ESAIM: COCV ESAIM: Control, Optimisation and Calculus of Variations
July 2005, Vol. 11, 357-381
DOI: 10.1051/cocv:2005010

VECTOR VARIATIONAL PROBLEMS AND APPLICATIONS TO OPTIMAL
DESIGN

PABLO PEDREGAL!

Abstract. We examine how the use of typical techniques from non-convex vector variational problems
can help in understanding optimal design problems in conductivity. After describing the main ideas of
the underlying analysis and providing some standard material in an attempt to make the exposition
self-contained, we show how those ideas apply to a typical optimal desing problem with two different
conducting materials. Then we examine the equivalent relaxed formulation to end up with a new
problem whose numerical simulation leads to approximated optimal configurations. We include several
such simulations in 2d and 3d.
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1. INTRODUCTION

We would like to review recent progress that has been made in the understanding and applicability of vector
variational problems to several contexts in science and engineering. Our discussion is expository as we pretend
to convey the main ideas without providing full proofs of facts which, on the other hand, are well-known and
can be found in several places. Yet statements have been written down with care, and precise references are
given.

We will start by briefly commenting on three situations to place our ideas in perspective, although we will
particularly concentrate on optimal design problems. There are important different ingredients among those
situations but they also share many common features. We would like to explore how a single, unified framework
may help in treating all of them, emphasizing at the same time the relevance of their differences. All of those
situations can be stated and considered under the form of the paradigmatic problem of the Calculus of Variations

Minimize in w: I(u) = /QW(:L’, u(z), Vu(r)) de

subject to appropriate further requirements on the competing vector fields u. The vector character is related
to dimensions. We take 2 to be a regular, bounded domain in RY (typically N =2 or 3), u: Q — R™ has m
components so that Vu is an m x N matrix. Finally

W:QxR™ x M™N  R* = RU {400}
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358 P. PEDREGAL

is the integrand characterizing our problem. We will identify this general problem as (P). Specific properties
(and obviously the particular form) of the integrand W may lead to different ways of analyzing (P).

If we classify variational problems like (P) according to the criterium of how the value +oo is taken on by
integrands, we may distinguish three types of problems:

1. The standard academic situation where
W: QxR x M™N LR

so that W always takes on finite values, it is a Carathéodory function and even
1
[A]" = = < W(z,u,A) < C(JAP +1) (1.1)
c

for some p > 1, and 0 < ¢ < C. Several important variants can be considered depending on whether
the exponents of the lower and upper bounds are different and what their relationship to dimensions is.
2. Nonlinear elasticity where N =m = 3 or 2,

W:QxR™xM™Y 5 R* = RU{+o0}
and the finite set for W is
Fw = {(x,u,A) eQxRY xMNXN:detA>O}.

Yet W is still a Carathéodory function in the sense that it is continuous on the pairs (u, A) and hence
the value o0 is taken on continuously. Even further the form of W in nonlinear elasticity typically is

W(z,u, A) = W(z, A) — F(z,u),

for appropriate densities W and F.
3. Optimal design where again N =2 or 3 but m = jN with j =1 or 2,

W:QxR™x M™N - R* = RU {400}

and the finite set for W is now a union of two (or more) manifolds in the space of matrices possibly
depending on the other variables (z,u). The interesting (and difficult) feature of W is now that the
value +o00 is taken on abruptly. Still W restricted to its finite set is a Carathéodory integrand. When
we say that an integrand W taking on thevalue +o0o somewhere is a Carathéodory function, we mean
that the restriction to its finite set is continuous on the (u, A) variables and measurable on z.

These same considerations apply to integrands V occurring inintegral constraints that must be respected,
although it suffices to have the appropriate coercivity for one of the two integrands, either W or V. When an
integrand as in 2. or 3. above is said to be coercive, we mean that only the lower bound in (1.1) is required

1
|A]P — o< W(z,u, A)

for ¢ > 0, p > 1. Typically, W will be coercive and then we only need V to be bounded from below.

Since the first two cases are classical situations [5,7,18,19], many of whose formal ingredients are rather well
understood, we will dwell a bit on explaining in a typical, non-trivial but as simple as possible example, the
third situation. This discussion is taken from [35].

Suppose we have at our disposal two conducting materials with conductivities o, 8 so that 0 < a < g and,
given a design domain Q C R?, we would like to decide where to place the two materials so as to fill out all
of Q in such a way that a certain cost functional J is minimized. J will explicitly depend on the underlying
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electric field of the mixture of the two conducting materials; namely, if we solve the equilibrium equation of
conductivity

—div (ax(z) + B(1 - x(2))Vu(@) =g in

u=ug on O,

then
() = / Vu(z)? dr.

Here the functions ¢ and ug are data of the problem and thus known. We could write down a much more general
integrand for thecost functional depending on all the variables (z,u, Vu,x) but since for this particular case
our analysis can be carried out infull, we will restrict attention to this example. Notice that we have written
J(x) to emphasize that the characteristic function y is the true design variable: it tells us where to put the
a-material. The amount of this material at our disposal is restricted so that

JRELEY
Q

and to € (0,1) is given. Altogether, we would like to
Minimize in x :  J(x) = / Vu(z)]? dz
Q

subject to

—div (ax(z) + B(1 - x(2))Vu(@) =g in

u=ug on O,
/ x(z)dx < to]9Q].
Q

We can interpret this design problem as deciding where to place both materials so as to minimize the mean
quadratic deviation from the zero vector field.

The reformulation of our problem starts with the realization that this equilibrium equation is equivalent
(under the assumption of simple-connectedness of ) to the existence of a potential (stream function) v such
that

(ax(z) + B = x(2)))Vu(z) + TVu(z) + G(z) =0, =€,
where T is the 7/2, counter-clockwise rotation in the plane and G is any vector field such that divG = g. Recall

that Q C R2. In this case we can alternatively use as design variables the pair of vector fields (u,v) satisfying
the additional, important, pointwise restriction

aVu(z) +TVu(z) + G(x) =0 or pVu(z)+TVu(x)+ G(z) =0, (1.2)

for a.e. = € Q. Notice how we can go from an admissible y to such a pair (u,v); and conversely, from a pair
(u,v) verifying (1.2) to an admissible y. Our aim now is to rewrite the optimal design problem in terms of these
pairs (u,v) instead of .

To this end, collect both u and v in a single vector variable U = (U™, U®)) (u is identified with the first
component UM while v is identified with U (2)). Define the two integrands

W,V : M**? - R*=RU{+oc0},
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by putting

2 .
W(Z;A) - {|A(1)‘ ? lfAeAavaAﬁvx’
~+00, else,

1/ |Q| Y lf A E ACM,QM
V(z, A) = {0, ifA € A,

400, else,

Ay o= {A € M2 AW + TAD 4 G(z) = 0} , Y=aorp.

Then it is elementary to convince ourselves that the original optimal design problem is equivalent to the vector
variational problem

Minimize in U :  I(U) = / Wz, VU(z)) dx
Q
subject to

UecHY (Q), UY=uy ondQ, / V(x, VU (2))dz < to.
Q

This final, explicit reformulation of the optimal design problem complies with the form of our model problem (P):
Minimize inu € A: I(u) = / W (z,u(x), Vu(zx)) dz,
Q

where the class of competing fields A is appropriately defined for each particular situation.

This sort of optimal design problems involving fine mixtures of the constituents have been addressed by
homogenization techniques. See [1] for a nice, recent account on this. See also [40]. [13] is a reference for the
more applied part of homogenization to engineering. In particular, the same problem we have described was
proposed in [39] as a model problem to test homogenization techniques when cost functionals depend explicitly
on Vu. [17] is an advanced book where a systematic treatment of unbounded functionals of the type we are
here considering can be found.

Whenever we have to face a problem (P) for a particular situation of the type described above, our main
interest is to know the structure and features of some (ideally all) minimizing sequences including minimizers
when they exist. Thisis a formal way of saying that we would like to know (all of) the optimal behavior for
problem (P). That is our goal, and all of our efforts are directed towards this aim. A generalapproach proceeds
as follows.

We need to ensure, to begin with, that there are minimizing sequences for which the cost is finite and not
arbitrarily close to —co. For that we assume that the functional I(w) in problem (P) is not identically 400 and
thatthe integrand W is bounded from below by some constant. Let m stand for

m=inf{I(u):ue€ A} €R,

where A is, as indicated, the set of all admissible vector fields for (P). A incorporates all kinds of restrictions to
be respected by admissible u ’s including boundary conditions as well as integral constraints. We can therefore
consider minimizing sequence {u;} C A such that I(u;) N\, m. At this point we need some sort of compactness
principle to detect a “limit object” from (possibly a subsequence of) {u;} so that we can say something about
the relationship between I(u;) and its limit m in terms of this new object. We know that when A is a subset
of some Sobolev space, weak limits can be found under suitable uniform bounds in norm for the sequence {u;}.
However there is no a priori relationship between I(u;) and I(u) because A could even fail to be weakly closed
so that there is no guarantee that u € A. Young measures are tailored to be precisely these limit objects to
describe the limit of (nonlinear) integral functionals.
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Theorem 1.1 [6]. Let Q C RY be a measurable set andlet z; : Q@ — R™ be measurable functions such that

sup/ h(|z;]) dz < oo,
Jj Ja

where h : [0,00) — [0,00] is a continuous,nondecreasing function such that lim;_,o h(t) = oo.There exists a
subsequence, not relabeled, and a family of probability measures, v = {vytzeq (the associated Young measure)
depending measurably on x with the property that whenever the sequence {i(z,z;(x))} is weakly convergent
in LY(Q) for any Carathéodory function 1 (z,\) : Q x R™ — R*, the weak limit is the function

¢($) = w(%)\) dyl‘()\)'

R'nl,

The Young measure v = {v, }zeq is generated by the sequence {z;} but it is independent of .

Assume that we take z;j(x) = (u;(z), Vu;(x)) where {u;} is minimizing for our problem (P). If we wish to
apply the above theorem to be able to extract a subsequence with an associated Young measure, we need the
following coercivity on the integrand W

h(l(u, A)) < W(z,u, A)

for a function h as in Theorem 1.1. Then, possibly for a subsequence,

/W(x,uj(ac),Vuj(ac))dxﬂ// Wz, \, A)dv, (A, A) dz
Q Q JRmx MmN

if v = {vg }zeq is the Young measure associated with {z;}. But it is valid provided that {W (z, u;(x), Vu;(z))}
is weakly convergent in L'(€). This may not be true at all. All we know is that it is bounded in L'() because
{u;} has been chosen to be minimizing. Concentration effects are responsible for non-convergent, bounded
sequences in L*(£2) [9]. Even so, the right inequality is always true. This whole discussion applies to V as well,
the integrand for integral constraints, as V' is bounded from below.

Theorem 1.2 [33]. If{z;} is a sequence of measurable functions withassociated Young measure v = {vg}zecq,
then

1iminf/ w(m,zj(m))d:cZ/ Y(x, \) dvg (N) da,
E EJRm

Jj—o00
for every Carathéodory function 1, bounded from below,and every measurable subset E C 2.

In this way, we focus on Young measures associated with sequences {(uj, Vu;)} of bounded sequences in
Sobolev spaces. From now on, A will designate the family of Young measures associated with such sequences

when u; € A. We then realize that it is important to move our main interest from problem (P) to problem (P)
defined by

Minimize in v € A:  I(v) = / / W(z, A\, A)dvg (N, A) de (1.3)
(9] RmemXN

and A includes all Young measures corresponding to all possible sequences {(uj,Vu;)} where u; € A. In
particular, our main interest rests on those elements of A generated by minimizing sequences of (P). We suspect,
based on the above representation formula of integral quantities in terms of Young measures, that these might

be minimizers for (P). So we are convinced that our main goal in studying (P), that of understanding the
structure of its minimizing sequences, may more easily be achieved by examining (P) and hence we pursue the
analysis of this new problem. But we face a tremendous difficulty as we do not have the slightest idea about

what families of probability measures can enter into .4 and, equally important, how to extract from a minimizer
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of (P) a minimizing sequence of (P). The rest of this presentation is an attempt to (partially) answer these two
fundamental issues:

1. When does a given family of probability measures v = {v, },cq belong to A?
2. If v = {v; }zeq does belong to A and it is a minimizer for (1.3), how can one build a sequence of fields
u; € A generating v and minimizing for (P)?
We do not know how to solve these questions precisely and in full generality. All we have is some partial
answers which in a number of situations lead to important, and even complete, developments. A first step in
the understanding of A consists in realizing that the important part of v corresponding to {(uj, Vu,)} is the
one associated with the gradient part {Vu;}.

Theorem 1.3 [33]. Let z; = (uj,v;) : Q@ — R4 x R™ be a bounded sequence in LP(Q), p > 1, such that {u;}
converges strongly to u in LP(Q). If v = {vg }zcq is the Young measure associated with {z;}, then vy = 8y (2)® e
a.e. x € Q, where {z},cq is the Young measure corresponding to {v;}.

Because of this fact, we will identify henceforth A with the class of Young measures corresponding to se-
quences {Vu;} for u; € A and assume the coercivity

AP = 2 < Wiz a 4) (14)
C

c¢>0,p>1, for all (x, \).
Assume we have two classes of families of probability measures such that

A, cACA.

Suppose we know how to explicitly determine ﬁ*, without any reference:co A or to gradients, and how to build
generating sequences {u;} for the families of probability measures in A, so that u; € A and I(u;) — I(v),
v € A,. If the problem of deciding whether these different families, A, and Z*, are in fact the same is out of

reach (this is indeed the case), there is still something we can do about the analysis of (P). Consider a new,

generalized variational problem, which we will designate (P*),
Minimize in v € A" :  T(v).

Suppose vy is a minimizer for (ﬁ*), which may be relatively easy to find if we have a clear way of defining
elements in A" as indicated earlier. Suppose we are so lucky that such minimizer vy turns out to belong to A,.
Then we know how to construct generating sequences for vy and those will be minimizing for (P) thus providing
some optimal behavior for our initial optimization problem (P). If this is so, we will have (partially) succeded
in achieving our goal. Indeed, notice that if m* is the minimum for (F*) and vy € A" N A, is a minimizer for
this problem, then
T(VO) =m" <m<m,

if m and m are the minima (infima) for (P) and (P), respectively. On the other hand, because vy € A, and we
are assuming that we know how to build a sequence {u;} C A such that

I(U’J) \ T(Vo),

we will have that in fact
I(uj) \nm
and {u;} is a minimizing sequence. Finding such a minimizing sequence is our goal.
The aim of these pages is two-fold. On the one hand, to provide a more precise overview of the philosophy
delineated on the preceding paragraphs. On the other, to emphasize the peculiarities of such approach associated
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with the third situation described earlier in which integrands take on the value +o0o abruptly. Special attention
will be dedicated to optimal design problems and their variational reformulation, as we would like to show how
all this programme can and has been carried out in some interesting situations including the one described
earlier in two-dimensional conductivity. The typical academic problem has been the subject of much attention
since the pioneering work of Morrey [31,32]. See also [19,33]. Nonlinear elasticity has also received a lot of
attention [2,5,8,18,34]. In Section 2 we will explain the new families of measures A, and A" in the context of
the optimal design problem described earher as well as how generating sequences are constructed for families
of measures in A, and how elements in A are defined, respectively. We will also reserve some words for A.
We will then describe the strategy to solve (P ), and proceed to explain how minimizing sequences and optimal
distributions of materials for the initial optimal design problem can be found (Sect. 5).

2. THE CLASSES A~ AND A,

We would like to define A" by keeping some of the fundamental restrictions that a Young measure generated
by gradients should verify. Emphasis is placed on the gradient requirement as we know that this is not irrelevant
and must play a fundamental role. Our discussion will not mention many terms closely related to this subject
like weak lower semicontinuity, polyconvexity, characterization of gradient Young measures, Jensen’s inequality,
etc. [4,19,27,33].

The main feature of Young measures generated by gradients is contained in the following theorem. It is a
well-known result that establishes that subdeterminants commute with integration against a Young measure
generated by gradients.

Theorem 2.1. Let v = {v, }zeq be generated by {Vu;} where {u;} is a bounded sequence in WP(Q). Ifr < p,
then for any minor M of order r we have

M ( /MMN Adz/x(A)> - /MMN M(A) dv, (A).

This theorem itself is a direct consequence of a fundamental fact about weak continuity for minors [5, 38].

Lemma 2.2. If u; — u in WHP(Q), then M(Vu;) — M(Vu) in the sense of distributions whenever r < p
and r is the order of the minor (subdeterminant) M.

This weak convergence in the sense of distributions can be improved to weak convergence (with the same
limit M (Vu)) whenever the sequence {M(Vu;)} does converge in the weak sense. In this case, if we interpret
this weak continuity result in terms of associated Young measures we immediately get Theorem 2.1.

Finally, it simplifies the argument if we may rely on a localization result so that all of our assertions on the
classes of measures can be done in a pointwise fashion.

Lemma 2.3 [33]. Let v = {Vs}scq be a Young measure generated by a bounded sequence of gradients in
WP(Q). For a.e. a € Q and for any domain Q, there exists a bounded sequence in W'P(Q), {vq,;}, such that
the Young measure associated with {Vv,_ ;} is v, homogeneous (the same for all points in Q). Moreover each

Junction v, ; can be chosen in such a way that v, j — up@) € W,y P(Q), where up(z) is the linear function Fx
for Fe M™N ¢ e Q, and

F(a) = /M Ady,(A).

We can now explicitly define A" as the set of probability measures whose first moment is the gradient of a
function (that may not belong to A) and commute with all (or some) subdeterminants. Notice that we are
defining A by retaining some of the properties we know that Young measures generated by gradients should
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satisfy. Our hope is to have thus kept some of the key features of those families of probability measures. More
explicitly we can say that A" is defined by

1. polynomial growth:

/ / |A|P dvy(A)dz < 400, p > min{m,N};
Q JMmXN
2. compatibility throughout €2: there exists u € W1P(Q) such that

/ Advg(A) =Vu(z) for a.e. z € Q;
M’IILXN

3. commutation with weak continuous functions: for all (or some) minors M and a.e. z € Q

M (/mezv AdVa;(A)) = /MMXN M(A) dvy (A):

4. integral constraints if present:

/MWN Viz, 4)dvs(4) = H(z), /Qt(x) da < to.

The first requirement above comes from the coercivity Condition (1.4) for such exponent p while the last
condition corresponds to the volume integral constraint.

We now turn to defining the other class A.. This material is taken from [33]. To this aim, we recall a basic
but important construction. Let F; € M™*N i = 1,2, a € R™ and a unit vector n € RY be given in such a
way that

Fl—F2:a®n. (21)

If x: is the characteristic function of the interval (0,¢) in (0,1) extended by periodicity, the Young measure
associated with the sequence of gradients

Vuj(z) = Fo + x¢(jz - n)a®@n,

1 jrn
(o) = Far + / xi(s)dsa,

is
vy =v=1top, + (1 =t)0p,, z€Q, (2.2)
where  is any bounded domain in R" (Fig. 2.1). Therefore the probability measure v in (2.2) is a gradient
Young measure (generated by a sequence of gradients) for any ¢ € [0,1] provided the compatibility Condi-
tion (2.1) holds.
We can assume without loss of generality (this involves a basic, elementary fact about cut-off functions) that
uj —up € Wy™(Q), F = tF) 4+ (1 —t)F, and up(x) = Fx. Moreover Vu; takes on thevalues F; and Fy except

in small sets Ej, |E;| — 0. We would like to go one step further in this construction. Assume, in addition
o (2.1), that

By =toF{" + (1= to)) B, 1 € (0,1),
FV-F? =bwe, (2.3)

where b € R™, and e € R" is another unit vector. Let Qi be the part of {2 where Vu; = F;, ¢ =1,2. For j and ¢

)

fixed, based on the compatibility condition between FQ(I) and F2(2 , we can construct a sequence of gradients

{Vvii}, ’Uii —up, € VVO1 oo(Qf), whose values essentially alternate between F2(1) and F2(2) with preassigned
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FIGURE 2.1. A first-order laminate.

frequency ¢y € (0,1) and normal e to the layers. Let E,jj be the set where V’uii does not take either of the
two values F2(1) or FQ(Q). Choose k = k(j,4) in such a way that

ji
=

—0

C

7

as j — oo uniformly in ¢ = 1,2. Define

WD () = 4 UG T Eh,
uj(z), else.

This sequence {u()} is uniformly bounded in W*1°(Q2) and satisfies u/) —up € Wy (). The Young measure
associated with {Vu(j)} is

V= top + (1 —1t) (to(sFél) +(1- t0)5F2<2>) , (2.4)

homogeneous, the same for all points in the domain. The probability measure in (2.4) is a gradient Young
measure provided we have the compatibility Conditions (2.1) and (2.3). See Figure 2.2 for the structure of
those gradients.

It is not difficult to generalize this construction when a finite number of matrices is involved if we have the
rank-one condition satisfied in a recursive way. This basic construction has been referred to as “layers within
layers” in the literature and reflects intuitively the situation. It motivates the following definition.

Definition 2.4 [19]. A set of pairs {(¢;,Y;)},;; where t; > 0, >, t; = 1, ¥; € M™*¥ is said to satisfy
the (H;) condition if:
i) for I =2, rank (Y7 — Y3) < 1;
ii) if I > 2 and possibly after a permutationof indices, rank (Y7 — ¥2) < 1 and if we set
tq to
s1 =11 +t2, Z1=—Y1+ =Y,
S1 S1

si =tiv1, Zi=Yiy1, 2<i<I1-1,

then the set of pairs {(s;, Z;)};<;<,_; satisfies the (H;_;) condition.
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FIGURE 2.2. A second-order laminate.

An immediate consequence of our previous discussion is contained in the next statement.

Proposition 2.5. If {(ti,Yi)}, <<, satisfies the (H) condition, then the probability measure v =}, t;0y, is a
gradient Young measure.

We can even take weak * limits in the sense of measures for sequences of finite convex combinations of
Dirac masses verifying (H;) conditions. These weak limits will also be gradient Young measures: the argument
iselementary and involves taking diagonal sequences. Notice that in fact the set of homogeneous gradient Young
measures is weak * closed. This remark motivates the definition of laminates. For those readers not familiar
with the notion of weak * convergence of measures, these weak * limits can be interpreted as (H;) conditions
when [ — oco. In this case we talk about infinite order laminates.

Definition 2.6. Let v be a probability measure supported on M™* and let K = supp (v) be a compact set.
v is a laminate if there exists a sequence of sets of pairs {(t},Y;*)}, .., (k > 2), verifying the (H},) condition

such that 3", t%6y» = v in the sense of measures.
Proposition 2.7. Fvery laminate is a (homogeneous) gradient Young measure.

We see that the essential ingredient to build laminates is expressed in the (H;) condition, and the recursive
rank-one compatibility is the key requirement. A patching procedure allows us to build a global Young measure
generated by gradients from laminates at every point of the domain.

Lemma 2.8 [27]. Let v = {vy}zeq be a family of probability measures verifying the following requirements:

1. the first moment is a gradient
V() :/ Adve(A), uwe W (Q);
meN

2. every member of the family v,, for a.e. fized x € §, can be generated by a sequence of gradients (in
particular if each v, is a laminate);
3. integrability of the p-th power

/ / |A|P dv,(A)dz < +oo.
Q JMmXN
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Then there exists a bounded sequence {u;} in WYP(Q) such that v = {vy}seq is generated by {Vu;}. In
addition, the sequence {u;} can be chosen so that {|Vu;|’} is equiintegrable in .

When integrands behave like the p-th power at infinity, this patching procedure is a general result that allows
us to care just about the gradient requirement locally around each x € ). However, this is not so in general
when integrands take on infinite values as generating sequences of gradients must always take values on the
finite set of integrands. It is not enough that this happens for small sets. This is in fact an important property
of sets of matrices. Given a certain set of matrices A (e.g. the finite set for an integrand), and a gradient Young
measure v supported in such set, one interesting issue is whether one can find a generating sequence of gradients
{Vu,} supported on such set

{Vu; € A} =9 forall j
under additional restrictions related, for instance, to boundary values and/or integral constraints. It does not
suffice just to have
{Vu; €A} — 10| as j — oc,
as the smallness of the sets {Vu; ¢ A} might be compensated with high values of the integrand W over them
to yield a non-negligible contribution to the integral cost functional. Each such situation should be treated
carefully and separately. See [24].

We define A, as the set of probability measures whose first moment is the gradient of a function in WP(Q),
each individual member for a.e. x € €0 is a laminate and we have the appropriate integrability as stated in
Lemma 2.8. By our discussion, this is a subclass of the family of Young measures that can be generated by
gradients. Notice that in the situation of our optimal design problem A, C A" because A is a subset of the latter
(gradient Young measures belong to .71*) while it contains the former (laminates are gradient Young measures).
This issue can be much more delicate in other contexts.

Our general strategy is to study the generalized variational problem (ﬁ*) defined over ﬂ*, and hope that
we can find at least one optimal family of probability measures that is a laminate at every point satisfying all
additional requirements we ought to meet so that, through the patching procedure Lemma 2.8, we can build a
minimizing sequence for our original optimization problem (P) which is, after all, our main goal as stated in
the Introduction.

We then proceed to examine (P).

3. GENERALIZED MINIMIZERS

In this section we would like to describe the main ideas in exploring the variational problem (P*)
Minimize in v € A" :  T(v). (3.1)
For simplicity, although more general situations can also be handled, we will assume as in our model problem

in the Introduction that
W,V :Qx M™N _, R

so that we will drop the explicit dependence on the variable u. Recall that A" is the class of families of
probability measures v = {v, }rcq verifying these requirements:

1. polynomial growth:
/ / |A|P dvy(A)dz < 400, p > min{m,N};
Q M?ILXN
2. compatibility throughout €2: there exists u € W1P(Q) such that

/ Advg(A) = Vu(z) for a.e. x € (3.2)
MmXN
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3. commutation with weak continuous functions: for all (or some) minors M and a.e. = € £

M (/MWN Ad”x(A)> -~ /MWN M(A) dvy (A);

4. integral constraints if present:

/MMN V(a, A)dvs (A) = 1(x), /Qt(x) dz < to. (3.3)

Once we have very clearly stated the properties of competing families of probability measures, the next step
is to factor out the minimization process in (3.1) through their first moment, which is the gradient of a vector
field in W'?(Q), and the local integral constraint

Hz) = / V(a, A) dvy(A), / Hz) dz < .
M‘NLXN Q
If we let A™) stand for the set of pairs (u,t) such that (3.2) and (3.3) hold for some v € A", then we write
inf {7(1/) (Vv E ﬂ*} =

inf {inf {T(V) v e A", Vulr) = /MMN Advy(A), t(z) = /MMN Viz, A) dyx(A)}} .

(u,t)eAM)

More clearly, if for fixed (u,t) € A1) we denote

I(u,t) = inf {T(V) ve A, Vu(z) = /

MmXN

Adv,(A), t(x) = /

MmXN

V(z, A) dz/m(A)} )

then
inf {7(1/) TV E .7(*} = inf {f(u,t) s (u,t) € A(l)} .

It is interesting to point out that the functional T (u,t) is in fact local. This is a consequence of a more general
version of Lemma 2.3 that takes also into account the ¢-dependence (see [25] for a similar situation). It admits
therefore an integral representation of the type

I(u,t) = / CPW (x,Vu(x),t(zr))dx
Q
where the integrand is defined by

CPW (x,A,t) = inf {/M Wz, A)du(A) : p € Z;(:E,A,t)} (3.4)

mxN

and ﬂ;(x,A,t) designates the class of probability measures commuting with the chosen minors M in the
definition of .71*, having barycenter A and integral against V' (z,-) equal to ¢. The notation CPW has been
chosen because this integrand is known as the (constrained) polyconvexification of W. When the same scheme
is followed for the class A instead of A" the integrand that one obtains, CQW, is called the (constrained)
quasiconvexification of W and the fact that the infima of I and of I over the same class A coincide, is known
as a relaxation theorem [12,19, 25].
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We now comment on the outer minimization problem
inf {i(u,t) s (u,t) € A<1>} = inf {/ CPW (z, Vu(z), t(z)) dz : (u,t) € A<1>} : (3.5)
Q

This is a variational problem that looks like the original one we started with only with a different integrand
and a different set of competing functions. The explicit computation of I (u,t) should deliver a clear definition
of AWM,

This new variational problem is however very different from the original one unless CPW turns out to be
exactly W and no integral constraint is to be respected. This will be so if the initial integrand W was polyconvex
from the beginning. Our main result in this section establishes that all infima ocurring above are in fact minima
under coercivity assumptions on W [3].

Theorem 3.1. Suppose W and V' are Carathéodory functions as indicated earlier with

1
AP = £ S W (e, 4)

where ¢ > 0, p > min{m, N}, and V is bounded from below.

1. Whenever 7{3 (z, A, t) is non-empty, the infimum in (3.4) is attained (it is a minimum).
2. The variational problem (3.5) admits optimal solutions.

We are now ready to describe how this whole discussion supports the following procedure when trying to solve
our original variational problem which means to detect the structure of some minimizing sequences.

1. Solve explicitly, when possible, the problem of the (constrained) polyconvexification

CPW (z, A, 1) = min {/M W, A)dp(A) : € A, A, t)} .

mxXN

This requires to obtain the value CPW (z, A, t) as well as a measure minimizer, iz 4, in ﬂ;(ac, A,t) so
that
CPW( A ) = [ Wi, F)dnaclF),
Mm,XN
2. Determine the optimal pair, (U,T), of the problem

Minimize in (u,) € AD : / CPW (2, Vu(z), t(x)) da.
Q

Notice that A™M is the class of pairs (u,t) forwhich I (u,t) is finite. To deal with this step, we can use
the informationcoming from optimality conditions. Notice that this will be a system of PDE possibly
incorporating multipliers. We could alternatively try to directly approximate the minimizer or simplify
the problem in some other way.

3. For the optimal solution (U, T) of this regular variational problem, go back to the constrained polycon-
vexification and check whether the optimal measure ji, vy (2),7(2) 18 @ laminate for a.e. x €  and if
a sequence {u;} C A can be generated taking values on the finite set of W at every point in 2. Such
sequence is the target of all of our analysis as it will be minimizing for our original problem (P).

If the last step can be carried out, we have succeded in our endeavor. If not, we may have much information
but not quite what we were looking for. In fact, little can be done if this whole process fails. In some instances
the optimal measures 5 4+ found in the first step above are already laminates for all such pairs regardless of
the particular z-dependence.

For problems where optimal polyconvex measures are expected to be as simple as possible in the sense that
their support is just a few mass points, there is a great deal of hope that the process described will succeed.
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Indeed, the optimality requirement on these measures providing the polyconvexification has a lot to do with
their support being as small as possible. Sometimes it may be impossible to find the optimal solution U. In
many instances, all we are looking for is some extra information so that we can succeed in the final step of
showing that optimal polyconvex measures are indeed laminates all over the domain. In this case, one can often
setup a simpler variational problem encoding the behavior of minimizing sequences which can be approximated
numerically in a suitable way. Typically, the main step of this whole programme reduces to the more-or-less
explicit form of the constrained polyconvexification especially when some of the optimal measures turn out to
be laminates. When this is the case we end up with a new, equivalent variational problem which admits optimal
solutions. These optimal solutions together with the associated optimal measures encode all the ingredients to
reconstruct minimizing sequences for the original optimization problem.

This philosophy of retaining some of the key ingredients of gradient Young measures in an attempt to compute
quasiconvex hulls is the only known way to do so. It has been used in a number of interesting situations where
it has led to successful results. See some important examples in [10,14-16,20, 28,29].

We would like to treat the optimal design problem described earlier to show how this whole programme can
be applied and in some cases provide theclue to optimal behavior.

4. OPTIMAL DESIGN

We will describe one of the simplest situations where the approach described above can be carried out in full:
Minimize in x :  I(x) = / |Vu(z)|® dz
Q

subject to

—div (ax(z) + B(1 — x(x))Vu(z)) =divG in Q,

u=1uy on O0f,
/ x(z) dz < || to,
Q

where Q, ¢, G, up, 0 < a < 3, 0 < ty < 1 are the data set of theproblem. The cost functional can more
generally be taken as

I(x) = / Vu(z) - P)? de

for an arbitrary vector field P in L2(f2), but we will retain P = 0 for simplicity. Note that both dimensions m
and N are two so that we will work with the space of 2 x 2 matrices. This was proposed as a test problem
in [39] to examine how the ideas of homogenization could be pushed to treat an explicit dependence of the cost
functional on the field. It was later retaken in [26] and [30].

Let us recall the equivalent vector variational problem

Minimize in U :  I(U) = / W(z,VU(z))dx
Q

subject to
UeHYQ), UWD —uye H(Q), / V(x, VU (z))dz < to.
Q

The integrands for this variational problem are

Wi a)={ AO], i A€o UAss,
’ 400, else,
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where
Ay = {A € M2y AW £ TA® 4 G(z) = o} .
The integral constraint can be expressed through the integrand
1719, if A€ Ay,

V(z,A) =4 0, it Ae Mg\ Aass
400, else.

The main step of our programme is the computation of the constrained polyconvexification
CPW(x,F,t) = min{ W(z, A)dv(A) : v commutes with det,

.
/Mm Adv(A) = F, /M V(w, A) du(4) = t} |

The discussion that follows is essentially taken from [35,36]. Since the spatial variable z € Q can be regarded
as a parameter, and it is irrelevant from the point of the computation of CPW, to simplify notation we will
drop this dependence by assuming G = 0 in the arguments that follow. For a non-vanishing G, the formula for
CPW is obtained by an appropriate translation. Thus we will take

2
~+00, else,
A, = {A € M?*2 . AW £ 7A®) = o} ,

1/19Q], if A€ A,,
0, it AeAg\ Aqg,
400, else.

V(A)

In this situation CPW does not depend on z and for each pair (F,t), CPW (F,t) is computed by solving the
optimization problem

Minimize in v : / W(A)dv(A)
AQUAB
subject to

v =tvs + (1 — t)vg commutes with determinant,
Supp(V’Y)CA’W "}/:Ot,ﬂ,
P t/ Adva(A) + (1 - t)/ Adus(A).
Ao Ag

Notice how the integral constraint has been taken into account in the above decomposition for v.
Let us first examine the constraints. We introduce the following variables

Sy = /R A DN, v =a, 8, (4.1)

where 1/%1) is the probability measure resulting from the projection of v, onto the first row variable. On the

other hand if we let

sz/ Adv, (A)

o~
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we have that F., € A, (because A, is a 2-dimensional subspace) and F' = tF, + (1 — t)F3. From these two
conditions, it is immediate to obtain

1

- - -
fa =5 —a)

(ﬂF(l) + TF<2>) , PV = (aF<1> + TF<2>) . (4.2)

1
(1 —t)(a—p)
The important constraint on the commutation with det leads to the constraint

detF:t/ detAdl/a(A)+(1*t)/ det Advg(A).
A A

o s
But notice that det A =~ |A(1)‘2 if A € Ay, so that by using (4.1),
det F' = taS, + (1 — t)35p.

On the other hand, by Jensen’s inequality,

2
1

(1) 2
sz}/ QD () .
R2

and by using (4.2), we can write
2(5 — )28, > ‘BF(I) n TF(2>‘2 . (1—1)2(8— )28y > ‘aF(l) RO
After some algebra, we can rewrite the three restrictions as
—det F +taSy, + (1 —1)BSs =0,
28 det F + 32 ‘F(l)r + ‘F(Q)‘Q —2(8— )25, <0,
2adet F + o ‘F(l)r + ‘F(Q)r —(1-t)*B—a)*Ss <0.
Regarding the cost functional, we can rewrite it in terms of the S variables as
tSo + (1 —1)Ss.
Altogether we face the mathematical programming problem
Minimize in S = (Sq,S8) :  tSa + (1 —1)Ss
subject to
—det F +taSy, + (1 —t)3S3 = 0,
28 det F + 32 ‘F“)‘Q n ‘F(Q)r —#2(8 — a)28, <0,
2adet F + o ‘F(l)r + ‘F(Q)r — (1 —=t)*(B—a)*S5 <0.

where «, (8 are data of the initial problem, and ¢ and F' (and eventually x € Q) are fixed, but arbitrary as
the minimum value of this problem defines the relaxed integrand CPW (F,t). A key issue here is whether the



VECTOR VARIATIONAL PROBLEMS AND APPLICATIONS TO OPTIMAL DESIGN 373
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FIGURE 4.1. The feasible set.

optimal vector S can be recovered from an admissible laminate v in (4.1), and, in particular, we need to provide
a precise way of going from S to such a laminate.

Notice that this optimization problem is a linear, mathematical programming problem in the variables S.
Three issues are important:

1. When is the admissible set non-empty?
2. Which are the points at which the minimum value is attained?
3. Which are the laminates for which the optimal S are recovered?

The answer to the first two questions is elementary. Indeed, the admissible set will be non-empty provided
that, for the point where the two inequality constraints become equalities, the constraint in the form of equality
becomes non-positive. This is very easy to see geometrically (Fig. 4.1). The condition reads

af (at + B(1 ‘F 1>‘ a(l —t) + Bt) ‘F(Q ‘ (t1 = )(8 — 0)? + 2a8) det F < 0, (4.3)

The second issue is also elementary. The admissible set (when it is non-empty) represents a segment with
two extreme points (Fig. 4.1). The linear cost functional will attain its minimum on one of them, or become
constant. After some elementary computations we obtain the expression

1

CPW (F,t) = =)

(BQ‘F(U‘ ‘F(Q)‘ at+5(2—t))detF)

for the minimum value of the optimization problem for the variables S. The third question concerning whether
these extreme points can be obtained as the second moments for appropriate measures v, and vg as in (3.2) so
that the convex combination tv, + (1 — t)vg is a laminate, is a bit more involved. See [3,35] for details. We
simply state the result for the vertex of the segment in Figure 4.1 when

2 2
—detF+ﬂ2‘F(1)‘ +‘F<2>‘ (8 — a)?8, = 0.
Put

4 4
g(A) = 32 ‘A“)‘ + ‘A@)‘ + (a? + 608 + ?) det A 2

—2af3 ‘A(l)r ‘A(Q)‘Q —2af8(a+p) ‘A(l)‘QdetA —2(a+p) ‘A(Q)rdet A,
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and
I o _1@) _
ri(4) = 2+2(67a)detA [QB‘A ‘ ‘A ‘ 9(A4)|
o v O _ 4@ © /o
r2(A) = 3t S et a {O‘B‘Al‘ ‘AQ‘ V9|

Take the matrices

Zt

1 1
_ _ (1) (2)
Aot = ( aTz, ) ,  Zt = . (ﬁA +TA ),
1

_( w _ =D o @)
Aﬁ”_(ﬂTwi)’ YT TR A B —a (ca® +74®),

o wj¢ 1 4 (=1 1) (2)
Apji = < ST, > Wit = T D) (A)—ﬁ_a(aA +TA®),

where i # j and A®) stands for the k-th row of A. Finally, put

o = L=ri(A)[tA —ry(4) — (L~ )r;(4)]
v t(1=ri(A) = (L=ri(A)r;(4)

i # 5.

Lemma 4.1 [35]. There are two second-order laminates supported in three matrices (except when t = r;(A) for
i =1 ori =2 that the laminate collapses to afirst-order laminate) which are optimal microstructures. Namely,
bearing in mindthe notation before the statement, the two laminates

t 1— Sij — t
Vij = $i,j045, + (1= 5i;) (1 - A0, —— 5 5Ae,j,,,> ;
for i #£ j, where

det (Aa,t - Ag’jyt) =0,

t 1-— Si.j —
det | Ag; — —— Ay — —22 Az, ) =0
e ( B,i 1— S'L,j a,t 1— S'L,j 61]7t) ’

are optimal, and so are any conver combination of these two.

A similar result holds for the other extreme point of the segment in Figure 4.1.
When we put back the z-dependence, we have the following result.

Theorem 4.2.
p(A 1), if Y(A—-G(z)®er,t) <0,
400, else,

CPW(z, A,t) = {

where e1 = (1,0), and p(A,t) and (A, t) are explicitly given by

o(A,t) = (ﬂQ‘A(l‘ +‘A2>‘ at+ﬂ(2t))detA>,

tﬁ(ﬁ—
(A, t) = af(B(l —t) + at) ‘Al)‘ afl —t) + Gt) ‘AQ)‘
— (1 —t)(B8—a)’ +2a6)detA.
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In addition, optimal measures are given by
2% Y
Mw,A,t - VA—G(x)@el,t

and
t 1—s;,;—1 . .
5Aa,t + #61457]”) ) 1 ?é Js

— Sij L=si;
where we are using the formulae above, and e is the first vector of the canonical basis for R2.

vy =sij0a,, + (1= si;) <1

If we put the auxiliary field G back, where divG = g, it is elementary to find the general form of the relaxed
problem.

Corollary 4.3. The variational problem
Minimize in (U,t): I(U,t) = / e(VU(z),t(z)) dz
Q

subject to

UY =uy on 09,
Y(VU(z) — G(z) @ep,t(x)) <0 ae. x€Q,

/t(x)d:ﬂg to,
Q

admits optimal solutions.

The final step of our programme consists in checking whether minimizing sequences for the original optimal
design problem can be built through the minimizers of this last problem and the underlying optimal measures.
When integrands take on the value +oo abruptly, this is an important, delicate issue because generating se-
quences for gradient Young measures are not allowed to take on values off the finite set of the integrand, not
even for very small sets. This has already been emphasized in Section 2. When an upper bound for integrands
holds, this is not really an issue. For our particular problem this is indeed so (see Th. 2 in [3]).

5. ANALYSIS OF THE RELAXED PROBLEM AND SIMULATIONS

The final step of our analysis is to explore the relaxed problem we have obtained at the end of the preceding
section, namely
Minimize in (U, ) : / o(VU(x),t(z)) dx
Q
subject to
UeHY(Q), UY=uyondQ, (VU(),t(x)) <0,

0<t(x) <1, / t(x)dz < to|Qf,
Q

where again we have taken G = 0 for simplicity.

This vector variational problem is convex (in the vectorial sense and taking into account the additional
variable ¢ [25]) and regular in the sense that it admits optimal solutions since it is a relaxation. Moreover, all
functions involved are quadratic in the vector gradient variable and smooth. It is however a rather complex
problem to analyze.
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One possibility is to look at optimality conditions introducing several multipliers to keep record of restrictions.

This makes the problem more complicated precisely because of all the restrictions we have to enforce. Instead
of this approach, we make the following simple but relevant observation. It is an elementary fact which tells a

lot about the relationship between ¢, ¢ and the quadratic cost |F(1) |2.

Lemma 5.1 [21]. For each i = 1,2 and for fixzed t, the optimal solution of the quadratic, mathematical pro-
gramming problem

Minimize in F© :  o(t, F)

subject to ¥(t, F) <0 occurs when
(at +B(1 —1)) FY + TF® =,

In addition, the associated optimal structures (gradient Young measures) are first-order laminates with volume

fraction t for the a-material and orientation of layers parallel to FY) . The optimal value in both cases is ‘F(l) |2.

The idea is then to replace the complicated constraint
P(t(z), VU(z)) <0
by the much simpler one
(at(z) + B(1 — t(x))) VUV (2) + TVUP () = 0,
hoping to keep track of the minimum we are seeking. But this last condition amounts, after all, to
div ([at(:c) + A1 - t(2))] VU<1>(x)) —0 in Q

and, as pointed out in the lemma, the cost simplifies to

/Q ‘VU(l)(x)

If we remember that U is our original field u, we are led to consider

2
‘ dx.

Minimize in ¢ : / \Vu(z)|® dz
Q

subject to

div ([at(z) + (1 — t(x))] Vu(z)) =0 in £,
u=1wug on 0N,
0<t(z)<1 in Q,

/ t(x)dz < to|Q|.
Q
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volume fraction of phase 3

>

o

FIGURE 5.1.

Theorem 5.2 [37]. This last optimization problem admits optimal solutions t. In addition, optimal distributions
are first-order laminates oriented parallel to Vu if Vu is the associated optimal field.

This fact is Tartar’s result in [39] for a vanishing target field. We can now exploit optimality conditions for
this new problem which are easily handled and in a standard way, to approximate optimal distributions of the
two conducting materials. In all experiments we have performed the convergence was fine and the simulations
stable and robust.

We show here several such simulations corresponding to a non-vanishing right-hand side g in the equilibrium
equation. All of these simulations have been performed by A. Donoso as part of his Ph.D. Thesis at Universidad
de Castilla-La Mancha [22]

In all examples, the design domain is the unit square Q = (0,1)? and we take a vanishing boundary data
ug = 0. The values for the parameters o and § are 1 and 2, respectively. Different simulations correspond
to different right-hand sides g or different values for the global resource constrain tg. In addition, the grey
(or color) level in these pictures indicates the optimal volume fraction ¢(x) while the curves are level curves
of the optimal, underlying electric field so that optimal microstructures are first order laminates with volume
fraction ¢(x) for the a-material and layers align themselves orthogonal to those level curves (parallel to the
field). We have tried to indicate this in the two points A and B of Figure 5.1. Finally, the strong convergence
of minimizing fields to optimal fields is due to the fact that the optimal underlying gradient Young measures
(first-order laminates) reduce to a Dirac delta measure in the first row (see [34].

The first set of simulations are those in [30]. In the first example (Fig. 5.1), the right-hand side g is taken to
be identically 1 and ty = 0.4.

The next two cases correspond to

1, ifze(1/4,3/4)%
g(x) =
0, else.

Optimal structures are given in Figure 5.2 for the case tg = 0.15 and in Figure 5.3 for ¢ty = 0.4.
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FIGURE 5.4.

Finally, for Figures 5.4 and 5.5 we have

respectively. In both cases tg = 0.4.
More simulations can be found in [22].
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volume fraction of phase B

FIGURE 5.5.

volume fraction of phase

FIGURE 6.1.

6. THE THREE-DIMENSIONAL CASE

The same analysis as the one described here can be carried out for the three dimensional situation although
the analysis is somewhat more complex and, most definitely, simulations are. The computation of the relaxed
integrands were computed in [11] while the computations will appear in [23]. As an illustration we have taken
two examples from this last reference.

The first example (Fig. 6.1) corresponds to taking the same values for «, 8, the right-hand side in the
equilibrium equation g, and the global-resource-constraint parameter ¢y, as in the two-dimensional examples,
namely, « = 1, = 2, g = 1, and ¢y = 0.4. The domain is the unit cube in R? and we always take a vanishing
boundary condition for the field equation.

For the second example (Fig. 6.2), only the function g changes. This time

g(z) = e—100|x—0.5|2.
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