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Abstract. We consider an Hamilton-Jacobi equation of the form

H(x,Du) = 0 x ∈ Ω ⊂ R
N , (1)

where H(x, p) is assumed Borel measurable and quasi-convex in p. The notion of Monge solution,
introduced by Newcomb and Su, is adapted to this setting making use of suitable metric devices.
We establish the comparison principle for Monge sub and supersolution, existence and uniqueness for
equation (1) coupled with Dirichlet boundary conditions, and a stability result. The relation among
Monge and Lipschitz subsolutions is also discussed.
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1. Introduction

We consider the Hamilton-Jacobi equation

H(x,Du) = 0 x ∈ Ω ⊂ R
N , (2)

where Du is the gradient of the unknown function u : Ω → R and H : Ω×RN → R is the Hamiltonian. We are
concerned with the study of equation (2) in the framework of discontinuous Hamiltonians: indeed, H will be
assumed to be only Borel measurable, and quasi-convex in the p-variable for every x ∈ Ω. The interest of this
issue is easily motivated by the applications: Hamilton-Jacobi equations with discontinuous ingredients arise
naturally in several models, as, for example, propagation of fronts in non-homogeneous media, geometric optics
in presence of layers, shape-from-shading problems.

One of the main theory concerning Hamilton-Jacobi equations is that of viscosity solutions, developed in the
last twenty years. The literature on this subject is wide, as main reference we recall the books [2,3,18], and the
references therein.

With regard to the discontinuous case, measurable fully nonlinear equations of second order have been studied
in [7], however the techniques exploited there are based on the strong maximum principle so they do not apply
to first order equations.

The first order case has been less studied; we recall, among others (see e.g. [4, 17]), [8, 20]. In the first
one Camilli and Siconolfi study equation (2) and give a notion of viscosity solution making use of suitable
measure-theoretic devices. They prove a comparison result, and consequently, when equation (2) is coupled
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with a boundary datum, they get unicity of the solution and an integral representation formula, generalizing
the one valid for the continuous case. Moreover, such a solution is proven to be the maximal among Lipschitz
subsolutions, in analogy with the classical setting.

In [20], Soravia studies the following Hamilton-Jacobi equation related to optimal control problems

λu(x) + sup
a∈A

{−f(x, a)Du(x) − h(x, a)} = g(x)

where g is only Borel measurable. The viscosity solutions are defined by taking the lower and upper semicon-
tinuous envelopes of g following [16]. Uniqueness and stability results are given.

Both the recalled works start by comparing their definitions with a slightly different one, given by Newcomb
and Su in [19]. The authors studied the equation of eikonal type

H(Du) = n(x) (3)

where the discontinuity is in n only, which is assumed to be lower semicontinuous. They introduce the definition
of Monge solution, which is shown to be consistent with the viscosity notion when n is continuous. In this
framework they establish the comparison principle for sub and supersolutions, existence and uniqueness results
for (3) with Dirichlet boundary conditions, and a stability result.

In this paper we want to extend this definition to equations of the more general form (2) and to generalize to
this case the above-mentioned results. In order to be more precise about the type of discontinuities we admit,
let us specify that we will deal with Borel-measurable Hamiltonians H such that Z(x) := {p ∈ RN |H(x, p) ≤ 0}
is closed and convex and ∂Z(x) = {p ∈ RN |H(x, p) = 0} for every x ∈ Ω. Moreover, we assume that there
exist two positive constants α and β such that Bα(0) ⊂ Z(x) ⊂ Bβ(0) for every x ∈ Ω.

In analogy with [19], we need to recall that the optical length function relative to the Hamiltonian H is the
map S : Ω × Ω → R defined as follows:

S(x, y) := inf
{∫ 1

0

σ(γ(t), γ̇(t)) dt | γ ∈ Lip
(
[0, 1],Ω

)
, γ(0) = x, γ(1) = y

}
(4)

for every x, y ∈ Ω, where σ is the support function of the section Z(x), namely σ(x, ξ) := sup {〈−ξ, p〉 | p ∈ Z(x)}.
Given u ∈ C(Ω), we say that u is a Monge solution (resp. subsolution, supersolution) of (2) in Ω if for each
x0 ∈ Ω there holds

lim inf
x→x0

u(x) − u(x0) + S(x0, x)
|x− x0| = 0 (resp. ≥, ≤).

As it should be clear by the above definition, the properties of Monge sub and supersolutions strictly depend
on those enjoyed by the optical length function S. As we will see, the function S is a geodesic, non-symmetric
distance, which corresponds, with the notations of Section 2, to dσ (defined by (10)). Therefore, as a preliminary
step, we collect and prove some results about non-symmetric distances (see Sects. 2 and 3). Those results
are then specialized to S to carry on the study of Monge solutions. In this regard, we underline that the
semicontinuity of the function n in (3) is mainly used in [19] to obtain semicontinuity of the length functional Lσ

(defined by (11) in Sect. 2), and therefore the existence of an optimal path for S(x, y), namely a path of minimal
Lσ-length. This technical difficulty is overcome here by introducing the metric length of a curve with respect to
the non-symmetric distance S (cf. formula (8) in Sect. 2), which is the relaxed functional of Lσ. The existence
of a minimal path (with respect to the metric S-length) for S(x, y) for all x, y ∈ Ω is then an easy consequence
of the results of Section 2. Consequently, under the above-stated conditions for the Hamiltonian, we obtain a
comparison result among Monge sub and supersolutions of equation (2) (Th. 5.1). This implies moreover that,
under certain compatibility conditions for the boundary data, the Dirichlet problem

{
H(x,Du) = 0 in Ω
u = g on ∂Ω (5)
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has a unique Monge solution u, given by Lax formula

u(x) := inf
y∈∂Ω

{S(x, y) + g(y)} for all x ∈ Ω, (6)

thus recovering a well known result in the case of a continuous Hamiltonian.
In the continuous case, moreover, the function defined by (6) is also the maximal element in the class of

Lipschitz subsolutions of (5). As already remarked in [19, 20], this is no longer true in general when dealing
with Monge solutions of discontinuous Hamilton-Jacobi equations. However, when the Hamiltonian is mildly
discontinuous, the previous maximality property still holds. This issue will be investigated in a more detailed
way in Section 7 (cf. Th. 7.3). As a matter of fact, this will be done by comparing the definition of Monge
solution adopted here with that of viscosity solution introduced by Camilli and Siconolfi in [8]. The main
difference between the two approaches relies upon the definition of optical length function: while here S is
defined by (4) through an infimum, the corresponding function LΩ in [8] is defined through a sup-inf process
(cf. Sect. 7 for the definition). The latter has the effect of rendering the function LΩ independent of modifications
of the Hamiltonian H (and consequently of the support function σ) on negligible subset of Ω with respect to the
x-variable, a property which is necessary if one is interested in keeping the equivalence (holding in the continuous
setting, see [2]) between Lipschitz and viscosity subsolutions of (2). This in particular gives the maximality
of the viscosity solution of (5) among Lipschitz subsolutions (cf. [8], Prop. 3.6). Some problems arise instead
when one deals with sequences of solutions: in [8], Example 7.2, the authors consider a sequence of continuous
Hamilton-Jacobi equations converging to a limit equation for which it is easy to exhibit a corresponding sequence
of viscosity solutions (in the classical sense) uniformly converging to a function which is not the viscosity solution,
in the sense there considered, of the limit equation (actually, it turns out to be a Monge solution, see Ex. 6.5).
The main reason of this behavior is that the family of distances that can be obtained through such a sup-inf
process is not closed for the uniform convergence (cf. Prop. 3.7).

On the other hand, the definition of optical length function given here strictly depends on the pointwise
behavior of the Hamiltonian and changing it in the x-variable over negligible sets does count. Moreover, the
class of distances obtained through (4) is closed for the uniform convergence (in fact, it is compact, cf. Sect. 2
and Th. 2.6). In particular, with this approach one can treat optimization problems such as

min
{∫

Ω

|ua − f |2 dx
∣∣∣ a : Ω → [α, β] Borel measurable,

∫
Ω

a(x) dx ≤ m

}
,

where α, β and m are suitable positive constants, f : Ω → R is a given function and ua is the Monge solution
of the following equation, depending on the control a:

{ |Du| = a(x) in Ω
u = 0 on ∂Ω. (7)

Indeed, the problem can be attacked using the direct method of the Calculus of Variations: chosen a minimizing
sequence (an)n, it is easy to see, using the representation formula (6) and the recalled compactness result
(Th. 2.6), that the corresponding solutions uan converge uniformly to a function u. To show that u is the
Monge solution of problem (7) for an admissible control a one can refer to the results proved in [10] (specifically,
Ths. 4.3 and 4.7, cf. also Ex. 8.2).

Our paper is organized as follows. In Section 2 we recall the main results concerning non-symmetric distances.
The study of the properties of distances is carried on in Section 3. In particular, we compare two different ways
of deriving a distance from a function ϕ ∈ M, namely (10) and (17), and we will examine under which
conditions they are equivalent. The properties derived in the general framework of geodesic distances are
applied in Section 4 to the optical length function S, and some properties of Monge sub and supersolutions
are deduced. In particular, we show that the definition of Monge solution reduces to the viscosity one when
the Hamiltonian is continuous. Section 5 contains the proofs of the comparison principle (Th. 5.1) and the
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solvability of the Dirichlet problem (5) (Th. 5.3). In Section 6 a stability result is proven under a suitable
convergence of Hamiltonians, which includes, as special cases, the ones more classically considered, such as
uniform convergence. In Section 7 we discuss the pointwise behavior of Monge solutions of problem (5) and
the relation among Monge and Lipschitz subsolutions. The paper is ended with some examples. In particular,
we will show how Monge solutions of certain eikonal equations arise naturally as asymptotic limit of viscosity
solutions of evolutive Hamilton-Jacobi equations with continuous ingredients.

Notation. We write here a list of symbols used throughout this paper.

S
N−1 (N − 1)−dimensional unitary sphere of R

N

Br(x) open ball in RN of radius r centred in x
I closed interval [0, 1]
Lk k-dimensional Lebesgue measure
Hk k-dimensional Hausdorff measure
|x| Euclidean norm of the vector x ∈ RN

R+ non-negative real numbers
χE the characteristic function of the set E.

In this paper N will denote an integer number, α and β two positive constants with β > α, and Ω a bounded
domain (i.e. an open connected set) of RN with Lipschitz boundary. A subset of RN is said to be negligible if
its N -dimensional Lebesgue measure is null. With the word curve or path we will always indicate a Lipschitz
function from the interval I := [0, 1] to Ω. Any curve γ is always supposed to be parameterized by constant
speed, i.e. in such a way that |γ̇(t)| is constant for L1-a.e. t ∈ I. We will say that a sequence of curves (γn)n
(uniformly) converges to a curve γ to mean that supt∈I |γn(t)− γ(t)| tends to zero as n goes to infinity. We will
denote by Lipx,y the family of curves γ which join x and y, i.e. such that γ(0) = x and γ(1) = y. Last, for a

measurable function f : I → RN , ‖f‖∞ stands for
√∑N

i=0 ‖fi‖2
L∞(I), where fi and ‖fi‖L∞(I) denotes the i-th

component of f and the L∞-norm of fi respectively.

2. Preliminaries on geodesic distances

In this section we will describe the main definitions and properties of Finsler distances that will be useful
to study the optical length functions S and consequently the properties of Monge solutions. In the sequel, a
distance d on Ω will be called non-symmetric if the identity d(x, y) = d(y, x) may fail to hold on Ω × Ω.

We stress that definitions and results stated in this section are essentially known, but usually given in
literature considering symmetric distances. Proofs can be easily adapted to our setting by minor changes, and
will therefore omitted (cf. [11]).

First, let us define the classical d-length of γ, obtained as the supremum of the d-lengths of inscribed polygonal
curves:

Ld(γ) := sup

{
m−1∑
i=0

d
(
γ(ti), γ(ti+1)

)| 0 = t0 < t1 < ... < tm = 1, m ∈ N

}
. (8)

We will say that d is a geodesic distance if it satisfies the following identity:

d(x, y) = inf
{
Ld(γ) | γ ∈ Lipx,y

}
for every (x, y) ∈ Ω × Ω. (9)

All distances considered in this paper will fulfill the following hypotheses:

(d1) d is non-symmetric;
(d2) d is geodesic;
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(d3) there exist two positive constants α and β, such that

α|x− y| ≤ d(x, y) ≤ β|x − y| locally in Ω

(i.e. for every x0 ∈ Ω there exists an open ball Br(x0) ⊂ Ω such that the above inequality holds for
every x, y ∈ Br(x0)).

Any distance d which satisfies the Hypotheses (d1)–(d3) induces on Ω a topology which is equivalent to the
Euclidean one. In particular, by applying to our framework a classical theorem due to Busemann (cf. [1],
Th. 4.3.1), we obtain what follows.

Proposition 2.1. The length functional Ld is lower semicontinuous with respect to the uniform convergence of
paths, namely if (γn)n converges to γ then Ld(γ) ≤ lim infn Ld(γn). In particular, for every couple of points x, y
in Ω there exists a curve γ ∈ Lipx,y which is a path of minimal d-length, i.e. such that Ld(γ) = d(x, y).

A Borel-measurable function ϕ : Ω × RN → R+ will be said to be a (weak) Finsler metric on Ω if ϕ(x, ·) is
1-homogeneous for every x ∈ Ω and convex for LN -a.e. x ∈ Ω.

We now fix two positive constants α and β and we consider the following family of functions:

M :=
{
ϕ Finsler metrics on Ω : α|ξ| ≤ ϕ(x, ξ) ≤ β|ξ| on Ω × R

N
}
.

For each ϕ ∈ M, we can define a function dϕ on Ω × Ω through the formula

dϕ (x, y) := inf
{
Lϕ (γ) | γ ∈ Lipx,y

}
, (10)

where the length functional Lϕ is defined by

Lϕ(γ) :=
∫ 1

0

ϕ(γ(t), γ̇(t))dt. (11)

The main properties of dϕ are summarized below.

Proposition 2.2. The function dϕ(x, y) given by (10) is well defined on Ω × Ω and satisfies the following
properties:

(i) 0 ≤ dϕ(x, y) ≤ dϕ(x, z) + dϕ(z, y) for all x, y, z ∈ Ω;
(ii) α|x− y| ≤ dϕ(x, y) ≤ β|x− y| locally in Ω;
(iii) dϕ is Lipschitz on Ω × Ω, with Lipschitz constant equal to 2β C, where C ≥ 1 is the Lipschitz constant

of ∂Ω.
In particular, dϕ is a non-symmetric distance, locally equivalent to the Euclidean one.

Proof. Let γ be a curve. Since the map t 	→ (
γ(t), γ̇(t)

)
is Lebesgue measurable on I, and ϕ is Borel measurable

on Ω × RN , their composition ϕ(γ(t), γ̇(t)) is Lebesgue measurable on I. Therefore the integral in (11) is well
defined and so is dϕ. The remainder of the claim is a simple consequence of the definitions. �
Remark 2.3. With regard to item (ii) in the statement of Proposition 2.2, it is worth noticing that the
inequality dϕ(x, y) ≥ α|x − y| actually holds for every x, y ∈ Ω, while dϕ(x, y) ≤ β|x − y| holds true whenever
the Euclidean segment joining x to y lies in Ω.

Next proposition clarifies the relation between the functional (11) and the (intrinsic) metric length func-
tional (8) (cf. [12], Th. 4.3).

Proposition 2.4. Let d := dϕ with ϕ ∈ M. Then for any γ ∈ Lip(I,Ω) we have:

Ld(γ) = inf
{

lim inf
n→+∞ Lϕ(γn) : (γn)n converges to γ in Lip(I,Ω)

}
, (12)
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namely Ld is the relaxed functional of Lϕ on Lip(I,Ω). In particular, d is a distance of geodesic type according
to definition (9).

Remark 2.5. By Proposition 2.4, Lϕ will coincide with Ld whenever Lϕ is lower semicontinuous on Lip(I,Ω).
This happens, for instance, when ϕ is lower semicontinuous on Ω × RN and ϕ(x, ·) is convex on RN for every
x ∈ Ω (cf. [5], Th. 4.1.1).

Let us denote by D the family of distances on Ω generated by the metrics M, namely D := {dϕ | ϕ ∈ M}.
We endow D with the metric given by the uniform convergence on Ω×Ω. This convergence is equivalent to the
Γ-convergence of the relative length functionals Ldn to Ld with respect to the uniform convergence of paths, as
proved in [6], Theorem 3.1. Moreover, we have the following (cf. [6], Th. 3.1):

Theorem 2.6. The set D is endowed with the metric given by the uniform convergence of distances on Ω × Ω
is a metrizable compact space.

Next proposition describes the convergence of elements of D in terms of the convergence of the generating
metrics. A proof is given in [11].

Proposition 2.7. Let ϕ, ϕn ∈ M and d and dn be the distances associated respectively to ϕ and ϕn through (10).
Then (dn)n converges uniformly to d in the following cases:

(i) (ϕn)n converges uniformly to ϕ on compact subset of Ω × RN ;
(ii) ϕn are lower semicontinuous in x, convex in ξ and converge increasingly to ϕ pointwise on Ω × RN ;
(iii) (ϕn)n converges decreasingly to ϕ pointwise on Ω × R

N .

An integral representation of the d-length of a curve γ can be given in terms of its metric derivative, as known
by classical results on metric spaces [1], and this result can be easily extended to the non-symmetric setting
(see [11]). In particular, when the curve γ lies in Ω (i.e. γ(I) ⊂ Ω), the following holds:

Ld(γ) =
∫ 1

0

ϕd(γ(t), γ̇(t)) dt, (13)

i.e. Ld(γ) = Lϕd
(γ) (cf. [11, 15], Th. 2.5), where ϕd is the Finsler metric on Ω associated to d by derivation,

given by

ϕd (x, ξ) := lim sup
t→0+

d (x, x+ tξ)
t

(x, ξ) ∈ Ω × R
N . (14)

Definition (14) might be suitably extended to the boundary of Ω (cf. [11]). This generalization is not needed
here and will be not detailed any further. We summarize in the next proposition the main properties of ϕd. For
the proof, we refer to [13, 15].

Proposition 2.8. The function ϕd : Ω × RN → R+ given in (14) is Borel-measurable. Moreover we have:

(i) ϕd(x, ·) is positively 1-homogeneous for every x ∈ Ω;
(ii) |ϕd(x, ξ) − ϕd(x, ν)| ≤ β|ξ − ν| for every x ∈ Ω and every ξ, ν ∈ R

N ;
(iii) ϕd(x, ·) is convex for LN -a.e. x ∈ Ω.

To sum up, any function ϕ ∈ M gives rise to a distance d := dϕ in D through (10). To such a distance d,
one can associate by derivation the Finsler metric ϕd given by (14). Even if ϕd need not be equal to ϕ, some
relations between them can be deduced.
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Proposition 2.9. Let ϕ ∈ M and d := dϕ be the non-symmetric distance associated to ϕ according to (10).
Then there exists a negligible set N ⊂ Ω such that

ϕd(x, ξ) ≤ ϕ(x, ξ) for every (x, ξ) ∈ Ω \N × RN ,

where ϕd is defined in (14). Moreover we have:
(i) if ϕ(x, ·) is convex on RN for every x ∈ Ω and ϕ(·, ξ) is lower semicontinuous for every ξ ∈ RN , we

have

ϕd(x, ξ) ≥ lim inf
t→0+

d(x, x + tξ)
t

≥ ϕ(x, ξ) for every (x, ξ) ∈ Ω × R
N .

In particular, ϕd(x, ξ) = ϕ(x, ξ) on Ω \N × RN ;
(ii) if ϕ(·, ξ) is upper semicontinuous for every ξ ∈ RN , we have ϕd(x, ξ) ≤ ϕ(x, ξ) for every (x, ξ) ∈ Ω×RN .

Proof. Let us fix a vector ξ ∈ S
N−1 and, for every x0 ∈ Ω, let us define the curve γx0(s) := x0 + sξ. Let t be a

Lebesgue point for the map s 	→ ϕ(γx0(s), ξ). For h > 0 small enough we have

1
h

∫ t+h

t

ϕ(γx0(s), ξ) ds =
1
h

∫ 1

0

ϕ(γx0(t+ hτ), hξ) dτ ≥ d(γx0(t), γx0(t) + hξ)
h

,

so, by taking the limsup as h→ 0+, we get ϕd(γx0(t), ξ) ≤ ϕ(γx0(t), ξ). Since L1-a.e. t ∈ R is a Lebegue point
for ϕ(γx0(·), ξ) and x0 was arbitrarily chosen in Ω, Fubini’s Theorem implies that ϕd(x, ξ) ≤ ϕ(x, ξ) for LN -a.e.
x ∈ Ω. Then we can take a dense sequence (ξn)n in SN−1 and repeat the above argument for each ξn. Recalling
that the functions ϕd(x, ·) and ϕ(x, ·) are continuous (and 1-homogeneous) for LN -a.e. x ∈ Ω, we get, by the
density of (ξn)n, that ϕd(x, ξ) ≤ ϕ(x, ξ) for LN -a.e. x ∈ Ω and for every ξ ∈ R

N .
(i) Let us assume ϕ lower semicontinuous in x and convex in ξ and fix (x, ξ) ∈ Ω × SN−1. By lower

semicontinuity, for every ε > 0 there exists r = r(ε, x) > 0 such that Br(x) ⊂ Ω and ϕ(y, ξ) > ϕ(x, ξ) − ε for
every y ∈ Br(x). Moreover, by the Lipschitz continuity of ϕ in ξ and by possibly choosing a smaller r, the
previous inequality holds in Br(x) ×Br(ξ). Hence, as SN−1 is compact, there exists a suitable r > 0 such that

ϕ(y, ξ) ≥ ϕ(x, ξ) − ε for every (y, ξ) ∈ Br(x) × SN−1.

Choose a d-minimizing sequence of paths (γn)n ⊂ Lipx,x+tξ. For t small enough, the curves γn lie within Br(x).
Then, for n big enough, we have

Lϕ(γn) =
∫ 1

0

ϕ(γn(s), γ̇n(s)) ds ≥
∫ 1

0

(ϕ(x, γ̇n(s)) − ε|γ̇n(s)|) ds ≥ t

(
ϕ(x, ξ) − 2

β

α
ε

)
,

where for the last estimate we have used Jensen’s inequality applied to the convex function ϕ(x, ·) and the
fact that α

∫ 1

0
|γ̇n| ds ≤ Lϕ(γn) ≤ 2d(x, x + tξ) ≤ 2βt if n is large enough. Letting n go to +∞ in the above

inequality we obtain
d(x, x + tξ)

t
≥ ϕ(x, ξ) − 2

β

α
ε. (15)

By taking the liminf of (15) as t → 0+ and since ε > 0, x ∈ Ω and ξ ∈ SN−1 were arbitrary we obtain

ϕd(x, ξ) ≥ lim inf
t→0+

d(x, x + tξ)
t

≥ ϕ(x, ξ) for every (x, ξ) ∈ Ω × SN−1,

and the claim follows by 1-homogeneity in ξ.
(ii) Fix (x, ξ) ∈ Ω×SN−1. By the upper-semicontinuity assumption, there exists an r > 0 such that Br(x) ⊂ Ω

and ϕ(y, ξ) < ϕ(x, ξ) + ε for every y ∈ Br(x). For t small enough the curve γt(s) := x+ s(tξ) lies within Br(x),
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so we have

d(x, x + tξ) ≤
∫ 1

0

ϕ(x + s(tξ), tξ) ds ≤
∫ 1

0

(ϕ(x, tξ) + εt) ds = t(ϕ(x, ξ) + ε),

and hence
d(x, x+ tξ)

t
≤ ϕ(x, ξ) + ε. (16)

By taking the limsup in (16) as t → 0+ and since ε > 0, x ∈ Ω and ξ ∈ SN−1 were arbitrary, we obtain the
claim. �

From the previous proposition we deduce the following result.

Corollary 2.10. Let ϕ ∈ M and d := dϕ be the non-symmetric distance associated to ϕ according to (10).
If ϕ(·, ξ) is continuous on Ω for every ξ ∈ R

N and ϕ(x, ·) is convex on R
N for every x ∈ Ω, then ϕd(x, ξ) =

ϕ(x, ξ) for every (x, ξ) ∈ Ω × RN .

3. Fine properties of distances

For later use, we need to introduce a different way to derive a distance from an element of M. Following [15],
we introduce the notion of transversality: we say that a curve γ is transversal to the negligible set E if H1(γ(I)∩
E) = 0. Then, for each ϕ ∈ M, we define a function d̃ϕ on Ω × Ω through the following formula:

d̃ϕ(x, y) := sup
LN (E)=0

{
inf

{
Lϕ(γ)

∣∣ γ ∈ Lipx,y, γ transversal to E
}}

. (17)

Let us denote by D̃ the space of distances generated by the elements of M through (17), namely D̃ := {d̃ϕ :
ϕ ∈ M}. Its main properties are summarized in the next theorem.

Theorem 3.1. Let ϕ ∈ M and let d̃ϕ be the distance defined by (17). Then there exists a negligible set F ⊂ Ω
such that

d̃ϕ(x, y) = inf
{
Lϕ(γ)

∣∣ γ ∈ Lipx,y, γ transversal to F
}
. (18)

Moreover, if we set ϕ̃(x, ξ) := ϕ(x, ξ)χΩ\F (x) + β|ξ|χF (x), we have that d̃ϕ = dϕ̃, where dϕ̃ is the distance

associated to ϕ̃ through (10). In particular, we have that D̃ ⊂ D.

In order to prove Theorem 3.1, we need a preliminary lemma.

Lemma 3.2. Let γ ∈ Lipx,y with x, y ∈ Ω and let E be a negligible subset of Ω. Then for every ε > 0 there
exists a curve γε ∈ Lipx,y transversal to E and such that ‖γε − γ‖W 1,∞ := ‖γε − γ‖∞ + ‖γ̇ε − γ̇‖∞ < ε.

Proof. Let γ ∈ Lipx,y and let g(t) ∈ C1(I) be a non negative function such that g(t) = 0 for t = 0 and t = 1 only
(take for example g(t) := sin(πt)). First, let us prove that for LN -a.e. v ∈ RN the curve γv(t) := γ(t) + vg(t)
is transversal to the set E. Set F (t, v) := γ(t) + vg(t) and let A be the set of points (t, v) ∈ I × RN such
that F (t, v) belongs to E. For every fixed t ∈ (0, 1), the section At := {v ∈ R

N | (t, v) ∈ A } has zero Lebesgue
measure in RN , therefore A has zero Lebesgue measure in I ×RN . This implies that for every v ∈ RN \N0 the
section Av := {t ∈ I | (t, v) ∈ A } is L1-negligible in I, where N0 is a negligible set in RN . Therefore, since γv(t)
is Lipschitz, for every v ∈ R

N \N0 the set γv(Av) is H1-negligible in R
N , hence the curve γv is transversal to E,

as γv(Av) = γv(I) ∩ E. Remark that ‖γv − γ‖W 1,∞ = |v|‖g‖W 1,∞ .
If γ lies inside Ω, then for |v| small enough the curves γv lie inside Ω. The claim follows by setting γε := γv

with v ∈ RN \N0 and |v| < ε/‖g‖W 1,∞.
Otherwise, let us assume that the curve γ touches the boundary in a point x0. By possibly subdividing γ(I)

into small subarcs, we may suppose that the curve γ lies in Ω ∩B, where B is a ball centered in x0. This ball
can be chosen small enough in such a way that there exists a cone C := {v ∈ Bδ(0) | 〈v, ξ〉 > δ|v| }, with δ > 0
and ξ ∈ SN−1 suitably chosen, such that z +C ⊂ Ω for every z ∈ ∂Ω ∩B. Remark that, if v ∈ C, the curve γv
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lies inside Ω. Therefore, by arguing as above, the claim is achieved by setting γε := γv with v ∈ C \ N0 and
|v| < ε/‖g‖W 1,∞. �

Proof of Theorem 3.1. The existence of a negligible set F which satisfies the first assertion of the claim follows by
Proposition 3.5 of [8]. Up to enlarging this set if necessary, we may as well suppose that F is Borel-measurable.

Set ϕ̃(x, ξ) := ϕ(x, ξ)χΩ\F (x) + β|ξ|χF (x) and let dϕ̃ be the associated distance defined according to (10).

Since Lϕ̃(γ) = Lϕ(γ) if γ is transversal to F , we obviously have that dϕ̃ ≤ d̃ϕ. We want to prove the reverse
inequality. It will be enough to show that for every γ ∈ Lipx,y and every ε > 0 there exists a curve γε ∈ Lipx,y
transversal to F such that ε+ Lϕ̃(γ) > Lϕ(γε), with x and y arbitrarily chosen in Ω. Then, let γ ∈ Lipx,y and
let A := {t ∈ (0, 1) | γ(t) ∈ F }. Fix ε > 0 and assume 0 < L1(A) < 1, being the other cases trivial. Choose an
open set J ⊃ A in (0, 1) such that L1(J \ A) < ε. The open set J is a countable disjoint union of intervals of
the form Jk := (ak, bk) with k ∈ N. Applying Lemma 3.2, we choose, for each k ∈ N, a curve σk : [ak, bk] → Ω
transversal to F such that σk(ak) = γ(ak), σk(bk) = γ(bk) and ‖σk − γ‖W 1,∞(Jk,Ω) < ε/2k. For each n ∈ N let
us set:

γn(t) :=
{
σk(t) if t ∈ [ak, bk] for each k ≤ n
γ(t) otherwise. (19)

Let γε be the curve defined by (19) with n = +∞. It is easily seen that (γn)n is a Cauchy sequence inW 1,∞(I,Ω)
and uniformly converges to γε, which is therefore Lipschitz too. We claim that γε is the desired curve. Indeed,
it connects x and y in Ω and is transversal to F by construction. Moreover we have:

∫
Jk

(
ϕ(σk, σ̇k) − ϕ̃(γ, γ̇)

)
dt ≤ β‖σ̇k‖∞L1(Jk \A) +

∫
Jk∩A

β
(
|σ̇k(t)| − |γ̇(t)|

)
dt

< CL1(Jk \A) + β
ε

2k
,

where C is a constant depending only on β and ‖γ̇‖∞. Therefore

Lϕ(γε) − Lϕ̃(γ) =
+∞∑
k=1

∫
Jk

(
ϕ(σk, σ̇k) − ϕ̃(γ, γ̇)

)
dt < CL1(J \A) + βε < (C + β)ε,

and the claim follows. �
Remark 3.3. Let us remark that formula (17) is invariant with respect to modifications of the function ϕ on
negligible subsets of Ω. Therefore, since ϕ̃(x, ξ) = ϕ(x, ξ) for LN -a.e. x ∈ Ω and every ξ ∈ RN , we also have
that d̃ϕ̃ = d̃ϕ = dϕ̃.

Corollary 3.4. D̃ is a proper subset of D.

Proof. Let ϕ(x, ξ) be equal to α|ξ| on a segment Γ contained in Ω and β|ξ| elsewhere, and let d := dϕ be the
distance associated to ϕ through (10). If d belonged to D̃, by taking into account Theorem 3.1 and Remark 3.3,
we would have d = dψ = d̃ψ for a function ψ ∈ M. Proposition 2.9 and the definition of ϕd would imply
ψ(x, ξ) ≥ ϕd(x, ξ) = β|ξ| for LN -a.e. x ∈ Ω and every ξ ∈ RN , hence ψ(x, ξ) = β|ξ| LN -a.e. on Ω. Then, by
Remark 3.3, we would have d = d̃ψ = βdΩ, which is obviously impossible since d(x, y) = α|x − y| if x and y
belong to the segment Γ. �

Definitions (10) and (17) individuate two different ways to derive a distance from a given ϕ ∈ M. In general,
we have that dϕ ≤ d̃ϕ, and the inequality may be strict, as shown by the function ϕ defined in the proof of
Corollary 3.4. It seems a difficult task to characterize the functions ϕ for which equality holds. We therefore
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restrict to look for sufficient conditions which entail equivalence between the two definitions. The next two
propositions show that the upper semicontinuity property of the length functional Lϕ plays a role in this issue.
These results are essentially known [13–15]; they have been restated here for the reader’s convenience.

Proposition 3.5. Let ϕ ∈ M be such that the length functional Lϕ is upper semicontinuous on W 1,∞(I,Ω)
with respect to the strong topology. Then dϕ = d̃ϕ.

Proof. Let F be a Borel negligible subset of Ω satisfying (18), according to Theorem 3.1. Fix x and y in Ω and
let γ ∈ Lipx,y. By applying Lemma 3.2, we find a sequence of curves (γn)n ⊂ Lipx,y transversal to F which
converges to γ in W 1,∞(I,Ω). By the upper semicontinuity of Lϕ we get

Lϕ(γ) ≥ lim sup
n→+∞

Lϕ(γn) ≥ d̃ϕ(x, y).

By taking the infimum over all possible curves in Lipx,y we obtain dϕ(x, y) ≥ d̃ϕ(x, y) and hence the claim. �

Proposition 3.6. Let ϕ ∈ M be upper semicontinuous in Ω × RN . Then the length functional Lϕ is upper
semicontinuous on W 1,∞(I,Ω) with respect to the strong topology. In particular, dϕ = d̃ϕ.

Proof. Let (γn)n be a sequence in W 1,∞(I,Ω) which strongly converges to γ. Using Fatou’s lemma and the
upper semicontinuity of ϕ we get

∫ 1

0

ϕ(γ, γ̇) dt ≥
∫ 1

0

lim sup
n→+∞

ϕ(γn, γ̇n) dt ≥ lim sup
n→+∞

∫ 1

0

ϕ(γn, γ̇n) dt

and so the claim. �
In view of the results obtained in [11] and of what seen so far, we can prove what follows.

Proposition 3.7. D̃ is a proper and dense subset of D. In particular, it is not closed.

Proof. Proposition 3.6 implies that D̃ contains the distances dϕ with ϕ ∈ M continuous, so the density follows
by Theorem 4.1 in [11]. �

In conclusion, the upper semicontinuity of ϕ is a sufficient condition to entail equivalence of (10) and (17).
In fact, in the counterexample given in Remark 3.3 the function ϕ we defined was lower semicontinuous. On
the other hand, it is clear that the condition we have found is far from being optimal: if the set where ϕ fails
to be upper semicontinuous is not too bad, equivalence between (10) and (17) still holds. A naive example of
this situation is given by a function ϕ(x, ξ) of the form a(x)|ξ| with a equal to 2 on R × (0,+∞) and to 1 on
R × (−∞, 0]. The proposition that follows generalizes this idea.

Proposition 3.8. Assume that Ω := ∪mi=1Ωi, where the sets Ωi are bounded domains with Lipschitz boundaries
such that Ωi ∩Ωj = ∂Ωi ∩∂Ωj if i �= j, and every x ∈ Ω belongs to at most two subdomains Ωi. Let ϕ ∈ M and
suppose that ϕ is upper semicontinuous in each Ωi. Moreover, let us assume that for every x ∈ ∪mi=1∂Ωi there
exist an index i0 and a real number ρ > 0 such that x ∈ ∂Ωi0 and ϕ is upper semicontinuous in Ωi0 ∩ Bρ(x).
Then dϕ(x, y) = d̃ϕ(x, y) on Ω × Ω.

Proof. First remark that by compactness the number ρ > 0 in the above assumption can be chosen independent
on x.

Let F be a Borel negligible subset of Ω satisfying (18) in Theorem 3.1. It will be enough to show that for
every γ ∈ Lipx,y and every ε > 0 there exists a curve γε ∈ Lipx,y transversal to F such that Lϕ(γ)+ε > Lϕ(γε),
with x, y ∈ Ω.

Let us then take a curve γ ∈ Lipx,y and fix ε > 0. If γ(I) is contained in Ωi for some index i, one can apply
Lemma 3.2 with Ω := Ωi and conclude by remarking that Lϕ is upper semicontinuous in W 1,∞(I,Ωi).
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Otherwise, there exists a point x ∈ γ(I) ∩ ⋃m
i=1 ∂Ωi. Up to subdividing γ(I) into a finite number of small

subarcs, we can assume that γ lies in Br(x) ∩ Ω, where r < ρ is a sufficiently small radius. The case of x
belonging to ∂Ωi for just one index i is easy to deal with: for r small enough Br(x) ∩ Ω = Br(x) ∩ Ωi for
some index i and ϕ is upper semicontinuous in Br(x) ∩ Ωi by hypothesis, so Lϕ is upper semicontinuous in
W 1,∞(I, Br(x) ∩ Ω) and the claim follows by applying Lemma 3.2 again.

Let us then suppose that x belongs to γ(I) ∩ ∂Ωi for two distinct i. Up to reordering the indexes and to
choosing a smaller r, we may suppose x ∈ ∂Ω1 ∩ ∂Ω2, Br(x) ⊂ Ω, Br(x) ∩ Ωi = ∅ for each i ≥ 3 and ϕ
upper semicontinuous in Ω1 ∩ Br(x). Assume also that r has been chosen so small that there exists a cone
C := {v ∈ Bδ(0) | 〈v, ξ〉 > δ|v| } (for suitable δ > 0 and ξ ∈ SN−1) such that z+C ⊂ Ω1 for every z ∈ ∂Ω1∩Br(x).
Arguing as in the proof of Lemma 3.2, we can take a sequence (vn)n ⊂ C converging to 0 such that the curves
γn(t) := γ(t)+vn sin(πt) are transversal to F and ‖γ−γn‖W 1,∞(I,Ω) ≤ 2|vn|. Let us set I1 := {t ∈ I | γ(t) ∈ Ω1 }
and I2 := {t ∈ I | γ(t) ∈ Ω2 }. Notice that, if γ(t) ∈ Ω1, then γn(t) := γ(t) + vn sin(πt) ∈ Ω1 for every n ∈ N,
since the translation by the vector sin(πt)vn has the effect of moving points on ∂Ω1 inside Ω1. On the other
hand, it is clear that if γ(t) ∈ Ω2 then γn(t) ∈ Ω2 for n big enough. Therefore, by Fatou’s Lemma and taking
into account the upper semicontinuity properties enjoyed by ϕ, we get

∫ 1

0

ϕ(γ, γ̇) dt =
∫
I1

ϕ(γ, γ̇) dt+
∫
I2

ϕ(γ, γ̇) dt ≥
∫
I1

lim sup
n→+∞

ϕ(γn, γ̇n) dt

+
∫
I2

lim sup
n→+∞

ϕ(γn, γ̇n) dt ≥ lim sup
n→+∞

∫ 1

0

ϕ(γn, γ̇n) dt.

The claim follows by setting γε := γn for n big enough. �

4. Monge solutions: definitions and main properties

In this section we study the main properties of Monge sub and supersolutions for the equation

H(x,Du) = 0 x ∈ Ω ⊂ R
N . (20)

We will deal with Hamiltonians H satisfying the following set of Assumptions (H):
(H1) H : Ω × RN → R is Borel-measurable;
(H2) for every x ∈ Ω the 0-sublevel set

Z(x) := {p ∈ R
N |H(x, p) ≤ 0} (21)

is closed and convex. Moreover ∂Z(x) = {p ∈ R
N |H(x, p) = 0 } for all x ∈ Ω;

(H3) there exist α, β > 0 such that Bα(0) ⊂ Z(x) ⊂ Bβ(0) for every x ∈ Ω.

We recall the definition of optical length function relative to the Hamiltonian H , that is the map S : Ω×Ω → R

defined by:

S(x, y) := inf
{∫ 1

0

σ(γ(t), γ̇(t)) dt | γ ∈ Lipx,y

}
(22)

for every x, y ∈ Ω, where σ is the support function of the 0-sublevel set Z(x), namely

σ(x, ξ) := sup {〈−ξ, p〉 | p ∈ Z(x) } . (23)

Note that, when it will be needed, given an Hamiltonian H , we will respectively denote by ZH(x), SH(x, y),
σH(x, ξ) the corresponding 0-sublevel set (21), optical length function (22) and support function (23). The
definition of Monge solution is given as follows.
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Definition 4.1. Let u ∈ C(Ω). We say that u is a Monge solution (resp. subsolution, supersolution) of (20)
in Ω, if for each x0 ∈ Ω there holds

lim inf
x→x0

u(x) − u(x0) + S(x0, x)
|x− x0| = 0 (resp. ≥, ≤). (24)

The general results obtained in Section 2 will be now specialized to derive the main properties of the optical
length function S defined in (22). Note that S is indeed the non-symmetric distance dϕ defined in (10) with
ϕ := σ. We start by studying the regularity of σ in the following lemma.

Lemma 4.2. If H is an Hamiltonian satisfying (H), then the function σ : Ω × RN → R+ belongs to M
and σ(x, ·) is convex on RN for every x ∈ Ω.

Moreover

(i) if H(·, p) is upper semicontinuous on Ω for every p ∈ RN , then σ(·, ξ) is lower semicontinuous on Ω for
every ξ ∈ RN ;

(ii) if H(·, p) is lower semicontinuous on Ω for every p ∈ RN , then σ(·, ξ) is upper semicontinuous on Ω,
for every ξ ∈ RN .

Proof. In order to prove that σ ∈ M, it will be enough to show σ is Borel measurable, since all the other
properties immediately follow from the definition of σ and Assumptions (H). Let (pi)i be a countable dense
subset of RN . By (H2) and (H3), it is easily seen that

σ(x, ξ) = sup
i∈N

{〈−ξ, pi〉 | pi ∈ Z(x) } = sup
i∈N

{〈−ξ, pi〉χEi
(x)} (25)

where Ei := {x ∈ Ω | H(x, pi) < 0 }. Notice that, by Assumption (H1), Ei is a Borel set, hence each function
(x, ξ) 	→ 〈−ξ, pi〉χEi

(x) is Borel-measurable and the claim follows. In order to prove (i), we remark that, by
Assumption (H3), one can replace the functions 〈−ξ, pi〉χEi

(x) with (〈−ξ, pi〉 ∨ α|ξ|)χEi
(x) in (25) without

affecting the equality. Then, as Ei is open for every i ∈ N, each function x 	→ (〈−ξ, pi〉 ∨ α|ξ|)χEi
(x) is

lower semicontinuous for every fixed ξ ∈ R
N , and so is σ(·, ξ). The remainder of the claim easily follows by

Assumptions (H) and the definition of support function σ. �

Remark 4.3. Comparing the above lemma with Proposition 2.2, we obtain that the function S is well-defined.
Moreover (see also Rem. 2.3), it is a non-symmetric geodesic distance such that:

(i) α|x− y| ≤ S(x, y) for every x, y ∈ Ω;
(ii) S(x, y) ≤ β|x− y| locally in Ω;
(iii) S is Lipschitz on Ω × Ω, with Lipschitz constant equal to 2β C, where C ≥ 1 is the Lipschitz constant

of ∂Ω.

In particular, by Proposition 2.1, for every x, y ∈ Ω, there exists a curve γ ∈ Lipx,y such that S(x, y) = LS(γ),
where LS(γ) is the length of the curve γ defined according to (8) for the non-symmetric distance S.

We want to show now that the definitions of Monge sub and supersolution are consistent with those given in
the viscosity sense in the classical setting of a continuous Hamiltonian.

Definition 4.4. A function u ∈ C(Ω) is a viscosity subsolution of (20) in Ω if

H(x0, q) ≤ 0 for every x0 ∈ Ω and every q ∈ D+u(x0).

Similarly, u ∈ C(Ω) is a viscosity supersolution of (20) in Ω if

H(x0, q) ≥ 0 for every x0 ∈ Ω and every q ∈ D−u(x0).
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We say that u ∈ C(Ω) is a viscosity solution of (20) in Ω if it is both a subsolution and a supersolution
in the viscosity sense. Here we have denoted by D+u(x0) and D−u(x0) the classical superdifferential and
subdifferential of u at x0.

Proposition 4.5. Let H be a continuous Hamiltonian satisfying (H). Then v ∈ C(Ω) is a Monge supersolution
(resp. subsolution) of (20) if and only if it is a viscosity supersolution (resp. subsolution) of (20).

Proof. To prove that any viscosity supersolution (resp. subsolution) in C(Ω) is a Monge supersolution (resp.
subsolution), one can argue as in [19].

Conversely, let v ∈ C(Ω) be a Monge supersolution. Let x0 ∈ Ω and q ∈ D−v(x0). By definition we have

0 ≥ lim inf
x→x0

v(x) − v(x0) + S(x0, x)
|x− x0| ≥ lim inf

x→x0

(
〈q, x− x0

|x− x0| 〉 +
S(x0, x)
|x− x0|

)
. (26)

Let (xn)n be a minimizing sequence for the most right-hand side of (26). We set

ξn :=
xn − x0

|xn − x0| , tn := |xn − x0|.

Up to subsequences, we have that ξn → ξ ∈ SN−1. Moreover

lim inf
n→+∞

S(x0, x0 + tnξn)
tn

= lim inf
n→+∞

S(x0, x0 + tnξ)
tn

≥ σ(x0, ξ).

Indeed, the first equality comes from
∣∣∣∣S(x0, x0 + tnξn) − S(x0, x0 + tnξ)

tn

∣∣∣∣ ≤ β|ξn − ξ|,

while the second follows by the continuity ofH (and therefore of σ by Lem. 4.2) and Proposition 2.9(i). Therefore
by (26) we obtain

0 ≥ lim
n→+∞

(
〈q, ξn〉 +

S(x0, x0 + tnξn)
tn

)
≥ 〈q, ξ〉 + σ(x0, ξ), (27)

that is 〈−ξ, q〉 ≥ σ(x0, ξ) = sup { 〈−ξ, p〉| p ∈ Z(x0) }. In view of Assumptions (H2), (H3) that easily implies
H(x0, q) ≥ 0.

Let v ∈ C(Ω) be a Monge subsolution. Let x0 ∈ Ω and q ∈ D+v(x0). We have

0 ≤ lim inf
x→x0

v(x) − v(x0) + S(x0, x)
|x− x0| ≤ lim sup

x→x0

(
〈q, x− x0

|x− x0| 〉 +
S(x0, x)
|x− x0|

)
· (28)

If it were H(x0, q) > 0, by Hahn-Banach theorem there would exist a vector ξ ∈ SN−1 such that 〈−ξ, q〉 >
sup {〈−ξ, p〉| p ∈ Z(x0)} = σ(x0, ξ). But that is impossible, since, by taking the sequence xn = x0 + tnξ with
tn = 1/n, from inequality (28) and Proposition 2.9(ii) we get

0 ≤ 〈q, ξ〉 + lim sup
n→+∞

S(x0, x0 + tnξ)
tn

≤ 〈q, ξ〉 + σ(x0, ξ). �

(29)

In the measurable setting, the following pointwise description of the behavior of Monge sub and supersolutions
holds.

Proposition 4.6. Let v be a Lipschitz function in Ω and H satisfy (H).
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(i) If v is a Monge subsolution of (20), then it is a Lipschitz subsolution, i.e.

H(x,Dv(x)) ≤ 0 for LN -a.e. x ∈ Ω.

(ii) If σ(·, ξ) is lower semicontinuous for every ξ ∈ RN and v is a Monge supersolution of (20), then it is a
Lipschitz supersolution, i.e.

H(x,Dv(x)) ≥ 0 for LN -a.e. x ∈ Ω.

In particular, a Monge solution is a Lipschitz solution, i.e. it solves (20) almost everywhere in Ω.

For the proof, the reader may follow word by word that of Proposition 4.5, using Proposition 2.9(i) instead of
the continuity of the support function σ.

The next proposition says that any Monge subsolution is locally 1-Lipschitz continuous with respect to the
non-symmetric distance S (cf. [19], Lem. 3.1).

Proposition 4.7. Let H be an Hamiltonian satisfying (H) and u ∈ C(Ω) be a Monge subsolution of (20).
Then u is Lipschitz in Ω and |Du| ≤ β a.e. in Ω. Moreover, for every x0 ∈ Ω there exists an r > 0, depending
only on dist(x0, ∂Ω), α, β, such that

u(x) − u(y) ≤ S(x, y) for every x, y ∈ Br(x0). (30)

Proof. First remark that the function u is Lipschitz continuous on Ω with |Du| ≤ β a.e. in Ω. Indeed, by the
fact that u is a Monge subsolution and Remark 4.3, we have that u is a Monge subsolution of |Dv| = β, hence a
(classical) viscosity subsolution. This remark, together with the Lipschitz character of ∂Ω, proves the assertion.

Now, fix a point x0 ∈ Ω. We can choose an r > 0 small enough so that every optimal path for S(x, y)
with x, y ∈ Br(x0) lies inside Ω. Observe that r is only dependent on dist(x0, ∂Ω), α, β (cf. Rem. 4.3).
Fix x, y ∈ Br(x0) and take an optimal path γ ∈ Lipx,y for S(x, y). By Remark 4.3 the function f(t) := S(x, γ(t))
is Lipschitz continuous. Therefore the function u◦γ(t) + f(t) is Lipschitz continuous and we can compute its
derivative for L1-a.e. t ∈ I. We have then

d
dt

(
u◦γ + f

)
(t) = lim

s→t+

u(γ(s)) − u(γ(t)) + S(x, γ(s)) − S(x, γ(t))
s− t

= |γ̇(t)| lim
s→t+

u(γ(s)) − u(γ(t)) + S(γ(t), γ(s))
|γ(s) − γ(t)| ≥ 0

for L1-a.e. t ∈ I, where we have used the optimality of γ and the definition of Monge subsolution. By integrating
the above inequality we get (30), that is the claim. �

5. The comparison result and solvability of the Dirichlet problem

Our comparison result is stated as follows.

Theorem 5.1 (comparison theorem). Let H be an Hamiltonian satisfying (H) and let u, v ∈ C(Ω) be, respec-
tively, a Monge subsolution and a Monge supersolution of (20) in Ω. If u ≤ v on ∂Ω then u ≤ v in Ω.

Proof. By contradiction, assume that the assertion is false. Then the function εu− v attains its maximum on Ω
at some point x0 ∈ Ω, for ε ∈ (0, 1) close to 1. Therefore

lim inf
x→x0

v(x) − v(x0) + S(x0, x)
|x− x0| ≥ lim inf

x→x0

εu(x) − εu(x0) + εS(x0, x) + (1 − ε)α|x− x0|
|x− x0| > 0,

in contradiction with v being a Monge supersolution. �
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We address now our attention to the Dirichlet problem
{
H(x,Du) = 0 in Ω
u = g on ∂Ω. (31)

More precisely, we will prove that the function u given by the Lax formula

u(x) := inf
y∈∂Ω

{S(x, y) + g(y)} for x ∈ Ω, (32)

is a Monge solution of the Dirichlet problem (31) according to the following definition.

Definition 5.2. We will say that a function u ∈ C(Ω) is a Monge solution of the Dirichlet problem (31) if it is
a Monge solution of equation H(x,Du) = 0 in Ω and u(x) = g(x) for each x ∈ ∂Ω.

Our result is the following.

Theorem 5.3 (solvability of the Dirichlet problem). Let H be an Hamiltonian satisfying (H) and assume that
the boundary datum g : ∂Ω → R satisfies the compatibility condition

g(x) − g(y) ≤ S(x, y) for every x, y ∈ ∂Ω. (33)

The function u given by the Lax formula (32) is the unique Monge solution of the Dirichlet problem (31).
Moreover, u is the maximal element of the set

SM := {v ∈ C(Ω) | v Monge subsolution of (20) in Ω, v ≤ g on ∂Ω }. (34)

The effect of the compatibility Condition (33) is that of guaranteeing that the function u defined by (32) attains
the boundary datum g on ∂Ω, while the other properties enjoyed by u are actually independent of (33). This
fact is underlined by the following

Proposition 5.4. Let H be an Hamiltonian satisfying (H) and g : ∂Ω → R be a function bounded from below.
The function u defined by (32) is Lipschitz continuous on Ω. Moreover, u is a Monge solution of (20) in Ω.

Proof. As g is bounded from below, u is well defined on Ω by formula (32). One can check that, by definition,
|u(x) − u(y)| ≤ max{S(x, y), S(y, x)} on Ω × Ω, therefore u is Lipschitz continuous on Ω (cf. Rem. 4.3), in
particular it is of class C(Ω).

To show that u is a Monge subsolution, fix x0 ∈ Ω and an arbitrary sequence (xn)n in Ω which converges
to x0. For every n ∈ N choose a point yn ∈ ∂Ω such that u(xn) ≥ S(xn, yn) + g(yn) − o(|x0 − xn|). Then

u(xn) + S(x0, xn) ≥ S(x0, yn) + g(yn) − o(|x − xn|) ≥ u(x0) − o(|x− xn|)

and, by taking the liminf as n goes to +∞ in the above expression, we conclude that u is a Monge subsolution
of (20) by the arbitrariness of (xn)n.

Let us prove that u is a Monge supersolution. Fix x0 ∈ Ω and, for n ∈ N big enough, consider the ball
B1/n(x0) ⊂ Ω. Choose an yn ∈ ∂Ω such that u(x0) ≥ S(x0, yn)+ g(yn)−1/n2. Let γn ∈ Lipx0,yn

be an optimal
path for S(x0, yn) and take a point zn ∈ γn(I)∩∂B1/n(x0). By definition we have that u(zn) ≤ S(zn, yn)+g(yn).
Hence, using also the optimality of γn, we have

u(zn) − u(x0) ≤ S(zn, yn) − S(x0, yn) + 1/n2 = −S(x0, zn) + 1/n2.

This implies

lim inf
n→+∞

u(zn) − u(x0) + S(x0, zn)
|zn − x0| ≤ lim inf

n→+∞
1
n

= 0,

which obviously implies that u is a Monge supersolution. �
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Proof of Theorem 5.3. Uniqueness in the class C(Ω) is a consequence of the comparison theorem. By Propo-
sition 5.4 we have that the function u defined by (32) is Lipschitz continuous on Ω, in particular of class C(Ω),
and is a Monge solution of (20) in Ω. We have, by definition, that u(x) ≤ g(x) for every x ∈ ∂Ω (just choose
y = x in formula (32)), while the opposite inequality holds by the compatibility Condition (33). Hence u = g
on ∂Ω, therefore u is the unique solution of class C(Ω) of the Dirichlet problem (31). Last, the maximality of u
in the set SM trivially follows by the Comparison Theorem. �

6. The stability result

We start this section by introducing a suitable convergence on Hamiltonians under which we will prove a
stability result for Monge solutions.

Definition 6.1. Let (Hn)n, H be Hamiltonians satisfying Assumptions (H) and (Sn)n and S be the relative
optical length functions defined according to (22). We say that Hn τ-converges to H and write Hn

τ−→H
if (Sn)n converges uniformly to S on Ω × Ω.

Remark 6.2. Note that the convergence of the Hamiltonians above defined is equivalent, by Theorem 3.1 in [6],
to the Γ-convergence of the length functionals (LSn)n to the length functional LS with respect to the uniform
convergence of paths. This, in fact, mainly motivates our definition.

Since our definition does not give a condition one can check on the sequence (Hn)n, we will see, in the next
proposition, which conditions on the Hamiltonians imply Hn

τ−→H .

Proposition 6.3. Let the Hamiltonians H, (Hn)n satisfy (H). Then Hn
τ−→H if one of the following conditions

holds:
(i) (Hn)n converges uniformly to H on Ω ×Bβ(0).
(ii) For each n ∈ N and p ∈ Bβ(0) the function Hn(·, p) is upper semicontinuous on Ω and (Hn)n converge

decreasingly to H on Ω ×Bβ(0).
(iii) (Hn)n converges increasingly to H on Ω ×Bβ(0).

Proof. By Definition 6.1 the claim will be proved if we show that (Sn)n uniformly converges to S in Ω×Ω. This
easily follows by applying Proposition 2.7 with ϕ := σ and ϕn := σn for each n ∈ N. Indeed Hypothesis (i),
(ii), and (iii) implies (i), (ii), and (iii) respectively in Proposition 2.7 (to obtain (ii) we also use Lem. 4.2), and
then we can conclude that the distances associated to σn, i.e. Sn, converge uniformly to the distance associated
to σ, i.e. S. �

We are now ready to show our stability result.

Theorem 6.4 (stability theorem). Let the Hamiltonians H, (Hn)n satisfy the same set of Assumptions (H)
for two fixed positive constants α, β (independent of n ∈ N). Suppose that:

1. Hn
τ−→H as n→ ∞;

2. un ∈ C(Ω) is a Monge solution of Hn(x,Dun) = 0 in Ω for each n ∈ N;
3. the sequence (un)n converges uniformly to u ∈ C(Ω) on compact subsets of Ω.

Then u is a Monge solution of H(x,Du) = 0 in Ω.

Proof. Fix a point x0 ∈ Ω. By Proposition 4.7, there exists an r > 0 independent of n such that (30) holds for
each Sn. Therefore we have

un(x) = inf
y∈∂Br(x0)

{Sn(x, y) + un(y)} for every x ∈ Br(x0). (35)

By Definition 6.1 (Sn)n converge uniformly to S on Ω × Ω and, by Hypothesis 3, un converge uniformly to u
in Br(x0), thus, letting n→ ∞ in (35) we obtain

u(x) = inf
y∈∂Br(x0)

{S(x, y) + u(y)} for every x ∈ Br(x0).
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So, by Theorem 5.3, u is a Monge solution of H(x,Du) = 0 in Br(x0). The claim then follows since (24) is a
local property and x0 ∈ Ω was arbitrary. �

We end this section describing an example already studied in [8], Example 7.2. We observe that, with our
definitions, a stability result holds, while this is not obtained in [8], as stressed by the authors. Note that the
difference is in the definition of the optical length function: indeed, we both consider the same discontinuous
Hamiltonian H which is the pointwise limit of a sequence of continuous ones (Hn)n, but while, using our
definition, the corresponding optical length functions Sn converge uniformly to the optical length function S
corresponding to H , with their definition (cf. also Sect. 7) the sequence (LΩ

n )n do not converge to LΩ (notice
that Sn = LΩ

n for each n ∈ N as Hn are continuous, cf. Th. 7.3).

Example 6.5. Let Ω := (0, 1)× (−2, 2) and consider a sequence of continuous functions an : Ω → R defined by

an(x1, x2) :=
{

1 if |x2| ≥ 1/n
1/2 + |x2|n/2 otherwise.

The functions an converge increasingly to the function a(x) := χΩ(x)−1/2χΓ(x) pointwise on Ω×RN , where Γ is
the x1-axis R×{0}. Let us define the Hamiltonians Hn(x, p) := |p|−an(x) and H(x, p) := |p|−a(x). Obviously,
(Hn)n and H satisfy Assumptions (H) with, for instance, α := 1/2 and β := 1. By Proposition 6.3(ii), we
immediately have that Hn

τ−→H , therefore the Stability Theorem holds. In particular, if g is a continuous
function on ∂Ω satisfying the compatibility Condition (33) for H and Hn for each n ∈ N (take, for instance
g(x) := 1/2|x| for x ∈ ∂Ω), then the Monge solutions un of the Dirichlet problems

{ |Dv| = an(x) in Ω
v = g on ∂Ω

are classical viscosity solutions (as the Hamiltonians Hn are continuous) and converge uniformly on Ω×Ω to a
function u which is the unique Monge solution of

{ |Dv| = a(x) in Ω
v = g on ∂Ω.

7. Pointwise behavior of Monge subsolutions

In this section we will study the pointwise properties enjoyed by the Monge subsolutions of problem (31)
and the relation between Monge and Lipschitz subsolutions, in particular we are interested in investigating
maximality properties of the function u defined by the Lax formula (32).

We recall that a function v : Ω → R is said to be a Lipschitz subsolution of the Dirichlet problem (31) if
v ∈ W 1,∞(Ω), H(x,Dv(x)) ≤ 0 for LN -a.e. x ∈ Ω and v ≤ g on ∂Ω. It is well known that in the classical
context of a continuous Hamiltonian H the function u defined in (32) is the maximum element of the set

SP := { v ∈W 1,∞(Ω) |H(x,Dv(x)) ≤ 0 LN -a.e. x ∈ Ω, v ≤ g on ∂Ω }

of Lipschitz subsolutions of (31). We wonder if this maximality property is maintained when the Hamiltonian
H satisfies the more general hypotheses (H). Indeed, by Proposition 5.4, the function u is a Lipschitz continuous
Monge solution of (20), therefore is a Lipschitz subsolution of (31), by Proposition 4.6. But in general it is
not the maximum element of SP , not even in the case of a boundary datum g satisfying the compatibility
Condition (33), as the following example shows.

Example 7.1. Let Ω := (0, 1)×(−1, 1) and letH(x, p) := |p|−a(x), where a(x) := 2χΩ(x)−χΓ(x) and Γ denotes
the x1-axis R × {0}. Let v(x1, x2) := 1/2|x2| + 3/2|x1|. Then the inequality H(x,Dv) < 0 holds true for every
differentiability point of v in Ω. Let u be the function given by formula (32) with g := v|∂Ω. Observe that g satisfy
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the compatibility Condition (33). Nevertheless, we have u(x1, 0) = S
(
(x1, 0), (0, 0)

)
= |x1| < 3/2|x1| = v(x1, 0).

Hence, u is not the maximum element of SP .

Therefore we are led to seek for sufficient conditions which guarantee the maximality of the function u among
all Lipschitz subsolution of (31).

Let H be an Hamiltonian fulfilling Assumptions (H). Following the approach of Camilli and Siconolfi in [8],
we define a slightly different optical length function:

LΩ(x, y) := sup
LN (E)=0

{
inf

{∫ 1

0

σ(γ(t), γ̇(t)) dt
∣∣ γ ∈ Lipx,y, γ transversal to E

}}

for every x, y ∈ Ω. We remark that LΩ is nothing else that the distance d̃σ defined according to (17). The
following result holds [8].

Theorem 7.2. Let H be an Hamiltonian satisfying (H). Assume that g : ∂Ω → R is a function bounded from
below and that S(x, y) = LΩ(x, y) for every x, y ∈ Ω. Then any Lipschitz subsolution of (31) is a Monge
subsolution. Moreover, the function u defined by Lax formula (32) is maximal in SP .

The previous theorem gives a first answer to the question raised before. Unfortunately, the above condition,
stated in terms of equality of the optical length functions S and LΩ, is quite indirect. In order to derive
conditions on the Hamiltonian, we now use the results obtained in Section 3. The next theorem will indeed
follow quite easily from Proposition 3.8. We remark that our result is more general than those obtained by
Newcomb and Su [19], Theorem 5.4 and by Soravia [20], Theorem 4.7: indeed, the HamiltonianH is not assumed
to be piecewise constant in the x-variable near the interface of two contiguous subdomains.

Theorem 7.3. Assume that Ω := ∪mi=1Ωi, where the sets Ωi are bounded domains with Lipschitz boundaries
such that Ωi ∩ Ωj = ∂Ωi ∩ ∂Ωj if i �= j, and every x ∈ Ω belongs to at most two subdomains Ωi.

Let H be an Hamiltonian satisfying (H) and lower semicontinuous in Ωi×RN for each i. Moreover, assume
that for every x ∈ ∪mi=1∂Ωi there exist an index i0 and a real number ρ > 0 such that x ∈ ∂Ωi0 and H is lower
semicontinuous in Ωi0 ∩Bρ(x).

Then S(x, y) = LΩ(x, y) for every x, y ∈ Ω. In particular, the claim of Theorem 7.2 holds.

Proof. The claim directly follows by applying Proposition 3.8 with ϕ := σ (as S = dσ and LΩ = d̃σ). Since the
hypotheses on Ω are the same, we only have to check those on σ. Since σ(x, ·) is convex on RN for every x ∈ Ω,
when checking the upper semicontinuity properties of σ, we can reduce to consider the function σ(·, ξ) for every
fixed ξ ∈ RN . Now, it is easy to prove that σ(·, ξ) is upper semicontinuous on X if H is lower semicontinuous
on X × RN , being X a subspace of RN and ξ a fixed vector in RN . This argument, applied with X := Ωi
and X := Ωi0 ∩ Bρ(x) with x, io and ρ as in the statement of the theorem, shows that the assumptions of
Proposition 3.8 are fulfilled. �

Another question that could be raised is whether the last part of the claim of Theorem 5.3 is still true even
when g does not satisfy the compatibility Condition (33), that is we wonder if the function u defined by (32) is
the maximum element of the set SM for a generic boundary datum. The following example shows that such a
maximality property can not be expected in general.

Example 7.4. Let Ω := (0, 1) × (0, 1) and let H(x, p) := |p| − a(x), K(x, p) := |p| − b(x), where a(x) :=
χΩ(x)+χΩ(x) and b(x) := 2χΩ(x). Notice that SK(x, y) = 2|x−y| and that SH = SK in a suitable neighborhood
of every point of Ω. Let g(x) := 2|x| and set, for every x ∈ Ω,

u(x) := inf
y∈∂Ω

{SH(x, y) + g(y)}, v(x) := inf
y∈∂Ω

{SK(x, y) + g(y)}.

Notice that g satisfies the compatibility Condition (33) with respect to the Hamiltonian K (but not with respect
to H). In particular, that implies v = g on ∂Ω. By Proposition 5.4, u and v are a Monge solutions (in particular,
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Monge subsolutions) of equation (20) with Hamiltonian H and K respectively. Moreover, since SH = SK locally
in Ω and (24) is a local property, we have that v is a Monge subsolution with respect to H too. Let us show
now that u is less than v, i.e. that there exists a point x0 ∈ Ω such that u(x0) < v(x0). To this aim, take
x0 := (1/2, 0). Indeed, v(x0) = g(x0) = 1, while u(x0) ≤ SH(x0, 0) + g(0) = 1/2.

We look for conditions sufficient to guarantee the maximality in SM of the function u defined in (32). A
sufficient condition we found is that the optical length function S defined in (22) can be obtained by taking
the infimum only over those curves in Lipx,y which lie in the interior of Ω, possibly except for their endpoints.
Note the this condition is not true in general, as can be easily seen by considering SH in Example 7.4.

Theorem 7.5. Let H be an Hamiltonian satisfying (H). If, for every x, y ∈ Ω,

S(x, y) = inf
{∫ 1

0

σ(γ(t), γ̇(t)) dt | γ ∈ Lipx,y, γ(t) ∈ Ω for all t ∈ (0, 1)
}
, (36)

then u defined by (32) is maximal in SM .

Proof. Let γ be a curve in Lipx,y such that γ(t) ∈ Ω for all t ∈ (0, 1) and let v ∈ SM . For a fixed positive
δ < 1/2, let Γδ := γ ([δ, 1 − δ]). The set Γδ is compact and contained in Ω, therefore, by Proposition 4.7, we
may find a finite partition δ = t0 < t1 < ... < tm = 1 − δ such that v(γ(ti)) − v(γ(ti+1)) ≤ S(γ(ti), γ(ti+1)) for
each i. Therefore

v(γ(δ)) − v(γ(1 − δ)) ≤
m−1∑
i=0

S(γ(ti), γ(ti+1)) ≤
m−1∑
i=0

∫ ti+1

ti

σ(γ, γ̇) dt. (37)

By letting δ go to 0 and by taking the infimum of (37) over all curves γ ∈ Lipx,y with γ(t) ∈ Ω for all t ∈ (0, 1),
we obtain, in view of Assumption (36) and the continuity of v, that

v(x) − v(y) ≤ S(x, y).

In particular the above inequality is true for every y ∈ ∂Ω, therefore, recalling also that v ≤ g on ∂Ω, we have

v(x) ≤ inf
y∈∂Ω

{S(x, y) + g(y)},

which gives the claim. �

8. Examples

We conclude this paper by discussing some examples. Before going on, we introduce some preliminary
notation. Given a closed subset C of R

N , we will denote by dist#(x,C) the signed distance from the set C,
namely the function defined as follows

dist#(x,C) := dist(x,C) − dist(x,RN \ C) for every x ∈ RN .

The dual metric of a Finsler metric ϕ ∈ M is the function ϕ∗ defined by

ϕ∗(x, p) := sup
{
〈p, ξ〉

∣∣∣ϕ(x, ξ) ≤ 1
}

for every (x, p) ∈ Ω × RN .

When the metric ϕ is convex, i.e. ϕ(x, ·) is convex for every x ∈ Ω, the following holds (see [9]):

sup
{〈ξ, p〉 ∣∣ϕ∗(x, p) ≤ 1

}
= ϕ(x, ξ) for every (x, ξ) ∈ Ω × R

N . (38)
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Example 8.1. Let us consider the Hamilton-Jacobi equation

H(x,Du) = 0 in Ω, (39)

where H satisfies Assumptions (H), and let S be the associated length function. As S is a Finsler distance,
it is actually the uniform limit of a sequence of distances (dϕn)n, where ϕn is a continuous Finsler metric
belonging M for each n ∈ N (by Th. 4.1 in [11]). For each n ∈ N, let us set

Zn(x) := {p ∈ R
N |ϕ∗

n(x,−p) ≤ 1} for every x ∈ Ω,

and Hn(x, p) := dist#(p, Zn(x)) for every (x, p) ∈ Ω × RN . For each n ∈ N, Hn is continuous, and it is convex
since Zn(x) is a convex set for every x. Moreover, if Sn is the associated optical length function for each n ∈ N,
then Sn = dϕn in view of (38) and by definition of optical length function. Therefore, if g is a boundary datum
satisfying the compatibility Condition (33) with respect to the length function S, the Monge solution u of

{
H(x,Dv) = 0 in Ω
v = g on ∂Ω,

is the uniform limit of the unique maximal viscosity solutions un of the problems
{
Hn(x,Dv) = 0 in Ω
v ≤ g on ∂Ω.

Indeed, by the standard theory of viscosity solutions for continuous Hamiltonians, we know that un(x) =
infy∈∂Ω{Sn(x, y)+g(y)} in Ω, so the claim easily follows in view of Theorem 5.3 and by the uniform convergence
of Sn to S.

Example 8.2. In equation (39), assume in addition that the Hamiltonian H is such that the associated optical
length function S is symmetric, i.e. S(x, y) = S(y, x) for all x, y ∈ Ω (this happens, for instance, when H(x, p)
is even in p). Then, by [10], Theorem 4.6, there exists a Borel function a : Ω → [α, β] such that

S(x, y) = inf
{∫ 1

0

a(γ(t))|γ̇(t)| dt
∣∣∣ γ ∈ Lipx,y

}
for all x, y ∈ Ω.

Therefore, with regard to Monge sub and supersolutions, equation (39) is equivalent to the eikonal equation

|Du| = a(x) in Ω, (40)

that is, equations (39) and (40) have the same Monge subsolutions and the same Monge supersolutions, since
they have the same optical length functions. Moreover, by the density result proven in [10], Theorem 4.3, the
continuous Hamiltonians Hn of Example 8.1 can be chosen in such a way that Hn(x, p) := |p| − an(x), for a
suitable sequence of Borel measurable functions an : Ω → [α, β].

Inspired by Example 6.5, we use the same idea to construct an evolutive Hamilton-Jacobi equation with
continuous coefficients, for which standard results of the theory of Hamilton-Jacobi equations apply. The
Cauchy problem obtained by coupling this equation with a null boundary datum has therefore a unique viscosity
solution, which is shown to tend asymptotically to the Monge solution of a stationary Hamilton-Jacobi equation.

Example 8.3. Let Ω := (0, 1) × (−2, 2) and, for each t > 0, consider the continuous function at : Ω → R

defined by

at(x1, x2) :=
{

1 if |x2| ≥ 1/t
1/2 + |x2|t/2 otherwise.
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Let us define on Ω× (0,+∞) a function a by setting a(x, t) := at(x) for each t > 0 and x ∈ Ω. We consider the
following evolutive Cauchy problem:

{
∂tv(x, t) + |Dv|(x, t) = a(x, t) in Q := Ω × (0,+∞)
v(x, t) = 0 on ∂Q. (41)

Since a(x, t) is continuous, we know, by the standard theory of Hamilton-Jacobi equations [18], that the above
Cauchy problem admits a unique viscosity solution, given by the following formula:

u(x, t) := inf
(y,s)∈∂Q

S((x, t), (y, s)) for all (x, t) ∈ Q, (42)

where S is the function defined on Q×Q as follows:

S((x, t), (y, s)) := inf
{∫ t

s

a(γ(τ), τ) +H∗(γ̇(τ)) dτ
∣∣ γ ∈ Lipy,x([s, t],Ω)

}
, (43)

where Lipy,x([s, t],Ω) denotes the space of curves γ ∈ Lip([s, t],Ω) such that γ(s) = y, γ(t) = x. When s > t or
s = t and x �= y this family is empty: in that case we agree that S((x, t), (y, s)) = +∞. In the above formula we
have denoted by H∗ the Fenchel transform of H(p) := |p|, namely H∗(ξ) := supp∈RN 〈ξ, p〉 −H(p). Notice that,
in this case, H∗ coincides with the indicator function of the closed ball B1(0), i.e. H∗(ξ) is equal to 0 if |ξ| ≤ 1
and to +∞ otherwise. In particular, S degenerates outside a cone of vertex (x, t), i.e. S((x, t), (y, s)) = +∞ if
t− s < |x− y|.

We want to study the asymptotic behavior of the solution u(x, t) of (41). Since the functions at converge
pointwise and increasingly on Ω, as t tends to +∞, to the discontinuous function a∞(x) := χΩ(x) − 1/2χΓ(x)
(where we have denoted by Γ the x1-axis R × {0}), we expect the asymptotic limit of u(x, t) to solve the
stationary Hamilton-Jacobi equation

|Dv| = a∞(x) in Ω.

In fact, we will show that u(x, t) tends asymptotically, uniformly in t, to the Monge solution of the following
Dirichlet problem:

{ |Dv| = a∞(x) in Ω
v = 0 on ∂Ω. (44)

To this goal, we first recall (see for instance [18], Th. 5.2) that, if in (43) the function a is replaced by a function
b : Ω → [α, β], 0 < α < β that does not depend on t, then, for fixed (x, t) and (y, s) in Q, we have:

S((x, t), (y, s)) ≥ inf

{∫ T

0

b(γ(t))|γ̇(t)| dt
∣∣∣ γ ∈ Lipy,x([0, T ],Ω), T > 0

}
= db(y, x),

with equality holding if t− s ≥ |y− x|β/α. In particular, by taking into account this remark and using in (43)
the fact that a(x, t) ≤ a∞(x) for all (x, t) ∈ Q , one easily obtains that S((x, t), (y, s)) ≤ 2 diam(Ω)∨da∞(x, y) ≤
2 diam(Ω) for all (x, t) and (y, s) in Q such that S((x, t), (y, s)) < +∞ (we have denoted by diam(Ω) the diameter
of the set Ω). Let us now fix (x, t) ∈ Q and let γ ∈ Lip([s, t],Ω), 0 ≤ s < t, be a minimizing path of (42). Then
we have

1
2
(t− s) ≤

∫ t

s

a(γ(τ), τ) +H∗(γ̇(τ)) dτ = u(x, t) ≤ 2 diam(Ω),

that is 0 ≤ t−s ≤ r := 4 diam(Ω). Then, for t > r, any path γ ∈ Lip([s, t],Ω), which is minimal for (42), is such
that s ≥ t− r > 0, in particular γ(s) ∈ ∂Ω. Therefore, for t > r, it is not restrictive to assume that the infimum
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in (42) is taken letting (y, s) vary over the set ∂Ω × [t− r, t] only. In particular, as at−r(z) ≤ a(τ, z) ≤ a∞(z)
for every z ∈ Ω and s ≤ τ ≤ t, we obtain that

∫ t

s

at−r(γ) +H∗(γ̇) dτ ≤
∫ t

s

a(γ, τ) +H∗(γ̇) dτ ≤
∫ t

s

a∞(γ) +H∗(γ̇) dτ. (45)

Taking the infimum over all possible curves γ joining (y, s) ∈ ∂Ω × [t − r, t] to (x, t) and letting (y, s) vary in
∂Ω × [t− r, t], by what previously remarked we eventually get

inf
y∈∂Ω

dat−r (x, y) ≤ u(x, t) ≤ inf
y∈∂Ω

da∞(x, y).

The claim now follows as at is an increasing sequence of isotropic Riemannian metrics converging pointwise to
a∞ on Ω and therefore, by Proposition 2.7, the distance dat uniformly converges to da∞ on Ω × Ω as t goes to
+∞. In particular, this easily implies that u(x, t) asymptotically converges, uniformly in t, to infy∈∂Ω da∞(x, y),
which is the Monge solution of (44) (remark that da∞ is the optical length function associated to the Hamiltonian
H(x, p) = |p| − a∞(x)).

The result of the previous example was obtained in a very special case. Nevertheless, with the same idea,
one can obtain an analogous result for Monge solutions of eikonal equations of the following form:

{ |Dv| = a∞(x) in Ω
v = 0 on ∂Ω, (46)

where a∞ : Ω → [α, β] is lower or upper semicontinuous and α and β are, as usual, fixed positive constants.
Indeed, let us assume, for instance, a∞ lower semicontinuous, being the other case analogous. As well known,
it is possible to find an increasing sequence of continuous functions an : Ω → [α, β], n ∈ N, such that a∞(x) =
supn an(x) for all x ∈ Ω. Let us define on Ω × (0,+∞) a continuous function a by setting a(x, t) := (n + 1 −
t)an(x) + (t − n)an+1(x) for all x ∈ Ω, t ∈ (n, n+ 1] and n ∈ N. Arguing as above, one immediately gets that
the viscosity solution of

{
∂tv(x, t) + |Dv|(x, t) = a(x, t) in Q := Ω × (0,+∞)
v(x, t) = 0 on ∂Q.

tends asymptotically to the Monge solution of (46).
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