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ON THE CONTROLLABILITY AND STABILIZATION OF THE LINEARIZED
BENJAMIN-ONO EQUATION ∗

Felipe Linares1 and Jaime H. Ortega2, 3

Abstract. In this work we are interested in the study of controllability and stabilization of the
linearized Benjamin-Ono equation with periodic boundary conditions, which is a generic model for
the study of weakly nonlinear waves with nonlocal dispersion. It is well known that the
Benjamin-Ono equation has infinite number of conserved quantities, thus we consider only controls
acting in the equation such that the volume of the solution is conserved. We study also the stabiliza-
tion with a feedback law which gives us an exponential decay of the solutions.
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1. Introduction

In this work, we consider the linearized Benjamin-Ono (BO) equation in the periodic setting, that is,

ut + Huxx = 0, x ∈ (−L,L), t > 0, (1)

where H is the Hilbert transform, defined by

H(f)(x) = PV
∫ L

−L

cot
π(x − y)

2L
f(y) dy. (2)

The Benjamin-Ono equation,
ut + Huxx + uux = 0, (3)

is an integro-differential equation that serves as a generic model for the study of weakly nonlinear long waves
incorporating the lowest-order effects of nonlinearity and nonlocal dispersion. In particular, the propagation of
internal waves in stratified fluids of great depth is described by the BO equation (see [3, 18]) and turns out to
be important in other physical situations as well (see [9, 12, 16]). Among noticeable properties of this equation
we can mention that it defines a Hamiltonian system, can be solved by an analogue of the inverse scattering
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method (see [2]), admits (multi)soliton solutions (see [6]) and satisfies infinitely many conserved quantities (see
[6]), for instance, we have that

∫ L

−L

u(x, t) dx =
∫ L

−L

u0(x) dx, ∀ t > 0. (4)

Regarding the initial value problem (IVP) associated to the BO equation (3) the periodic and real line settings
have been considered. In the periodic case the only result available in the literature is due to Abdelouhab,
Bona, Felland and Saut [1]. They obtained a local result for data in Hs(T), s > 3/2. On the other hand, the
situation in the real line has been extensively studied. In this case, the Hilbert transform is defined via the
Fourier transform as Ĥ(f) = −i sgn(ξ)f̂ . In addition to the previously mentioned work [1], Iório [11], Ponce
[21] and more recently Koch and Tzvetkov [15], Kenig and Koenig [13] and Tao [25] have contributed with
interesting local and global results for the IVP associated to (3). The best known result till now is due to Tao.
He proved local and global well-posedness for data in H1(R).

At this point we should mention that even though the BO equation and the Korteweg-de Vries (KdV)
equation,

ut + uxxx + uux = 0, (5)

are models for the propagation of waves in the water waves theory, the former one describes the propagation
of the wave interphase of two fluids with different densities in deep water meanwhile the second one models
the propagation of surface waves on shallow water, the nonlocal character of the dispersion of the BO equation
in contrast with the local one of the KdV equation make a huge difference in their analysis. For instance, the
methods developed to establish sharp local and global results for the KdV equation (see Kenig, Ponce and Vega
[14] and Bourgain [5]) and other nonlinear dispersive equations fail in the BO equation case.

We will consider the non-homogeneous problem




ut + Huxx = Gh, x ∈ (0, 2π), t > 0
u(0, t) = u(2π, t), t > 0
ux(0, t) = ux(2π, t), t > 0
u(x, 0) = u0(x), x ∈ (0, 2π),

(6)

where

Gh(x, t) = g(x)
(
h(x, t) −

∫ 2π

0

g(y)h(y, t)dy
)
, (7)

for g(x) a smooth function defined in [0, 2π], satisfying

2π[g] =
∫ 2π

0

g(x)dx = 1. (8)

We can see that the solution of (6) verifies

∫ 2π

0

u(x, t)dx =
∫ 2π

0

u0(x)dx, ∀t > 0. (9)

We consider Hs
p(0, 2π), s ≥ 0, the space of 2π-periodic functions in Hs(0, 2π), therefore we have that the Fourier

basis

φk(x) =
1√
2π

eikx, k ∈ Z, (10)
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is an orthonormal basis of L2(0, 2π) and v ∈ Hs
p(0, 2π) if and only if for

v(x) =
∑
k∈Z

vkφk(x),

we have that ∑
k∈Z

(1 + |k|)2s|vk|2 <∞.

Thus we define the norm in Hs
p(0, 2π) as:

‖v‖s =

(∑
k∈Z

(1 + |k|)2s|vk|2
) 1

2

. (11)

The control problem we will address here is the following: Given u0, u1 ∈ Hs
p(0, 2π) such that [u0] = [u1], the

problem is to find an external force Gh ∈ L2(0, T ;Hs
p(0, 2π)), such that the solution of (6) satisfies u(x, T ) =

u1(x), for all x ∈ (0, 2π).
In this work we give a positive answer to this problem. More precisely, we show the following result.

Theorem 1.1. Let T > 0 and s ≥ 0. Then for each u0, u1 ∈ Hs
p(0, 2π), such that [u0] = [u1], there exists a

function h ∈ L2(0, T ;Hs
p(0, 2π)), such that the solution u ∈ C([0, T ];Hs

p(0, 2π)) of (6) satisfies

u(x, T ) = u1(x), x ∈ (0, 2π).

Moreover, there exists a positive constant ν > 0 such that

‖h‖L2(0,T ;Hs
p(0,2π)) ≤ ν

(
‖u0‖Hs

p(0,2π) + ‖u1‖Hs
p(0,2π)

)
. (12)

We notice that the controllability results have been intensively studied in the last decade, in particular some
results related to the KdV equation have been obtained, we refer to the works of Russell and Zhang [23] and
[24], Rosier [22] and the work of Micu [17] for the linearized BBM equation.

To establish our control result we will make use of Ingham’s inequality, since the asymptotic gap of the
eigenvalues of the Benjamin-Ono equation is infinity. This allows us to obtain a control result for any time T > 0.

Another interesting problem is the study of the stabilization. In particular, we will study the stabilization of
the model one (1) with a feedback law. As in the case of the controllability, the stabilization has been widely
studied in the last few years. For instance, for the KdV equation we refer to the works of Russell and Zhang
[23] and [24] for the periodic case with a feedback law and the work of Perla, Vasconcellos and Zuazua [20] for
the case of a linear localized damping in a bounded domain.

In this work we will study the linearized Benjamin-Ono equation, with a linear feedback and periodic bound-
ary conditions, that is, 



ut + Huxx = −µGu, x ∈ (0, 2π), t > 0
u(0, t) = u(2π, t), t > 0
ux(0, t) = ux(2π, t), t > 0
u(x, 0) = u0(x), x ∈ (0, 2π),

(13)

where g(x) is a nonnegative function in (0, 2π) and µ > 0.
In this case we can define the energy of the system as

E(t) =
1
2

∫ 2π

0

|u(x, t)|2 dx. (14)
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Multiplying (13) by u and integrating by parts we can easily obtain

E′(t) = −µ
∫ 2π

0

u(x, t)Gu(x, t) dx =
∫ 2π

0

g(x)
∣∣∣∣u(x, t) −

∫ 2π

0

g(y)u(y, t)dy
∣∣∣∣
2

dx ≤ 0, (15)

which implies that the energy is a decreasing function. Thus it is natural to ask whether the associated energy
decays exponentially. Here we give an affirmative answer to this question. More precisely.

Theorem 1.2. Let u0 ∈ L2(0, 2π), then there exist constants M,γ > 0, independent of u0, such that the unique
solution u of (13) satisfies

‖u(·, t) − [u]‖L2(0,2π) ≤Me−γt ‖u0 − [u0]‖L2(0,2π) , ∀ t > 0. (16)

We note that both in control and stabilization results, the support of g could be a small interval (a, b) ⊂⊂ (0, 2π).
Thus we are acting only a small part of the domain and moreover, since the control and the dissipation has the
particular form Gh, the solution of (6), (13) and (17) preserves the media of the solution, that is

∫ 2π

0

u(x, t) dx =
∫ 2π

0

u0(x) dx, ∀t ∈ (0, T ).

We shall mention that we have restricted our analysis to the linear problem due to the difficulty to control the
nonlinear terms in low regularity periodic Sobolev spaces. More precisely, smoothing effects are not known in
this case to overcome the loss of derivatives introduced by the nonlinear term. However, if we do not require to
have an exact controllability result in its maximum strength we can obtain the next result whose proof follows
the same lines as in [24].

Proposition 1.1. Let T > 0, s ≥ 0 and assuming that

|g(x)| > β > 0, ∀x ∈ [0, 2π],

then for each u0, u1 ∈ Hs+1
p (0, 2π), such that [u0] = [u1], there exists a function h ∈ L2(0, T ;Hs

p(0, 2π)), such
that the solution u ∈ C([0, T ];Hs+1

p (0, 2π)) of the nonlinear BO problem



ut + Huxx + uux = Gh, x ∈ (0, 2π), t > 0
u(0, t) = u(2π, t), t > 0
ux(0, t) = ux(2π, t), t > 0
u(x, 0) = u0(x), x ∈ (0, 2π),

(17)

satisfies
u(x, T ) = u1(x), x ∈ (0, 2π).

We note that the exact controllability for the nonlinear BO equation is a really interesting problem and it may
be possible to use the approaches introduced in [15, 25] to obtain new results in those spaces.

The two-point initial–boundary value problem for this equation is out of question in its actual form (3) since
the nonlocal operator is not well defined in this setting. Still it would be interesting to model this physical
situation. Recently, Colliander and Kenig [8] have studied the initial-boundary value problem in the half-line
(see also [4]). They have introduced a very promising method to study nonlinear dispersive models in this
setting. Again it is not clear whether this problem can be put forward for the BO equation in (3). But it is clear
that the physical situation is extremely interesting. In these settings we believe that the problems concerning
control and stabilization are more reliable and therefore new models describing the above physical situation will
be very helpful.

This note is organized as follows, in Section 2 we will list a series of results needed for the proof of our
main result. The results regarding control will be proved in Section 3. Finally, in Section 4 we will prove the
stabilization result.
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2. Some preliminary results

In this section we will recall some results on the linearized Benjamin-Ono equation. Firstly we recall some
basic properties of the Hilbert Transform.

Proposition 2.1. Let f, g ∈ L2(−L,L). Then we have that

∫ L

−L

fg dx =
∫ L

−L

H(f)H(g) dx, (18)

∫ L

−L

fH(g) dx = −
∫ L

−L

H(f)g dx, (19)

H(fH(g) + H(f)g) = H(f)H(g) − fg, (20)

H(f)(x) = i
∑
k∈Z

sgn(k)fk eixkπ/L. (21)

where fk is the kth Fourier coefficient of f defined by the formula

fk =
1

2L

∫ L

−L

f(x)e−ixkπ/L dx.

Now, we will study the existence and regularity of the solutions for the linearized Benjamin-Ono equation. In
order to study the controllability, we need to study the homogeneous and the non-homogeneous system, thus
we have the following.

Proposition 2.2. The operator Aϕ = −H(ϕxx) on D(A) = H2
p generates a strongly continuous unitary group

{S(t)}t∈R on L2(0, 2π).

Proof. Observe that if ϕ ∈ D(A), then
ϕ(x) =

∑
n∈Z

cneinx

therefore
ϕxx =

∑
n∈Z

− n2cneinx,

and thus
H(ϕxx) = −

∑
n∈Z

isgn(n) n2cneinx = (Hϕ)xx.

Let ϕ, ψ ∈ D(A), then

〈Aϕ,ψ〉 = −
∫ 2π

0

H(ϕxx)ψ dx =
∫ 2π

0

(ϕxx)Hψ dx

= −
∫ 2π

0

ϕxH(ψx) dx+ ϕxHψ
∣∣x=2π

x=0

=
∫ 2π

0

ϕH(ψxx) dx− ϕH(ψx)
∣∣x=2π

x=0

= 〈ϕ,Hψxx〉 = −〈ϕ,Aψ〉, (22)

this implies that A is skew-adjoint. Moreover, since

〈Aϕ,ϕ〉 = −〈ϕ,Aϕ〉,
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we have that
〈Aϕ,ϕ〉 = 0.

ThereforeA generates a unitary group of isometries {S(t)}t∈R (see [7], Th. 3.2.3), and the proof is completed. �

Thus, from classical results of semigroup theory, we have the following result for the homogeneous and
non-homogeneous equation.

We first consider the homogeneous case,




ϕt + Hϕxx = 0, x ∈ (0, 2π), t > 0,
ϕ(0, t) = ϕ(2π, t), t > 0
ϕx(0, t) = ϕx(2π, t), t > 0
ϕ(x, 0) = ϕ0(x), x ∈ (0, 2π).

(23)

For this problem we have.

Lemma 2.1. Let ϕ0 ∈ L2(0, 2π). Then there exists a unique solution ϕ ∈ C(R, L2(0, 2π)) of (23). If ϕ0 ∈
H2

p (0, 2π), then ϕ ∈ C1(R, L2(0, 2π)) ∩ C(R, H2
p (0, 2π)).

Moreover, if ϕ ∈ Hs
p(0, 2π), then there exists a unique solution of (23) such that

ϕ ∈ C(R, Hs
p(0, 2π)).

For the non-homogeneous problem we have.

Lemma 2.2. Let ϕ0 ∈ Hs
p(0, 2π) and h ∈ L2(0, T ;Hs

p(0, 2π)), with s ≥ 0. Then there exists a unique solution
ϕ ∈ C([0, T ], Hs

p(0, 2π)) of (6).

The proof of the above results is obtained from classical results on the semigroup theory, we refer to the
books by Cazenave and Haraux [7] or Pazy [19] for details.

Remark 2.1. Let h ∈ L2(0, T ;Hs
p(0, 2π)), then if g is a smooth function, we have that Gh ∈ L2(0, T ;Hs

p(0, 2π)).
In fact,

‖Gh‖L2(0,T ;Hs
p(0,2π)) =

∫ T

0

‖Gh(·, t)‖2
Hs

p(0,2π) dt

=
∫ T

0

∥∥∥∥g(·)
(
h(·, t) −

∫ 2π

0

g(y)h(y, t) dy
)∥∥∥∥

2

Hs
p(0,2π)

dt <∞.

To study the stabilization with a feedback law, we consider the system



ut + Huxx = −µGu, (x, t) ∈ (0, 2π) × (0,∞)
u(0, t) = u(2π, t), t > 0
ux(0, t) = ux(2π, t), t > 0
u(x, 0) = u0(x), x ∈ (0, 2π),

(24)

for a positive constant µ and g a nonnegative smooth function. In particular we are interested in the case where
the support of g is contained in a small interval of (0, 2π).

Thus, we have the following result of existence and regularity for this model.

Lemma 2.3. Let u0 ∈ H2
p (0, 2π), then the problem (24) has a unique solution u ∈ C((0,∞);H2

p (0, 2π)) ∩
C1((0,∞);L2(0, 2π)). Moreover, if u0 ∈ L2(0, 2π), we have that u ∈ C((0,∞);L2(0, 2π)).
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Proof. We can note that the operator A = −Huxx generates a strongly continuous semigroup, and since the
map h→ Gh is a bounded perturbation of A, we have that the operator A−µGh generates a strongly continuous
semigroup. �

Our main tool is the so-called Ingham’s inequality, we recall this result (see [10]).

Theorem 2.1. Let {λn}∞n=−∞ be a strictly increasing sequence of real numbers and I be a bounded interval.
Consider the sums of the form

f(t) =
∞∑

n=−∞
bneiλnt, t ∈ I. (25)

Assume that there exists γ1 > 0 such that the “gap condition”

λn+1 − λn ≥ γ1, ∀n ∈ Z, (26)

holds, then there exist constants c1, c2 > 0, such that for every bounded interval I of length |I| > 2π/γ1

c1

∞∑
n=−∞

|bn|2 ≤
∫

I

|f(t)|2dt ≤ c2

∞∑
n=−∞

|bn|2. (27)

Remark 2.2. In the above theorem we can replace the gap condition by a more general condition called
“asymptotic gap condition”, that is,

lim sup
n→∞

|λn+1 − λn| ≥ γ1. (28)

We will also recall some useful results on Riesz basis. In what follows H is a Hilbert space.

Definition 2.1. A sequence {xn}n ⊂ H is called complete if given x ∈ H such that

(x, xn) = 0, ∀n,

then x ≡ 0.

Remark 2.3. The following statements are equivalent:
(1) {xn}n is complete in H ;
(2) span{xn : n} is dense in H .

Definition 2.2. We say that the basis {xn}n and {yn}n are equivalent if and only if we have that the series∑
n

cnxn converges if and only if the series
∑

n

cnyn converges.

Definition 2.3. A basis {xn}n of H is a Riesz basis if and only if it is equivalent to an orthonormal basis of H.

Theorem 2.2. The following statements are equivalent:
(1) {xn}n is a Riesz basis.
(2) {xn}n is complete and there exists an inner product in H, denoted by (·, ·), equivalent to the inner

product of H such that
(xi, xj) = δij .

(3) {xn}n is complete and there exist two positive constants A and B, such that

A
∑

n

|cn|2 ≤
∣∣∣∣∣

n∑
k=1

ckxk

∣∣∣∣∣
2

≤ B
∑

n

|cn|2

for all n ∈ N and any c1, . . . , cn scalars.
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Definition 2.4. We say that the sequence {xn}n is minimal in H if each element of the sequence lies outside
the closed linear span of the others.

Definition 2.5. We say that the sequences {xn}n and {yn}n are biorthogonal if

(xi, yj) = δij , ∀i, j.

Now we have the following results.

Proposition 2.3. Let {xn}n be a sequence in H. Then {xn}n is biorthogonal iff it is minimal.

Proposition 2.4. Let {xn}n be a minimal sequence in H. Then {xn}n is complete in H iff the biorthogonal
sequence is uniquely determined.

3. Proof of the control results

To prove our control results, we will need to establish some technical results useful in the proof. We first
notice that, without loss of generality one can consider the case u0 = 0. In fact, let u0, u1 ∈ H2

p (0, 2π), such
that [u0] = [u1], then if f = Gh is the control which leads the solution from initial data zero to the final state
u1 − S(T )u0, where S(t) is the group generated by the differential operator corresponding to the linearized BO
equation, then we have that this control leads the solution from u0 to the final state u1.

Lemma 3.1. Let u1 ∈ Hs
p(0, 2π) with [u1] = 0. Then, there exists h ∈ L2(0, T ;Hs

p(0, 2π)), such that the solution
of (6), with initial data u0 = 0, satisfies u(T ) = u1 if and only if

∫ T

0

〈Gh(·, t), ϕ(·, t)〉Hs
p×(Hs

p)′ dt− 〈u1, ϕ0〉Hs
p×(Hs

p)′ = 0, (29)

for any ϕ0 ∈ (Hs
p(0, 2π))′, the dual space of Hs

p(0, 2π), where ϕ is the solution of the adjoint system with data ϕ0,




ϕt + Hϕxx = 0, x ∈ (0, 2π), t > 0,
ϕ(0, t) = ϕ(2π, t), t > 0
ϕx(0, t) = ϕx(2π, t), t > 0
ϕ(x, T ) = ϕ0(x), x ∈ (0, 2π).

(30)

Proof. Let ϕ0 and h be smooth functions and ϕ be the solution of the adjoint system (30) with final data ϕ0.
Then, multiplying (6) by ϕ and integrating, we obtain

∫ T

0

∫ 2π

0

Gh ϕ dxdt =
∫ T

0

∫ 2π

0

(ut + Huxx)ϕ dxdt

= −
∫ T

0

∫ 2π

0

uϕt dxdt+
∫ 2π

0

uϕ|t=T
t=0 dx−

∫ T

0

∫ 2π

0

uxxHϕ dxdt

=
∫ 2π

0

u(T )ϕ0 dx−
∫ 2π

0

u0ϕ(0) dx =
∫ 2π

0

u(T )ϕ0 dx, (31)

that is ∫ T

0

∫ 2π

0

Ghϕ dxdt =
∫ 2π

0

u(T )ϕ0 dx, (32)

for all smooth data. Therefore by using density arguments we conclude the proof. �
It is well known that the existence of biorthogonal basis implies the existence of a control. Next result

describes this relationship.
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Lemma 3.2. Let
u1(x) =

∑
m∈Z

cmφm(x) ∈ Hs
p(0, 2π),

be a function such that [u1] = 0 (that is c0 = 0), then we have that (6) is exactly controllable to u1, that is,
u(x, T ) = u1(x), x ∈ (0, 2π), if and only if there exists h ∈ L2(0, T ;Hs

p(0, 2π)) such that

∫ T

0

∫ 2π

0

Gh(x, t)φn(x)eisgn(n)n2(T−t) dxdt = cn, ∀n ∈ Z. (33)

Proof. It is enough to consider ϕ0(x) = φn(x). Since ϕ(x, T ) = φn(x)e−iλn(T−t), where λn = isgn(n)n2, the
identity (29) in Lemma 3.1 implies that

∫ T

0

∫ 2π

0

Gh(x, t)φn(x)eiλn(T−t) dxdt =
∫ 2π

0

φn(x)

(∑
m∈Z

cmφm(x)

)
dx = cn.

Next we will prove the control result. �

Proof of Theorem 1.1. First, we will show that {eiλnt}n∈Z is a Riesz basis for its closed span P in L2(0, T ). In
fact, due to the asymptotic gap of the family of eigenvalues, that is

lim
|n|→∞

|λn+1 − λn| =
∣∣sgn(n+ 1)(n+ 1)2 − sgn(n)n2

∣∣ = ∞, (34)

from the Ingham’s inequality we have that the family is complete in P and there exist positive constants A,B
such that

A
∑
n∈Z

|cn|2 ≤
∫

I

∣∣∣∣∣
∑
n∈Z

cn e−iλnt

∣∣∣∣∣
2

dt ≤ B
∑
n∈Z

|cn|2 (35)

and therefore {eiλnt}n∈Z is a Riesz basis of P .
Therefore we have the existence of a biorthogonal basis due to the minimality of the set. Thus, there exists

a dual basis {qm}m (which is unique), such that

∫ T

0

qmeiλkt dt = δmk.

Hence, if we consider the function
h =

∑
n

hnqnGφn, (36)

for suitable hn, it will follow that

∫ T

0

∫ 2π

0

Ghφkeiλk(T−t) dxdt =
∑

n

hn

∫ T

0

eiλk(T−t)qn

∫ 2π

0

φkG(Gφn) dxdt

= hk

∫ 2π

0

φkG(Gφk) dx

= hk

∫ 2π

0

|Gφk|2 dx

= hk‖Gφk‖2
L2(0,2π).
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We will show that
‖Gφk‖2

L2(0,2π) > α > 0, ∀k �= 0. (37)
Assuming this, we deduce from Lemma 3.2 applied to

u1(x) =
∑
n∈Z

cnφn(x) ∈ Hs
p(0, 2π),

that it is enough to consider hk satisfying

ck = hk‖Gφk‖2
L2(0,2π), ∀k �= 0. (38)

Next we prove h ∈ L2(0, T ;Hs
p(0, 2π)) and inequality (37).

It is easy to see that

βn = ‖Gφn‖2
L2(0,2π) =

∫ 2π

0

∣∣∣∣g(x)
(

einx −
∫ 2π

0

g(y)einydy
)∣∣∣∣

2

dx > 0, ∀n ∈ Z
∗. (39)

Since

lim
|n|→∞

βn =
∫ 2π

0

|g(x)|2 dx �= 0,

we deduce that there exists a positive constant β such that

βn > β > 0, ∀n ∈ Z
∗. (40)

Next we show that the function h defined in (36) and (38) is in L2(0, T ;Hs
p(0, 2π)). We proceed as in [24].

Assuming
Gφn =

∑
m∈Z

amnφm, (41)

the definition (36) implies that

h =
∑
n∈Z

∑
m∈Z

hnqnamnφm =
∑
n∈Z

∑
m∈Z

cn
βn
qnamnφm. (42)

Then

‖h‖2
L2(0,T ;Hs

p(0,2π)) =
∫ T

0

∥∥∥∥∥
∑
n∈Z

∑
m∈Z

cn
βn
qn(t)amnφm

∥∥∥∥∥
2

Hs
p(0,2π)

dt

=
∫ T

0

∑
m∈Z

(1 + |m|)2s

∣∣∣∣∣
∑
n∈Z

qn(t)
cn
βn
amn

∣∣∣∣∣
2

dt

≤ c
∑
m∈Z

(1 + |m|)2s
∑
n∈Z

∣∣∣∣ cnβn
amn

∣∣∣∣
2

≤ c
∑
n∈Z

∣∣∣∣ cnβn

∣∣∣∣
2 ∑

m∈Z

(1 + |m|)2s |amn|2 . (43)

Setting
g(x) =

∑
k∈Z

gkφk(x),
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it follows that

|amn| =
∣∣(Gφn, φm)L2(0,2π)

∣∣
=
∣∣(gφn, φm)L2(0,2π) − (φn, g)L2(0,2π)(φm, g)L2(0,2π)

∣∣

=

∣∣∣∣∣
∑
k∈Z

gk(φkφn, φm)L2(0,2π) − gngm

∣∣∣∣∣
=
∣∣∣∣ 1
2π
gk(φkφn, φm)L2(0,2π) − gngm

∣∣∣∣
=
∣∣∣∣ 1
2π
gm−n − gngm

∣∣∣∣
≤ 1

2π
|gm−n| + |gn| |gm| . (44)

Therefore, there exists a positive constant c1 such that

∑
m∈Z

(1 + |m|)2s |amn|2 ≤ c1
∑
m∈Z

(1 + |m|)2s
(
|gm−n|2 + |gn|2 |gm|2

)

≤ c1
∑
m∈Z

(1 + |m|)2s |gm−n|2 + c1 |gn|2
∑
m∈Z

(1 + |m|)2s |gm|2

≤ c2(1 + |n|)2s
∑
k∈Z

(1 + |k|)2s |gk|2 + c1 |gn|2 ‖g‖2
s

≤ c3

(
(1 + |n|)2s + |gn|2

)
‖g‖2

s . (45)

Thus, from (43) and (45) we obtain that

‖h‖2
L2(0,T ;Hs

p(0,2π)) ≤ c
∑
n∈Z

∣∣∣∣ cnβn

∣∣∣∣
2 ∑

m∈Z

(1 + |m|)2s |amn|2

≤ cc3
∑
n∈Z

∣∣∣∣ cnβn

∣∣∣∣
2 (

(1 + |n|)2s + |gn|2
)
‖g‖2

s

≤ cc3
β2

‖g‖2
s

∑
n∈Z

|cn|2
(
(1 + |n|)2s + |gn|2

)

≤ cc3
β2

‖g‖2
s

(
‖u1‖2

s +
∑
n∈Z

|cn|2 |gn|2
)

≤ ‖g‖2
s

(
cc3
β2

+ max
n∈Z

|gn|2
)
‖u1‖2

s . (46)

Therefore, considering

ν = ‖g‖2
s

(
cc3
β2

+ max
n∈Z

|gn|2
)
,

we conclude the proof. �
Now, we will give an sketch of the proof of Proposition 1.1.

Proof of Proposition 1.1. In what follows we will give a sketch of the proof of Proposition 1.1, which is similar
to the one given in [24] (Th. 1.1).
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Let u0, u1 ∈ Hs+1
p (0, 2π), verifying [u0] = [u1], then from the controllability result, there exists h1 ∈

L2(0, T ;Hs+1
p (0, 2π)), such that the solution of (6) verifies

u(T ) = u1. (47)

Moreover, we can see that u ∈ C([0, T ];Hs+1
p (0, 2π)), therefore we have that the nonlinear term uux verifies

that
uux ∈ L2(0, T ;Hs

p(0, 2π)),

then, adding this term to the equation we have that u verifies (47) and




ut + Huxx + uux = Gh1 + uux, x ∈ (0, 2π), t > 0
u(0, t) = u(2π, t), t > 0
ux(0, t) = ux(2π, t), t > 0
u(x, 0) = u0(x), x ∈ (0, 2π).

(48)

Thus, it is enough to prove that there exists h2 ∈ L2(0, T ;Hs
p(0, 2π)) such that

uux = Gh2, (49)

or equivalently

u(x, t)ux(x, t) = g(x)
(
h2(x, t) −

∫ 2π

0

h2(y, t)g(y, t)dy
)
, (50)

and since |g(x)| ≥ β > 0 in (0, 2π), we can write (50) as

1
g(x)

u(x, t)ux(x, t) = h2(x, t) −
∫ 2π

0

h2(y, t)g(y, t)dy. (51)

Now, we will study the existence of h2. We define the space Y s
g as the space Hs

p(0, 2π) endowed with the norm

‖v‖Y s
g

= (gv, v)
1
2
Hs

p
.

For each v ∈ Y s
g we define the map

G̃ : Y s
g → Y s

g , G̃v(x) = v(x) −
∫ 2π

0

v(y)g(y)dy.

Then, as in [24], it is easy to prove that

(1) G̃ is a Fredholm operator.
(2) G̃∗ = G̃.

(3) N
(
G̃
)

= 〈{1}〉·
(4) G̃ has a bounded inverse considered as an operator from Y s

g \N
(
G̃
)

to G̃.

Then, since for every t ∈ (0, T )

(
uux

g
, 1
)

Y s
g

=
∫ 2π

0

u(y, t)ux(y, t)dy = 0
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we have that
uux

g
∈ N(G̃)⊥ = N(G̃∗)⊥ = R(G̃),

then for each t ∈ (0, T ) there exists a function h2(·, t) verifying

u(·, t)ux(·, t)
g(·) = G̃h2(·, t),

and since the inverse of G̃ has a bounded inverse, we obtain that

h2 ∈ L2(0, T ;Hs
p(0, 2π)),

thus, considering the control function h = h1 + h2, we complete the proof. �

4. Proof of the stabilization result

Now we will prove Theorem 1.2 regarding stabilization.
Let T > 0 and u0 ∈ L2(0, 2π) such that [u0] = 0. Then we consider the problems




wt + Hwxx = Gh, x ∈ (0, 2π), t > 0
w(0, t) = w(2π, t), t > 0
wx(0, t) = wx(2π, t), t > 0
w(x, 0) = 0, x ∈ (0, 2π),

(52)

such that
w(x, T ) = u(x, T ), x ∈ (0, 2π), (53)

and 


ut + Huxx = −µGu, x ∈ (0, 2π), t > 0
u(0, t) = u(2π, t), t > 0
ux(0, t) = ux(2π, t), t > 0
u(x, 0) = u0(x), x ∈ (0, 2π).

(54)

We will assume that
u0 ∈ H2

p (0, 2π),

then we have that the solutions

u,w ∈ C
(
[0, T ];H2

p(0, 2π)
) ∩ C1

(
0, T ;L2(0, 2π)

)

and
h ∈ L2

(
0, T ;H2

p(0, 2π)
)
.

Then, multiplying the first equation in (54) by u and integrating with respect to x it follows that

1
2

d
dt

(∫ 2π

0

|u(x, t)|2dx
)

= −µ
∫ 2π

0

Gu(x, t)u(x, t) dx, (55)

that is,
1
2

∫ 2π

0

|u(x, T )|2dx− 1
2

∫ 2π

0

|u0(x)|2 dx = −µ
∫ T

0

∫ 2π

0

Gu(x, t)u(x, t) dxdt. (56)
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On the other hand,

∫ T

0

∫ 2π

0

Ghu dxdt =
∫ T

0

∫ 2π

0

(wt + Hwxx)u dxdt

= −
∫ T

0

∫ 2π

0

wut dxdt+
∫ 2π

0

wu|t=T
t=0 dx+

∫ T

0

∫ 2π

0

Hwxxu dxdt

=
∫ T

0

∫ 2π

0

w(Huxx + µGu) dxdt+
∫ 2π

0

|u(T )|2 dxdt+
∫ T

0

∫ 2π

0

Hwxxu dxdt

=
∫ T

0

∫ 2π

0

wµGu dxdt+
∫ 2π

0

|u(T )|2 dx. (57)

Thus
∫ 2π

0

|u(T )|2 dx =
∫ T

0

∫ 2π

0

(h− µw)Gu dxdt ≤ ‖h− µw‖L2((0,T )×(0,2π)) ‖Gu‖L2((0,T )×(0,2π)) . (58)

We also have that
‖h‖L2(0,T ;L2(0,2π)) ≤ ν ‖u(·, T )‖L2(0,2π) , (59)

and
‖w‖L2(0,T ;L2(0,2π)) ≤ µ ‖u(·, T )‖L2(0,2π) . (60)

Using (59) and (60) we deduce easily that there exists a positive constant C > 0, such that,

‖h− µu‖L2(0,T ;L2(0,2π)) ≤ C ‖u(·, T )‖L2(0,2π) . (61)

Now, from (58) and (61) we have that

‖u(·, T )‖L2(0,2π) ≤ C ‖Gu‖L2((0,T )×(0,2π)) . (62)

Note that

‖Gu‖2
L2((0,T )×(0,2π)) =

∫ T

0

∫ 2π

0

∣∣∣∣g(x)
(
u(x, t) −

∫ 2π

0

g(y)u(y, t)dy
)∣∣∣∣

2

dxdt

=
∫ T

0

∫ 2π

0

g(x)2
∣∣∣∣
(
u(x, t) −

∫ 2π

0

g(y)u(y, t)dy
)∣∣∣∣

2

dxdt

≤ ‖g‖∞
∫ T

0

∫ 2π

0

g(x)
∣∣∣∣
(
u(x, t) −

∫ 2π

0

g(y)u(y, t)dy
)∣∣∣∣

2

dxdt

= ‖g‖∞
∫ T

0

∫ 2π

0

Gu(x, t)u(x, t) dxdt. (63)

Combining (58) and (63) yields

‖u(·, T )‖2
L2(0,2π) ≤ C ‖g‖∞

∫ T

0

∫ 2π

0

Gu(x, t)u(x, t) dxdt. (64)

Thus, using(56) and (63) we obtain that

‖u(·, T )‖2
L2(0,2π) − ‖u0‖2

L2(0,2π) ≤ −µ(C‖g‖∞)−1 ‖u(·, T )‖2
L2(0,2π) , (65)
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that is, (
1 + µ(C‖g‖∞)−1

) ‖u(·, T )‖2
L2(0,2π) ≤ ‖u0‖2

L2(0,2π) , (66)
or equivalently

‖u(·, T )‖2
L2(0,2π) ≤

C‖g‖∞
C‖g‖∞ + µ

‖u0‖2
L2(0,2π) . (67)

Since the last inequality is valid for every time T > 0, we conclude that there exist constants M,γ > 0 such
that

‖u(·, t)‖L2(0,2π) ≤Me−γt ‖u0‖L2(0,2π) , ∀t > 0. (68)

Now, due to the density of H2
p (0, 2π) in L2(0, 2π) the proof is complete.
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