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WELL-POSEDNESS AND SLIDING MODE CONTROL

Tullio Zolezzi1

Abstract. Sliding mode control of ordinary differential equations is considered. A key robustness
property, called approximability, is studied from an optimization point of view. It is proved that
Tikhonov well-posedness of a suitably defined optimization problem is intimately related to approx-
imability. Making use of this link, new approximability criteria are obtained for nonlinear sliding mode
control systems.

Mathematics Subject Classification. 49K40, 93B12.

Received February 6, 2004.

1. Introduction

A nonlinear control system described by ordinary differential equations with a prescribed sliding manifold is
considered on a bounded time interval. Sliding mode control aims at driving and keeping the system state vector
on the sliding manifold by suitable feedback control laws. A number of significant control problems can thereby
solved in an effective way, among them invariance to process dynamics characteristics, disturbance decoupling,
stabilization, tracking control and model following, control under uncertainty. We refer to [6, 9, 12, 14] for
overviews of the underlying theory and applications.

A basic problem in this area is the following. Suppose that the sliding condition is approximately fulfilled. Is
it then true that the dynamical behavior of the (so called) real states of the system approaches the ideal sliding
behavior as the imperfections preventing ideal sliding disappear?

The previous question deals with robustness features of the sliding mode control methodology. In the ap-
plications of sliding mode control, the real states, namely those which fulfill only approximately the sliding
condition, are of interest due to unavoidable imperfections, small errors in the control process, small delays etc.
If a sliding mode control system is not robust in the previous sense, then very small errors (of any nature) may
destroy good performance of the given system.

According to the terminology of [14], ideal states are those fulfilling exactly the sliding condition, real states
are those fulfilling only approximately such a state constraint, and any reason preventing ideal sliding is called a
nonideality. A sliding mode control system fulfills the approximability property (see [3]) provided all real states
converge towards the unique sliding state as the nonidealities disappear (see the next section for the complete
definitions).

The problem is considered in [14], Chapter 2, for dynamics affine in the control law, and is put on a math-
ematically rigorous basis in [3] for non linear dynamics. Sufficient conditions guaranteeing that all real states
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converge toward a well-defined sliding state as the nonidealities disappear are obtained in [3,4], thereby yielding
approximability.

In this paper we propose a new and more appropriate definition of real states than the one used in [3, 4],
moreover we consider the previous problem from an optimization point of view.

Real states arise due to imperfections (of any nature) acting on the sliding phase of the control process,
corresponding to possibly discontinuous feedback control laws. It follows that the real states are mathematically
described by classical (i.e. almost everywhere), or Filippov solutions to the ordinary differential equations
modeling the control system. For the notion and the relevant properties of Filippov solutions see [10, 11].
See [14] for showing why Filippov solutions are adequate in this context. We take into account both possibilities
by enlarging in such a way the definition of real states. The previous approximability concepts, we considered
in [3] (Def. 3, p. 54) and in [4], were based on defining real states as classical solutions. No Filippov solutions
were considered in this context. Imposing convergence of the real states, as defined in the present paper, in a
broader sense than in [3, 4], strengthens the corresponding definition of approximability as compared with the
previous setting. Hence the known criteria guaranteeing approximability are not necessarily valid in this new
setting. We shall however show that the basic sufficient conditions yielding approximability generalize to the
new framework.

Within this new approach, we show in Section 3 that approximability is equivalent to Tikhonov well-posedness
(see [8], Chap. I) of a suitably defined optimization problem, whose minimizer is the sliding state. Roughly
speaking, the real states correspond to the minimizing sequences of such optimization problem, hence their
convergence is at issue, whence the link with well-posedness. In Section 4 we obtain new approximability
criteria, which substantially extend the known conditions, making use of the link with Tikhonov well-posedness.
Moreover we show that approximability can be characterized in terms of the (suitably measured) gap between
system states and the sliding trajectory.

The results of this paper show that an approach to the approximability problem for sliding mode control
systems, based on optimization, allows us to obtain a better insight and more general results. Moreover the
same approach could be useful in understanding approximability properties of second (and higher) order sliding
mode control methods (see e.g. [2]), currently under development.

2. Problem statement

We consider a sliding mode control system with state variable x ∈ RN , control variable u ∈ RK , given by

ẋ = f(t, x, u), u ∈ U, 0 ≤ t ≤ T ; x(0) = x̄; (2.1)

s(t, x) = 0. (2.2)

The dynamics

f : [0, T ]× RN × U → RN

are Carathéodory functions, U is a closed subset of RK , x̄ ∈ RN , and

s : [0, T ]× RN → RM

is continuous.
Given x̄ ∈ RN , we consider as admissible control laws in (2.1) all functions

u : [0, T ]× RN → U

which are L ⊗ B -measurable, i.e. measurable with respect to the σ-algebra generated by the products of the
Lebesgue measurable subsets of [0, T ] and the Borel measurable subsets of RN , and which fulfill the following
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property. For any such u, if the differential system in (2.1) has a classical (i.e. almost everywhere), or a Filippov
solution x on [0, T ] for any x̄, then u[·, x(·)] ∈ L∞(0, T ). We denote by U∞ the set of all admissible controls.

Given x̄, we denote by W (x̄) the set of all absolutely continuous functions x satisfying (2.1) corresponding
to some u belonging to U∞ either in the a.e. or in the Filippov sense. To simplify the notations, we shall write

ẋ = f(t, x, u) on [0, T ]

meaning that u ∈ U∞ and x is either a classical of Filippov solution on [0, T ]. The L∞(0, T ) norm of v is
denoted by ‖v‖∞.

The control system (2.1), (2.2) fulfills the (first order) approximability property if the following properties (A),
(B) are true.

(A) For every x̄ ∈ RN such that s(0, x̄) = 0 there exists a unique sliding state y issued from x̄, namely y is
absolutely continuous on [0, T ] and

y(0) = x̄, s[t, y(t)] = 0 for every t ∈ [0, T ],

ẏ = f(t, y, u∗) on [0, T ] for some u∗ ∈ U∞.

(B) For every sequences un ∈ U∞ and xn such that

sup ‖un[·, xn(·)]‖∞ < +∞, ẋn = f(t, xn, un) on [0, T ], xn(0) → x̄,

and
s(t, xn) ↪→ 0

we have
xn ↪→ y.

By ↪→ we denote uniform convergence on [0, T ].
The definition of approximability presented here is an extension of that in [3]: we consider a broader set of

admissible controls, and the existence of the equivalent control is not required. Moreover it is a modification of
that in [4], where existence of the equivalent control was not required and Hermes solutions were considered in
connection with the behavior of the real states. Here we consider as real states those corresponding in either
sense, a.e. or Filippov, to feedback control laws in (2.1), in order to describe any real behavior in a more direct
and realistic way than in previous works.

We remark that the uniqueness condition (A) is fulfilled provided there exists an unique equivalent control
(see [3]), as quite often it happens in the applications (see [14]).

Given x ∈ C0([0, T ]), we consider

I(x) =
∫ T

0

|s(t, x)|dt

where | · | is any fixed norm of RM . Given x̄ ∈ RN , the global optimization problem we consider, denoted by
(W (x̄), I), consists of globally minimizing I over the set W (x̄) of all state trajectories of (2.1) issued from x̄.
The problem (W (x̄), I) will be called Tikhonov well-posed with value 0 if the following conditions (C), (D) are
met.

(C) There exists a unique y ∈ W (x̄) such that I(y) = 0.
(D) For every sequence zn such that

żn = f(t, zn, un) on [0, T ], zn(0) = x̄

corresponding to some sequence un ∈ U∞ with sup ‖un[·, zn(·)]‖∞ < +∞, if I(zn) → 0 then zn ↪→ y.
Of course, y = arg min (W (x̄), I) by (C). Every sequence zn as in (D) will be referred to as a minimizing

sequence of (W (x̄), I).
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We shall employ in the sequel the following assumptions.
For every compact set S ⊂ U there exist A, B ∈ L1(0, T ) such that

|f(t, x, u)| ≤ A(t)|x| + B(t) (2.3)

for a.e. t, every u ∈ S and x ∈ RN .
For every compact Z ⊂ RN × U there exists C ∈ L1(0, T ) such that

|f(t, x′′, u) − f(t, x′, u)| ≤ C(t)|x′′ − x′| (2.4)

for a.e. t, every (x′′, u), (x′, u) ∈ Z.
If U is compact and (2.3) holds, it follows by Gronwall’s lemma and standard properties of Filippov solu-

tions that U∞ contains all Carathéodory’s feedback controls u = u(t, x), and more generally those which are
L ⊗ B -measurable, see [7, 10].

In the following we denote by co the closed convex hull, and by B(z, δ) the closed ball of radius δ around z.

3. Approximability and well-posedness

In this section we prove that approximability of the control system (2.1), (2.2), and Tikhonov well-posedness
of (W (x̄), I), are equivalent properties.

Theorem 3.1. Suppose that (2.3) and (2.4) hold. Then (W (x̄), I) is Tikhonov well-posed with value 0 for every
x̄ ∈ RN such that s(0, x̄) = 0 if and only if the control system (2.1), (2.2) fulfills the approximability property.

Proof. We show that well-posedness implies approximability. Given x̄ and a sequence (un, xn) as in condi-
tion (B), consider zn such that

żn = f(t, zn, un) on [0, T ], zn(0) = x̄,

in the following sense. If xn is an a.e. (respectively, a Filippov) solution, then zn is an a.e. (respectively,
a Filippov) solution. Since un ∈ U∞, every zn is defined on the whole [0, T ] by (2.3) and zn ∈ W (x̄), see
Theorem 5.2, p. 58 of [7]. Now let zn be a Filippov solution for infinitely many n. Fix any subsequence of zn

(we do not relabel). Then by the definition of Filippov solution [10] (p. 202), for every n

żn(t) ∈ co gn[t, B(zn(t), δ)],

for a.e. t and every δ > 0, where

gn(t, x) = f [t, x, un(t, x)].

It follows that, by Carathéodory’s convexity theorem, żn(t) is almost everywhere a limit of points

N+1∑
i=1

αi(t)gn[t, qi(t)], (3.1)

where |qi(t) − zn(t)| ≤ δ and αi(t) ≥ 0,
∑N+1

i=1 αi(t) = 1. Then by (2.3)

|gn[t, qi(t)]| ≤ A(t)|qi(t) − zn(t)| + A(t)|zn(t)| + B(t)

≤ (δ + |zn(t)|)A(t) + B(t).
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Hence by the convergence of the points in (3.1)

|żn(t)| ≤ (δ + |zn(t)|)A(t) + B(t) (3.2)

whence, letting δ → 0,

|zn(t)| ≤ constant +
∫ t

0

[A(s)|zn(s)| + B(s)]ds.

It follows by Gronwall’s lemma that zn is equibounded. Then we apply Theorem 9, p. 216 of [10] (taking into
account (2.3) and equiboundedness), thus we get

xn − zn ↪→ 0. (3.3)

Since xn and zn are equibounded and s is uniformly continuous on compact sets, we obtain s(t, zn) ↪→ 0. It
follows that zn is a minimizing sequence of (W (x̄), I), hence

zn ↪→ y = arg min (W (x̄), I)

by well-posedness. Then we get
xn ↪→ y (3.4)

for the corresponding subsequence. Now let zn be an a.e. solution for infinitely many n. Then Gronwall’s lemma
again implies (3.3). The same conclusion holds if zn is an a.e. solution for infinitely many n and a Filippov
solutions for infinitely many n. Summarizing, in each case uniqueness of the sliding state yields (3.4) for the
whole sequence, thereby proving approximability.

Now we show that approximability implies well-posedness. Given x̄ let xn be any minimizing sequence of
(W (x̄), I). Let xn be an a.e. solution for infinitely many n. Then by (2.3), (2.4) and Gronwall’s lemma we get
in a standard way that xn is equibounded and equicontinuous. Let xn be a Filippov solution for infinitely many
n. By (3.3) written for xn, for each t′, t′′ in (0, T ) with t′ < t′′ we have

|xn(t′′) − xn(t′)| ≤
∫ t′′

t′
[A(t)|xn(t)| + B(t)]dt

yielding equicontinuity of xn (because of equiboundedness). In every case, fix any subsequence of xn (we do not
relabel), then a further subsequence xn ↪→ z by Ascoli-Arzelá’s theorem, where z ∈ C0([0, T ]) and z(0) = x̄.
Since s[·, xn(·)] → 0 in L1(0, T ), for a further subsequence we have s[·, xn(·)] → 0 a.e. in (0, T ), hence

s[·, xn(·)] ↪→ s[·, z(·)],

whence
s[t, z(t)] = 0 for all t ∈ [0, T ]. (3.5)

Approximability then implies
xn ↪→ y

the unique sliding state issued from x̄. The subsequence we started from was arbitrarily fixed, hence, by the
uniqueness of y, the whole sequence

xn ↪→ y = arg min (W (x̄), I),

whence well-posedness. �
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4. Approximability criteria

Making use of the variational interpretation of approximability we obtain three new criteria, as follows.

Corollary 4.1. The control system (2.1), (2.2) fulfills the approximability property if Conditions (2.3), (2.4)
are met, U is compact, f(t, x, U) is convex for a.e. t and every x with s(t, x) = 0, and for every x̄ ∈ RN with
s(0, x̄) = 0 there exists a unique sliding state issued from x̄.

Proof. By Theorem 3.1 it suffices to show Tikhonov well-posedness of (W (x̄), I). Let xn be any minimizing
sequence. Then

ẋn(t) ∈ f(t, xn(t), U) a.e.

if xn is an a.e. solution. If xn is a Filippov solution, then by the definition (see [11])

ẋn(t) ∈ co f(t, B(xn(t), δ), U),

for a.e. t and every δ. In both cases, writing

F (t, y, δ) = co f(t, B(y, δ), U)

we get

ẋn(t) ∈ F (t, xn(t), δ) (4.1)

for a.e. t and every δ > 0. As in the proof of Theorem 3.1, xn is equibounded. Then if |xn(t)| ≤ M for all t
and n, by (3.2) written for xn we have

|ẋn(t)| ≤ M A(t) + B(t)

for every n and a.e. t. Given δ > 0, the set-valued map

(t, y) → F (t, y, δ), 0 ≤ t ≤ T, |y| ≤ M

is integrably bounded by (2.3), it takes compact convex values and it is measurable with respect to t for each
y. Since f(t, ·, ·) is continuous, the set-valued map

y → f(t, B(y, δ), U)

is upper-semicontinuous [1] (Sect. 1.4), hence the same holds for F (t, ·, δ) for each t, δ. We are in position to
apply Theorem 3.1.7 of [5]. It follows that some subsequence (we do not relabel) xn ↪→ z where z is absolutely
continuous and by (4.1)

ż(t) ∈ F (t, z(t), δ)

for a.e. t and every δ. By upper semicontinuity of F (t, z(t), ·) [1] (Sect. 1.4) it follows that

ż(t) ∈ co f(t, z(t), U) (4.2)

a.e. in (0, T ). Since xn is a minimizing sequence we have

s[·, xn(·)] → 0 in L1(0, T )
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hence by uniform convergence

s[t, z(t)] = 0, 0 ≤ t ≤ T. (4.3)

Then by (4.2), (4.3) and the convexity assumption we obtain

ż(t) ∈ f(t, z(t), U)

a.e. in (0, T ). We apply the measurable selection theorem to the multifunction Γ given by

Γ(t) = {v ∈ U : ż(t) = f(t, z(t), v)},

a.e. t ∈ (0, T ) (see [13], Th. 2J). Then there exists a measurable function u such that u(t) ∈ U and ż(t) =
f [t, z(t), u(t)] a.e. in (0, T ). Since U is compact, z ∈ W (x̄). Then by (3.4), z = y the unique sliding state issued
from x̄. It follows that the original sequence xn ↪→ y = arg min (W (x̄), I), hence well-posedness. �

Remark 4.1. Compactness of U can be avoided in Corollary 4.1 provided we assume convexity of all sets
f(t, x, D), D any compact subset of U .

Remark 4.2. Corollary 4.1 generalizes some approximability conditions proved in [3,4]. In [3], approximability
is shown to hold provided the plant is affine in the control variable, we have existence and uniqueness of the
equivalent control, and some nonsingularity conditions are met. No such conditions are required in Corollary 4.1.
Of course, if U is convex, affinity of f(t, x, ·) implies convexity of f(t, x, U). In [4], a notion of generalized
approximability is shown to hold provided the convexity condition is fulfilled, there exists a unique sliding state
and s = s(x) only. In Corollary 4.1 we let s depend of t as well.

According to the terminology of [8], I.2, a function

c : D → [0, +∞)

is called forcing if

0 ∈ D ⊂ [0, +∞), c(0) = 0

and for every sequence an ∈ D,

c(an) → 0 ⇒ an → 0.

Corollary 4.2. Under Conditions (2.3), (2.4), if for every x̄ ∈ RN such that s(0, x̄) = 0 there exist a sliding
state y ∈ W (x̄) and a forcing function c such that

∫ T

0

|s(t, x)|dt ≥ c(‖x − y‖∞), x ∈ W (x̄), (4.4)

then the control system (2.1), (2.2) fulfills the approximability property. The converse holds under the assump-
tions of Corollary 4.1.

Proof. Condition (4.4) implies well-posedness of every (W (x̄), I) by [8], Theorem 12, p. 6, hence approxima-
bility by Theorem 3.1. Conversely, approximability yields well-posedness by Corollary 4.1, hence (4.4) again
by [8], Theorem 12, p. 6. �

A further criterion can be obtained from a pointwise version of (4.4).
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Corollary 4.3. The control system (2.1), (2.2) fulfills the approximability property if for every x̄ ∈ RN with
s(0, x̄) = 0 there exists a sliding state y ∈ W (x̄); and for every t ∈ [0, T ] there exists a forcing function c(t, ·)
such that c(·, a) is lower semicontinuous for every a > 0, and

|s[t, x(t)]| ≥ c(t, |x(t) − y(t)|), 0 ≤ t ≤ T, x ∈ W (x̄).

Proof. Let z ∈ W (x̄) be a sliding state, then for every t ∈ [0, T ]

0 = |s[t, z(t)]| ≥ c(t, |z(t) − y(t)|)

hence z(t)− y(t) = 0 since c(t, ·) is forcing. Then the sliding state y ∈ W (x̄) is unique. Let xn ∈ W (x̄) be such
that s(·, xn) ↪→ 0. Then c(·, |xn(·)− y(·)|) ↪→ 0 as well. Arguing by contradiction, if ‖xn − y‖∞ 
→ 0 there exist
ε > 0 and a subsequence zn of xn such that ‖zn − y‖∞ ≥ ε for every n. Thus we find a sequence tn ∈ [0, T ]
such that

|zn(tn) − y(tn)| ≥ ε for every n.

It is known that we can assume c(t, ·) increasing for every t, see [8], p. 10. Then

c(tn, ε) ≤ c(tn, |zn(tn) − y(tn)|) ≤ ‖c(·, |zn(·) − y(·)|‖∞

and, for a subsequence, tn → t∗ ∈ [0, T ]. Thus c(t∗, ε) = 0, contradicting the definition of forcing function,
hence xn ↪→ y as required. �

The variational characterization of approximability obtained in this paper allows us to verify it for sliding
mode control systems (2.1), (2.2) by checking the explicit conditions provided by Corollaries 4.1, 4.2 or 4.3.
The following is an example of application of Corollary 4.1.

Example 4.1. Let g : R → R be a fixed Lipschitz continuous function such that g(0) = 0. Consider the sliding
mode control system

ẋ1 = g(x2), ẋ2 = u(1 − u), |u| ≤ 1, s(t, x) = x2, 0 ≤ t ≤ T.

Here N = 2, M = K = 1. Of course Conditions (2.3), (2.4) hold, and f(t, x, U) is convex for every t, x. Given
x̄ with x̄2 = 0, the unique corresponding sliding state is

y1(t) = x̄1, y2(t) = 0, 0 ≤ t ≤ T. (4.5)

All assumptions required by Corollary 4.1 are fulfilled, hence approximability holds. We note in passing that
the equivalent control does not exist, since the mapping u → u(1 − u) is not one-to-one on [−1, 1].

The following is an example of application of Corollary 4.2.

Example 4.2. Consider the sliding mode control system

ẋ1 = arctanx2, ẋ2 = u(1 − u), |u| ≤ 1, s(t, x) = x2, 0 ≤ t ≤ T.

Of course (2.3) and (2.4) are fulfilled and, as in Example 4.1, the unique sliding state y ∈ W (x̄), if x̄2 = 0, is
given by (4.5). Let us check (4.4). Given x̄ with x̄2 = 0, and any x ∈ W (x̄), we compute

|x1(t) − x̄1| = |x1(t) − y1(t)| ≤
∫ t

0

| arctanx2(α)|dα ≤
∫ T

0

|x2(α)|dα, 0 ≤ t ≤ T,
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hence ∫ T

0

|s(t, x)|dt ≥ ‖x1 − y1‖∞. (4.6)

Let

Q : W (x̄) → C0([0, T ]) given by Q(x) = x1,

obviously an uniformly continuous function. If x′, x′′ ∈ W (x̄) and Q(x′) = Q(x′′) we have

arctanx′
2(t) = arctanx′′

2 (t) a.e. in (0, T )

hence x′
2 = x′′

2 , whence x′ = x′′. Thus Q is one-to-one. For any continuous vector z on [0, T ] with compo-
nents z1, z2 we write

‖z‖∞ = max {|z1(t)| : 0 ≤ t ≤ T } + max {|z2(t)| : 0 ≤ t ≤ T }.

Let δ be the modulus of uniform continuity of Q, namely

δ(ε) = sup {‖x′ − x′′‖∞ : x′, x′′ ∈ W (x̄), ‖Q(x′) − Q(x′′)‖∞ ≤ ε}, ε ≥ 0.

Then δ(0) = 0 since Q is one-to-one, δ(ε) ≥ 0 and δ is increasing. Now consider

ω(ε) = ε + δ(ε), ε ≥ 0.

Then ω(0) = 0, ω is strictly increasing, ω ≥ δ and for every x′, x′′ ∈ W (x̄)

‖x′ − x′′‖∞ ≤ δ(‖x′
1 − x′′

1‖∞) ≤ ω(‖x′
1 − x′′

1‖∞),

hence

‖x′
1 − x′′

1‖∞ ≥ ω−1(‖x′ − x′′‖∞).

Then by (4.6) ∫ T

0

|s(t, x)|dt ≥ ω−1(‖x − y‖∞), x ∈ W (x̄),

which proves (4.4) since ω−1 is forcing. Then approximability holds by Corollary 4.2.

Remark 4.3. If the optimal control problem (W (x̄), I) has optimal value 0, then the sliding state issued from
x̄ is a minimizer of

∫ T

0 |s(t, x)|2dt on W (x̄). However, applying the maximum principle we get no information
since the Pontryagin’s Hamiltonian

H(t, x, u) = q(t)′f(t, x, u) − |s(t, x)|2,

q being the adjoint state, is identically 0 along the sliding state.
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