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CARLEMAN ESTIMATES FOR THE NON-STATIONARY LAME SYSTEM
AND THE APPLICATION TO AN INVERSE PROBLEM

OLECG YU. IMANUVILOV! AND MASAHIRO YAMAMOTO?

Abstract. In this paper, we establish Carleman estimates for the two dimensional isotropic non-
stationary Lamé system with the zero Dirichlet boundary conditions. Using this estimate, we prove
the uniqueness and the stability in determining spatially varying density and two Lamé coefficients by
a single measurement of solution over (0,7) X w, where T' > 0 is a sufficiently large time interval and
a subdomain w satisfies a non-trapping condition.
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1. INTRODUCTION

This paper is concerned with Carleman estimates for the two dimensional non-stationary isotropic Lamé
system with the zero Dirichlet boundary condition and an application to an inverse problem of determining
spatially varying density and the Lamé coefficients by a single interior measurement of the solution. The
Carleman estimate is a weighted L?-estimate of the solution to a partial differential equation and it has been
fundamental for proving the uniqueness in a Cauchy problem for the partial differential equation or the unique
continuation.

More precisely, we consider the two dimensional isotropic non-stationary Lamé system:

(Pu)(xo, )

p(2")02 u(wo,2") — (Lauw) (0, 2") = f(o,2"),
(z0,2') € Q= (0,T) x Q, (1.1)

where

(Lay)(&') = pla) Av(a') + (u(a) + M) Vardiv v(a')
+ (divv(2)) Vo Mz") + (Vv + (Vo)D) Ve u(a’), ' € Q. (1.2)

Throughout this paper, Q C R? is a bounded domain whose boundary 952 is of class C3, xg and 2’ = (21, 2)
denote the time variable and the spatial variable respectively, and u = (u, u2)? where -I" denotes the transpose
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of matrices, Fj is the identity matrix of the size k x k,

oo .
aﬁr;j(p:@l‘j:%7 .7:0)172
J

We set Vv = (02, V) 1<j,k<2 for a vector function v = (vy, vo)T and V¢ = (0, &, 02,¢) 7 for a scalar function
¢. Henceforth V means V, = (9z,, 0z, , 0z, if we do not specity.
Moreover the coeflicients p, A\, u satisty

P\ € CHQY),  pla’) >0, p(a') >0, \2') +pu(@") >0 for 2’ € Q. (1.3)

As for more details for the Lamé system, see for example, Chapter IIT of Duvaut and Lions [11] or Gurtin [14].

The Carleman estimate is an essential technique not only for the unique continuation, but also for solving the
exact controllability and stabilizability (e.g., Bellassoued [2—4], Imanuvilov [17], Imanuvilov and Yamamoto [25],
Kazemi and Klibanov [32], Tataru [44], Zhang [51], and Lasiecka and Triggiani [37] as a related book) and the
inverse problems (e.g., Bukhgeim [6], Bukhgeim and Klibanov [8], Klibanov [35]). Thus the first main purpose
of this paper is to establish Carleman estimates for system (1.1). Our method works, in principle, also for
the three dimensional case but the arguments are more complicated and independent consideration is required.
Thus in this paper, we will exclusively discuss the spatially two dimensional case. In a forthcoming paper, we
will treat the three dimensional case.

Since the pioneering work [9] by Carleman, the theory of inequalities of Carleman’s type has been rapidly
developed and now many general results are available for a single partial differential equation (see [12, 15,29,
30,44]), while for strongly coupled systems of partial differential equations, the situation is more complicated
and much less understood. To our best knowledge, the most general result for systems of partial differential
equations is Calderon’s uniqueness theorem (see e.g., [12,52]). The technique developed by Calderon, reduces
the system of partial differential equations to a system of pseudo-differential operators of the first order:

dU
— =M(x, D,,, D, )U+F,
dﬂ?g

where M(z, Dy, D,,) is a matrix pseudo-differential operator. Then by some change of variables U =
S(x,on,Dml)fJ, this matrix pseudo-differential operator M is reduced to S™'MS such that S™'MS con-
sists of blocks of a small size located on the main diagonal and that in each block the principal symbols of all
the operators located below the main diagonal are zero. In order to construct the matrix S, the eigenvalues
and eigenvectors of the matrix M(x, £y, £1) should be smooth functions of the variables x and &, & € R and
each eigenvalue should not change the multiplicity. This condition is restrictive, especially in the case where we
are looking for a Carleman estimate near boundary, and therefore the choice for a variable z2 is limited. For
example the non-stationary Lamé system does not satisfy this condition, in general. On the other hand, for the
stationary Lamé system, this method works well and produces the unique continuation result from an arbitrary
open subset (see [10]). See also Imanuvilov and Yamamoto [27] as for a Carleman estimate for the stationary
Lamé system.

As long as the non-stationary Lamé system is concerned, it is known that thanks to the special structure
of the system, the functions divu and rotu satisfy scalar wave equations (modulo lower order terms). The
system of partial differential equations for the functions u, divu, rotu, is coupled via only first order terms.
This allows us to apply the Carleman estimate for a scalar hyperbolic equation in the case where the function
u has a compact support (see [13,16,19]).

The structure of our proof is in principle similar to Yamamoto [49]. That is, we work mainly with two
hyperbolic equations depending on a parameter s > 0 for the functions zyy2, = e’?divu and z, = e*rot u:
Pyiou(2,D, 8)2x42, = (divE)e® and P,(x, D, s)z, = (rotf)e’®. The main difficulty one should overcome, is
that there are no boundary conditions for these functions. This problem is solved in the following way: outside
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an exceptional set in the contangent bundle T%(Q), the operators Py;2, and P, can be microlocally factorized
as the product of some function 3(x) and two pseudo-differential operators of the first order:

Ps(x,D,s) = BP_ 4(x,D,s)Py 5(z, D, s),

where 8 = A+ 2por = pu, Py g =Dy, — I‘g(z, D.,,D,,,s), and z2 is normal to the boundary 9. Since the
principal symbol of the operator Ig (z, &0, &1, s) satisfies the inequality

_ImFE ($a€07§17 5) Z C|5|

with a constant C' > 0, we have a priori estimates for Py g(z, D, s)25|z,—0 in an L?-space. These estimates and
the zero Dirichlet boundary condition yield the H!-boundary estimates for z5. The set on which we cannot
factorize both the operators Pg(z, D, s) into a product of the first order operators, has to be discussed separately.

Next we will prove a Carleman estimate with the H~!(Q) norm of the force f in the right hand side. The
Carleman estimate with right hand side in H ~!(Q)-space was proved by Imanuvilov [18], Ruiz [43], for a scalar
hyperbolic equation and by Imanuvilov and Yamamoto [26] for a parabolic equation. In this paper, by a method
in [26], we will derive an H~1(Q)-Carleman estimate (Th. 2.3) for (1.1) from a Carleman estimate (Th. 2.1)
with H'-norm.

Finally we consider an inverse problem of determining the coefficients A, ¢ and p from one single measurement
of the solution u in (0,7) X w, where w C Q is a suitable subdomain and 7" > 0 is sufficiently large. By our
H~(Q)-Carleman estimate for the Lamé system, we will establish the uniqueness and the stability result for
the inverse problem.

This paper is composed of nine sections and two appendices. In Section 2, we state Carleman estimates
(Ths. 2.1-2.3) for functions which do not have compact supports but satisfy the zero Dirichlet boundary con-
dition on (0,T) x 9. Theorem 2.1 is a Carleman estimate whose right hand side is estimated in H'-space.
Theorems 2.2 and 2.3 are Carleman estimates respectively with right hand sides in L2-space and in H ~!-space.
In Section 3, we will apply the H~!-Carleman estimate (Th. 2.3), and prove the uniqueness and the conditional
stability in the inverse problem with a single interior measurement. In Sections 4-8, we prove Theorem 2.1;
In Section 4, we will reduce Theorem 2.1 to Lemma 4.1, and in Section 5, we further localize Lemma 4.1 by
means of pseudo-differential operators. Dividing all the possible cases into three cases, in Sections 6-8, we will
complete the proof of the localized estimate separately in those three cases. Finally Theorems 2.2 and 2.3 are
proved in Section 9.

2. CARLEMAN ESTIMATES FOR THE TWO DIMENSIONAL NON-STATIONARY LAME SYSTEM

Let us consider the two dimensional Lamé system
Pu(zg,2") = p(x")03, u(wo, 2') — (Lxuu)(x0,2") = (2o, 2') in Q, (2.1)

ulo,ryx00 =0, u(T,2') =0du(T,2") =u(0,2") = d,,u(0,z') =0, (2.2)

where u = (u1,u2)?,f = (f1, f2)7 are vector-valued functions, and the partial differential operator Ly, is
defined by (1.2). The coefficients p, A, u € C?(f2) are assumed to satisfy (1.3).

Let w C Q be an arbitrarily fixed subdomain (not necessary connected). Denote by 7i(z’) = (n1(z’), n2(z'))
and 7(z') the outward unit normal vector and a unit tangential vector to 9 at a’ respectively, and set % =
Vv -7 and g—g =Vgpv-T.

We set

Q. =1(0,T) X w.
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Let f = (50’51) - (£0a£1a£2)' We set

{pl(»’v,ﬁ) = p(a")&5 — p@) (& + &), (2:3)

pa(2,€) = p(x')&§ — (\@') + 2u(")) (|&]* + &)
and V¢ = (0¢y, Og,, 0c,). For arbitrary smooth functions ¢(z,§) and ¥(x, &), we define the Poisson bracket by

the formula
2

{00} =D (0e,0) (0, 1)) — (9, 1) (D, )

Jj=0

We set i = +/—1 and (a,b) = Zizl arby, for a = (ay,az,a3),b = (by,be,b3) € C3.
We assume that the density p, the Lamé coefficients A, u and the domains 2, w satisfy the following condition

(cf. [15)).
Condition 2.1. There exists a function 1 € C3(Q) such that |V’ # 0 on Q \ Q. and

{prs o, 93} (2,€) > 0,k € {1,2} (2.4)
if (2,6) € (Q\ Qu) x (R*\ {0}) satisfies pi(w,&) = {px, ¥}(x,€) = 0,
{pp(z, & —isV(x)), pp(x, & +isV(x))}/2is > 0, Vk € {1,2} (2.5)
if (2,€,5) € (@\ Qu) x (R3\ {0}) x (R\ {0}) satisfies
pe(,€ + V() = (Vepy (@, € +isVi(2)), Vi) =0,

On the lateral boundary, we assume

0 A/ A+ ) 0 -
V|, <ﬁ‘a—:ﬁ +\/_)\ﬁ a—zé, p1(x,Vip) <0, Vze (0,T) x 09,

oy

— 2.6
011 1(0,T) x (09\0w) (2:6)
Let ¢ (z) be the weight function in Condition 2.1. Using this function, we introduce the function ¢(x) by

Plx) =@ 7>, (2.7)

where the parameter 7 > 0 will be fixed below. Denote

2

Hu||§3(¢7Q) = /Q < Z 54_2|“‘|6)§‘u|2 + s|Vrot u|? + s*|rot u|?
|| =0

+ s|Vdivu|? + s*|div u|2> e**9dx, (2.8)

where a = (o, a1, a2), a; € Ny U{0}, 99 = 0920051 092.
Now we formulate our Carleman estimates as main results.
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Theorem 2.1. Let f € (H'(Q))?, and let the function 1 satisfy Condition 2.1. Then there exists T > 0 such
that for any T > T, there exists so = so(7) > 0 such that for any solution u € (H*(Q))? N L%(0,T; (H3(Q)?) to
problem (2.1)—(2.2), the following estimate holds true:
2

2 2

Pu ou
+ s 55€ =
(H((0,T) x 992))? n*l(z2((0,m)x00))2 o l(2((0,1)x00)2

< Cu(S e [1Fa g2 + (VD IRy + ullBgq.)): Vs = so(r), (29)

s¢ + 83 es¢

on,
on

[} p.0) = lullze.q) + 5

where the constant Cy = C1(7) > 0 is independent of s.

Remark. In Carleman estimate (2.9), the weights which correspond to rotu and divu are better than the
weights which correspond to Vu. This is a result of the special structure of the Lamé system which allows us
to decouple into two wave equations for rot u and divu (see (4.1)).

Next we formulate other two Carleman estimates where norms of the function f are taken in (L?(Q))? and
H~1(Q). In particular, the second of these two Carleman estimate is essential for obtaining our sharp uniqueness
result in the inverse problem.

In addition to Condition 2.1, we assume

Oy h(T, ") <0, 0r0(0,2") >0, va' € Q. (2.10)

Theorem 2.2. Let f € (L?(Q))? and let the function ¢ satisfy (2.10) and Condition 2.1 and let function ¢ be
given by (2.7). Then there exists T > 0 such that for any 7 > T, there exists so = so(7) > 0 such that for any
solution u € (H(Q))? to problem (2.1)-(2.2), the following estimate holds true:

/ (IVul? + s|u)?)e**?dx < Oy (||fes<f>||§L2(Q))2 +/ (|Vul?® + 52|u|2)e28¢dm) Vs > so(7), (2.11)
Q Qu

where the constant Cy = C1(7) > 0 is independent of s.

Theorem 2.3. Letf =1f_; + Z?:o Oy, with £, € (H71(Q))? and £y, f1,£2 € (L*(Q))?, and let the function
Y satisfy (2.10) and Condition 2.1 and let the function ¢ be given by (2.7). Then there exists T > 0 such that
for any T > T, there exists so = so(T) > 0 such that for any solution u € (L*(Q))* to problem (2.1)-(2.2), the
following estimate holds true:

2
/Q|u|2e2s¢dm < O ||f1es¢||§H1(@)2+Z|fjes¢|§L2(Q))2+/Q ul2e®?dz |, Vs > so(r), (2.12)
3=0 w

where the constant C1 = C1(1) > 0 is independent of s.

3. DETERMINATION OF THE DENSITY AND THE LAME COEFFICIENTS BY A SINGLE
MEASUREMENT

Recall that the differential operator Ly, is defined by (1.2). We assume (1.3) for p,A,p. By u =
u(\, i, p,p,q,n)(x), we denote the sufficiently smooth solution to
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p(a) (@5, u)(x) = (Lru)(z), z€Q, (3.1)
u(z) = n(x), x € (0,T) x 09, (3.2)
u(T/2,z') =p(), (O,u)(T/2,2")=q(z'), 2’ €Q, (3.3)

where 7, p and q are suitably given functions.

Let w C Q be a suitably given subdomain. We consider
Inverse Problem. Let p;,q;,n;, 1 < j < N, be appropriately given. Then determine A(z'), u(2’), p(z’),
' €Q, by

u()‘7/~1'7p7 p]aqjan])(x)a S Qw = (O7T) X Ww. (34)

Our formulation of the inverse problem is one with a finite number of observations (i.e., N < c0). For inverse
problems for the non-stationary Lamé equation by infinitely many boundary observations (i.e., Dirichlet-to-
Neumann map), we refer to Rachele [42], for example. A monograph of Yahkno [48] is concerned with the
inverse problems for the Lamé system.

For the formulation with a finite number of observations, Bukhgeim and Klibanov [8] proposed a remarkable
method based on a Carleman estimate and established the uniqueness for similar inverse problems for scalar
partial differential equations. As works after [8], see:

(1) Baudouin and Puel [5], Bukhgeim [6] for an inverse problem of determining potentials in Schrédinger
equations;

(2) Imanuvilov and Yamamoto [21], Isakov [29,30], Klibanov [35] for the corresponding inverse problems
for parabolic equations;

(3) Bukhgeim, Cheng, Isakov and Yamamoto [7], Imanuvilov and Yamamoto [22-24], Isakov [28-30], Isakov
and Yamamoto [31], Khaidarov [33,34], Klibanov [35], Puel and Yamamoto [40,41], Yamamoto [50]
for inverse problems of determining potentials, damping coefficients or the principal terms in scalar
hyperbolic equations.

In particular, for inverse hyperbolic equations, we have to assume that the observation subdomain w should
satisfy a geometric condition and the observation time 7" has to be sufficiently large, which is a natural conse-
quence of the hyperbolicity of the governing partial differential equations. Such situations are similar for our
inverse problem for the Lamé system.

The Carleman estimate for the non-stationary Lamé equation was obtained for functions with compact
supports, by Eller, Isakov, Nakamura and Tataru [13], Ikehata, Nakamura and Yamamoto [16], Imanuvilov,
Isakov and Yamamoto [19], Isakov [28], and, by the methodology by [8] or [22], several uniqueness results are
available for the inverse problem for Lamé system (3.1)—(3.3): [28] established the uniqueness in determining a
single coefficient p(z’), using four measurements (i.e., N' = 4).

Later [16] reduced the number of measurements to three (i.e., N' = 3) for determining p.
Recently [19] proved conditional stability and the uniqueness in the determination of the three functions (),
('), p(z), 2’ € Q, with only two measurements (i.e., N' = 2).

In all the papers [16,19,28], the authors have to assume that dw D 9 because the basic Carleman estimates
require that solutions under consideration have compact supports in Q.

In [28] and [16], the key is a Carleman estimate where the right hand side is estimated in an L2-space
with the divergence and the estimate is proved via a system of hyperbolic equations of u and divu with the
same principal terms. On the other hand, in [19], the key is a Carleman estimate with L2-right hand side
where ||e*?div uH%Q(Q) is reduced to ||ues¢|\%2(Q) by means of an H ~!-Carleman estimate for a scalar hyperbolic
equation. In [19], as its consequence, we can reduce N to take N' = 2 for simultaneous determination of all the
three functions A, u, p.

In this section, we will further apply a Carleman estimate (Th. 2.3) whose right hand side is estimated in
H~! space to prove the conditional stability and the uniqueness with a single measurement: A" = 1. Thus the
main achievements are
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(1) the reduction of the number of observations, i.e., N’ = 1. The previous paper [19] requires N' = 2;
(2) the relaxation of the assumptions on the observation subdomain w.

We will be able to prove similar results on the uniqueness and the stability in the three dimensional case on the
basis of the corresponding Carleman estimate, and in a forthcoming paper, we will discuss the details.

In order to formulate our main result, we will introduce notations and an admissible set of unknown param-
eters A, p, p. Henceforth we set (2/,y’) = Z?zl xjy; for o’ = (z1,22) and ¥’ = (y1,y2). Let a subdomain w C Q
satisfy

Ow D {z' € 0 ((¢' —y),7i(z")) >0} =T (3.5)
with some 3’ ¢ Q.

Remark. Under Condition (3.5) on w, we can prove the observability inequality for the wave equation 0%0 —A
if the observation time 7" is larger than 2sup,.cq |2’ —¢'| (e.g., [39]). If (3.5) holds and T" > 0 is sufficiently large,
then w and T satisfy the geometric optics condition in [1], so that we can prove observability inequalites. On
the other hand, for solving inverse problems, a Carleman estimate is essential and observability inequalities are
not directly applicable. If for other w and T' > 0, we will be able to verify Condition 2.1 similarly to Lemma 3.1
or [24], then we can establish similar results to Theorem 3.1 below. However searches for other w and T are
omitted here because those are lengthy.

Denote
1
3
d= <sup |2/ — /> — inf |2/ y’|2) . (3.6)
' €Q z'eQ
Next we define an admissible set of unknown coefficients A, u, p. Let My > 0, 0 < 6y < 1 and 6; > 0 be
arbitrarily fixed and let us introduce the conditions on a function 3:

B(x') >0, >0, '€,
(3.7)

[8llcs @) < Mo, & /’6(2%();(,3; D <16, 2’ eQ\w.

For fixed functions a, b, 7 on 992 and p, q in §2, we set

W= WMU,M1,90,91,a,b = {(Ahuap) € (03(5))3a A= a, b = b on aQa

M2 iy B, 1O ) @)

pp p(@')(A + 2p)(2')

Z 91 > 0; x/ S ﬁa ||u()‘a,uapapaq7 77)HW7°°(Q) S Ml}

(3.8)

where the constant M) is given.

Remark. The admissible set W is restrictive, but contains sufﬁcientlz many (A, p, p). We here give a subset
of W which suggests that the set W is not very small. Let p,q € C*°(Q) be given arbitrarily and let us choose
arbitrary positive constants a, b, pg. Then, for the Dirichlet boundary data n € C*°([0,T] x ), we assume

. 1 J ) 1 J
(@2n)(T/2,2) = (%La,b) p(r'), (@) (T/2,2') = (%La,,,) a(@),
Z/EQQ,OSjSNo.

Here Nj is a sufficiently large natural number.
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We set

Wo = {()\,,u, p) € (C(Q))>*; N=a,u=0b,p=po in a neighbourhood of 9,

Ao, . min {2 (@), (@) A+ ) (@)} -
(B52)er=o (5)e-o. (D@ e

1ol oo @y Ml ooo @y 1 4ll oo (@) < Mo

A+2
|t (5 (57 ()
2(A +2p) P c@ 1121 \p
The set Wy is not empty and is not “thin”. Then, since the conditions on 7 yield compatibility conditions of
sufficient orders with p, q at {T'/2} x99 for any (A, i, p) € Wy, we can prove by an argument similar to [pp. 1369—

1370, 19] that u(\, 4, p, p,q,n) € C7(Q) and there exists a constant M; = Mj(a, b, po, 01, Mo, p,q,n) > 0 such
that

- 1—106
c@ SUWPre\w 2" = /|

||u(>‘7 P, P, 4q, 7’)”07(6) <M

for all (A, u,p) € Wy. Therefore we see that Wy is a subset of W = Wy, a1, 00,0106 defined by (3.8). Thus,
after a suitable choice of 7, we can conclude that the admissible set WW can contain sufficiently many elements.

It is rather restrictive that M% and % should satisfy (3.7), which is one possible sufficient condition for the
pseudoconvexity (i.e., Condition (2.1)). We can relax Condition (3.7) to a more generous condition which can
be related with a necessary condition enabling us to establish a Carleman estimate. See Imanuvilov, Isakov and
Yamamoto [20], where a scalar hyperbolic equation is discussed but the modification to the Lamé system is
straightforward. Such a relaxed condition guarantees that the geodesics which are generated by the hyperbolic
equations defined by (2.3), cannot remain on the level sets given by the weight function ¢. In particular, by
[20], we can replace the condition that M% and % satisfy (3.7) by one that the Hessians

p\? P\
(e (), (oo ) ) L

are non-negative and ‘V (ﬁ)‘ # 0 and ‘V (ﬁ)‘ #0 on Q.
We choose 6 > 0 such that

1<, k<2

0+

Moyd
0 < 000y, 6, inf |2’ —'|? —0d% > 0. 3.9
VAR N (3.9)

Here we note that since ¢/ & €, such 6 > 0 exists.

Let [-]; denote the first component of the vector under consideration and let Es the 2 X 2 identity matrix. We
note that (L ,p)(z’), etc., are 2-column vectors for 2-column vectors p. Let (A, i, p) be an arbitrary element
of W.

Now we are ready to state

Theorem 3.1. We assume that
Q = {(21,72); v0(22) <21 < M(22), T2 € [} (3.10)

with some open interval I and 9,71 € C(I). Moreover we assume that the functions p = (p1,p2)T and
a=(q1,92)" satisfy

(Laup)(@) ([divp(@) By (Vop(a) + (Vap@)) @ — o) ,
det ((LA,,thx') (divq(')) Es <vqu<x'>+<qu<x'>>T><w'—y'>>*0’ Ve e, (8:11)
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(Laup)(#')  Vup(a')+ (Vep(@)”  (divp)(z' —¢) e
det ((Lx,uqxx') Voa(@') + (Vo) (diva)(a’ - y'>) #0, Vo e, (8:12)
r1 —y1 # 0,
(L2141 (02, P2 + Ouap1) (&) # [Lr uP)1 (02, g2 + Oy i) (2),  Va' € Q (3.13)
and that
7> 24 (3.14)

Then there exist constants K = k(W,w, Q, T, A\, u, p) € (0,1) and C; = C1(W,w, Q T, A\, u, p) > 0 such that

A= Alz2) + 18— w2y + 10— plla-1(0)
SCI ||u(>‘7 P, P, 4q, 7’) - u(>‘7 ﬁa ﬁa p;q, n)"ﬁH‘*(O,T;(L?(w))?)

for any (X, ,p) € W.

As for the corresponding results on the stability for inverse problems for scalar hyperbolic equations, we refer
to [22-24] for example.

Our stability and uniqueness result requires only one measurement: N = 1. For the determination of the three
coefficients by a single measurement, we have to choose initial data which satisfy stronger Conditions (3.11)—
(3.13) than in the case of N/ > 2. Thus Conditions (3.11)—(3.13) are not generic properties and should be
realized in a non-physical way by us. Moreover, as the following example shows, we can take p and q satisfying
those.

Example of Q, p, g meeting (3.11)—(3.13). We assume that A, u are positive constants and that {(z1, z2) €
Q; 13 = yo} and {(z1,22) € Q; 1 = 31} are empty. Noting that the fourth columns of the matrices in (3.11)
and (3.12) have o’ — ¢’ as factors, we will take quadratic functions in a’. For example, we take

p(a’) = ((:cl - yl)o(xg - yz)) - al@) = ((xQ 0y2)2) '

Then we can verify that (3.11)—(3.13) are all satisfied.

Remark 3.1. In place of (3.10), let us assume
Q:{(Zlaz2);%(zl) < zp <71(21), 71 GIN} (3.10%)
with some open interval I.T hen, after replacing (3.13) by

T2 —y2 # 0,
(L9202, p2 + O, p1) (&) # [LauP)2(0n, 2 + Ounqn)(2), o' €Q, (3.13%)

the conclusion of Theorem 3.1 holds under Conditions (3.11), (3.12) and (3.14). Moreover in the case when 2
is a more general smooth domain, we can prove the conditional stability in our inverse problem under other
conditions on w C 2. We will omit the details, for the sake of compact description of the proof.
We set
T

2
v@) =l P (s -5 ) L o) =, o= (@) < @ (3.15)
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First we show

Lemma 3.1. Let (A p,p) € W, and let us assume (3.9) and (3.14). Then, for sufficiently large T > 0, the
function ¢ given by (3.15) satisfies Conditions 2.1 and (2.10). Therefore the conclusion of Theorem 2.3 holds
and the constants Cy(7), T and so(7) in (2.12) can be taken independently of (A, p, p) € W.

Proof. Conditions (2.10) and the third condition in (2.6) are directly verified by means of (3.5). Conditions (2.4)
and (2.5) can be verified by the same way as in Imanuvilov and Yamamoto [24], for example. Finally we have
to verify the first and second conditions in (2.6). Without loss of generality, we may assume that T = % + €,
where ¢ > 0 is sufficiently small. Because if Theorem 3.1 is proved for this value of 7', then the conclusion is
true for any T>T. Then, by noting that

2\ 2

I

(3
or

and that the right hand side of the first inequality in (2.6) is greater than or equal to

)

5
on

in 2 G 6T} (|22
VO 2p)(@) O+ 2u)(2) o7 i
in terms of (3.8), it suffices to verify

~(0(xo = T/2))* + 1]’ = /> > 0

for z € [0,T] x 9. In fact, by means of the second inequality in (3.9), we have

7\ 2
4012 — o' |* — 467 (:co - 5) > 46, xi,réfg |z’ —3/|? — 0(0T?)
> 46y inf |~y —6(2d + eV0)?
>0

because € > 0 is sufficiently small. The uniformity of the constants C(7), 7 and so(7) follows similarly to [19].
Thus the proof of Lemma 3.1 is complete. O

Next we prove a Carleman estimate for a first order partial differential operator

(Pog)(z ZPO,] '),

where pg ; € C1(Q), j = 1,2.

Lemma 3.2. We assume
pr o(T/2,2') >0, 2’ €. (3.16)

Then there exists a constant 7o > 0 such that for all T > 19, there exist sop = so(7) > 0 and Cy = Ca(so, 70, 2, w) >
0 such that

/ s2|g|2e®*T/2) da’ < Oy / | Pog|2e250(T/2:2) 4!
Q Q



LAME SYSTEM 11
for all s > so and g € HY(Q) satisfying

2
g=0 on {2 €0 Zpod(x')nj(x') >0

j=1
Lemma 3.3. We assume

Zpoj o(T/2,2') #0, 2 €Q.
Then the conclusion of Lemma 3.2 is true for all s > so and g € HJ ().

Proof of Lemma 3.2. For simplicity, we set ¢o(z') = ¢(T/2,2') and w = e*%°g, Qow = e*%° Py(e~*?0w). Then

/ | Pog[*e>+0(T/2+) da! = / |Qow|*da.
Q Q

‘We have
Qow = Pyw — sqow,

where go(z') = Z?=1 p0,j(2')0z;¢0(x"). Therefore, by (3.16) and integration by parts, we obtain
2
HQOWH%%Q) = HPOU}”%%Q) + 52”‘10“’”%2(9) - 25/0217%(8%1”)‘101”(155/
> 52/ qo(2')*w? (2')dz’ — 8/ Zpo,Jqo&cJ
Q
2
> 0052/ w?(2)dz’ — 5/ ZpOJquandS + 5/ Z@xj (po,jqo)w*da’
Q 00 i Q5=

2
> (Cos® — C3s)/ wda’ — s/ Zpoﬁjnj gow?dS.
Q 6QQ{Z§ 1 Po,;n; <0} j=1

By (3.16), we have go > 0 on 99, so that the right hand side is greater than or equal to (Cys% — C3s) fQ w?dz’.
Thus by taking s > 0 sufficiently large, the proof of Lemma 3.2 is complete. 0

The proof of Lemma 3.3 is similar, thanks to the fact that the integral on OQ vanishes for g € H}(Q).
Now we proceed to

Proof of Theorem 8.1. The proof is similar to Isakov, Imanuvilov and Yamamoto [19], Imanuvilov and Ya-
mamoto [22-24] and the new ingredient is an H ~!-Carleman estimate (Lem. 3.1) . Henceforth, for simplicity,
we set

u=u(\u,p,p,q1), V=ulX/mppq,n)
and

y=u-v, f=p—p g=A-X h=p—p
In (3.13), without loss of generality, we may assume that

1 — 1y > 0, (1’1,1’2) € Q.
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Then we set

1

Flovoe) = [ f6)d, (or,mz) €2 (3.17)
71 (x2)

If 21 —y1 < O for (z1,22) € Q, then it is sufficient to replace (3.17) by F(z1,22) = fvzol(m) f(& x2)dE, (z1,22) € Q.

Then

pozy = Ly y +Gu inQ (3.18)
and
T T
y (E,x’) = 0,y (E,x’) =0, e (3.19)
and
y=0 on (0,7T) x Q. (3.20)

Here we set

Gu(z) = —9,, F(2)92 u(z) + (g + h)(2') Vo (divu)(z) + h(2")Au(z)
+ (divu)(2) Ve g(2) + (Veu(z) + (Veu(@) D) Ve h(a).  (3.21)

By (3.14), we have the inequality % > d?. Therefore, by (3.6) and Definition (3.15) of the function ¢, we have
o(T/2,2") > d1, ¢(0,2') = ¢(T,2") < dy, 2 eN
with d; = exp(Tinf,/cq |2 — %'|?). Thus, for given € > 0, we can choose a sufficiently small § = §(¢) > 0 such
that
T T —
and
d(r) <dy —2e, € ([0,26)U[T —25,T]) x Q. (3.23)

In order to apply Lemma 3.1, it is necessary to introduce a cut-off function x satisfying 0 < x < 1, x € C*(R)
and
0 on [0,6]U [T —46,T],
X = 0, 8] U] ] (3.24)
1 on [24,T — 24].
In the sequel, C;; > 0 denote generic constants depending on so, 7, My, M, 6o, 61, 1, Q, T, ¥/, w, x and p, q,
g, 6, but independent of s > sg.
Setting z; = Xﬁgoy, Zo = Xagoy and zg = X@ioy, we have

§02 21 = Lz + XG(02,1) + 29(D )2,y + (02, )Ry,
po3, 22 = Ly ;22 + XG(95,0) + 20(020 X) 05,y + (02, X)05, (3.25)
po3,zs = Ly ;25 + XG(93,0) + 20(0, X) 03,y + p(07,x)03,y  in Q.

Henceforth we set

2 2 3 2 4 2\ 2s
£ = /Q (182,52 + 102, y[? + |02, y )2 da.
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Noting that u € W7>(Q), in view of (3.24) and Lemma 3.1, we can apply Theorem 2.3 to (3.25), so that
4 .
Z/Q |02, y12x%e**?dx < C5 (| Fe*®(|72(q) + Il9e°?l122(q) + 17> |1 12(q))
=2
5 .
+Cs Z H(3950)()(39]50}’)9805||2L2(0,T;(H71(Q))2)

+C5ZH ¢||L2(OT(H 12y T C5€
G(HFe ¢||L2(Q) + llge’® ¢||2L2(Q) + |‘hes¢||2L2(Q)) + Cee® (1 72) 4 Cre (3.26)

for all large s > 0.
On the other hand,

/| T/2 l‘)|2 25¢ T/Qm)d /

T/2
— [ e ([ 102 Pxtae s ) g
0 X0 Q
T/2
=[] 20y @ et
T/2 T/2
vo [ [ty anosn s [ [y R 000

< Cr [ s (108,¥P + 102,y 2)e P + Cree (22,
Q
Therefore (3.26) yields
/ (82 y)(T/2,a")|2e>¢(T/25) qg/ < Cgs/ (IF)? + 9] + |h|?)e**?dz + Cgse?*(11728) 4 CgsE (3.27)
for all large s > 0. Similarly we can estimate [, [(03 y)(T'/2, 2')[2e259(T/2:2)) g to obtain

J @2 T /2,00 + (@, )(T /2.0 Py T2

< Cgs/ (IF|? + |g|? + |h|>)e**¢dx + Cyse?*(41729) 4 OysE (3.28)
Q

for all large s > 0.
Now first order partial differential equations satisfied by h, g and F' are going to be considered. That is, by
(3.18), (3.19) and u,v € W">=(Q), we have

T T ] T T
~02 ) — / ~n3 N /
PO,y (—2 , T ) Gu (—2 , T ) , PO,y <—2 , T > GOz u (—2 , T ) . (3.29)
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Then, setting

we rewrite (3.29) as

O.Y. IMANUVILOV AND M. YAMAMOTO

a11 ai2

1 _ 1 _

*ZL/\,up - ) 7ZL/\,uq - )
a9 a22

divp = by, divq = b,

d d
vx/p + (vﬂi/p)T = (Cl 1) ) Vz’q + (Vz’q)T = <C2 2) )

d1 el
Gll

p02 y (L,2") = (g + h)Vu (divp) — hAp = <G
21

da e

)

P2,y (5:2) = (g + W)Var(diva) — hAq = (g 7
22
aill bl 0 0. F G11 — Claxlh — d16x2h
a1 0 by 63:1 o Go1 — dlamlh - elaxzh
ai12 b2 0 85819 - G12 — Cgamlh — dgath
ass 0 by v29 Gas — daOy, h — €20,,h

Because linear system (3.31) possesses a solution (0, F, 04,9, 0x,9), the coefficient matrix must satisfy

that is,
a11
a21
(O, h)det a1
@22

ail bl 0 G11 — Claxlh — dla;hh
a1 0 bl G21 — dlaxlh — 616;52]1

det ai12 b2 0 G12 — CQazlh — dga:wh - 0,
a2 0 b2 GQQ — dgazlh — 62812}1
b1 0 C1 ail b1 0 d1 ail b1 0
0 b1 d1 a1 0 b1 el _ a1 0 b1
bg 0 Co T (ax2 h)det ai2 bg 0 d2 = det ai2 bg 0
0 b2 d2 ao9 0 b2 €2 as9 0 b2

(3.30)

(3.31)
Gll
G21

3.32
G12 ’ ( )
G22

by the linearity of the determinant. Under Condition (3.11), taking into consideration h = p — g = 0 on 9
and considering (3.32) as a first order partial differential operator in h, we apply Lemma 3.3, so that

2
an b 0 Gn

82/|h|262“’¢(T/271”>dx’§Cm dot | @20 0 0r Gan | spcryzn
Q

a2 by 0 G2
aze 0 by Ga

T
<cu [ (830” (3+)
Q

L3(Q)

. T
aioy <5) I/>

2
+

2
) erd)(T/Q,a:')dx/

"1-011/(|9|2 + |h|?)e2T/250 qg! | (3.33)
)

in view of (3.30). We rewrite (3.29) as

air ¢ dp Gi1 — b1azlg
az di er 8x1F Ga1 — b104,9
Ou,h | = @2
a2 ca do o h Gi2 — b20z, 9
xr2

aze do e Gag — b203,9
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and, using (3.12), we can similarly deduce

52/ |g|2e?s¢T/2a0 4y < 012/ a2y (z,:ﬂ’)
Q Q 2

2
+

T
3
azoy (5; Il)

2
) erqﬁ(T/Q,;c’)dl,/
+Cia [ (1o + )20 (331)
Q
for all large s > 0. By (3.33) and (3.34), for sufficiently large s > 0, we have

’ T
& [ (lgl + e T 0aa’ < o ( %,y <5>
Q Q

Moreover, eliminating d,,h in the first and the third rows in (3.31) and using (3.13), we have

doby — dib docy — d
811<F+ 201 12ng 2C1 1C2h>

2
+

T N\ ,
Ry <5, x’>‘ ) 250 (T/2:2) 4 (3.35)

daai1 — diaia daai1 — diaiz

doG11 — d1G1a ( doby — dibo > < docy — dico )
=" 2 1 90y, () + ROy, [ -
daary — dyar2 90 daary — diarg ! daai1 — dyar2

By (3.10) and (3.17), if nq(2') > 0, then z1 = 1 (z2), that is, we have: F(x1,22) = 0 for ny(z’) > 0. Therefore,
noting g = h = 0 on 9 and setting pp1 = 1, po,2 = 0 in Lemma 3.2, we can apply the lemma. Thus, in view

of (3.35) and (3.30), we obtain
T T
892:0y (57 l‘/) aggy (57 l‘/)

82/ |F|2625¢(T/2,z/)dx/§014/
Q Q

for all large s > 0. Consequently, substituting (3.35) and (3.36) into (3.28) and using ¢(7/2,2') > ¢(xo, ') for
(z0,2') € Q, we obtain

2
+

2
) 20T/20 Q! (3.36)

’ T / C C
/(|F|2 + |g|2 + |h|2)e2s¢(T/2,z )dl‘/ < CL / (|F|2 + |g|2 + |h|2)e2s¢(T/2,z )dl‘/ + ie%‘(dl*%) + ig
Q s Q s s
for all large s > 0. Taking s > 0 sufficiently large and noting €25?(7/2:2") > ¢2sd1 for 4/ ¢ ), we obtain
/ (IF]? + |gl* + [p*)da’ < Chee™** 4 Cire®*ie€ (3.37)
Q

for all large s > sp: a constant which is dependent on 7, but independent of s. Next we take in (3.37) instead
of the constant C;7 the constant Cy7e2%0¢1s. Now this inequality holds true for all s > 0.
Now we choose s > 0 such that
e2sC165 — 674567
that is,
=———Iné&.
4e + 2016

Here we may assume that £ < 1 and so s > 0. Then it follows from (3.37) that

JFE +1gP + Inf)ds’ < 2ce .
Q
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By Definition (3.17) of F', we have

/frdxldxgz/(al.lF)rdxldxg:/F(é)xlr)dxldxg
Q Q Q

for all 7 € Hj(Q) by integration by parts. Hence we can directly verify that || f||g-1(0) < C||F||L2(q), so that
the proof of Theorem 3.1 is complete. O

4. PROOF OF THEOREM 2.1

Without loss of generality, we may assume that p = 1. Otherwise we introduce new coefficients p; =
w/ps A1 = A\/p to argue similarly. We can directly verify that the functions rotu = 9,,us — 9,,u1 and divu
satisfy the equations

92 rotu — pArotu =my, 07 diva— (A + 2u)Adivua = my inQ, (4.1)
where
my = Kyrotu + Kedivu + Kyu +rotf, mo = Kzrotu + Kydivu + Kou + divf

and K, Ky are first order differential operators with L°° coefficients.
Thanks to Condition 2.1 on the weight function v, there exists 7 such that for all 7 > 7, the Carleman
estimate for equations (4.1) (see e.g., [45]) yields the inequality

s||(Vrot u)esd’”?LQ(Q))Q + s||(Vdiv u)esd’H%LQ(Q)y + 8*|| (ot u)es¢||%L2(Q))z + 83||(div u)emH(QLz(Q))z
2

ou s
on

<G (52||fes¢|%L2(Q))2 + (VB [E2 (g2 +
(H ((0,T) x892))2

2 2 P 2
+s —_,uesd’ + 83 —1_l,es¢ + [Jul/% , Vs> so(r),
87742 an (Qu)
(L2((0,T)x0))? (L2((0,T) x 09))2
(4.2)
where the constant C; is independent of s.
In order to estimate the H'(Q)-norm of the function u, we need the following proposition.
Proposition 4.1. There exists T > 1 such that for any T > T, there exists so(T) such that
12
L5 2 00 + 61 4 Pl | s
Q \ %=
<G (II(rotU)ewII?p(Q) +[(diva)e*? |3 g +/ (s|Vul* + 53|u|2)625¢daﬂ> :
Qu
Vs > so(7), u € (HL(Q))*. (4.3)
Proof of Proposition 4.1. Denote rotu =y and divu = w and let rot*v = (;—;’2, 78‘9—;’1). Using a well-known

formula: rot*rot = —A, + V,/div, we obtain
—Ayu=-rot*y —Vyw inQ, ulgg=0.

Then (4.3) follows from the Carleman estimate for an elliptic equations obtained by the first author in [17]. O
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By (4.2) and (4.3), we estimate Z|2a\=0,a=(0,a1,a2) 105 w)e*?|[?,2(y)> via the right hand side of inequality (4.2).
Next using this estimate and equation (1.1), we obtain the estimate for the norm ||(8§0u)e5¢||%L2(Q))2 via the
right hand side of (4.2). Finally we obtain the estimate for |[(0z,0,, u)es¢||%L2(Q))2 and 52||(8zou)es¢||%L2(Q))z
by the interpolation argument. Therefore, combining these estimates with (4.2), we have

||u||§f(¢,Q) <Cs (32ers¢||%L2(Q))2 + ||(Vf)€‘s¢||%1:2(@))2

2 2
, u
+ s —lieéd) + s —j;e”
0l omxon 197 L2 (0m)xo0))
8 ‘ 2
+ 53| S2ee 3o |- Vs = solr), (4.4)
on (L2((0,T) x 92))2

where the constant Cj is independent of s. Here we recall definition (2.8) of ||u||§3( 4.0.) and the definition of

[ull$ (4.0 in (2.9).

Now we need to estimate the boundary integrals at the right hand side of (4.4). In order to do that, it
is convenient to use another weight function ¢ such that ¢lag = ¢lag and ¢(x) < ¢(z) for all z in small
neighbourhood of (0,T) x 9€2. We introduce the function ¢ by formulae:

p(a) = @ (z) = p(x) — (') + NE(),

where € > 0 is a small positive parameter, N > 0 is a large positive parameter, and ¢, € C® (ﬁ) is a function
such that

él(x’) > 0, = Q, €1|aQ =0, Vﬂfﬂag 75 0.
Denote Q;/y2 = {2/ € Q; dist (2/,0Q) < 7z }. Obviously for any fixed € > 0, there exists No(€) such that

@) < o(x), Yoec0,T]xQ N2, N € (No(€),00).

Now we will prove the following estimate:

Lemma 4.1. Under conditions of Theorem 2.1, there exist T > 0 and Ny > 1 such that for all T > T, there
exists so(1, N) such that

2
ll3 o)+ N D s 2@ W F2 g < Ca (SQerw”?Lz(Q))z
|a|=0

+ ||(Vf)ew||(2L2(Q))2 + ||u||?3(<p,Qw)> , Vs >s0(r,N), N> Ny, suppu C [0,T] x Qy/n2, (4.5)

where the constant Cy is independent of s and N.

The proof of Lemma 4.1 is given in Sections 5-8. Now, using the result of this lemma, we finish the proof
of Theorem 2.1. Let us fix the parameter NV such that (4.5) holds true. We take se (0, ﬁ) sufficiently small
such that

o(z) > o(x), Vo € Q5 \ Q5/5- (4.6)

We consider a cut off function 8 € C3 (Q5) such that flo. =1 and §|QS\Q ,; = 0. The function fu satisfies the
4

[NE

equation

P(au) = §f+ [Pa 5]11, u|(O,T)><89 =0, 11(0, ) = Ug, (07 ) = u(Tv ) = Ug, (Tv ) =0.
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Applying Carleman estimate (4.5) to this equation, we obtain

2

ou 0%u ” ou

—e%? + 5 ||=—=¢€° —
on (HL((0,T) x9%))2 on? (L2((0,T) x 82))2 on
< Ca (8|12 )2 + (VB |22 )2 + 2 (I[P, Blue[[? 2 )

+ ||V([Pa§]u)ew”(L2(Q))2 + ”uHB(d),Qw))v Vs > so(7). (4.7)

s¢

—i—s3 e

(L2((0,T)x0Q))?

Since the supports of the coefficients of the commutator [P, 6] are in O3\ Q5,5 by (4.6), we have

82”[1:)7 9]u€s<p|‘(2L2(Q))2 + ||V([P, 9]u)65w||%L2(Q))2 + ||UH%(¢,QW)

2
< Co Z SS_QM||(6§u)es¢”%ﬂ(@))2 + |\11H%(¢,Qw) . (4.8)

|a|=0
Combining (4.7) and (4.8), we obtain
ou u ,|I? ou .
+ s e —+ s
DT | pp— Ol L2((0.1)x00))2 9 (o o

2
<Cio <52||fes<p|(2L2(Q))2 + (Ve 1 E2 (02 + Z 5372‘04H(agu)esd)”?L?(Q)y + |u||%(¢,Qw)>a Vs > s0(T).
|| =0

(4.9)

Finally we will estimate the surface integrals at the right hand side of (4.4) by the right hand side of (4.9). In
the new inequality, the term

2
DR [ e

|a|=0
which appears at the right hand side, can be absorbed by HuH%,( 4.q)- Thus the proof of Theorem 2.1 is complete.
O

5. PROOF OF LEMMA 4.1

In this section, we will prove Lemma 4.1. Following the standard technique, we reduce the proof of estimate
(4.5) to subelliptic estimate (5.13) for the operator P,. Next show that we can act microlocally in this case.
Namely we reduce estimate (5.13) to estimate (5.15). In the situation with the Lamé system this reduction is
not trivial, since we have the subelliptic estimate with loss of one derivative. This difficulty is overcome with
the help of the second large parameter IV inserted into the function ¢. Finally we formulate several lemmata
on factorization of pseudo-differential operators, a priori estimates of Cauchy problem for pseudo-differential
operators, and Carleman estimate for a second order scalar hyperbolic equation, which are used in Sections 6-8.

Proof of Lemma 4.1. First we note that, thanks to the large parameter NN, it suffices to prove (4.5) only locally
by assuming

suppu C Bs N ([0,T] x Qy/n2),
where By is the ball of the radius § > 0 centered at some point y*. In the case of BsN((0,T) x Q) = @, we can
prove (4.5) in a usual way for a function with compact support (see e.g., [15]). Without loss of generality, we
may assume that y* = (yg,0,0). Moreover the parameter § > 0 can be chosen arbitrarily small. Assume that
near (0,0), the boundary 99 is locally given by the equation xo — #(x1) = 0. Furthermore, since the function
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1 = Ou(x, O~ 12') satisfies system (2.1) and (2.2) with £ = Of(zg, O~'2') for any orthogonal matrix O, we
may assume that

'(0) = —(0) = 0. (5.1)

Making the change of variables y; = 21 and y2 = x2 — £(x1), we reduce equation (2.1) to the form

Pru= 2 (S o0 () 2t (02 + () 3
—()\—l—u)i (divu— %€'> + ()\—i—u) (dlvu 8Z;€'> 0+ Kiu=fi,

2 2 "
Pan = i — (G 2z O P05+ () 32

9y10y2
A+ ) (dlvu guy e/) + Kou= fo,

where we use the same notations u, f after the change of variables and K 1, K, are partial differential operators
of the first order. We set P = (P1,P3) and

8’[1,2 6’&2 ’ 8u1 8u1 6’&2 6’&1 /
== 22 () — ==, zp= e =2 — ().
YT 0y oy (w1) dy” T Oy Oy Oy (v1)

After the change of variables, equations (4.1) have the form

(9221 (8221 6221 6221 Z 821
Poy= g — -2 + (141 2—)+£ —
=m; in Gy 2 R? x [O, %} , (5.3)
8222 8222 6222 6222 " (92’2
Pyuiopzo=—o —(A+2 T 14+ ¢ H=—== A+ 2u)l —
i = Gt = k) (53 - 20 gt (L P2 ) + Ok 20 )5
= My n QN. (54)

Here we use the same notations mq, mso after the change of variables and the constant k > 0 is chosen sufficiently
large such that the image of ([0, 7] x Q4 /y52) N Bs(y*) belongs to Gy . Henceforth we write (21, 22) = R(y, D)u,
where

1
D= (DymDynD ) Dyj :;ayj, j:0,1,2, etc.,

and ¢ denotes the complex conjugate of ¢ € C.
Now we claim that in order to prove Lemma 4.1, it suffices to establish the following estimate for the function
w = (w1, wz) = e*?(z1,22) = e R(y, D)u:

ow

HWH* = SHWH (H1(Gn))2 +s ||WH(L2 Gn))2 + s 8y2

+ 5||"V||%111r1(agN))2
(L?(9GnN))?

+ 8% [WlELo (agayy2 < Cs(IPue™® (B gy )2 + 5 IPue™|12ra(gy )2 + slgliEr2agny2

2
+ 20 5@ we agyye), s 2 so(rN), (5.5)
|a|=0
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for all u € (H%(Gn))? satisfying ulgsgy, = 0 and suppu C Bs N Gy. Obviously the function w satisfies the
boundary condition

Oowr A+ 2u 0ws N A+ 20 .

T + sy, (Y )w1 — ST%l (y*)wz + g1, on IGn, (5.6)
Ows uno Oun 1
et a3 * N * 0 5.7
6:(]2 N+ 2M 6:(]1 + 5Py (y )wQ + S)\ + 2'u Py1 (y )wl + 92, on gNa ( )

where the function g = (g1, g2) satisfies the estimate

ow ||?

ys

5||g||?L2(agN))2 < €(9) (5 + SHWH(Qﬂl(agN))2 + 53||W||%L2(BQN))2) + CGSHPUGWH?B(BQN))% (5.8)

(L*(99n))?

and lims_, €(0) = 0.

Boundary Conditions (5.6) and (5.7) with property (5.8) follow from equation (5.2) and the zero Dirichlet
boundary condition for u.

In order to deduce (4.5) from estimate (5.5), it suffices to show

a3 gx) < CrlIWIE + [IPue|[Fg (g2 + 87 [Pue® [z (gyyy2), Vs > so(r, N). (5.9)

For the proof of (5.9), we need

Proposition 5.1. There exist T > 1 and No > 1 such that for any T > T and N > Ny(7), there exists so(7, N)
such that

2
1 X
N — Z |0y, 0y ul® + 5|0y, u?> + s> |ul? | e**?dy
gv \ 5% k=

< Cs(llz1 €31 (gny + 1122€° 1 gny)> VU € (Hg(Gn))?, suppu C Bs NGy, Vs > so(7, N),

where the constant Cy is independent of N.

We give the proof of Proposition 5.1 in Appendix I.
Thanks to Proposition 5.1 and equations (5.2), we obtain

2
N[@weIaguye + D N0 m)e? || g, e
|a|=0,a=(0,a1,a2)
< Co([|wlf? + N|[Pue™®|[F,2(g, ) Vs > so(r, N). (5.10)
By (5.5) and (5.8)—(5.10), we obtain
2
N[0y, w)eI[EL2(gy )y + > Nt =205 w)e™ |22, 2 + 1l 6
|a|=0,a=(0,a1,002)
< C10(||V(Pu)es"’||%L2(QN))2 + SQHIP’ues‘PH%LQ(gN))z) Vs > max{so(7, N), N }- (5.11)

Finally, combining (5.11) with the estimates

32||(6y0u)es"’|\(2L2(gN))2 <Cun (||(6§0u)ew||%m(gm)2 + 34Huew|\(2L2(gN))2>
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and

2
@) [ pgryye < O D IOF 0 sy k€ 1,2),
j=0
we obtain (5.9).
Now we will proceed to the proof of (5.5). We set P, s = e‘s|‘/’PMe_|s“P and  Pyjous = e|s“PP>\+2ue_‘s|‘/’. By
p(y, &0, &1, &2) and pa(y, &o, &1, &2) with = p or A+ 2u, we denote the principal symbols of the operators P and
Pg respectively. In order to prove Carleman estimate (5.5), it is convenient for us to introduce a new variable o

and consider s as a dual variable to 0. Following [46], Chapter 14, we consider the pseudo-differential operators
defined by

P ( D, Dyo’DylaD )U:/3pﬁ(ya§0+i|5|¢ymfl+i|5|50y17Dy2+i|5|90y2) ( §o,§1,y2) <y, £>+05)d0—d§
R

Py ( D, Dyo’DylaD ) / (y7§0+l| |50y07£1+z| |50y17Dy2+Z| |50y2) ( §0a£17y2) (<Y &> F0s) dO’df,
R3

where & = (£0,&1),y" = (yo,y1) and 0(s, &, &1, y2) is the Fourier transform of v(o,yo,y1,y2) with respect to
0,Y0,y1. Let v(o,y) = (vi(0,y),v2(0,y)) be a function with the domain @ = R® x R%. Henceforth F, denotes

the Fourier transform with respect to the variable 0. Let h(s) = (1+s%)%, £ = Q. Moreover we set g = (g1, g2),

Ry(y, DU = "I R(y, D)e "y, (5.12)
and
Owr A+ 2p dw,y A+ Qu .
Biw & G0 AEIE oy~ 92 (1
ow ow
Bpwe DU 10U 0y + ol (w0 D

Jya  A+2u 0 A + 24
for w = (w1, wz), provided that the right hand sides are well-defined.
Then we claim that in order to prove (5.5), it suffices to establish the following estimate

1
o iy ov
VP 2 S 10D 22 . garsiannys) + [B(Do)? 2ﬂv|%Hj<z>>2+Hh<Da>a—y2

(L2(2))2
SClg(HIP’U(y,D)]-'U—ll,{H%Hl 2+ [B(Do) Fy gl 22 sy + I1F U H?(Q)P), (5.13)

if U and v satisfy suppU C R! x (BsNGn), supp F,, 'U C (-0, 00) x (BsNGn) with arbitrarily small parameter
op >0, and
{Rs(y, DU = F,v, Uls=0
Bi(Fov) = g1, Ba(F,v)=g2 onX.
We set
FoV =W.

Then

(Biw, Bow) = (g1,92) = & (5.14)
This fact can be proved exactly in the same way as in [46], Chapter 14, Section 2.
Consider the finite covering of the unit sphere S? = {(s, £y, &1); 8% + &2 —l—«fl =1} §? C Ugreg2{¢ = (s,&0,&1) €

S2%;|¢ — ¢*| < 61} and the partition of unity x,(¢): ZK““)XV(Q =1 for any ¢ € S? and suppy, C {¢ €
S ¢ = ¢l < a1}
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We extend the function y, on the set |¢| > 1 as the homogeneous function of the order zero in such a way
supp x» C O(61) = { ‘ o~

that
< 51} )
and continue x, on the set [(| < 1 up to a C*° function.
We set D' = (D,, Dy, Dy, ), and consider the pseudo-differential operator x, (D’) and the function x, (D’)v.

Obviously equalities (5.14) hold true with w and g replaced by w, = \/%—W fj;o xv(D')ve~¥°do and g, =
+ — —iso
\/%f_;; xv(DF;lge=todo.
Moreover we claim that instead of (5.13), it suffices to prove the following estimate

1x (D")v[|| < Cis (IPoxu (D) F, Ul 1))z + 17 Do)x (D) F; gl 2y + I1F, ' Ullm2c0))2) . (5.15)

where

Rs(va/)u = ng, u|2 = 0; Suppf;lu C (70—0;0—0) X (st N gN)a
Bi(wi,p,w2) = 91,0, Ba(wiy,way)=g2, (5.16)
and Cy3 is independent of N. In fact, assume that estimate (5.15) is already proved. Then

K(61)

IIvll* < lelxu vIIIP

K
C1a 3 (1o D) 75 Ul o+ N oy + I D5 Ul

Mw i

< Cis (IIXV(D’)]P’U(y, D)}-;lU”%Hl(Q))z + 1[x (D), Po (v, D/)]]'j;lU”%Hl(Q))z

N
Il
—

()8 e + o (D) F Ui gy )
< Cie (H]Pa(%D)f;lUH(QHl(Q))? + ||h(3)gH(2L2(Z))2 + H]:z;ll/{”%H?(Q))?) ;

where K = K(d1) and Cy6 are independent of N.

Estimate (5.15) follows from Lemmas 6.1, 7.1 and 8.1 which are proved in Sections 6-8. O
Now we formulate some results and introduce some definitions which will be used in the proof of estimate
(5.15).

The principal symbol of the operator Pg ¢ has the form

5y, 5,60, 61) = —(€o+ilslye)® + Bl(Ex +ilsloy,)? — 20 (€1 +ilslpy, ) (€2 +ilslpys) + (€2 +ilsl oy, )*|GI?], (5.17)

where |G|?> = 1+ (¢(y1))?. The roots of this polynomial with respect to the variable &, are

F;(ya 5;50;51) = *Z|5|50y2(y) + a:ﬁt(ya Sa&Oagl)a (518)

Oé:;(y757§07§1) (gl i Z|5||()0Gy|12(y))e (yl) i\/?ﬂﬁ(ya Sa€O7§1)7 (519)

ils 2_ 1 +1ls 2 2 L +ils 2/ p1\2
ro(y,C) ((§o +i[s[epye (y)? — B(& + 1 |§|%Ti/)) NG| + B(& +ils[py,)* (¢) , (5.20)

where the function /75 is defined below.
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Denote v = (y*,(*) = (y*, s*, &5, &5).

Proposition 5.2. Suppose that |rg(7y)| > 25 > 0. Then there exists 5o = 6o(6) > 0 such that for all 6,6, € (0, 8p),
there exists a constant Cag > 0, independent of s, such that for one of the roots of polynomial (5.17), which we
denote by I'5, we have

—ImI‘E(y, 8,60,51) > 020|5|, V(y, 8,60,51) € Bs x 0(51) (5.21)

Proof of Proposition 5.2. If Tmy/rg(7y) # 0, then statement (5.21) is trivial. So it suffices to consider the case
Imy/r3(7) = 0. Let 6 € (0, 1) be a constant. Obviously there exists () such that for all 6,01 € (0,6(6)),

Rers(y, €) = (1 =20)|rs(y, O, V(y,5,80,&1) € Bs x O(61).

Then

|Im7"g(y,()| S 1 3929Rerﬁ(y7<)ﬂ v(yasagmfl) € B5 X 0(51)

We denote b(y, () = Imrg(y,() and a(y, () = Rerg(y, () with ¢ = (s,&,&1). First, if Imy/rg(y) = 0, then we
have a(y) > 0 and b(y) = 0. In that case we define the function/rg(y,¢) by the infinite series

oo

(1 +:c)% = ch:ﬂ", lz] < 1,

1(M1_q)\(1_9o l_( 1)
where ¢,, = 2(2 )G ), (3-(n- ).

That is, assuming that [2] < {222 < L for all (y, s, &, &1) € Bs x O(61), we set

Vo0 =X () =va g () -4 (3) e (5) - 62

The first term in infinite series (5.22) is real, and the absolute value of the third term is ‘|s|ﬁ‘ O(0). The
function W is a continuous homogeneous function of the order zero in the variable (.

— b0 <0, then we take 5y, Q) = —i|s|g—y"°2 + a5 (y,¢) where aj (y,() equals the right hand side of

Is*Na()
(5.22) plus (&1 + ils|oy, ) (y1)/|G|?. Otherwise L5 (y, Q) = —ils |6y2 + ag(y,() where ag(y,C) equals the right
hand side of (5.22) multiplied by —1 plus (& + ||y, )¢ (v1) /]G>
For \s*W( v) < 0, we obtain that SI\/_( ¥) = 20y, (y) < 0 for all (y, s, &,&1) € Bs x O(6;) and for \S*W( v) >0
we obtain that — SI\/_( v) =10y, (y) < 0forall (y,s,&,&) € Bs xO(61). These inequalities imply (5.21) provided
that 07 is taken sufﬁmently small. The proof of Proposition 5.2 is finished. O

Under some conditions, we can see that the operator Pg can be factorized as a product of two first order
pseudo-differential operators:

Proposition 5.3. Let 3 € {u, A\+2u} and |rag(y, ()| > 6> 0 for all (y,¢) € Bsx O(281). Then we can factorize
the operator Pg as the product of two first order pseudo-differential operators:

Psx., (D')V = BIG*(Dy, = T;5(y, D"))(Dy, — TS (y, D")xu (D")V + T3V, (5.23)
where supp V' C Bs N Gn and Tg is a continuous operator:

Ty : L?(0,1; HY(R®)) — L?(0,1; L*(R3)).
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Let us consider the equation

(Dy, —=T5(y, D)X (D)W =¢q, V]| =0, suppV C BsNGn.

— &
Y2=732

For the solutions to this problem, we have an a priori estimate:

Proposition 5.4. Let 3 € {u, A+ 2u} and |rg(y, )| > 5> 0 for all (y,¢) € Bs x O(261). Then there exists a
constant Cas > 0, which is independent of N, such that

[h(Dg) X (D")V |y,=oll 2 sy < Cozllgliz2(o)- (5.24)

Proof of Proposition 5.4. Taking the scalar product of ¢ and h?(D,)x, (D’)V for fixed y,, we obtain

2Re (4(y2), h* (Do )Xo (D' )V (2)) 23 = % (=2 1A(Do ) (D')V (12 325 )
— 2Re (il'; (y, D)X (D")V + Fixo (D")V, h* (Do ) xo (D) V) 125y €72
By (5.21) and Proposition 2.4.A in [47], for sufficiently large positive K, we have
Re (il'; (y, D")h (Do )h* (Do )X (D")V + Fxu (D")V, h*(Dg ) xu (D')V) 25y = Casl|h? (Do) xu (D')V |2 (5 -

Thus

2Re (q(y2), h* (Do) Xu (D')V (y2)) 12 (5> 42

0 3
< g (I (DI () s ) = Conllh (Do) o (DW (125"

and (5.24) follows from Gronwall’s inequality. O

Let w(s,y) satisfy a scalar second order hyperbolic equation

ow

8_|y2:1 = w|y2:1 =0, suppw C R x (B(S N gN)
Y2

Pﬁ,sa:q in gNa

for almost all s € RY. Let Pj ; be the formally adjoint operator to Pg s, where § € {p, \+2u}. Set

S B,s B,s B,s
Lip=—7—" Lop=—7—"

One can easily check that the principal part operator L_ g is given by formula

oW m] Ow Ow Ow
L_pw=-2[s Isoyo(9 +ﬁ< |s Isoyl(9 —2|s]¢'(y1) (%a +<pyla )+2l |(L+ (¢ (31))? )%a )

Obviously Ly gw + L_ gw = q. For almost all s € R!, the following equality holds true:

Bg + |IL— p0|1 726y + 1 L4507 2(6) + Re/g (Ly 5, L glw, w)dy = ||ql|72(Gy)» (5.25)

N
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where

Bﬁ = Re /ag ﬁﬁ(ya v% 763)(|5|§ﬁ(ya V{E)7|S|3ﬁﬁ(ya v% V%)@Q)dyodlerRe /(‘)g ﬁﬁ(ya Vﬂja 7€3)L7,ﬁady0dyla
; : (5.26)
€3 = (0,0,1) and

Py, 6, €) = Eobo — B(E1E1 — £/ (y1) (€16 + &261) + (1 + [0/ (1) [*)€2o).

We note that ¢y, |s = ¢y, |5 for k€ {0,1} and ¢y, |5 = (¢y, — €7(0y,£1)d)|x. Therefore on ¥ the function Vi
is independent of N and |V¢(y) — Ve(y)| < Case for all y € ¥ where Cas > 0 is independent of € and N. In
particular, taking € sufficiently small, we have (2.6) for the function . It is convenient for us to rewrite (5.26)
in the form W @
1
By =B + BY,

o 05 (. 0% 5% 5% )
BY =Re [ 211822 8L%,.(s*) + BLL 00 () — 2000 (5%) ) dyod
0 =re [ aTe (35 () + B ) — o) )

- 0ya
ow
ﬂ(a—yl )

NI
v ety ){} o

— s1* (3, (y*) — B2, (") + <p§2(y*)))lﬁl2}dyody1-

> |om
0ya

Then
2

2 ow ~ _
B < eo sl | 5, + 1511813 ogy) + 1511012206, | (5.27)
Y21lL2(a6n)

where €9 = €9(d) — 0 as |§] — 0. It is known (see e.g., [18]) that there exists a parameter 7 > 1 such that for
any 7 > T, there exists so(7) such that

I g0y + Vs + Re [ (1L Lol ) dy
N
+ Chelsl 9] 200 1902 200) 2 Cao (1511301 gy + 5P 813 01g,y ) - Visl = s0(r).  (5.28)

where Cys > 0 is independent of s. We also claim that the constant Cyg is independent of N. The proof of
estimate (5.28) is given in Appendix II.

Set - -
55:/ Bgds, Eg”:/ BYds, j=1,2.

— 00

Therefore, integrating (5.28) with respect to s in R, we have

Cor(|lh(s)@ 3 o) + 117 (s) @ 22(0)) + Zp < C26|S|/ 10| 22 (0g) 0y, Wl L2(0g ) ds
+llalZz o) +1@lFn (), VIsl = so(r) (5.29)

with some constant Ca7 > 0 and by (5.27)

2

, (5.30)
X

—(2) < ~ ow
=5 [+ sl [0l 286 3) Oy W[ L2(ag ) ds < €() 0.0
0o Y2
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|G®)
é)yg ’

and the parameter €(6) — 40 as § — +0.
We set

where we set

2 2

i

. +||h(5)@|\%2(R1;H1(R2))+||h3(5)@||%2(2)
L2 (%)

w1, = Foxu(Dv1, w2, = Foxu(D )va.

Later we will need to apply (5.29) and (5.30) to the functions w1, and ws,, since we would like to take the
advantage of (5.23). However it is directly impossible because the condition supp x, (D')v C Bs x R! does not
hold true, in general. On the other hand, using the fact that

/]R2\B /’]Rl h4(5) Z |DaU)j7V|2dyOdy1dS § 028||VH(2H1(Q))27
26

laf<2
we can modify (5.29) and (5.30):

Cao([Ih(s)wjig). I3 (@) + 1187 (8)w;(3) 0 [ F20)) + Z

(o]
<[1Ps,swj).u 720 + CoollVIITa gy + 030|5|/ lwis),vll 22063 10y wii(s) v | 220G A, (5.31)
—0o0
where Cy9 > 0 is independent of s, N and we set j(8) =1 if 8 =p and j(8) =2 if § = X+ 2u, and

Ow;() v
( 8:!/2 7wj(ﬁ)7V>

Now we will prove (5.15) separately in the cases: 7r,(y) = 0 (Sect. 6), rx42,(7) = 0 (Sect. 7) and r,(y) # 0,
Tat2u(y) # 0 (Sect. 8).

oo 2
—(2
127] + s / w301l 22 (063 ) 102 W58y || 12 (0w ) A < € ot Cs1l|VI3 (2. (5:32)

6. THE CASE r,(y) =0

In this section, we treat the case where r,(v) = 0 with v = (y*,{*) = (y*, 5", &5, &) € ¥ x S2. Let x, be a
member of the partition of unity such that
< 51} .

We note that by (5.31) and (5.32), there exist C; > 0 and C2 > 0 such that

supp Xy C O(61) = {c — (5,60, C1); | & — ¢

S
q

Cr (In() s o) + 10w aq) ) + E0
2

, (6.1)

awLV
< O (IPuorslacoy + lon ey + ) | (G

X
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and the parameter ¢ can be taken sufficiently small, if we decrease . Note that = "( ) can be written in the form

E(l) _ s 2 *
. /E<| |10y, (™) 995

8w11/
_ * ’ g
+Re/ (Wyl( *) o Pyo(¥*) m )d

>
+ / s 10y (U )(E2 — 12 — 22 (") + 82, (") B 25

2
8’11}1,1,

+ |5}, (y*)lwl,u|2> s

S

Let us introduce the set M by formula

P30 Y §|§§ + 2120, () (162 + |£1|2>}7 (6.3)

M=<(=(s,&,&) € S?: Bgoy2(y*)652 >4 QMﬁ + 4
2 |<Py2(y

|pys (7))

where C = —pu(y*, Ve(y*)). By (2.6), it follows that C is positive.

Next we introduce the set M by the formula
e W)
ey, ()]

5 05 (y)
[y, (y*)]

£ 44

M: {C = (57§07§1) € 827 %¢y2(y*)652 < 4/_1/

&+ 2120y, (y*) (|60 + |§1|2)}'

Then we can see that SiC MUM. Therefore, taking the parameter d; sufficiently small, we obtain either
O(81) € M or O(61) C M. The main purpose of this section is the proof of the following lemma.

Lemma 6.1. Ify = (y*,(*) is a point on ¥ x S? such that r, () = 0 and supp x,, C O(1) C MV, then estimate
(5.15) holds true. If v = (y*,(*) € M, then estimate (5.15) holds true also.

Proof. We consider two cases.
Case A. Assume that suppv, C O(d;) C M.
Applying the Cauchy-Bunyakovskii inequality and using (6.3) and (2.6), we see that there exists a constant
(35 > 0 such that
— % 8w1,l/ 2
g > /E <|5|M290y2 (")

0ya

— I8 oy, (W )pu (", V@(y*))lwl,ul2> d¥

L2 o 0w [° A ‘awly oz (y*) ‘awlu 2
- 51107 Py, (Y ’ o ’ . d ax
/z<2' ) [T | A 2 T | A
*/2|8|u290y2(y*)£f|61,y|2d2
1 2 8w1y 2 aUJlu 2 awll, 2 1 3 ~ 9
- 2 * ’ ’ 5 ) J2)dD. (6.4
_03/E<2lslu YY) 9 + sl + s a0 | 1510y, () Clun | (6.4)
Similary we have
2 2 2
=(1) ows ., ows ‘ Ows,,, 5 2}
- = + |s]?|wa |7 pdX. 6.5
Ar2p 2 /{| |<‘ e ‘ 3 T [s]°|wa,. | (6.5)
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()
ay27 v

If we apply (5.31) with 5 = A + 2u, then (6.1), (6.4) and (6.6) imply (5.15).
Case B. Assume that suppv, C M.
By (5.18)—(5.20), there exists Cs > 0 such that

Combining (6.4) and (6.5), we obtain

2

Eﬁl) + =) > (s

=0, > (6.6)

X

&6 — s%02, (") — n€t + ns®e (¥ + [Cosey, (U) — pséipy, (¥
< 81Cs(|1]2 + |6o]? + 5%), V¢ e O(1). (6.7)

Now we suppose that the parameter §; is sufficiently small such that there exists a constant C7 > 0 such that
&> < Cr(j&]? + %), V¢ € O(6). (6.8)

Then, by (6.7), we have

% 611}1 v 2
| T3] < 01 ppy, (y™) H ( . ,wl,u) (6.9)
Y2 X
Moreover we claim that there exists dp > 0 such that if 6; € (0, dp), then there exists Cs > 0 such that
€0l < Csl&l, V(€ O(6). (6.10)

Our proof is by contradiction. Suppose that (6.10) is not true. Then for the sequence §;(n) = %, there exists
a sequence (§o(n),&1(n)) — (&5,&F) such that & (n)/o(n) — 0. Hence for ¢* we have r,(y*,(*) = 0, and
& =0,& # 0 by the definition of the set M. Therefore $*pyo (y*) = 0. If s* = 0, then we obtain (£5)% =0
and if @y, (y*) = 0, then (&)? + pepy (y*)(s*)* = 0 by (5.19), (5.20). Therefore in the both cases, we have the
equality &; = 0 which leads us to a contradiction.

Note that if 7xy2,(y) = 0, then

(pyo(y*) =0, vy (y*) =0, 53 = =0, s5=1

and the conic neighbourhood of ¢* is in the set M provided that the parameter 01 is chosen sufficiently small.
Therefore if v € M and 7,(vy) = 0, then we have ry12,(7) # 0 and by Proposition 5.4, decomposition (5.23)
holds true. We set V" (Dy, = T3, (y, D'"))va,,. Then

+ou — A2
Priopv2, = (A + 2#)|G|2(Dyz - F;+2#(ya D/))Vx—izu + Tat2uv2,05
where Thyo, € L(H'(Q), L*(Q)). This decomposition and Proposition 5.4 immediately imply
1R(Do)(Dy, =LY 10, (¥, D )vzwlys=ollr2(s) < ColllParapswanllrzio) + IVlia(0)2)- (6.11)

Now we need again obtain the estimate of E,(Ll). We start from the term J. By (5.16), we have

Ows. w1
— s\ +2u) [ —2% — Nwa : )= *) |dX
Jo Re/Z |s|(A + u)< o 5|y, (¥ )wa, ) X (u on Py (Y*) o Pyo (Y )>

. B)
+Re/ 2|s|u(|s]py, (y )wl,u—gl,u)(u—’ Oy (Y*) — wyo(y*))dE (6.12)
= ayl ayo
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and denoting
d;\"_+2u(y/7 D) = 041_+2M(y/7 D) + i|D0|((py2 — Pya (y*))v

1Y 8’1)171, . N -
_ )\ + 2:”’ < ayl - |Do'|90’y1 (y )Ul,y) - Zaj—i—Qu(ya D/)UQ’D _ ZV;’__‘F2M(.’ 0) B

i
A+ 2u

Flga,. (6.13)

Here and henceforth |D,| is the pseudo-differential operator with the symbol |s|.
First assume that s* = 0. Then we can see by |s*[> + [§5[* + 7[> = 1 that a3, 5, ()] = [rat2.(7)] # O.

Therefore, by Proposition 5.2.A from [47], p. 105, there exists a parametrix of the operator dj\'JrQM(y, D’) which
we denote by (djﬁu(y, D'))~L. From (6.13) we obtain

]- ~ — /'L avl,l/ * . :u’ —
UQ,V = _2(0&’_4»2#(?]5 D/)) ! <)\ + 2’” (a—yl - |D0|90y1 (y )U11V> + ’LV)\—:»ZLL('? 0) - )\ + QNfU 192,1/ + TO'U27V7
(6.14)

where Ty € L(L?(X), H'(X)). Using (6.14), we transform (6.12) to obtain

2|Do-|/1/ a * ~ -
Jo = Re/z —T (8—341 - |Da|(py1 (y )) (O&_Jer,(y’Dl)) '

ov1 L . ovy . ovy .
< LY 1D, o (4 )) (u Ly o ) — OO %(y*))dzm, (6.15)
oY1 oy1 0

where

Vl,v

N _ ov1 ., 0
s :Re/ 2| Do | 1| Do |y (5 Y010 + F  g10) [ 0520 (47) — L0y (y*) | S
b3 ayl ayo

B
+Re/ 2|Dg|(A + 241) (_a - ISIsDyl(y*))
= U1

1, . . 1 _ vy ovy
— —(at DY HivE, (-,0) — F oo, ) + Tove, | x v *) — = ) ]dx.
= H@a D (10,000 = 52 )+ T | ¢ (0550 ) = G2 )
Then we have )
ow, 9 9
K| <€ ETRAL + Cho (||h(3)g||(L2(z))2 + HP/\+2M7sw27V||L2(Q)> (6.16)
X

and e can be chosen arbitrarily small by taking § small enough.
Let us consider the pseudo-differential operator

by, D') = * (% slon <y*>) (610 (5, D))

7

By (6.7), for the principal symbol of this operator, we have

b, ) = 3 (06~ [sln, )@z (07, )

— ey (AT @6 — sy, () 5o
= sien(d <A+2u)( )El +is[py, (¥*) oy 0)

2/ (G ) ) 4500, (6.17)
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where g(y*, &*) = 0. Therefore the operator b(y, D) can be represented in the form

where b(y, D') € L(L2(), L%(X)) and

A+
A+2u

(y) +b(y, D),

1By, D)l 2(r2(s), La(sy) < €

Using (6.17) in (6.15), we obtain

Vl,v

o \ B 5
Jo = Re/Z —2|Dq|p <51gni(£1) (A :;L) (y*) + b(y7D')> (a—yl — [De ey, (y*)vl,u)

6’()1,1,

X (Ha—yl@yl (y*) —

87}1,u

Yo
At

= Re | —2|Dau(bly. D) +
>

sign(¢f) <

A+ 2u

Pyo (y*)) d¥ + K3

) 0) (G - IDlon . )

81}1 v

(6.18)

avl v
’ ) e ) )dy .
X (u Dy, P (y*) By £ (y )> + Rers

By (6.7), (6.16) and (6.18), taking the parameters ¢, d; sufficiently small, we obtain

2
|J2| S 6(5, (51)

(5)
ay2 Y v

and €(0,01) — 0 as |d] + [01] — 0.

Next assume that s* # 0. Then by (6.7) we have

+ Cll(”h(s)gﬂ%m(z)y + HPA+2u7sw27uH%2(g) + ||V||%H1(Q))2)a
X

(Y™ )y, (U )E1 — @yo (¥ )0l < Co1[¢l, V¢ € O(01)

and (6.19) follows immediately. Therefore, for any s* € R, by (6.1), (6.2), (6.9) and (6.19), we have

< Cis(| Pryanswaulliz (o) + 1R(8)8lItLa(my2 + V1T (opy2) +

From (5.16), we obtain

[ (1] %
by oY1

2
+ [Pl (y*)lwz,ul2> ds

< 014/E <|8|u2</>y2(y*)

8w171,

)

2

+ Is]

1ty

2
+h(s)u’ey, (y*)le,u|2> S + Cra([lh(s)wr w3 o) + IM*(s)wrw 72 ()

2

()
ay2 b 174

X

(y*)lw1,ul2> S + Cuallh(s)g, L2 (x))2-

(6.19)

(6.20)

(6.21)
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Using (6.10), (6.21) and the definition of the set M, we obtain

8’11}2 2
h2(s ‘—’V
/2( () oy

2
—| 4+ hO(s)|ws V|2> dx

2

o | 0wy 2 . ow,
< 015{ / <|s|u2% W) ||+ 1sPu >|w1,u|2> az+e(oo) | (G )| + |h<s>gy|%m»z}-
(6.22)
From (6.11) and (6.22), we have
6U}2 v 2
h2(s) | —==%£| d%
/z ( )‘ 0ya
8’11}2 2 611}2 2
<C / hQS‘—’V +h25‘—"/ + h8(s)|wsy 2 | A
16{2<<> G () (52| (o)
+ 2 ow, ’ 2
+ Va2, (5 0)[72(s) + €(00) AL + 1h(8)8, I{12(5))2
Y2 X
8’11}1 2
<Cird [ (16| G+ 1 lwn ) A5+ ()8, [y
by Y2
9 9 ow, 2
+ IVIICa (@))2 + 1Prxtou,sw2,u [ 72(0) + €(00) PG o (6.23)
Finally (5.16), (6.10), (6.20) and (6.23) imply
8’11}1 v 2 ‘awl v 2
R (s ‘ ’ ’ dy
/2 ()< oy Yo
< Cis / h?(s) ‘% 2 + BO(s)|wy,,|* | S + Hh(s)guﬂ%m(z)ﬁ
) y2 ’
2 P 2 Ow, 2 24
+ IVITa (0))2 + | Pat2u,swa,wllT2(g) + €(00) 6—y2’W” ) (6.24)

Inequalities (6.1), (6.20)—(6.24) imply
ow, w 2
8y2 ) v

+lh(s)wrwllF ) + 1R (s)wiwllFz(g) < €
X

2

<8w,, w >
8y2 s Wy

+ Cro (Vs (e + A8 amye + I Pustoza a0y + I Prsapstiza 2oy ) -

X

From this inequality and (5.31), (5.32) with 8 = A + 2u, we obtain (5.15). Thus the proof of Lemma 6.1 is
complete. (I
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7. THE CASE ry42,(7) =0
In this section, we will prove

Lemma 7.1. Let v = (y*,(*) be a point on ¥ x S? such that rx42,(y) = 0. If suppy, C O(61) C Mv, then
estimate (5.15) holds true.

Proof. We note that if r,(y) = 0, then s* # 0 and & = & = g, (¥*) = ¢y, (y*) = 0. Consequently ¢* € M
and this case was treated in the previous section. Therefore, taking the parameters § and §; sufficiently small,
we may assume that there exists a constant C' > 0 such that

Iru(y. Ol = CI¢P, Y(y.¢) € Bs x O(81), [¢] = 1.
By (5.19) and (5.20), there exist 69 > 0 and C; > 0 such that for all §; € (0,dp) we have
ol < C1(ET +5%), V(e O®@). (7.1)

We consider the following three cases.
Case A. Assume that s* =0 and

A () &5 |

In that case, there exists a constant Cy > 0 such that
~ImT} (y,¢) > Cals|,  ¥(y,¢) € Bs x O(d1),
provided that |0| + |01] is sufficiently small. Since s* = 0, we may assume that for some constant Cs5 > 0,
ol + 5 < C3&F, V¢ € O(), (7.2)
taking a sufficiently small §;. We set VlfE = (Dy, — Flﬂf (y, D"))v1,,. Then, by Proposition 5.3,
Pory = |GPu(Dy, =T (y, D)DV,E +Trvrs, (7.3)

where Tf € L(H'(Q), L?*(Q)). This decomposition and Proposition 5.4 imply

[1(Do)(Dy, = T3 (y, D")v1wlyo=oll2cs) < CallPuviwllzzco) + IVIcar (@))2)- (7.4)
We have
V. (50) + V7 (,0) = (g (y, D') — a; (y, D'))v1,,  on X (7.5)
Since a:[(y*, ") —a, (y*,¢*) = A/ru(y*,¢*) # 0, by (7.4), (7.5) and Garding’s inequality, we have
2 wy,y ’ Ows ’ 6 2 2 2
g h*(s) o0 B +hP(s)|wi|” | A5 < Cs([|Puswipllzei0) + 1VI{a1(0))2)- (7.6)
By (7.6) and (7.4), we obtain
w2 22 s < ¢ (17 2 2 7.7
| w26) || 425 Co (IPuswrslltao) + MEicoye)- (7.7)
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Finally, by (7.6), (7.7) combined with (5.16), we obtain

| )
ay2 2 X

Since (7.6)—(7.8), (5.31) and (5.32), we obtain (5.15).
Case B. Assume that s* =0 and

2

< Cr (I1Pswiwlfzo + Vs e + 17()8l sz ) - (7.8)

< ‘ ( )%n 90@/0( *)f(ﬂ

Then lime ¢+ Imr,(y*,{)/|s| # 0. Since s* = 0, we note that Rer,(y*,¢*) > 0. Set I = sign lim¢_, ¢~
Imr,(y*,¢)/|s|. Then we have
L (", ¢") = Iy/Rer,(y*, ¢*).
Therefore for some Cs > 0 we have
—T0 (" C) oy, (V)ET — 0y (¥)ES) > Cs.

Taking the parameters § > 0 and §; > 0 sufficiently small, we obtain

—Re T (5, )2y, ()61 — @40 (4)0) > 0, V(y.€) € By x O(31). (7.10)

Let us consider estimate (6.1). Let us recall that Jq, J2, J3 are defined in (6.2). We have

owy , [ Owi, ows )
Jo = 2 Y o () — =2 0y (y*) ) S
2 = / |s| s (u R (y*) oy P (y*)

. 81}11, « avl,u %
= Re [ 2Dt 0 Do (15 (07) — G ) )0

(7.9)

ov1 ovi .

Re | 2|Dg|wiV (-0 : *) — —= ) |d2
+ e/zl AT )(“ay1 @y, () 0 Pyo (Y ))

~ Re / 244(Dyy oy, (57) — Dyo oy ()T (4, D) Dy | ¥, [ Do | 501, A5

8'01 v 81)1 v

2|Dg|piV (- : *) — : *) ) dX. A1
e [ 2DV 0) (155 (00) — ) ) (7.11)

By (7.10) we obtain from Garding’s inequality that the first integral in the right hand side of (7.11) is
negative. Consider two cases. First let

@y, (Y )ETE (", ¢") > 0

This inequality and (7.10) yield €50y, (y™)| > [§71(y" )@y, (V)| I E5epyo (y™) > 0 then TR (y*, ¢*) = \/ru(v)]

wyex Pyg W) x Py (¥™)
- * Ty . .
and &y, (y*) > 0. Hence ¢y, (y*) > [ WG~y &l —em W& £ £ . By the first equation in (2.6),

(22 () 2 ey | (22 () 2 e

this contradicts (7.9).

w Py (") L

If oyo (™) < 0 then T'F (y*, (") = —h/ru(7)] and &5y, (y*) < 0. Therefore gy, (y*) > W“((i)g(l ))“%(T”‘ fol _
=y 31

* (y™)
wyy (Y)EL — wz(()yy) &

(22 (y)) B g |

. By (2.6) this again contradicts (7.9).
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In the second case one have to consider ¢y, (y”‘)f’l"I‘;r (y*,¢*) < 0. By Garding’s inequality we have

. Cr\)Ul v
Re/z2|Da|mFI(y7D’)vl,uu(y*)soyl (y*)a—y’ldE <0.

This inequality and the fact that the second integral in the right hand side of J; is negative, imply that

avl,u
Yo o

. vy,
Re/z2|Da|uzFI(y,D')vlyu<(A+2#) = o (y*) —

5 (y*)>dz > 0. (7.12)

Note that

611}27”
Y2

2
58, = / <|s|<A +20) 200, (") + 15\ + 21)%6%, <y*>|w2,u|2> ds

aw v 8’11} v
+Re/ 2s|(A + 2p) 522 ((A +20) @y (V) T2 — e (Y) )dE
> 0y2 oy

+ /E IsI(X + 20) 0y, (") (€5 — (N +20)E7 — s%02, (y") + s (A + 21)p, (y*)) D2, [*dE

= J1+Jy+ Js. (7.13)

Using equalities (5.14) we can transform J, as

~ M awl v 8'[1}1 v 8’Ujl l/)
J=—Re/2s —’()\+2 Ly — — N |dE + 1,
2 . | |>\+2M 9 (A =+ 20) @y, (y7) o Pyo (Y*) o
where )
ow
I < e(d) ||| =%, w, Col|h 2 .
< (G| + e,
Then by (7.12) there exists C1g > 0 such that
~ owy , |?
Jy > 010/ <|S| Ly + |S|3|w1’y|2> dx. (714)
b)) oy1

Since 7xy2,(7) = 0, we have
2

|j3| < C1,01

8w271, w
ayQ ,» W2,v

X
This inequality and (7.14) imply

—~(1
:g\-i)-QH > 011/2 <|S|

8w2,,,
Y2

8?1)1’,,

2

3 2

S| |w: S
w2 + 15l 5

2
+ |s|3|w171,|2> dx

o]

Now we will estimate J3. By (5.18) and (5.19), there exists a constant C, > 0 such that

2
+ Collh(s)glI{ L2 sy (7.15)
X

165 — %00, (%) — (A +2)&8 + (A +2p) %02 (y7))]
<CLad1(|o)? + [&]* +5%), V¢ e O(6). (7.16)
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Using this inequality we obtain

& — nés — s*or (y*) + 5" ey, (v*)
=(A+w)(&F = %00, () + (6 — AN+ 2w)& — s*0p () + s (A +21) @2, (7))
>(A 4 p) (& — %], (y")) — Cradi(|So]? + &1 + 57).

Therefore, for all sufficiently small §;, there exists Cy3 > 0 such that
& — uét — 570l (y") + Pl (y*) = Cus(|&ol® + [&1 ] + 57). (7.17)
By (7.17), we see that J3 > 0. Therefore by (7.15) and (6.1), there exist constants C{5 > 0, C14 > 0 such that

awl,u w
8y2 ,» W1,v

2
— Cro(9, 51)(||Rt,sw1,u”%2(g) + ||V||?H1(Q))2)

X
ow,
~ <) H ( Do ’w”)

=(1 =(1)
‘_’L(L ) + C{3~A+2M > Chy

2
+ C’9|\h(5)g|\(2L2(z:))2-
X

This inequality, (5.16) and (7.4) with the sign 4, imply

2

ow
=0 > ¢ Y w,
po=e <8y2,w) b'e
—C16(8,00) ([ Puswrw 17200y + 1h()81 120y + IVIITan (0y)2)- (7.18)

By (7.18), (5.31) and (5.32), we obtain (5.15).
Case C. Assume that s* # 0. If §; > 0 is small enough, then there exists a constant Cy17 > 0 such that

[0y (") = (A + 211y, () < 57 Car (|6 + 7). (7.19)

By (5.31), there exists Cyg > 0 such that

—~(1 R
Ea, + Cs (0w s o) + 10 (5w 320y )
2

< Cis (||P)\+2uU2||2L2(Q) + HVH(2H1(Q))2) +e€ (7.20)

(awg,y )
W2y
ay2 2 X

By (7.21) we obtain from (7.13) that there exists a constant Cy > 0 such that

—(1) Ows,,,
=A2u > —€ H <—8y2 v“’lu)

+ Cao /E (hQ(S)(A +20)% 0y, (y)

8w2,,, w
ayQ , W2,v

X

By (7.16) and (7.19), we have
2
|Jo + J3| < Ch9dy

(7.21)

2

X
8?1)2’,,
Y2

+h0(s) (A + 2)° gy, (y*)lwz,yl2> dx. (7.22)
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From (5.16), we easily obtain

a11}21/
h 3 _ * y y
H (8)( 15 5[y, (¥ )wa, + g2, )

2 2
H 611}1 v 9 . )
= oz " oy + 2 (y")||h(s)]slwr,. .
L2() (A +2u)? (H | pas) i WO)[[R(s)s|wr HL?(Z))

Hence (7.22) and this equality imply
2
—Coa[h(5)gll712 ()2

2 2
=0 h2 Qw2 Ko 2) gn_ || (L2
A2p = 021/2 < (S) <‘ 8y2 + (S)|w2,y| € 6:{]2 , W2 v .
(7.23)

Now we claim that inequality (7.2) holds true for all sufficiently small é;. First we may assume that for all
¢ € O(81) we have s% < Ca3(&2 + £2). In fact, if the last inequality is not true, then ¢* € M and the case was
treated in the previous section. Suppose that (7.2) is not true. In that case & = 0 and &} # 0, s* # 0. Therefore
©yo(y*) = 0 by (5.18). However, this implies (£5)* + (A(y*) + 2u(y*)) @3, (y*)(s*)? = 0. Hence we arrived at a
contradiction and the verification of (7.2) is complete.

Inequalities (7.2) and (7.23) imply that there exists a constant Ca4 > 0 such that

‘ 8w1,,,
oy

= 5 024/ B2 (s) ‘8w2,,, 2 ‘8w1,,, 2 ‘8w1,y 2 el 4
A2p = - 8y2 8y1 8y0 v
8w2 2
—€ Y ws,, — Cog||h(3)g||? 25012 - 7.24
(G|~ ol (724

By inequality (7.4) for Vlf(, 0), we obtain the estimate

2 2 2
< Cos / h2(s) ‘awl’” + B (s)|wy |2 | AT
L2(%) = Oy

+ ||PMU17V||%2(Q) + |V|%H1(Q))2}' (7.25)

611}17”

H (s 0ya

‘ awl,l,
Yo

Inequalities (7.24) and (7.25) imply that there exists a constant Cas > 0 such that

2

- ow,
5§1+2,¢ > Cag (8—y2’wy) o Ca7(6,61) (HP swiwlF2c0) + 1P(5)8l1T L2 ()2 + ”VH%Hl(Q))?) : (7.26)
By (7.26), (5.31) and (5.32), we obtain (5.15). The proof of Lemma 7.1 is finished. O

8. THE CASE r,(y) # 0 AND ry40,(7) #0
In this section, we will prove

Lemma 8.1. Let v = (y*,(*) € X x S? be a point such that

ru(y™ ¢ #0 and  |ragau(y”, ¢7)| #0. (8.1)

If supp x, C O(61) and 51 > 0 is sufficiently small, then estimate (5.15) holds true.
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Proof. Thanks to (8.1) and Proposition 5.3, decomposition (5.23) holds true for § = p and § = A+2u. Therefore
we have

(Dy, = T (4, D))vrwlye=0 =V, (-, 0), (8.2)
(Dy2 - F1_+2M(y7 D/))UQ,V|y2=0 = V,\—:QM(H 0). (8.3)

By Proposition 5.4, we have an a priori estimate
Hh(Do)VJ('aO)Hiz(z) + |\h(DU)V/\12M(~,0)||2L2(2) < (”P)\+2#7}2”2L2(Q) + ”Ple”QL?(Q) + ”V”%Hl(g))?) . (84)
Denote

&, (y', D) = i (y', D) + il Do (py, — Py (y"))-
Using (5.16), we may rewrite (8.2) and (8.3) as

A+2p (Ova, . o . i
1 (a—yl - |Da|90y1 (y )UQ,V) - za:(y, Dl)vl,u = ZV;_('? 0) —iF, 191,1/7 (8.5)
a Qv L ip * & D'yva, =iV, (-,0) — iF; ! 8.6
)‘+2M 70—y1+| cr|50y1(y )Ul,u *ZO‘,\+2M(ya )7)2,1/ =1 )\+2H(.’ )72 o 92,v- ( . )
Let B(y, D’) be the matrix pseudo-differential operator with the symbol
) —iat (4, 0) X g, sl (y)
B(yﬂé-) - 1) (7 st .
2 Zfl + |5|50y1 (y)) Za)\+2u(ya C)
By (5.19) and (5.20), we see: if det B(y*, (*) = 0, then either & + is*p,, (y*) =0 or
: §o + ilsley (¥7))

* c c R3; + ) *\)2 ( Yo . 8.7
¢ {Ce B (@ +ilslon )y = Co el )

In this case of (8.7), we have ¢y, (y*) = ¢, (¥*) =& =& =0, s* = 1.
Now we consider two cases

Case A. det B(y) # 0.
In this case, there exists a parametrix of the operator B(y, D), which we denote by B™*(y, D’), such that

('Ul,ua ’02’,,) = Bil(ya D/)(V/jr('a 0) - f;191,u, V,\—Z_QM('; 0) - .7'—;192,1/)T + K(Ul,ua v2,u)a (88)

where K : (L%(Q))? — (H'(Q))?. By (8.4) and (8.8),
|Zp] + [Extoul < Co (HPM’UIH%%Q) + |\P/\+2uv2”%2(g) + ||h(5)g”(2L2(2))2 + HVH(QHI(Q))?) . (8.9)

(Here and henceforth, for simplicity, we do not distinguish a’ from a vector a.) By (8.9), (5.30) and (5.31), we
obtain (5.15).

Case B. det B(y) = 0.

We claim that this situation is possible in the two cases:

(1) wu@) =9, (W)= =6 =0, s"=1;
(i) & =0, s gy, y") =0. (8.10)
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The first subcase was treated in Section 6. Let us consider the second subcase (8.10). Next we may assume
that

Cre M.
Otherwise, (* € M, so that the case was treated in Section 6. Next we may assume that
T} (7) = In T, (7) > 0. (8.11)
Really if
ImT}(y) =ImTY,,,(7) <0, (8.12)

then the situation is simple since we have the decomposition
Psvi(s)., = BlGI(Dy, — T (y, D)Vi + TFo,
BY5(8),v Y2 s \Ys 8 w Vi(B)vs

where Tét € L(HYQ),L*(Q)), B € {mA+2u}, j(8) =1 for B = p and j(3) = 2 for = XA+ 2u. This
decomposition, (8.12) and Proposition 5.3 imply

IM(Do)(Dy, =T (y, D) gy lya=oll 2y < Cs (IPsv(8) 0l L200) + IVl (2())2) - (8.13)
Obviously
Vi (0) + V5 (,0) = (af(y, D) —ag(y,D'))v1,, on .
Since a;f (y*,¢*) — a;, (y*,¢*) = /7. (y*,¢*) # 0, we have

|5zl
y Wu
9y2
by (8.13) and Garding’s inequality.
By (8.14), (5.30) and (5.31), we obtain (5.15) under Condition (8.12).

In order to treat (8.10) under (8.11), we will use Calderon’s method. First we introduce the new variables
U = (U1,Us,Us,Uy) with four components, where

< C1 (I Prsonstoza a0y + 1 Pustorslfaco) + VI oy ) (8.14)
X

(Ula UQ) = A(Dl)fg_luv (U37 U4) = (DQ + i|Da|90y2)~7:;1U7

and A is the pseudo-differential operator with the symbol (s? + &7 + &2 + 1)%. In the new notations, problem
(5.1) and (5.2) can be written in the form

Dy,,U=M(y,DYU+F inR®x[0,1], (U1,U2)(¥)|yo=0 =0, (8.15)

where F' = (0,P,F,U). Here M(y,D’) is the matrix pseudo-differential operator whose principal symbol
Mi(y,C) is given by

B 0 ME; .
Ml(?/vC) - (A1M21A11 A1M22) _Z|5|90y2E4

(see [49]). Here we set 6 = (&1 + ilslpy,,0), Gly1) = (=dl(y1)/dys, 1), Ar = [C], Mar(y, & +ils|Vyo(y)) =

(€0 +ilsloys 1)) — 1€ +ilsl @y, (1)) B2 — A+ ) ()07 0, Mas(y, &) = —(A+ ) ()67 G+ GT0 — 20, G) Es,
A=+ w(y)GTG + u(y)|G|>E,. The matrix M;(y) has only two eigenvalues M* given by (5.18)-(5.20).
Moreover it is known that the Jordan form of the matrix M; () has two Jordan blocks of the form

ME - (FfO(V) Fi1(7)> '
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Following [46] and using the change of variables W = S~!(y, D')U which is constructed below, we can reduce
system (8.15) to the form

Dy, W = M(y, D)W +T(y, D)W + F, (8.16)

where the matrix M has the form

oo (Mi(y,€) 0 (T, .0 miy(y,0)
M(y’O_( o M(y,C))’ Mi_( T Ff(y,g“))’

the operator T is in L>(0,1; L((H (), (HY(£))*Y)), mi,(y, D') are first order operators and

Hﬁ”L2(]R1;(H1(E))2) § 05 (HPJ}-J_IUH(Hl(Q))z + |‘.7'-;1u||L2(R1;(H1(2))2)) .

Now we describe the construction of the pseudo-differential operator S. We take the symbol S in the form
S = (s1,s5,s7,s, ). Here

51i = ((9 + O‘§+2MG)A1_1’ O‘§+2N(9 + O‘f+2uG)A1_2)

+

N2 and

are the eigenvectors of the matrix Mj(y, ¢) on the sphere ¢ € S? which corresponds to the eigenvalue I'

the vectors s3 are given by the formula

1
5% = Eisia Ei = 2_ (Z - Ml(y7C))_1d27
™ Jo+

where CT are small circles centered at I’ff (7) and s* solves the equation M (y)s* — Ff (7)sT = sit(v) Since
¢* e M and & =0, we have £ # 0. Therefore the circles C* may be taken such that the disks bounded by these
circles do not intersect, provided that d1, § are taken sufficiently small. Note that the vectors s?[ € C%(Bs x Os,)
are homogeneous functions of the order zero in (s, &p,&1). Now using a standard argument (see [36], p. 241), we
can estimate the last two components of W as follows

< Cs (IIPoF5 Ul rrr oy + 155 Ul (m2(0))2) 5

[ Wl 2 <

where the constant Cg is independent of N.
Now we need to estimate the first two components of the vector function W on . Thanks to the zero
boundary conditions for Us and Uy, we have

S11 (Y0, y1,0, D) (W1, Wa) = —S12(yo, y1,0, D') (W3, Wa) + T-1(yo, y1,0, D) F, U, (8.17)
where we set

S21(y,¢)  S22(y,¢)

The principal symbol of the pseudo-differential operator Si; is the 2 x 2 matrix such that the first column equals
the last two coordinates of the vector s{ and the second column equals the last two coordinates of the vector
s; At the point ~, these vectors are given by the formulae

S(:%C) — (Sll(ya<) 512(y7C)) ) T—l . (HI(E))2 N (H2(E))2

17 = (&1 + il s™|@y, (y7), isign(§7) (€1 + il ™[y, (7))

1 () <77, GIEACE n) ;
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- — AT isign(&F
= TEr o 20+ ) sien(). D),

s5(7) = << L fisign(€) (65 + 5" (57))T+ ﬁ}> .

Ny

(€0)2 + (s7)
Therefore det S11 () # 0. From (8.15), (8.16) and Garding’s inequality, we obtain
ow, —1 —1
5 W ||| = CrllPoFo Ul e + 175 Ull 2 (0))2): (8.18)
Y2 X
where the constant C7 is independent of N. By (8.9), (5.30) and (5.31), we obtain (5.15). The proof of
Lemma 8.1 is finished. U

9. PROOFS OF THEOREMS 2.2 AND 2.3

In this section we prove Theorems 2.2 and 2.3. The proof is based on the duality argument and the scenario
is described as follows. In view of the fact that observability implies controllability and wice versa, we will
introduce an extremal problem, and, using Carleman estimate (2.9), we show that there exists a solution to
this problem which solves the control problem for the operator P* and minimizes weighted L?(Q)-norm. At the
next step, we obtain an estimate of this solution in the weighted H!-norm. This estimate implies (2.11) and
(2.12).

We introduce the Banach space X = (H'(Q))? with the norm

Wil = /Q (VWP + &|w[?)dz.

In order to prove the theorems, we consider the following extremal problem

L, 1 s 1 s .

J(z,v1,v2) = §||ze d)”?L?(Q))? + §Hv1e d)”%L?(Qw))? + 2_82”"26 ¢H(2L2(Qw))2 — inf, (9.1)

2s¢ vy :
Pz =ue**” + — + vy in Q, (9.2)

8930
- 0z 0z

suppv; C Qw; 7 =1,2, Z|(O,T)><BQ =0, 8—%(0, ) = 8—I0(T7 ) =0. (93)

Denote by (z,v1,Vv2) the solution to extremal problem (9.1)—(9.3).

We have

Lemma 9.1. Under the conditions of Theorem 2.2 for all u € (L?(Q))?, there ewists a unique solution
(z,v1,v2) € (HY(Q))? x (H*(0,T;L*(2)))? x (H'(Q))? to problem (9.1)-(9.3). Moreover this solution sat-
isfies the optimality system

Pp+ze 2% =0 inQ, (9.4)

Jp Jop
Plo,m)xo0 =0, a—%(or = a—%(Ta ) =0, (9.5)

1 —2s¢ Jp —2s¢
p = Ve i Qu,  Zoo=-vie™? in Qu, (9.6)
1o __
Pz = ue®® 4+ a—;’l+v2 in Q, suppv; C Qu, j€{1,2}, (9.7)
0

0z 0z

z|(0,1)x00 = 0, 6—300(0’ ) = 6—300(Ta ) =0, (9-8)
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and the following estimate holds true:

8V1 75¢

ze ¢
e

S Ivie T Mgy + Ve Tz < Culluelliza gy (99)
(12(Qu)

Proof of Lemma 9.1. The proof is done along the standard argument (e.g., [38]) and for completeness we will
give it. For any ¢ € (0,1), we consider the following extremal problem

1 1 2 1
stavivaw) =3 [ e oan g [ (e ) e ean s o [ wide — it (910
2 Q 2 Q S 2¢e Q

Pz = ?JrVngueQerw in Q, (9.11)
Zo
0z 0z
z|(0,ryx00 = 0, g —(0,2") = D —(T,2") =0, (9.12)

where m. € C?(Q), m.(z') > 0 on Q,

o 1, forrxew
me(a') = 1, for dist (z,w) > ;

l
ne

Denote by (ze, V1,6, V2,e, We) a solution to extremal problem (9.10)—(9.12).
Remark. We understand equation (9.11) and the boundary Conditions (9.12) in the sense of the equality:
(2, PO)(12(@))2 = —(V1,000) (12(@))2 + (V2 + 0™ + W, 0)(12(q))2

for any 6 € (H'(Q))? satistying P§ € (L*(Q))?,0|(0.1)x00 = 0, 68—350(07 )= ;—f{)(T, .) = 0. If z, v; are regular,
then TZO(O7 .)—v1(0,.) =0 and g—;(T, ) —vi(T,.)=0.
We have

Proposition 9.1. Under conditions of Theorem 2.2 for all u € (L?*(Q))?, there exists a unique solution
(Ze, Vi e, Vo, We) € (HY(Q))2 x (HY(0,T; L%(2)))? x (H?(Q))? x (H*(Q))? to problem (9.10)—(9.12). Moreover
this solution satisfies the optimality system.:

p.(z) = M in Q, (9.13)
Pp.+e2%2. =0 inQ, (9.14)

pal(O,T)xaQ = ,Z\a|(O,T)><8§Z =0,
apa(o N — 6P5(T. _ 826(0 N — 0z

T,)=0 9.15
8:00 8:00 810 8:E0( ’ ) ’ ( )
~ aVl € 256 .
Pz, = + Ve Fue? +w, inQ, (9.16)
6$0

0 ~ .

Pe | me¥ie ¢ =0 inQ, (9.17)
810

Pe — msvifei2s¢ =0 in Q, (918)
S
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and the following estimate holds:

2
+ 52”0176675¢H%L2(Qw))2 + ||0276675¢H%L2(Qw))2 < C2Hues¢||%L2(Q))2- (9.19)

[Zce™*||% +
o (L2(Qu))?

~ Havl,ses¢

Proof of Proposition 9.1. Since the functional J. is strictly convex and the set of admissible elements is a
linear space, problem (9.10)-(9.12) has at most one solution. First let us prove that there exists a solution
to (9.10)-(9.12): an element (z, Vi, V2, W) in the space (L2(Q))%. Obviously (0,0,0, —ue~2%) is an admissible
element and so the set of an admissible elements is not empty. Hence there exists a minimizing sequence
{(/Z\j7€, 617.715’ 627]‘,5, €Vj7€)};?.;1 such that

(Zje,Vije, Vo jes Wie) — (Ze,Vie, Vo, We) weakly in (L*(Q))%. (9.20)

Passing to the limit in (9.11), (9.12) and using (9.20), we obtain that (z., V1 ¢, V2., We) is an admissible element.
On the other hand, since the functional J. is lower semi-continuous with respect to the weak convergence in
(L?(Q))8, this element is a solution to problem (9.10)—(9.12).

In order to obtain optimality system (9.13)—(9.18), we introduce the function q(d1, d2, 03) = J(Z+01d1, V1, +
8adz, Vo e + 83d3, (31, 62, 83)), where di € (L*(Q))? with Pd;y € (L?(Q))?, d2 € (HY(Q))?, d3 € (L*(Q))?,

5 0 . ~
7’((51, (52, 53) = .P(ZE —+ 51d1) — <8—I0 (Vl,e —+ 52d2) + Vo + 53d3) — ueQSd’.

Obviously the function q attains the minimum in R? at (0,0, 0) if the variation is admissible. Thus Vq(0,0,0) =
0. Moreover the equalities g—(g(o, 0,0) = g—g(O, 0,0) = 0 imply

1 d
f—/ vAvggd:c +/ MV cdge 2*dx = 0,Vdy € (H'(Q))? such that do(0,-) = da(T,-) = 0,
3 Q 6$0 Q

1 N Vo ed .
"/ Wedsdz + / me 2 e 20y = 0, Vs € (L*(Q))*,
3 Q Q S

On the other hand, these equalities are equivalent to

1 0% I
—SE i my e 0 =0 i Q, (9-21)
9 8930
T e —0 i Q. (9.22)
g S

By the equality g—g(o, 0,0) =0, we obtain
(&, Pdl) +/ 25d1€_2s¢d$ =0, Vd, € X, (923)
c @) Je

where X = {d; € L*(0,T; (H*(Q))?); Pdy € (L*(Q))?, dil(o,ryx00 =0, 2%(0, )= S—f;;(T, ) =0}

Since V1. € (L*(Q))?, we obtain immediately from (9.21) that %;‘;"5 € (L*(Q))?. Since d1(0,-) and d1 (T, ")
can be chosen arbitrarily, it follows from (9.23) that

oW, oW,

81'0( N 81'0

(T7 ) = 0) V/GE|(O,T)><6§2 =0.
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Introducing the function p. by formula (9.13), in terms of (9.21)—(9.23), we immediately obtain equalities (9.17),
(9.18) and (9.14), (9.15). Equation (9.17) implies 8"5 € (L*(Q))?. From (9.14), (9.15) we obtain p. € (H*(Q))?.
Next we will show that p. € (H?(Q))?. We extend p. on the set [—T,27T] x Q by the formula: pe(zg,z’) =
pe(—o,2") for z € [-T,0] x © and pe(zo, 2’) = (2T — xo, z’) for (zo,2’) € [T,2T] x . In the same way, we
extend —Z.e~2%¢ on the domain [—7, 27| x © and denote the extended function by f. Slnce (T x’) < 0 for
all 2/ € Q and g—ﬁ)(o, 2') > 0 for all 2 € Q by (2.10), there exists § > 0 such that we can contmue the function
¢ on [—8,T + 8] x Q up to a C3-function such that g—ﬁ)(x) <0 foralx € [T, T+6] xQ and g—ﬁ)(x) > 0 for all

€ [-6,0] x Q. By (9.14), we have

Pp.=f inQ=[-6T+0d x Q. (9.24)
Also Condition 2.1 for the function ¢ holds true if we replace the domains @, @, by @, [—0, T+0] X w respectively.

Let Dy, f = M and Dy f = w For the function Dy, Dyp., we have

0 0
a—z()DhDﬁpa'm():O = a—%D}zD}Tpalx():T =0.

Note that PDy D;p. = DhDE?. Hence
(2=, DnDif)(12(Q))2 = —(Vi.e, 00y DiDyPe ) (12(Q))2 + (V2. + 1€ + We, Dy Db ) (12(q))2-

Using (9.17), (9.18) and the definition of the function f, we have

%(Dhﬁs,Dh(e’Q ze)) (2@ + 5 (D Ze, Dy (e7%°%%0)) (12(q))2

l(thl o Du(mee™ 9%, ) 12002 + %(ngl o, Dy (mee= 299, ) (12(@2
+2(DhV2E;Dh( *mee 20V 2) 2@ + 3 (D Voo, Dy(s 7 mee*%Va)) (12(Q))>
+2 (Drwe, Drnwe)(r2(Q))? + (D;L"VavDh""e)(Lz(Q))2
=(ue®?, Dy Dype) (12(@)>-

Hence

[ Dnze|(r2@))2 + 1DnV1ell (2@ + [1DnVaell(r2(@))2
<Cy(|IDrullz2(0))2 + |(Ze: Vie, Vo, )ll(2(0))6);

where the constant C% > 0 is independent of h. Therefore
(6580265 658061765 a;c062 £ ( ( ))
)2,

Equations (9.11) - (9.18) imply that z. € (H'(Q))? and p. € (H?(Q)

Let x1 € C5°(—94,T + §) be a cut-off function such that X1|[7g r43) = 1. Then
P(xip-) = xaf — [x1, Plp-  in @, (9.25)
where supp [x1, P]p: C ((T+2,T+6] x Q) U ([—4, —£] x Q). We will apply Carleman estimate (2.9) to equation

(9.25).
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For this, we observe that

1£e°%]| L2 (s myauz2())2) < Callzee™? || (L2 (@2

s Cy s
[(Ix1, PIp=)e® || 2(—s.mr6:(12(0))2) < ?Hpee % (9.26)

Moreover, by a way similar to Appendix II in [26] (i.e., the final step of the proof of Lem. 2.3 in [26]), we can
prove that at the right hand side of (2.9), we can replace the integral over @, by the following integral

[ (|2
Qu 8:0(2)

Note that thanks to the choice of the extension of the function ¢, we have

/ ‘ 82 (Xl pe)
(=6, T+6) xw oxg

2

42 Oou

8930

2
+ s4|u|2> e?9dz.

2

+ 82 a(XIPE)

6$0

2
+§ﬂX1p42><95¢dm

9%p.
§C5/ (‘ apg
Qu Lo

In fact, let us denote the left and the right hand sides of (9.27) respectively by I; and I,. First we can easily
9p:

see
d%p.
hgd/ ‘
) smisyxw \| 072 0z

On the other hand, since p.(zg,z’) = p(—zo, 2’), —d < 2’ < 0 by the extension, we have

I

C o |ope

81'0

2

2
+ 54|p6|2> e®dz.  (9.27)

2
+ 52

2
+ s4|p5|2> e®5%dx.

2

9%p. L

2
ox§

9p-
6$0

2
+ s4|p5|2> e250(@0.2") Qoo da’ =

A=
0 Jw 81'(2)
By (2.10), we have 0,,6(0,2') > 0. Therefore, for all sufficiently small § > 0, we obtain 9,,¢(x) > 0 for all
xo € [—9,6]. This implies e259(=z0,2') < 250(x0.7") for ) < 7y < §. Hence

A
0 w 81'(2)

9pe
81'0

2
+ 52

2
+ s4|pa|2> e250(=20.2") Qo 4o’

2

+52%

81'0

2
+ 54|p5|2> e258(=20.:7") g0 A’
- /5 / 0*p-.
- 0 w 8:0(2)

2
+ s

9p-
8930

2
+ 52

2
+¢m$>¥wwwmmﬁfélz

We can similarly estimate

9p-
6$0

2

o 9°p.
L[5

Thus the verification of (9.27) is complete.

2
+ s4|p5|2> e**dxoda’.
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Using equations (9.17), (9.18), (9.24) and estimate (9.27), by Theorem 2.1, we obtain

Y 105pe)e* Ea(qyye + 8 lIp=e*? % < CoM (22, V1, Va,e), (9.28)
|a|=2

where we set

2

T P ov
M(ze, V16, V2,e) = |[Zce WH%‘? +/ ‘8—1,8
Qu o

+ 8%V e|? + |627E|2> e 2% dz.
By (9.14)—(9.18) and integration by parts, we have
OV1e 2s¢p _ _ (5 T a—2s0
+ Voo +ue™? + W, p. = (Pz:,P:)(12(0))2 = (2=, PP<)(12(Q))2 = —(Ze, 2™ *°?) (12(q))2-
2 (L2(@)
Therefore, taking the scalar product of (9.16) and p. in (L?(Q))? and using (9.17) and (9.18), we obtain

A A~ 1 )
2Je(Ze, V1,6, Vo,e, We) = 75/(ue2‘5¢,p5)dx.
Q

By (9.28), we obtain from this inequality that

2 (Ze, V1, Va0, We) < Crllue|(p2(g))2 M (22, V1,0, Vo, ) 2. (9.29)
Next we differentiate equations (9.14) and (9.16) with respect to the variable zq:
aps a T .
pdpe _ 95 9.30
92y~ dmgl @ (9.30)
0z. 0°Vi. OVae O(ue*?) ow.
pQe _ V1 | M. O(ueT) | OWe (9.31)

Oxy 0308 O0xg 0xg O0xg

Taking the scalar product of (9.31) and g;’; in (L?(Q))? and integrating by parts, in terms of (9.14)—(9.18), we
similarly obtain

0z, OVie OVy. OW. 9ss 0°Pe 0(]5 0z, . Y
2.J. = 020 ) 4 2s — .7 s¢
(8:00 dzrg ~ Oz~ Oxo ) /Q{ (ue T Oz + dzo \ 0z ) €

9 Vi . 2m. 86 [OVa. ,
+257¢m5( Vl’am,a) o204 2Me 00 ( Ve S, a) e‘w}dx-
0

s 8:c0 Oxo ’

This equality and (9.28), (9.29) imply

t\.vlH

<8z5 OVie OVoe OW. (9.32)

a.. <C 50 M € € 5
Oxy’ Oy ' Ozg’ 0x0> lhue™l 2@z M (@, Ve, V)2
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Let L denote the part of first order of L, that is, (Lv)(2') = divv(2/) Vo A(@') + (Vv + (Vev)T) Ve p(z).
Taking the scalar product of (9.16) with zZ.e=2%? in (L%(Q))?, we obtain

J @Vl + 0t ) (iva e ode - [ (L5 g ) da
Q

1 Q

0Z.

8930

i — 2502,0 0—26 Z. | | e 2%dx
0 810 ’

2
+ /Q <2us > (0r, 22, (02, 0)2c) + 2(A + u)s(divae)(vz,qs,ae)) 0256y

k=1

2
S5, 007 (O — / (divE) (Vo O+ 1), 20 e da
Q g=1 Q

oy Nie o _
+/(ue25¢+wa,z€)e 2S¢dx+/ ( Vi, + Vo, Zc€ 25"’) dz.
Q Q 8930

We note that |0, 2k||ze| < $10x,2k] + 55 |2¢/* for any 6 > 0. Therefore if we take sufficiently small § > 0
and sufficiently large s > 0, then by (9.28), (9.29) and (9.32), we obtain (9.19). The proof of Proposition 9.1 is
complete. 0

Now we finish the proof of Lemma 9.1. Obviously w. — 0 in (L?(Q))? and Vi ¢,,V2., — 0 in (L3(Q\
Qu))? as ¢ — +0. In terms of (9.19), from the sequence {(Z., Vi, Vae,Pe)}, one can extract a subsequence
{(Zey, V1,es V2,61, Pey, )} such that

(Zey , V1eps V2,605 Pey ) — (Z,V1, Vo, p) weakly in X' x (H'(0,T; L*(2)))? x (L*(Q))*. (9.33)
Thanks to (9.33), we can pass to the limit in (9.14)-(9.18), so that the element (z, V1, V2, p) satisfies the equations

Pp+e2%z=0 inQ, (9.34)

Plo,1)x00 = 2lo,r)x00 =0,

op op 0z 0z
ZE0.)= 22 (T )= —2(0.) = —(T..) = '
8$0 (Oﬂ 6$0 ( ’ 8$0 (Oﬂ ) 6$0 ( ’ ) 07 (9 35)
Pz = i + Vo +ue®? in Q, (9.36)
8IQ
g—; +vie *? =0 inQ, (9.37)
P- e =0 nQ suwp¥;CQ, j=1.2 (0.38)

Estimate (9.9) follows from (9.19). Finally we note that J.(z.,V1e,Vae, We) < J(z,v1,v2) for all € € (0,1).
Hence J(z,v1,V2) < J(z, V1, Va), the element (Z,Vy,Va) is a solution to extremal problem (9.1)—(9.3). Since a
solution to this problem is unique, we have (z,v1,Vs2) = (z,v1,v2). The proof of Lemma 9.1 is complete. [

Proof of Theorem 2.2. Taking the scalar product of (2.1) with z in (L?(Q))? and integrating by parts, in terms
of (2.1), (2.2), (9.7) and (9.8), we obtain the equality

0
Hues‘f’H%H(Q))z = [ (f,z)dx — u, EAL vy | dx. (9.39)
Q Q 6$0
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Applying (9.9) to this equality and using again an inequality |ab| < g|a|2 + 2—16|b|2 for any § > 0, we obtain
/ s2|lul?e®*?dx < Cy <||fes¢|(2L2(Q))z +/ (|Vul* + 82|u|2)e25¢d:c> . Vs > so(7). (9.40)
Q Qu

In order to estimate the derivatives of first order for the function u, replacing u by -2 &C , we consider extremal
problem (9.1)—(9.3). Let (z, V1, V2) be the corresponding solution. Then Lemma 9.1 yields

2

~ s ov - 0
L 19207 gy < Co | oo™ . (9.41)
0o |l(z2(Qu)? ‘ 00 l(z2(q)
Since the Lamé coefficients are independent of xy, we have
du of Ou ou ou
= 2y - =0, —(T,) = =—(0,-) = 0. 9.42
D70 D70 in Q, 8$0|(0,T)><BQ ) 6300( ) 6300( o) ( )

Taking the scalar product of (9.42) with z in (L?(Q))? and integrating by parts, we obtain the equality

:/ (ﬁ,i)dx—/ (@,%—i—%)dx.
(L2(Q))? Q 810 w 8:00 81'0

Applying the inequality 2|ab| < 8la|?>+ +|b]? to the second term at the right hand side of this equality, by means
of (9.41), we obtain

/ oul*
Q 6$0

Finally, taking the scalar product of (2.1) with ue?*® in (L2(Q))?, we obtain

+ 250,90 (3 u)) 2504y
zo

—/ <2MSZ Oz, 0, (02, 0)u) + 2(A + p)s(divu)(Vy é,u ) e*0dr — QZ w, 0y, 1) (0, ) dx
k=1

H 810

w

+ 52|u|2> e?*?dz < C1y {|fe5¢||%L2(Q))2 +/ (|Vul* + 52|u|2)e25¢d:c} , Vs >so(r).  (9.43)

/ (U Veru]? + (A + p)(divu)?)e***dz = / ( @
Q Q 8930

7/(divu)(Vz/()\+u),u)e2s¢dx+/(Lu,ue28¢)dz+/(f, u)e®*?dz.
Q Q Q

This equality and (9.43) imply (2.11), the conclusion of Theorem 2.2. O
Proof of Theorem 2.3. In order to complete the proof, it is sufficient to estimate fQ (f,z)dx in (9.39) as follows:

‘ /Q (f_1,2)dx
= ‘/Q(fj,asz)dx

< Nf-1e*|l -1 @z llze ™l @ye < If-1e°? |l (-1 (0))2llze ™|l x

and

< £ 222 1(92,2)e | (12(@))2

‘/ (0, £, 2)dx
Q

< Crallf5e? || r2(0)2 IV (ze )|l (12(@))2 + sllze™*?||(£2(0))2)
< Ciz|1£5e*[| 12y lze ™| x-
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Therefore

2

2
\/Q f_1+ Z 8xjfj ,z | dx| < Chy ||f_1es¢H(H71(Q))2 + Z ||fje5¢||(L2(Q))z HZGiS(ﬁHx.
=0 =0

Then, again by using the inequality |ab| < §]a|? + o[b|? for § > 0, this inequality and estimates (9.9), (9.39)
imply (2.12). O

APPENDIX I. PROOF OF PROPOSITION 5.1

In order to prove the proposition, it is convenient to use the coordinate z instead of y. Moreover it suffices
to prove the estimate for an arbitrary but fixed z¢ € [0,T]. Therefore we should establish the estimate: there
exist 7 > 1 and Ny > 1 such that for any 7 > 7 and N > Ny, there exists so(7, N) such that

Y

2
1 . ;
s g 02,0z, u” + s¢|Varul® + s°0%uf? |e**?da’ < Co(||rot ue‘s“’H%{l(Q
1/N2 jk=1

)+||divuew|\%{1(9 ))7

1/N2 1/N2

Yu € (H&(QI/N2))27 Vs > so(7,N), suppu C BsNQy /N2, (1)

where the constant Cp is independent of N. Recall that (;/n2 = {:c’ € Q;dist (2/,090) < #}
First we choose Ny > 0 sufficiently large such that

Vl/’(b(x) #0, V' € QI/N27 Vzo € (O,T)

The existence of such Ny follows from (2.6).

Denote rotu = g—zf - g—gi =y and divu = w. Let rot*v = (88—;, —68—;1). Using a formula rot*rot = —Ag +
V,div, we obtain
—Agu=—rot*y — Vyw in Q/n2, u|391/N2 = 0.

The function u = ue®? satisfies the equation

Liu+ Lou=q, in Q/n2, Ulsg =0, (2)

1/N2
where Lia = —Apu — s%|Vyp|?a, Lu = 2s Zizl(ﬁxkﬁ)wzk + s(App)u and q5 = (—rot*y — Vyw)e?.
Taking the L? norms of the right and the left hand sides of equation (2), we obtain

L1820

w22 T HL21~1||%L2(91/N2))2 +2(Lha, Loa) 2, 0))2 = ”qS”%L?(Ql/sz))?'

Therefore we can obtain the formula

2

(L1, L21~1)(L2(91/N2))2 - / (25 Z (a%' ﬁ)(afkﬁ)saf”ja?k + SS(diV(|Vz/<p|2szcp)
QN2 k,j=1

2
_ s 0?Npip
— [VeoPAvp)|al® - 5 922 |u|2>d:c’ - s/
j=1 T o9

ou
o

(Varip,it)do. (3)

1/N2
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By (2.6), the last integral in (3) is nonnegative. Denote 11 (z) = ¢(x) — €¢1(x). Then

2

div(|Varpl*Vorg) = Vool Do =2 Y 00,00, Pana,
k=1

2
= 2,° Z 74 (Oup b1 + 2N 0105, 01)? 0y, 01 + 2N €10y, 41)?
k

J=1

49

73 (D1 + 2N 010, £1) (D, 01 + 2N 01Dy 1) (s, D01 + 2N By, 10,61 + 2N 1Dy, Dy, 01).

Since (Var9h1, Varfq) > 0 on 02, there exists a constant C; > 0 which is independent of N, 7, s such that
div(|Var @ Varp) = [Varpl? Ao > 20°74 |Vt |* + CLNT G + 00(72).
On the other hand, by the definition of 1Z =) — &l + N2 =4p; + N2,
2 ~
> (02,0)(00, W) 0,0, = T2(Vorll, Vorth) 2

k.j=1
2

+7 > (0, 0) (00, W) (Ou; D 01 + 2N Dr O 1) 0 + 2NT (VoW Vi £1) 0,

k,j=1
Note that there exists a constant Co > 0, independent of IV, such that

INGOE, G leo@, o) < C2/N-

By (3)—(6), we obtain

”Llﬁ”%N(lez))2 + ||L2ﬁ||(2L2(91/N2>)2 + / (20°7 | Varipr |* + CLNT %) [a*da’

1/N2

o€ [ VP < i, e

1/N2
Multiplying equation (2) by sN¢u and integrating by parts, we obtain

~ ~ . ~ N ~ ~
/ (sN@|Vpt|* + 2N (Ap@)elt)? — s303 | Vol ?[a]? — %divg@|u|2)dx’ = / qssNoudz'.
Q

1/N2 1/N2

Next we note that
Ao = (|V1.11Z|27'2 + TAz Y1 + 2TN|Vx/€1|2 + 27Nl Apily)p > CytNo.

This inequality and (8) imply

J

. 1 ~ . .
{sNpIVP + 3N (B = ST P | 4o’ < Callalise, o
1/N2

(4)
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By (7) and (9), we obtain

1
~12 =12 3.4 4 3,3 ~\2 /
||L1u||(L2(Ql/N2))2 + HL2uH(L2(Ql/N2))2 +/91/N2 (590 T |V1/'¢1| +CiNT 2 ) |u| dx

+ SN/ (p|vm/f_i|2d1’/ < C5||qSH(2L2(Ql/N2))2. (10)
Q1/1\12
Let 1 = u; + U2 where the functions u; are solutions to the boundary value problems
_Al./ivll = Llﬁ in Ql/Nga ﬁl|691/N§ = 0, —Ax/ivlg = 52|vx/(‘p|2ﬁ ian/Ng, ﬁg 891/1\’5 =0.
By means of a standard a priori estimate for the Laplace operator, we have
[allz2 0, 202 < CollLatllz2(a, 202 (11)
VN p -
=8l 22 < CA/N||s2 Va2 (20, )25 (12)
where the constants Cs and C7 are independent of N. Taking so(7, N) > N, we obtain (1) from (9)-(12). The
proof of Proposition 5.1 is finished. O

ApPPENDIX II. PROOF OF ESTIMATE (5.28)

We prove (5.28) for a more general hyperbolic operator. Denote y = (yo0,4") = (Yo, Y1, -+, Yn), & = (£0,§’) =
(60,61, - &n) and G = R x [0, 5.
Let a function w € H'(Gy) satisfy the equations:

0w "9 ow - ow
Ry, D)w=—5 — —(a- y’—)Jr bi(y)=— + c(y)w = g in G, 1
D=8 = 3 g (ant ) + b0 +e) . )
ow X
w|yn=ﬁ = @h}n:ﬁ =0, suppwC B(;(CL' )7 (2)

where 2* is an arbitrary point on 0Gy and Bs(z*) is a ball of radius ¢ centered at x*.
We assume that the coefficients of the linear operator R satisfy the conditions

ajkecl(ﬁ)a Qjk = Qkj, ]-S]akgna bEELOO(gN); Ogggn; CGLOO(gN) (3)

and the uniform ellipticity: there exists § > 0 such that

n

a(y &6 = > ap(y)&é 2 0EP7, VEER™, Yy ey, (4)
k=1
By R(y’, ), we denote the principal symbol of the operator R:

Ry, &) ==&+ Y au(y)&i,

j,k=1
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and by R(y/, &L, €2) the quadratic form

Ry, €. =68 - Y a8

jk=1

with €8 = (&,...,€L) and €2 = (€2, ..., £2). Following [15], we introduce the notations:

n

| IRy, 0 gy = PR g = 2B
R(j)(y/,f) = %, R(j’k)(y €)= ﬁa R(j)(y &) = %

We assume that there exists a function 11 € C?(Gy) such that
{R,{R,1}}(y,€) >0
if (y,€) € (G \ Bs(a*)) x (R \ {0}) satisfies
R(y',€) = (VeR(Y',€), Vi (y)) =0,

and
{R(y', € —isViu(y)), R(y', & +isVih(y))}/2is > 0

if (y,€,5) € (Gn \ Bs(x*)) x (R*1\ {0}) x (R \ {0}) satisfies
R(y', € +isVii(y)) = (VeR(Y, € +isVihi(y)), Vi (y)) =0,

R(y, V1) < 0.
Using the function 7 and following [15], we construct the function ¢ by

Pply) =W 7 >1.
It is known (see e.g., Th. 8.6.2, p. 205 [15]) that provided that the parameter 7 is sufficiently large,
{R.A{R,0}}(y,£) >0
if (y,€) € (Gn \ Bs(z*)) x (R™1\ {0}) satisfies
R(y',§) =0,

and

{R(y'.§ —isVe(y)), R(Y', & +isVe(y))}/2is > 0
if (y,&,5) € (Gn \ Bs(z*)) x (R"1\ {0}) x (R {0}) satisfies

R(y', & +isVe(x)) = 0.

51

Now we fix the parameter 7 such that inequalities (8) and (9) hold true. Let £; € C?(Gn) be a function such
that ¢1],,—0 = 0. Let ¥(y) = 11 (y) + N¢3(y) and ¢ = e™. Since ¢(y) = d)(y)e”wf(y), using ¢1]y,=0 = 0, we

have
¢ —¢ inC"Gy) as N — +o0.

(10)
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Moreover

{R(y', € —isVp(y), R(y', & +isV(y))}/2is
—2N7T > (9, 1) 0y, L)) (RD (¢, ORM (', &) + s*RY) (v, Vo) R®) (3, Vo))
jk=1

— {R(Y, £ —isVe(y)), Ry, £ +isVe(y))}/2is in C(Gy xS") as N — foo. (11)

Here we set S” = {¢ € R"*1;|¢] = 1}. By (8)—(11), there exists Ny > 0 such that for any N > Np, the following
inequalities hold true:

{R AR, 0}}(y,6) >0 (12)

if (y,€) € (Gn \ Bs(a*)) x (R™1\ {0}) satisfies R(y,&) = 0, and
{R(y', € —isVe(y), Ry, € +isVely))}/2is > Ci (¢ + Ns?) (13)

if (y,€,5) € (Gn \ Bs(x*)) x (R™1\ {0}) x (R\ {0}) satisfies R(y', £ +isVe(y)) = 0, where the constant C; > 0
is independent of £, s, N.
Denote w(y) = w(y)e®*?. By (11), the following equality holds:

e*’R(y’, D)(e™*¥w) = ge*? in Gn. (14)
The short calculations give the equation
LQ,@{D + Ifl,kp{l7 =Js in gN; (15)

where

Ly, = — zn: sy, R (y V@), Lo,@ = R+ s*R(y, V),
=0
9s(y) = ye“’j’ + wRe. (16)
Taking the Lo-norms of the both sides of (15), we obtain
19511726y = 1L2,6@ 172y + I1L1,6D]| T2y ) + 2(L1,oW, Lo, o @) 12 (G )- (17)

Denote

G¢(ya S, 717) :{Rﬂ {Ra ¢}}(y/a V{E) + 82 Z R(k) (y/a V(ZS)R(j) (y/a v¢)w2

4, k=0

+57 Y 0y, RO, Vo) R (Y, V)i (18)

4, k=0

and Gy (y, s, w) is defined similarly.
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Let us transform the last term at the right side of (17). In [18], one can find the following identity:
(L1,oW; L2,0) 12(Gy) :/
9GN

753/ R(y',Vo)R(y 71, V)i 2d2+/ sGy(y,s,w)dz
IGN g

N

R(y', 7, V@) L1 @ dS + s / R(y', Vo, 7)R(y, V)ds
IGN

s [ < _ ; _ _ _
+ /g 3 Z REZ? (v, V), RY (', V@) — 0(R(y', V@) — s*R(y, Vo)@?) | dy,
N 2 \jk=0

(19)
where 77 is the unit outward normal vector to Gy and
n

m ~ L, ~
> o R (Y, V) + oy R (o, VD)),
l,m=0

0(y)

Now we need the following Lemma proved in [18].
Lemma 1. Let w € H'(Gn) be a solution to (1) and (2).

s/ (V@ |* + s*w?)dy < 02/ sGy(y, s, w)dy
gn gn

1 - 1 - . -
+Cs <E|L27¢w||2m(gw> + g||L1,¢w||2L2(gN> + 5||w|L?(agN>|3ynw||L2(8gN>>v Vs > s0(7),  (20)

where the constants Cy and C5 are independent of s, N.

We claim :

S
/g 3 Z R, Vi)py, ROy, VD) — 0{R(y, V) — s*R(y/, V)i } | dy
N 7,k=0

/ 83 y 7V717)90mj R(]) (y’, Vzﬂ) dy + |s
gN ] k=0

B(R(y . V) — S*R(y, wm%dy‘
gn

€S ~ - 1 . 1 - ~ ~
<5 g (V@] + s*w?)dy + Cy <S—€|L1,¢w||i2(g,v) + S—€|\L27¢w||i2(g,v) + 5||w|Lz(agN)|8ynw|L2(agN)>-
N

(21)
In fact, by the Cauchy-Bunyakovskii inequality,

Cs
/g (', V), RO, Vi)dy| < Sl gy + 2 e l3ag (22)
N 4.k=0
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Since the function 6 is continuous, there exists 6. € C?(Gy) such that || — Ocllcgy) < §- Taking the scalar
product in L?(Gy) of the functions §.w and Ly ,w, we obtain the equality

/ 0-(sR(y', V) — s>R(y/, Vp)w?)dy = 75/ (Lo, w)0-wdy
gN gN

+S/ Z <8ajka_w Ea—ﬁ(y/,w;, VGE){E> dy+/ a(y, @, V). wdx.
On i Jy; Oy .

Thus

| osre. V) - SR, wmdy‘
gN

0. (sR(z', V) — s>R(a, W)@Q)dy‘

<

/ (0 —6.)(sR(y', Vi) — s*R(y/, V(p)ﬁQ)dy‘ +
gnN gnN

€S - - 1 - 1 . - -
=7 (IVw|2+52w2)dy+06<g||L1,«pw|%2<gN>+gIILz,wwliqu) +S|wIIL2<agN>||<9ynw||L2<agN>>-

gnN
(23)
Inequalities (22) and (23) imply (21).
By Lemma 1, we have
n .
5/ (|Vw)? +52@2)dy+/ ANT Z ayjfl(y')aykgl(y'){R(J)(y',V@)R(k)(y’7vﬁ)

gN gN j,k‘=1

+52RD (3, V) R®) (i, Vo) Yy < /g 25Gy(y, s, w)dy +/g {23G¢(y, s,w) — 25G,(y, s, W)
N N
n
+4NT Z ayjﬂl(y')aykél(y'){R(j)(y',VG)R(@ (v, V) + 2R (v, Ve)R® (y',Vgo)}}dy
k=1

+Cs { SlIL260lT2(gy) + 11,6022 gy) + sl L2a6) 10y, Wl 206w ) - (24)

Note that there exists a constant Cy > 0, independent of IV, such that

/ ANT > 0y, 6(5)0y 1 (y )RV (v, V) RW(y , VD) + s RV (y, Vo) RW (), Vo) }dy > CoN [ @Pdy
gN

J,k=1 9N
(25)
for all sufficiently large N.
By (11), we have

/ <25G¢(y, s, W) — 258Gy (y, s, W)

(9

—ANT Y 9,0(y)0,, iy RV, Vo) ROy, Vi) + RO (', Vo) RV (y’,ch)}> dy
Jk=1
<Cu(V)s [ (VAP + 23, (26)
gn
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where C19(N) — 0 as N — +o0. By (10), we obtain

1 - 1 - 1 . 1 -
‘g||L2,¢w||%2(gN) + g”waH%z(gN) - ;||L2,sow|\%2(g,v) - ;||L1,sow||%2(g,v)

< Ci(N)s / (Va[? + @) dy, (27)
N

where C11(N) — 0 as N — +o0. Using (25)—(27), from (24) we obtain

1 ~2 | 29 1 ~112 1 ~112
G0 (9B + 200y < Gl + 2Ty
+/g 25Go(y, s, w)dy + sCol|w]|L2(ogx) 10y, Wl L2(0gx), Vs = s0(T). (28)
N
Inequalities (21), (28) imply (5.28). The proof is finished. O
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