}.

Let us prove that the nodal line Γλ of each uλ cannot be closed. In fact, there exists ε > 0 such that
∀λ ∈ (λi − τi, λi) and ∀x ∈ Ω+ with d(x, ∂Ω+) ≥ ε it holds uλ(x) ≥ 0 and ∀x ∈ Ω \Ω+ such that d(x, ∂Ω+) ≥ ε
it holds uλ(x) ≤ 0. Otherwise we could find, for example, a point xλ and then, by continuity of uλ, an open
set Aλ contained in Ω+, where uλ is negative and with xλ converging to a point x0 ∈ ∂Ω. Of course ∂uλ

∂ν (x0) ≥ 0.
Assume that uλ

‖uλ‖ → t0e2 in W 2,q(Ω) for some q. By the trace theorem there exists a universal constant
T > 0 such that∥∥∥∥D

uλ

‖uλ‖ − t0De2

∥∥∥∥
Lq(∂Ω)

≤ T

∥∥∥∥D
uλ

‖uλ‖ − t0De2

∥∥∥∥
W 1,q(Ω)

≤ T

∥∥∥∥ uλ

‖uλ‖ − t0e2

∥∥∥∥
W 2,q(Ω)

→ 0 as λ → λi.

Therefore we can assume that D uλ

‖uλ‖ → t0De2 a.e. on ∂Ω. In particular we can choose xλ ∈ Aλ converging to

a point x0 ∈ ∂Ω where D uλ

‖uλ‖ converges to t0De2. Then ∂uλ

∂ν (x0) → ∂t0e2
∂ν (x0) and a contradiction arises, since

by classical results ∂t0e2
∂ν |∂Ω+ < 0.

Finally, let us show that uλ

‖uλ‖ → t0e2 in W 2,q(Ω), where q is chosen so large that W 2,q(Ω) ↪→ L∞(Ω) (see
the following section for more details). First of all, we get that uλ

‖uλ‖ ⇀ t0e2 in W 2,q(Ω) as λ → λ−
i . Indeed the

function vλ := uλ

‖uλ‖ − t0e solves the problem


 −∆vλ = λvλ + (λ − λi)t0e2 +

g(x, uλ)
‖uλ‖ in Ω,

u = 0 on ∂Ω.

By the regularity inequality of Calderón-Zygmund (see [22], Th. B.2) and by assumption (g2) we get

‖vλ‖2,q ≤ C

(
λi‖vλ‖q + a

‖uλ‖s
qs

‖uλ‖ + (λi − λ)‖t0e2‖q

)
(2.4)

for some universal constant C > 0. By (c) of Theorem 2.1 ‖uλ‖s
qs ≤ c1‖uλ‖s for some c1 > 0 independent

of λ and also ‖vλ‖q is bounded; therefore also ‖vλ‖2,q is bounded. Thus we can assume that uλ

‖uλ‖ ⇀ t0e2 in
W 2,q(Ω). But then vλ → 0 in W 1,q(Ω), so that (2.4) implies that vλ → 0 in W 2,q(Ω). �

Concerning the symmetry result, we will specialize the class of nonlinearities, assuming

(̃g1): g : Ω × R −→ R is of class C1 and there exist b ∈ Lq(Ω) and p ≥ 1 such that

|gt(x, t)| ≤ b(x)|t|p ∀t ∈ R and for a.e. x ∈ Ω.

Here q ≥ 1 if N < 3 and q = N/2 if N ≥ 3.

Theorem 2.2. Let Ω be a bounded domain of R
2 which is convex and symmetric w.r.t. two orthogonal directions,

say the xi-directions, i = 1, 2. Assume (̃g1)–(g2)–(g3)–(g4) and g(x1,−x2,−s) = −g(x, s) for any s ∈ R and
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for a.e. x ∈ Ω. Then there exists τ ′
2 ≤ τ2 such that ∀λ ∈ (λ2 − τ ′

2, λ2), any solution uλ of problem (1.2) found
in Theorem 2.1 satisfies uλ(x) = −uλ(x1,−x2).

3. Proof of Theorem 2.1

Let us introduce the C1 functional fλ : H1
0 (Ω) −→ R defined by

fλ(u) =
1
2

∫
Ω

|Du|2 dx − λ

2

∫
Ω

u2 dx −
∫

Ω

G(x, u) dx,

whose critical points are the solutions of problem (1.2).
Let us denote by uλ one of the two families of solutions to (1.2) found in [19] with the property that fλ(uλ) → 0

as λ → λi, i ≥ 2.
The proof of Theorem 2.1 will be given in several steps.

First step. uλ → 0 in H1
0 (Ω).

Proof. Since uλ solves (1.2), we have

∫
Ω

Duλ · Dv dx − λ

∫
Ω

uλv dx −
∫

Ω

g(x, uλ)v dx = 0 ∀v ∈ H1
0 (Ω), (3.5)

and in particular ∫
Ω

|Duλ|2 dx − λ

∫
Ω

u2
λ dx −

∫
Ω

g(x, uλ)uλ dx = 0. (3.6)

In this way

fλ(u) =
∫

Ω

[
1
2
g(x, uλ)uλ − G(x, uλ)

]
dx ≥

(µ

2
− 1

)∫
Ω

G(x, uλ) dx > 0.

But fλ(uλ) → 0 as λ → λi, and so
∫

G(x, uλ) → 0 as λ → λi, which implies

uλ −→ 0 in Lµ(Ω)

by (g4). Therefore, also uλ → 0 strongly in H1
0 (Ω). In fact

fλ(uλ) =
1
2

∫
Ω

|Duλ|2 dx − 1
2
λ

∫
Ω

u2
λ dx −

∫
Ω

G(x, uλ)uλ dx,

and passing to the limit we get
‖uλ‖ → 0. (3.7)

�

We can now assume that there is u ∈ H1
0 (Ω) such that uλ/‖uλ‖ ⇀ u in H1

0 (Ω).

Second step. u solves −∆u = λiu in H1
0 (Ω).

Proof. If v ∈ H1
0 (Ω), (3.5) gives

∫
Ω

Duλ

‖uλ‖ · Dv dx − λ

∫
Ω

uλ

‖uλ‖v dx =
∫

Ω

g(x, uλ)
‖uλ‖ v dx. (3.8)



514 D. MUGNAI

The growth assumption (g2), Hölder and Sobolev inequalities imply

∣∣∣∣
∫

Ω

g(x, uλ)
‖uλ‖ v dx

∣∣∣∣ ≤ a

∫
Ω

|uλ|s
‖uλ‖|v| dx ≤ c‖uλ‖s−1‖v‖

L
2∗

2∗−s
,

where c > 0 is independent of uλ.
In this way, passing to the limit in (3.8),

∫
Ω

Du · Dv dx = λi

∫
Ω

uv dx ∀v ∈ H1
0 (Ω), (3.9)

i.e. u solves −∆u = λiu in H1
0 (Ω), and so there exists t0 ∈ R such that u = t0ei, where ei ∈ Eλi (see

Th. 2.1). �

Third step. uλ/‖uλ‖ → t0ei strongly in H1
0 (Ω), as λ → λi, where t20 = 1

λi
.

Proof. Equation (3.6) and (g2) imply that

1 = lim
λ→λi

∫
Ω

|Duλ|2
‖uλ‖2

dx = λi

∫
Ω

u2 dx.

In fact, ∣∣∣∣
∫

Ω

g(x, uλ)
‖uλ‖ uλ dx

∣∣∣∣ ≤ a

∫
Ω

|uλ|s+1

‖uλ‖ dx ≤ c1‖uλ‖s−1

by Hölder and Sobolev inequalities, c1 = c1(Ω, N) > 0 being independent of uλ.
But equation (3.9) implies that

λi

∫
Ω

u2 dx =
∫

Ω

|Du|2 dx,

so that ‖u‖ = 1 and then the convergence is strong.
The last equation gives the possible values of t0. �

Now, let us prove the following preliminary result.

Proposition 3.1. Assume N ≤ 5 and one of the following hypotheses:
• s < 4 if N = 3;
• s < 2 if N = 4;
• s < 4

3 if N = 5.

Then uλ ∈ C(Ω) and there exist τi > 0 and C = C(Ω, N, i) > 0 such that ∀λ ∈ (λi − τi, λi)

‖uλ‖∞ ≤ C‖uλ‖.

Proof. Since Ω is of class C2, it is a classical fact (see for example [22], Lem. B.3 and below) that any solution
u of (1.2) belongs to C(Ω). In order to get the L∞ − H1

0 estimate, let us note that u ∈ W 2,q(Ω), provided
λu + g(x, u) ∈ Lq(Ω), and there exists C > 0 such that

‖u‖W 2,q ≤ C‖λu + g(x, u)‖Lq . (3.10)

Of course (g2) implies that λu + g(·, u) ∈ Lq(Ω) if λ|u| + a|u|s ∈ Lq(Ω). Moreover

‖λu + a|u|s‖q ≤ λ‖u‖q + ‖|u|s‖q = λ‖u‖q + ‖u‖s
qs
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and by Sobolev inequality

≤ γ
(
‖u‖ + ‖u‖s

)
,

provided qs ≤ 2∗, and γ > 0 is a constant depending on Ω, N , q and i.
Since ‖uλ‖ → 0 as λ → λi, there exists τi > 0 such that ‖uλ‖ ≤ 1 ∀λ ∈ (λi − τi, λi), so that for such λ’s

‖uλ‖s ≤ ‖uλ‖. Therefore, (3.10) and the estimate above imply the existence of a constant C1 = C1(Ω, N, q, i) > 0
such that

‖uλ‖W 2,q ≤ C‖uλ‖ ∀λ ∈ (λi − τi, λi).

If
1
q
− 2

N
< 0,

Morrey’s embedding theorem guarantees that

‖uλ‖∞ ≤ C2‖uλ‖W 2,q ,

where C2 is a universal constant.
Therefore we require q > N

2 in order to get

‖uλ‖∞ ≤ C3‖uλ‖

for some C3 > 0 depending on Ω, N, q and i.
Of course, if N = 1 or N = 2, it is clear that any q large enough can be found.
If N = 3 one has to choose 3

2 < q ≤ 6
s , which is solvable only if s < 4.

If N = 4 one has to choose 2 < q ≤ 4
s , which is solvable only if s < 2.

If N = 5 one has to choose 5
2 < q ≤ 10

s , which is solvable only if s < 4
3 ·

If N ≥ 6 it is clear that the system N
2 < q ≤ 2∗

s cannot be solved. �

However, some refinements of the considerations above can be done invoking Moser’s iteration technique (see
[18]) and its development due to Brezis and Kato (see [9]). Therefore we now generalize Proposition 3.1 to get
the following general L∞ − H1

0 estimate, after remarking again that uλ ∈ C(Ω). In this way Theorem 2.1 will
be completely proved.

Proposition 3.2. Under the assumptions of Theorem 2.1, there exist τi > 0 and C = C(Ω, N, i) > 0 such that
∀λ ∈ (λi − τi, λi), uλ ∈ C(Ω) and

‖uλ‖∞ ≤ C‖uλ‖.
Proof. Let us rewrite the equation −∆u − λu = g(x, u) as

−∆u = α(x)(1 + |u|), (3.11)

where

α(x) :=
λu(x) + g(x, u(x))

1 + |u(x)| ·

By standard regularity results, any solution in H1
0 (Ω) of (3.11) belongs to Lq(Ω) for any q ∈ [1,∞). Such a

result is based on the classical iteration technique

if u ∈ L2(qj−1+1)(Ω) ⇒ u ∈ L2(qj+1)(Ω),

where

qj + 1 = (qj−1 + 1)
N

N − 2
, j ≥ 1 and q0 = 0, (3.12)



516 D. MUGNAI

which provides the following estimate for any qj < ∞ (for example, see [22], Lem. B.3):

∫
Ω

|D|u|qj+1|2 dx ≤ Cqj (1 + c∗)
1
2 − q2

j

4(qj+1)2

, (3.13)

where
Cqj = max

{
‖α‖N

2
|Ω| N

N−2 , 3‖u‖2qj+2
2qj+2

}
(3.14)

and c∗ ≥ 0 is such that ∫
{|α|>c∗}

|α|N/2 dx ≤ 1
24

·

More precisely, one proves that |u|qj−1+1 ∈ H1
0 (Ω) ↪→ L2∗

(Ω), and then u ∈ L
2N(qj−1+1)

N−2 (Ω) ∀j. This implies
that u ∈ Lq(Ω) ∀q < ∞. In this way, by the Calderón–Zygmund inequality (see [22], Th. B.2), u ∈ W 2,q(Ω)
∀q < ∞ and

‖u‖W 2,q ≤ C(q)‖λu + g(·, u)‖q. (3.15)

If q is sufficiently large (2q > N), W 2,q(Ω) ↪→ C(Ω) and there exists C̃q > 0 such that

‖v‖∞ ≤ C̃q‖v‖W 2,q ∀v ∈ W 2,q(Ω). (3.16)

Thus, by (3.15) and (3.16), there exists C1(q) > 0 such that

‖u‖∞ ≤ C1(q)‖λu + g(·, u)‖q. ≤ C1(q)
(
λi‖u‖q + a‖u‖s

qs

)
. (3.17)

If qs ≤ 2∗, then ‖u‖q, ‖u‖qs ≤ C‖u‖, where C is independent of u. But ‖u‖ → 0 as λ → λi, so that there
exists τi > 0 such that ‖u‖s ≤ ‖u‖ for any λ ∈ (λi − τi, λi) and from (3.17) the Proposition is proved (this is
essentially the case of Prop. 3.1).

If qs > 2∗, first we observe that ‖u‖q ≤ C(Ω)‖u‖qs, C(Ω) being independent of u, so that it will be enough
to estimate ‖u‖qs in terms of ‖u‖.

First of all, note that if u ∈ H1
0 (Ω) ∩ L∞(Ω) and r > 2∗, then
∫

Ω

|u|r dx ≤ ‖u‖r−2∗
∞ ‖u‖2∗

2∗ ≤ γ‖u‖r−2∗
∞ ‖u‖2∗

by Sobolev theorem, so that

‖u‖r ≤ C1‖u‖1− 2∗
r∞ ‖u‖ 2∗

r , (3.18)

where C1 > 0 is independent of u.
Therefore, (3.17) and (3.18) imply

‖u‖∞ ≤ Ci(‖u‖qs + ‖u‖s
qs) ≤ C′

i

(
‖u‖1−2∗

qs∞ ‖u‖ 2∗
qs + ‖u‖s(1− 2∗

qs )
∞ ‖u‖ 2∗

q

)
, (3.19)

where Ci, C′
i > 0 are independent of u, but depend on i.

If one proves that
‖uλ‖∞ → 0 as λ → λ−

i , (3.20)

then

‖uλ‖s(1− 2∗
qs )

∞ ≤ ‖uλ‖1− 2∗
qs∞ .

Moreover, ‖uλ‖ → 0, and then ‖uλ‖ 2∗
q ≤ ‖uλ‖ 2∗

qs for every λ in a suitable left neighborhood of λi, say (λi−τi, λi).
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In this way (3.19) implies

‖uλ‖∞ ≤ C′
i

(
‖uλ‖1− 2∗

qs∞ ‖uλ‖ 2∗
qs + ‖uλ‖1− 2∗

qs∞ ‖uλ‖ 2∗
qs

)
,

that is

‖uλ‖
2∗
qs∞ ≤ C′′

i ‖uλ‖ 2∗
qs

for some C′′
i > 0 independent of uλ, so that the thesis follows.

Therefore, in order to conclude, we only need to prove (3.20). Its proof consists in a standard bootstrap
argument based on inequality (3.13). This leads to an estimate which is less interesting than the one stated in
the Proposition, but is enough to prove the main result. In fact, such a bootstrap argument gives an inequality
of the form

‖uλ‖∞ ≤ C‖uλ‖δ (3.21)

for some C > 0 and δ ∈ (0, 1) independent of u and for any λ ∈ (λi − τi, λi), and this is enough to prove (3.20)
thanks to (3.7). The proof of (3.21) is classical and we only sketch it for the sake of completeness.

From (3.17) it is enough to estimate ‖uλ‖q and ‖uλ‖qs in terms of ‖uλ‖. To this aim, take q so large that
qs > N , so that W 1,qs

0 (Ω) ↪→ C(Ω) and there exists c = c(N, q, s) > 0 such that

‖v‖∞ ≤ c‖Dv‖qs for every v ∈ W 1,qs
0 (Ω). (3.22)

Let j ∈ N be such that qs ≤ 2N(qj+1)
N−2 , where qj is as in (3.12) and (3.13). In this way, we will apply (3.22) to

the function |u|qj+1, and from (3.13) we get

‖u‖∞ ≤ c1


 Cqj (1 + c∗)

1
2 − q2

j

4(qj+1)2




1
2qj+2

for some c1 = c1(N, q, s) > 0. Thus, to get (3.21), in view of (3.14) it is enough to estimate ‖α‖N
2

and ‖u‖2qj+2

in terms of powers of ‖u‖.
First observe that

‖α‖N
2
≤ λi

∣∣∣∣
∣∣∣∣ u

1 + |u|
∣∣∣∣
∣∣∣∣

N
2

+ a‖|u|s−1‖N
2
. (3.23)

Since s < 2∗ − 1, we get (s − 1)N
2 < 2∗ and by Sobolev inequality

‖|u|s−1‖N
2
≤ γ‖u‖s−1 (3.24)

for some universal constant γ.
As for

∣∣∣∣∣∣ u
1+|u|

∣∣∣∣∣∣
N
2

, if N ≤ 6 we have

∫
Ω

( |u|
1 + |u|

)N/2

dx ≤
∫

Ω

|u|N/2 dx,

and N/2 ≤ 2∗, so that Sobolev inequality gives
∣∣∣∣∣∣ u

1+|u|
∣∣∣∣∣∣

N
2

≤ γ′‖u‖. In the case N > 6, note that for any

ε ∈ (0, 1), it holds

1 + |u| ≥ 1
εε(1 − ε)1−ε

|u|ε = C−1
ε |u|ε,
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where we have set
Cε = εε(1 − ε)1−ε.

Since N ≥ 7, one can take

ε ∈
[
1 − 4

N − 2
, 1 − 2

N

]
, (3.25)

so that ∫
Ω

( |u|
1 + |u|

)N/2

dx ≤ C−1
ε

∫
Ω

|u|(1−ε)N/2 dx.

By (3.25),
1 ≤ (1 − ε)N/2 ≤ 2∗,

and by Sobolev inequality ∫
Ω

( |u|
1 + |u|

)N/2

dx ≤ C̄‖u‖(1−ε)N/2, (3.26)

for some C̄ > 0 independent of u.
Finally, (3.23), (3.24) and (3.26) imply the existence of a constant M = M(Ω, λi) > 0 independent of u such

that
‖α‖N

2
≤ M(‖u‖s−1 + ‖u‖ + ‖u‖(1−ε)N/2).

Concerning the norm ‖u‖2qj+2 appearing in (3.14), if 2qj + 2 ≤ 2∗ it can be estimated directly by ‖u‖. If
2qj + 2 > 2∗, we can rewrite the analogous of (3.13) for qj−1 + 1, that is

∫
Ω

|D|u|qj−1+1|2 dx ≤ Cqj−1 (1 + c∗)
1
2 − q2

j−1
4(qj−1+1)2

, (3.27)

so that by Sobolev inequality and (3.12), we can estimate ‖u‖2qj+2 in terms of the left hand side of (3.27). If
qj−1 + 1 ≤ 2∗ we conclude. Otherwise, after a finite number of steps we are reduced to estimate uqj−k+1(Ω) in
terms of powers of ‖u‖ for some k ∈ N and the usual bootstrap argument applies.

Finally, since ‖uλ‖ ≤ 1 ∀λ ∈ (λi − τi, λi), (3.21) follows. �

4. Proof of Theorem 2.2

In this section, we will always assume assumptions (̃g1), (g2), (g3) and (g4).

Lemma 4.1. Assume that Ω is symmetric w.r.t. the j–th axis, 1 ≤ j ≤ N , that g(x1, . . . ,−xj , . . . , xn,−s) =
−g(x, s), and that u solves (1.2). Then also u(x) := −u(x1, . . . ,−xj , . . . , xn) solves (1.2).

Note that such a symmetry on g leads to the existence of infinitely many solutions to problem (1.2) (see, for
example, [21]).

Proof. Let ϕ ∈ H1
0 (Ω). Then

∫
Ω

Du · Dϕdx −
∫

Ω

[
λu − g(x, u)

]
ϕdx (change xj �→ −xj) =

∫
Ω

Du · Dϕ(x1, . . . ,−xj , . . . , xn) dx

−
∫

Ω

[λu − g(x, u)]ϕ(x1, . . . ,−xj , . . . , xn) dx = 0,

since u is a solution of (1.2). �



ELLIPTIC EQUATIONS NEAR AN EIGENVALUE 519

Now set
Uλ(x) := uλ(x) − uλ(x).

We will prove Theorem 2.2 by proving the following final

Lemma 4.2. Under the assumptions of Lemma 4.1, if every element in Eλi (see Sect. 2) has only one nodal
line, which is not closed, then there exists τ ′

i ∈ (0, τi] such that Uλ ≡ 0 for any λ ∈ (λi − τ ′
i , λi).

Remark 4.1. The assumption “every element in Eλi has only one nodal line, which is not closed” is of course
satisfied when i = 2 and the Courant Nodal theorem holds.

Proof of Lemma 4.2. Assume by contradiction that Uλ �≡ 0. Of course Uλ → 0 in H1
0 (Ω) and uniformly as a

consequence of (3.7) and of Proposition 3.2. Now, we prove that, along sequences, Uλ/‖Uλ‖ → ± 1√
λi

ei. Indeed
we can assume that Uλ/‖Uλ‖ ⇀ U in H1

0 (Ω) and a.e. in Ω as λ → λi. By Lemma 4.1, Uλ solves{ −∆Uλ − λUλ = g(x, uλ) − g(x, uλ) in Ω

Uλ = 0 on ∂Ω.

Thus, if ϕ ∈ H1
0 (Ω), ∫

Ω

DUλ

‖Uλ‖ · Dϕdx − λ

∫
Ω

Uλ

‖Uλ‖ϕdx =
∫

Ω

g(x, uλ) − g(x, uλ)
‖Uλ‖ ϕdx. (4.28)

By the Mean Value theorem, there exists vλ with values between uλ and uλ such that

|g(x, uλ) − g(x, uλ)| ≤ |gt(x, vλ)||Uλ|.

By assumption (̃g1),

|gt(x, vλ)||Uλ| ≤ b(x)|vλ|p|Uλ| ≤ 2p−1b(x)(‖uλ‖p
∞ + ‖uλ‖p

∞)|Uλ|.

Therefore, (4.28) implies that U solves −∆U = λiU in H1
0 (Ω). Indeed,∣∣∣∣

∫
Ω

g(x, uλ) − g(x, uλ)
‖Uλ‖ φdx

∣∣∣∣ ≤ 2p−1(‖uλ‖p
∞ + ‖uλ‖p

∞)
∫

Ω

b(x)
|Uλ|
‖Uλ‖ |φ| dx

≤ 2p−1(‖uλ‖p
∞ + ‖uλ‖p

∞)
‖Uλ‖2∗

‖Uλ‖ ‖b‖N/2‖φ‖2∗ ,

and since uλ → 0 uniformly, the assertion is proved, for ‖Uλ‖2∗ ≤ γ‖Uλ‖ by Sobolev inequality (we wrote the
estimates in the case N ≥ 3, the case N < 3 being analogous). Thus there exists t ∈ R such that U = tei. But
from (4.28) we also get

∫
Ω

|DUλ|2
‖Uλ‖2

dx − λ

∫
Ω

U2
λ

‖Uλ‖2
dx =

∫
Ω

g(x, uλ) − g(x, uλ)
‖Uλ‖2

Uλ dx.

Reasoning as above, ∣∣∣∣
∫

Ω

g(x, uλ) − g(x, uλ)
‖Uλ‖2

Uλ dx

∣∣∣∣ ≤ 2p−1(‖uλ‖p
∞ + ‖uλ‖p

∞)
‖Uλ‖2

2∗

‖Uλ‖2
‖b‖N/2.

Thus, passing to the limit,

1 = λi

∫
Ω

U2 dx
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and therefore ∫
Ω

|DU |2 dx = λi

∫
Ω

U2 dx = 1,

so that Uλ/‖Uλ‖ → U strongly in H1
0 (Ω) and t = ± 1√

λi
·

Thus there exists e ∈ Eλi such that

Uλ

‖Uλ‖ −→ 1√
λi

e in H1
0 (Ω) and a.e. in Ω. (4.29)

Since e changes sign and its nodal line is not closed, and since Ω is symmetric w.r.t. every xj -axes, there
exists x = (x1, . . . , xN ) ∈ Ω and j ∈ {1, . . . , N} such that e(x) > 0 and e(x̄) < 0, where we set x̄ =
(xi, . . . ,−xj , . . . , xN ). Moreover, by (4.29), we can also suppose that

Uλ(x)
‖Uλ‖ → 1√

λi

e(x) > 0 (4.30)

and
Uλ(x̄)
‖Uλ‖ → 1√

λi

e(x̄) < 0. (4.31)

If λ is sufficiently close to λi, by (4.30) we would have

uλ(x) > uλ(x) = −uλ(x1, . . . ,−xj , . . . , xn) (4.32)

and by (4.31)
uλ(x1, . . . ,−xj , . . . , xn) < uλ(x) = −uλ(x). (4.33)

Therefore, (4.32) and (4.33) give uλ(x) > uλ(x) and a contradiction arises.
Then Uλ ≡ 0. �

We are now able to conclude.

Proof of Theorem 2.2. By assumption g(x1,−x2,−s) = −g(x, s), so that Lemma 4.1 implies that both uλ(x1, x2)
and −uλ(x1,−x2) solve problem (1.2). By Theorem 1.2 in [11], since Ω ⊂ R

2 is convex and symmetric w.r.t.
x1 and x2, any second eigenfunction of −∆ in H1

0 (Ω) changes sign exactly once and the eigenspace associated
to λ2 is spanned by eigenfunctions each of which is odd in one variable and even in the other one; thus any
linear combination of them has its nodal line intersecting ∂Ω. Then, by Lemma 4.2 applied for i = N = 2, if
λ ∈ (λ2 − τ ′

2, λ2) we get uλ(x1, x2) = −uλ(x1,−x2). �
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