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ON HARMONIC DISTURBANCE REJECTION OF AN UNDAMPED
EULER-BERNOULLI BEAM WITH RIGID TIP BODY ∗

Bao-Zhu Guo1, 2 and Qiong Zhang1

Abstract. A hybrid flexible beam equation with harmonic disturbance at the end where a rigid tip
body is attached is considered. A simple motor torque feedback control is designed for which only the
measured time-dependent angle of rotation and its velocity are utilized. It is shown that this control
can impel the amplitude of the attached rigid tip body tending to zero as time goes to infinity.
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1. Introduction

In this paper, we consider a flexible beam rotated by a motor in a horizontal plane at one end and a tip
body rigidly attached at the free end (see Fig. 1 below). This model fits a large class of real applications
such as links of robot systems and space-shuttle arms in which high speed manipulation and long and slender
geometrical dimensions are the major factors causing mechanical vibration. To achieve simultaneously the high
speed, precise end point position and robustness of the flexible beam, the boundary control is one of the major
strategies in production and space applications.

Let � be the length of the beam, ρ the uniform mass density per unit length, EI the uniform flexural rigidity,
M̃ the mass of the tip body attached, Ĩm the moment of inertia of the motor and J̃ the moment of inertia
associated with the tip body. Let θ(t) be the angle of rotation of motor at time t and w(x, t) be the deflection
at position x along moving axis and time t. Suppose that a) the deflection w(x, t) is small and any extension
is neglected; b) all terms θ̇2 are negligible; c) the twist of the beam is ignored; d) both the distance between
the beam’s tip point and the intersection of the beam’s tip tangent with a perpendicular plane passing through
the tip body’s center and the damping effects are ignored. Then w(x, t) satisfies the following Euler-Bernoulli
beam equation and the Newton-Euler rigid-body equations [12]:




ρwtt(x, t) + EIwxxxx(x, t) = −xθ̈(t), 0 < x < �, t > 0,
w(0, t) = wx(0, t) = 0,
EIwxxx(�, t) = M̃ [�θ̈(t) + wtt(�, t)],
−EIwxx(�, t) = J̃ [θ̈(t) + wxtt(�, t)].

(1.1)
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Figure 1. The vibration control of a flexible link with a rigid tip body.

The equation of motion of rotation motor is [12]

Ĩmθ̈(t) = ũ(t) + EIwxx(0, t) (1.2)

where ũ(t) is the torque developed by the motor and applied at the root of the beam. If we define ỹ(x, t) =
w(x, t) + xθ(t) as the total deflection of the beam [1]. Then ỹ satisfies [4, 5, 15]




ρỹtt(x, t) + EIỹxxxx(x, t) = 0, 0 < x < �, t > 0,
ỹ(0, t) = 0,
EIỹxx(0, t) − Ĩmỹxtt(0, t) + ũ(t) = 0,
EIỹxxx(�, t) − M̃ ỹtt(�, t) = 0,
EIỹxx(�, t) + J̃ ỹxtt(�, t) = 0.

(1.3)

The model (1.3) was established again in [15] based on [7]. The stability by using the feedback of measured
time-dependent angular and its velocity at x = 0 was studied in [4, 5]. Most existing boundary control design
methods for flexible system are using the collocated actuators and sensors based on passive principle because
the collocated system with rate feedback is inherently stable (see e.g. [2, 9], etc.). However, as it was indicated
in [11] that with such collocated measurements, the vibration of the system are not controlled well enough.
On the other hand, some effort has been made to design the noncollocated control for the flexible systems, for
instance [3] and [13] where some alternative noncollocated measurements are proposed to deal with the difficulty
of presence of the right half plane zeros in the transfer function and the finite dimensional compensator was used
to stabilize the damped flexible systems. In this paper, we consider a different problem: disturbance rejection
through noncollocated control by which we mean that the control is at the one end and the output of concern
is at the another.

For notational simplicity, we make the following transformation

y(x, t) = ỹ

(
�x,

√
ρ�4

EI
t

)
, u(t) =

�2

EI
ũ

(√
ρ�4

EI
t

)
, Im =

Ĩm
�3ρ

,M =
M̃

�ρ
, J =

J̃

�3ρ

and consider the harmonic disturbance at the end where the rigid tip bogy is attached. After that y satisfies


ytt(x, t) + yxxxx(x, t) = 0, 0 < x < 1, t > 0,
y(0, t) = 0,
Imyxtt(0, t) − yxx(0, t) = u(t),
Jyxtt(1, t) + yxx(1, t) = ρJ sin(ωJ t+ ψJ ),
Mytt(1, t) − yxxx(1, t) = ρM sin(ωM t+ ψM )

(1.4)
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Figure 2. The block of disturbance rejection by the measured feedback.

where in the input harmonic disturbances ρJ sin(ωJ t+ψJ) and ρM sin(ωM t+ψM ), the frequencies ωJ and ωM

are assumed to be known but both the amplitudes ρJ , ρM and the phases ψJ , ψM are uncertain constants.
Suppose that

yout(t) = y(1, t), ∀ t ≥ 0 (1.5)

is the output to be concerned and the measured output is given by

ymea(t) = (yx(0, t), yxt(0, t)), ∀ t ≥ 0. (1.6)

The objective of this paper is to design the control input u(t) by using only the measured output so that

lim
t→∞ yout(t) = lim

t→∞ y(1, t) = 0. (1.7)

Disturbance rejection or attenuation is one of the most important and widely studied areas in control theory.
One of the main principles is the internal model principle, that is, making the transfer function of controller
have poles at the frequencies of the disturbances. We refer this approach to [6] and the references therein where
the transfer function is required to be in Callier-Desoer algebra. The results of [6] were extended in [10] that
for the well-posed system [14] with disturbance, the output yout ∈ L2

γ(0,∞) for some γ > 0. The result of [10]
is then applied to the rejection of external noise in the structural acoustics model and two coupled beams. Very
different to internal model principle, in this paper, we propose the following simple controller by using only
measured output: 


ξ′1(t) = ωξ2(t),
ξ′2(t) = −ωξ1(t) − kξ2(t) + kytx(0, t),
u(t) = −αyx(0, t) + kξ2 − kytx(0, t)

(1.8)

where the nonzero constants α, k and ω can be turned in practical design. We will show that controller (1.8)
can stabilize not only the system (1.4) without disturbance but also impel the output concerned tending to
standstill in the presence of disturbances as in the equation (1.4). The process can be illustrated by a typical
block in H∞ control framework as in Figure 2 above.

2. Well-posedness and stability without disturbance

Suppose there are no disturbances at the rigid tip body attached end. Then the closed-loop system of (1.4)
with control law (1.8) becomes




ytt(x, t) + yxxxx(x, t) = 0, 0 < x < 1, t ≥ 0,
y(0, t) = 0,
Imyttx(0, t) − yxx(0, t) + αyx(0, t) = kξ2 − kytx(0, t),
Jyttx(1, t) + yxx(1, t) = 0,
Mytt(1, t) − yxxx(1, t) = 0,
ξ′1(t) = ωξ2(t),
ξ′2(t) = −ωξ1(t) − kξ2(t) + kytx(0, t).

(2.1)



618 B.-Z. GUO AND Q. ZHANG

Consider (2.1) in the state Hilbert space H = V × L2(0, 1) × C5, V = {z ∈ H2(0, 1) | z(0) = 0} endowed with
the inner product norm

‖(y, w, v0, v1, v2, ξ1, ξ2)‖2
H =

∫ 1

0

|yxx(x)|2dx+ α|yx(0)|2 +
∫ 1

0

|w(x)|2dx

+ Im|v0|2 + J |v1|2 +M |v2|2 + |ξ1|2 + |ξ2|2.

Then the system (2.1) can be written as an evolution equation in H

Ẏ (t) = AY (t) (2.2)

where Y (t) = (y(·, t), yt(·, t), ytx(0, t), ytx(1, t), yt(1, t), ξ1, ξ2) is the state and the system operator A : (H ⊃)
D(A) → H is defined as follows:

A




y
w
v0
v1
v2
ξ1
ξ2




=




w
−yxxxx

1
Im

(yxx(0) − αyx(0) + kξ2 − kwx(0))
− 1

J yxx(1)
1
M yxxx(1)
ωξ2

−ωξ1 − kξ2 + kwx(0)



,

D(A) =
{

(y, w, v0, v1, v2, ξ1, ξ2) ∈ H

∣∣∣∣ y ∈ H4(0, 1), w ∈ V, v0 = wx(0),
v1 = wx(1), v2 = w(1)

}
·

(2.3)

Theorem 2.1. Let A be given by (2.3). Then A generates a C0-semigroup T (t) of contractions on H. Moreover,
0 ∈ ρ(A) and A−1 is compact. Therefore, A is discrete and σ(A) only consists of isolated eigenvalues.

Proof. For any Y = (y, w, v0, v1, v2, ξ1, ξ2) ∈ D(A), it has

Re〈AY, Y 〉H = Re

[∫ 1

0

wxxyxxdx+ αwx(0)yx(0) −
∫ 1

0

yxxxxwdx

(yxx(0) − αyx(0) + kξ2 − kwx(0))wx(0) − yxx(1)wx(1)

+yxxx(1)w(1) + ωξ2ξ1 + (−ωξ1 − kξ2 + kwx(0))ξ2
]

= −k|wx(0) − ξ2|2 ≤ 0.

Hence A is dissipative. Furthermore, for any fixed but arbitrary element f = (f1, f2, f3, f4, f5, f6, f7) in H ,
solving equation

A




y
w
v0
v1
v2
ξ1
ξ2




=




w
−yxxxx

1
Im

(yxx(0) − αyx(0) + kξ2 − kwx(0))
− 1

J yxx(1)
1
M yxxx(1)
ωξ2

−ωξ1 − kξ2 + kwx(0)




=




f1
f2
f3
f4
f5
f6
f7



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gives

y(x) = −
∫ x

0

∫ s1

0

∫ 1

s2

∫ 1

s3

f2(s)dsds3ds2ds1 − 1
2
Jx2f4 −M

(
1
2
x2 − 1

6
x3

)
f5

+
1
α
x

(
−Jf4 −Mf5 +

∫ 1

0

∫ 1

s1

f2(s)dsds1 +
k

ω
f6 − kf1x(0) − Imf3

)
and

w = f1, v0 = f1x(0), v1 = f1x(1), v2 = f1(1),
ξ2 = 1

ωf6, ξ1 = k
ωf1x(0) − k

ω2 f6 − 1
ωf7

and the compactness follows from the Sobolev’s embedding theorem applied to A−1. �

When the control is assigned to be u(t) = −αyx(0, t) only, that is to say ξ2 = ytx(0, t) in equation (2.1), we
obtain a conservative system associated which the system operator, denoted by A0 with D(A0) = D(A), is also
discrete and moreover, skew-adjoint in H :

A0




y
w
v0
v1
v2
ξ1
ξ2




=




w
−yxxxx

1
Im

(yxx(0) − αyx(0))
− 1

J yxx(1)
1
M yxxx(1)
ωξ2
−ωξ1



.

It follows from a well-known fact in functional analysis that all eigenvalues of A0 lie in the imaginary axis which
are symmetric with respect to the real axis. So, we may assume σ(A0) = {(iτ2,−iτ2)|τ are positive}. A direct
computation shows that τ satisfies the following characteristic equation:

(−Imτ4 + α)[1 +MJτ4 + (Mτ − Jτ3) sinh τ cos τ
−(Mτ + Jτ3) cosh τ sin τ + (1 −MJτ4) cosh τ cos τ ]
+τ [−2Jτ3 cosh τ cos τ + (−1 +MJτ4) cosh τ sin τ
+(1 −MJτ4) sinh τ cos τ − 2Mτ sinh τ sin τ ] = 0.

(2.4)

Since τ is positive, a close examination of characteristic equation (2.4) reveals that

cos τ = − sin τ
Mτ

+O(τ−2)

whose solution can asymptotically found to be [5]

τ = τn =
(
n− 1

2

)
π +O(n−1) for sufficiently large n. (2.5)

As for those zeros of (2.4) closed to the origin one can easily find them through numerical methods.

Theorem 2.2. Choose τ =
√|ω| not to be the root of (2.4). Then the semigroup T (t) generated by A is strongly

stable.

Proof. Since T (t) is bounded and A is discrete, by a well-known sufficient characterization condition on strong
stability of bounded C0-semigroup (see e.g. Th. 3.26 of [8]), the proof will be accomplished by showing that
there is no eigenvalue of A on the imaginary axis. Suppose now that 0 �= λ ∈ R. Solving eigenvalue problem of
the following

AY = iλY, ∀Y = (y, w, v0, v1, v2, ξ1, ξ2) ∈ D(A), (2.6)
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we find that y, ξ1 and ξ2 satisfy




−λ2y + yxxxx = 0,
y(0) = 0,
−λ2Imyx(0) − yxx(0) + αyx(0) − kξ2 + iλkyx(0) = 0,
−λ2Jyx(1) + yxx(1) = 0,
−λ2My(1)− yxxx(1) = 0,
iλξ1 − ωξ2 = 0,
iλξ2 + ωξ1 + kξ2 − kiλyx(0) = 0.

(2.7)

In light of the fact that 0 = Re〈AY, Y 〉H = −k|iλyx(0) − ξ2|2 as in the proof of Theorem 2.1, we obtain that
iλyx(0) = ξ2. Hence (2.7) becomes




−λ2y + yxxxx = 0,
y(0) = 0,
−λ2Imyx(0) − yxx(0) + αyx(0) = 0,
−λ2Jyx(1) + yxx(1) = 0,
−λ2My(1)− yxxx(1) = 0,
iλξ1 − ωξ2 = 0,
iλξ2 + ωξ1 = 0.

(2.8)

It is clear that if one of ξ1 and ξ2 is not identically zero, then the last two equalities of (2.8) imply that λ = 0.
Suppose first that both ξ1 and ξ2 are not identically zero. Then λ2 = −ω2 and since the first five equalities
of (2.8) are nothing but the eigen equation of A0, it follows that

√|ω| is a root of (2.4). This contradicts the
hypothesis. While both ξ1 and ξ2 are identically zero, then yx(0) = 0 from the proved fact that iλyx(0) = ξ2.
In this case, (2.8) becomes 


−λ2y + yxxxx = 0,
y(0) = yx(0) = yxx(0) = 0,
−λ2Jyx(1) + yxx(1) = 0,
−λ2My(1) − yxxx(1) = 0.

Put λ = τ2, τ > 0. Then the solution to the equation above takes the form y(x) = sinh τx − sin τx with τ
satisfying

−τ3J(cosh τ − cos τ) + (sinh τ + sin τ) = 0,
−τM(sinh τ − sin τ) − (cosh τ + cos τ) = 0

from which we can readily obtain

−τ2J(cosh2 τ − cos2 τ) = M(sinh2 τ + sin2 τ)

and hence λ must be identically zero. We have once again had a contradiction. The result follows. �

Remark 2.1. Theorem 2.2 is the best stability result we can hope by the assigned output feedback for the
exponentially stability needs additional measured signals, for which we refer to [5] for more details.

3. Disturbance rejection

In this section, we turn to our main object of disturbance rejection. Obviously, the condition of Theorem 2.2
is necessary for this purpose. We will discuss two different cases: ρJ = 0 and ρM = 0. First we investigate the
first case of ρJ = 0.
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Theorem 3.1. Suppose ρJ = 0 and ω = ωM . If τ =
√|ωM | is not the root of (2.4) but one of the following

equation

[2τ sinh τ + (α − Imτ
4)(cosh τ − cos τ)][−2Jτ4 cos τ − 2τ sin τ

+(α− Imτ
4)(−Jτ3 sinh τ + cosh τ − Jτ3 sin τ + cos τ)]

−[2τ sin τ + (α− Imτ
4)(cosh τ − cos τ)][−2Jτ4 cosh τ + 2τ sinh τ

+(α− Imτ
4)(−Jτ3 sinh τ + cosh τ − Jτ3 sin τ + cos τ)] = 0

(3.1)

by properly choosing the parameter α, then the output of the system (1.4) and (1.8) satisfies lim
t→∞ yout(t) =

lim
t→∞ y(1, t) = 0.

Remark 3.1. Similar to that of (2.4), the positive solutions of (3.1) are of the following asymptotic expansion:

cos τ =
(

1
Im

+
1
J

)
sin τ
τ3

+ O(τ−4),

and hence

τ = τn =
(
n− 1

2

)
π + O(n−3) for n sufficiently large. (3.2)

Proof of Theorem 3.1. We begin by constructing a particular solution ỹ(x, t) = φ(x) sin(ωM t + ψM ) for the
following equation: 



ỹtt(x, t) + ỹxxxx(x, t) = 0, 0 < x < 1, t ≥ 0,
ỹ(0, t) = 0,
Imỹttx(0, t) − ỹxx(0, t) + αỹx(0, t) = 0,
Jỹttx(1, t) + ỹxx(1, t) = 0,
ỹ(1, t) = 0.

(3.3)

This is possible whenever φ satisfies




φ(4)(x) − ω2
Mφ(x) = 0, 0 < x < 1,

φ(0) = 0,
φ′′(0) = (α − Imω

2
M )φ′(0),

φ′′(1) = Jω2
Mφ′(1),

φ(1) = 0.

(3.4)

Solving equation (3.4) shows that all is well–there does exist a nonzero solution to (3.4) under the hypothesis,
which is justified by observing that (3.1) is nothing but the characteristic equation which guarantees the existence
of a nonzero solution to the equation (3.4). Finding this solution is a direct computation, and since it poses no
special difficulty, we just write down it explicitly:

φ(x) = −[2τ sin τ + (α− Imτ
4)(cosh τ − cos τ)] sinh τx

+[2τ sinh τ + (α − Imτ
4)(cosh τ − cos τ)] sin τx

+(α− Imτ
4)(sinh τ − sin τ)(cosh τx− cos τx).

(3.5)

Therefore,

φ′′′(1) = τ3[−2τ sin τ cosh τ − 2τ sinh τ cos τ − 2(α− Imτ
4) sinh τ sin τ ]

= 2τ7e−τ
[−τ−3 cos τ + (Im − τ−3 − ατ−4) sin τ + O(e−τ )

] (3.6)

which is not identically zero whenever τ large enough by comparing with (3.2).
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Now that define 


yd(x, t) = −ρMφ(x) sin(ωM t+ ψM )
φ′′′(1)

,

ξ1d(t) = −ρMωMφ′(0) sin(ωM t+ ψM )
φ′′′(1)

,

ξ2d(t) = −ρMωMφ′(0) cos(ωM t+ ψM )
φ′′′(1)

·

(3.7)

Then a direct computation shows that (y, ξ1, ξ2) = (yd, ξ1d, ξ2d) given by (3.7) satisfy (1.4) and (1.8) as ρJ = 0
and the most importantly,

yd(1, t) = 0. (3.8)

Decompose the solution of (1.4) and (1.8) as

y(x, t) = ys(x, t) + yd(x, t), ξ1 = ξ1s + ξ1d, ξ2 = ξ2s + ξ2d.

It is obviously that (y, ξ1, ξ2) = (ys, ξ1s, ξ2s) is a solution of (2.1) which is strongly stable by virtue of Theo-
rem 2.2, in particular

lim
t→∞ ys(1, t) = 0.

This together with (3.8) finally verifies that

lim
t→∞ y(1, t) = 0. �

Along the same line of proof of Theorem 3.1, we have the disturbance rejection result for the case of ρM = 0.

Theorem 3.2. Suppose ρM = 0 and ω = ωJ . If τ =
√|ωJ | is not the root of (2.4) but that of the following

equation

[2τ sinh τ + (α− Imτ
4)(cosh τ − cos τ)][2Mτ2 sin τ − 2τ cos τ

+(α− Imτ
4)(Mτ cosh τ + sinh τ −Mτ cos τ − sin τ)]

−[2τ sin τ + (α − Imτ
4)(cosh τ − cos τ)][2Mτ2 sinh τ + 2τ cosh τ

+(α− Imτ
4)(Mτ cosh τ + sinh τ −Mτ cos τ − sin τ)] = 0,

(3.9)

by properly choosing the parameter α, then the output of the system (1.4) and (1.8) satisfies lim
t→∞ yout(t) =

lim
t→∞ y(1, t) = 0.

Remark 3.2. It should be pointed out that we use low order controller (1.8) to stabilize the displacement of
the tip body. If we choose the output as yout(t) = (y(1, t), yx(0, t)), we need design a high order controller of the
following form so that additional constants β or m can be regulated to ensure the particular solution of (3.3)
satisfying ỹx(1, t) = 0. 



ξ′1(t) = ωξ2(t),
ξ′2(t) = −ωξ1(t) − kξ2(t) + kytx(0, t),
η′1(t) = η2(t),
η′2(t) = −(α+ β)/mη1(t) + α/my(0, t),
u(t) = −αyx(0, t) + kξ2 − kytx(0, t) + αη1(t).

(3.10)

Unfortunately, under this controller, the corresponding system operator A of the closed-loop system is not
dissipative and hence it is not easy to determine its asymptotic stability. The related work is still going on.
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4. Concluding remarks

In this paper, we start directly from a partial differential equation model of beam equation and propose a
simple integrator type controller where only measured angular of rotation of motor and its velocity at one end
of the beam are utilized in the design of feedback control law to stabilize the output of concern in the presence
of the harmonic disturbance at the another end where the rigid tip body is attached. The key ideas lie in a) the
controller must stabilize the system without disturbance; b) constructing a particular solution with fixed end
position through spectral analysis. The rigorous mathematical proof is presented for the PDE model without
any damping.
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