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A T-CONVERGENCE RESULT FOR VARIATIONAL INTEGRATORS
OF LAGRANGIANS WITH QUADRATIC GROWTH

FRANCESCO MAGGI! AND MASSIMILIANO MORINT?

Abstract. Following the I'-convergence approach introduced by Miiller and Ortiz, the convergence
of discrete dynamics for Lagrangians with quadratic behavior is established.

Mathematics Subject Classification. 37M15, 49J45.

Received October 7, 2003.

1. INTRODUCTION

In a recent paper Miiller and Ortiz [4] have introduced the study of convergence properties of discrete
dynamics and variational integrators using the tool of I'-convergence. The theory of discrete dynamics is a
formulation of Lagrangian mechanics in which time is considered as a discrete variable. This point of view
leads to studying discrete trajectories, the variational integrators, generated by a discrete version of Hamilton’s
principle in which the classical integral action is replaced by a sum, called discrete action. The interest of this
construction lies in the fact that, compared to the trajectories generated by more usual approximation schemes,
variational integrators converge to classical solutions in a more stable way. We refer to Marsden and West [3]
for a complete account and for more references on the topic.

In order to state and comment on the result by Miiller and Ortiz [4], we introduce some definitions.

We say that a function f: RY xRN R, f = f(s,€), is a Lagrangian with quadratic behavior if

feC*RY xRY) with sup{|D?f(s,&)|: (s,&) € RN xRV} < o0, (1)
where D?f is the matrix of all the second order partial derivatives of f. Thus, for some C > 0,
(5.0l < CA+ s +[e[*), V(s,€) eRY xRY.

The action is the functional F : H! (R; RN) x €& =R, defined by

F(u, A) ::/Af(u,u)dt, V(u, A) € HE (R;RY) x &,
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where £ is the family of all open bounded intervals of R. A function u is said to be stationary for the action if,
SF(u,p, A) =0, VA€E&Npe CF(ARY),

where the first variation of F (-, A) on u with respect to ¢ is given by

dF(u,p, A) := lim Flutte, ) = Fu4),
¥ t—0 t

For every h > 0 we fix the grid 7 = {hi}icz of R of step h and define the set X}, of all T p-piecewise affine
continuous functions with values in RY. A function up € Xp, is said to be h-stationary for F if

0I(up, 0, A) =0, VA€E Ve Xy, with spteo C A.

The main theorem in Miiller-Ortiz [4] is the following:

Theorem 1. Assume that f(s,&) = |£|>/2 — V(s), where V is of class C? and |V?V| < C on RY. Let {up}n
be a given sequence of h-stationary functions such that the Fourier transforms of the up’s are in L' and form
a compact sequence of Radon measures in the duality with Cb(R;RN), the space of continuous and bounded
functions on R.

Then there exists u € W>(R; RY) such that
a) up — u in WHe(R;RY);
b) w is stationary;
¢) the Fourier transforms of the up’s converge as measures in the flat norm to the Fourier transform of .

The assumption made on the sequence of Fourier transforms implies that the sequence {up}) is uniformly
bounded on L (R; RN ). Here we will deduce a similar property starting from the growth assumptions rather
than supposing it.

The following theorem addresses these issues in a framework suitable to treat Lagrangians f with quadratic
behavior.

Theorem 2. Let f be a Lagrangian with quadratic behavior, see (1), and let f(s,-) be uniformly convex, that
1s there exists v > 0 such that

o%f 2 N
<8—€2(87§)77,77> >vinl®, Vs, §,neR™. (2)

Then there exists hg = ho(C,v) such that

a) for every (up,&) € RN xRN and h < hg, there exists an h-stationary uy that is h-stationary, with
up(0) = uo, (un(h) —up(0))/h = &. Furthermore,

sup [lupllw.eamyy < K <oo, VAEE, (3)
h<ho

where K is a constant depending only on |ug|, ||, C, v, L (A);
b) every sequence {up}n, with up, h-stationary and such that,

Sl}lbpmax{lw(o)h |(un(h) = un(0))/h[} < oo, (4)

has a subsequence that converges weakly-* star in Wlicoo (R;RN) to a stationary u.

In Theorem 2 we are assuming that f has the same growth in the s and £ variables. A similar result cannot hold
if f has different growths with respect to s and £. For example, let us consider f(s,&) = £2/2 + |s|*1¢ /(2 + ¢),
¢ > 0. The Euler-Lagrange equation that characterizes the stationary functions is 4 = u|u|®, which has positive
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solutions for positive initial data. By conservation of the energy, for every solution u with suitable initial data
there exists a constant C' > 0 such that

t_/ Vit e [0
\/2C + —u2+5

where [0,~] is the maximal interval of definition of w. Since u(y~) = 0o we have

/‘X’ du
= — <0
0 ,/QC’JrQLHuQ*E

The rest of the paper is devoted to the proof of Theorem 2. The first assertion in statement a) is proved in
Section 2, while the second one, namely the bound (3), is proved in Section 3. In Section 4 we prove statement
b) of Theorem 2 (here we follow [4]). In Section 5 we present a shorter proof of (3) that works for the prototype

case where f(s,&) = [£]?/2 — V(s).
2. EXISTENCE AND UNIQUENESS OF h-STATIONARY FUNCTIONS

As a consequence of the assumption that f is a Lagrangian with quadratic behavior, uniformly convex in the
¢ variable, there exist C, v > 0 such that: for every s,¢ € RY,

Vg = C+sP?) < f(s,6) < CO+ s>+ €%, (5)
0
Lo+ Lol = carisd+ia, (6)
/ .
‘aT( ‘Jr‘ag? ‘+‘858§ 5)‘ s G (™
for every sq, 59,6 € RY,
L1 - Lisao)| <l - sl )
for every s,&1,&, € RY,
0 0
<a§( &) — 8§( :&2),& —§2>ZV|€1—€2|2- (9)

We introduce the following notation for functions uy € X;. We define for every i € Z

up(ih 4+ h) —up(ih) ul' | — u?.

ui = un(ih), &= - i

Step 1. We claim that u, € X} is h-stationary if and only if, for every ¢ € Z, it satisfies the following
discrete Fuler-Lagrange equation:

R ufyy —
0= [ oG (b, ) 4 25

1 of ) ullyy — ull 10f ' ulty —ul
+ [ 405 (it 20 ) - 20 { ol 0,2 o

0

+
[y

1 Ly
, ([uizuimoﬁ) %) dt (10)

o))
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where [a,b)(t) := a+t(b— a) for every a,b € R™ t € [0,1]. Indeed, if u is a piecewise affine function that takes
the values a, b, c € R at the points ih, (i + 1)h, (i + 2)h respectively, then

! b— ! —b
2wy = [ 1 (w05 Yo [ (o, S0 =t
0 0
Taking a variation ¢ € X which vanishes at ¢h and (i + 2)h is equivalent to considering the function ®(d) :=

Lp(a,b+ d,c) in that u is stationary for this variation if and only if V®(0) = 0, which gives exactly (10).
Step 2. For a,b € RY we define

() = / > ([a,bm bh“> d,
My(a,b) == /Olth% ([a,b](t), b “) + g—‘é ([a,b](t), bh“> dt,

n
Ni(a,b) = /01 h(1 - t)% ([a,b](t), b = “) dr.

Then (10); can be written as
\IIZ;%(U?H) = My (ufl, ufyr) + Nu(uiyr, uflys)- (11)
We claim that for every a € R, the function wh RN —RY is a bijection with
Lip((¥")~™1) -0 as h—0.

Indeed we have

Wh(y) - Wh(a) = /01ﬁ [aay](t),yha>g—‘é([a,z](t),zha>dt

&
= [ [ A (a0, ZED = g,
_ Oldt {5952 <[a,x+r<yaz>]<t>,“r(yh@a) (v =)
e I

By the mean value theorem we can find s = s(a, z,y),¢ = £(a,x,y, h), such that

2 2 o
Va(y) — Va(r) = igg(s,f) : (y*x)+g—é§(s,g). y . ).
By (7) and (9) we have
Za(y) — La(@)lly - ol = (Paly) - Va(@),y — ) 2 (% ~C)ly - af. (12)

If h < v/C the surjectivity and injectivity of U” follow from (12) at once, as well as

v 1
Lip((\IlZ)*l)§<E—C) 0 as h—0.
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As a consequence for h < v/C small enough we have that (11); is equivalent to the fixed point problem
ul' y = G Mul ul, ] (ul),), where G"[a,b] : RY - R" is defined by

G"a,b](x) = (W)~ (Mp(a,b) + Ni(b,2)).
If h < ho = ho(C,v) this map is a contraction. Indeed by (7)

st [ 28 0 52) 2 (1055

dt < 2¢,

and so

—1
Lip G"[a, b] < Lip(¥1)~! Lip Na(b, ) < 2C (— - C)

By the Banach-Caccioppoli theorem for every a,b € RY there exists a unique z € RY such that z = G* [a, b](x).

Step 3. Let h < hg and fix ug, & € RY. Then there exists a unique h-stationary point u; € X} such that

ufl = ug, £ = &. Indeed, under these initial conditions we have uf = ul + h&l, and then, in view of step 2, we

can uniquely determine u% from u?, u} by solving * = G"[u},u?](x). By induction we can define uy;, on [0, c0)
in such a way that (10);en are satisfied. Similarly, we may define up on (—oo, 0] so that the equations (10);ez

hold.

3. PROOF OF LOCAL BOUNDEDNESS OF h-STATIONARY SEQUENCES

Step 1. For each h < hg we consider the h-stationary point uj with ug = ug and «53 = &y. Let us write the
ith discrete Euler-Lagrange equation as A? = B! where

0 0
A? = /O a‘é‘ ([ Ujt1, U ?—}-2](15)7 zh+1) 52 ([uzvuz-‘rl]( )’gih) de
Bl= gk a0 e) + 003 (o). ) a

Since |[a, b](t) — [b,c](t)] < |a — b| + |b — ¢|, we have that

Lo )
|A?| > ‘/0 8_1: ([U?+1au?+2](t)a z'h+1) - 0_£ ([ ?+1a z+2]( ), fh) dt

tof of
|5t (0.0 = 3 (0.1 ar

> V|§z+1 & — Ch(|eM + |£z+1|) (13)

and by (6),
B! < ChQU+ [ug| + Rl + [€1]) + Ch(L + [ufyy |+ bl | + 154 ])- (14)
Since |u?| < |ug| + h Z;;E |§]h| and A" = Bl'  a straightforward computation leads from (13) and (14) to

2Ch :
&8, — & < — (1 +luol + B> IR+ 168+ 160 ] +h|£f+1l> :

k=0
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Let us define ol := max{|§§l| :0 < j <i}. We have

ZCh
Zmﬂ < {( +1)(1 + Juol) +hZZ|§k|+Z (18 + 1€81) +hZ|§H}
1=0 k=0
< M{(l+|uo|)+h(j+l)o?+2U§L+h0;7}+—c(h+h2 )IEr -

Since [¢] +1| < |€o| + Z |€z+1 €1, we obtain

2004 DR 1 4 g+ (b5 1)+ b+ 210}

2C
{1-Znem}ietal < lol +
Choose hg = ho(C,v) such that for h < hg we have (1 — (2C/v)(h + h?)) > 1/2 and for Ry := 2ho we have
(4(Ro + ho)C/v)(Ro + 2ho +2) < 1/2. For every j € {0, ..., [Ro/h]} we have (j + 1)h < Ry + h, and thus

4(Ro + h)C 4(Ro + h)C
14 14

1€ 1] < 206 + (1 + Juol) + (Ro +2h+2)o) < L+ 0} /2, (15)

if we define
L= L(“Oa€07 Ca V) = 2|€0| + (4(R0 + hO)C/V)(l + |U0|)
By (15) we conclude that for every h < hg and for every j € {0, ..., N}, where Ny, := [Ry/h|, we have
j+1 < max{a L+ O‘h/2} (16)

From (16) it follows that

IN

max{a L+ah/2}<max{ 1,L+UJ 1/2, L+0h/2}
max{a 1,L—|—<7h/2}< <maX{O‘Q,L—|—0'j/2}, (17)

h
Tj+1

IN

where ol = |€}] = |€0| =: 0. Below we write N instead of N}, for simplicity of notations and we iterate (17) to
get,

oy max{cg, L + 27 1o}

IA A

max{og, L + 2 ' max{oo, L+ 2" 1% _,}}

max{oo, L +2 Yoo, L(1 + 271 +2720% |}

max{co+ 2L, L(1 4271 +27%0% |}

max{oo + 2L, L(1 +271) 4+ 272 max{oo, L + 27 1ol _,}}
max{og + 2L, L(1+ 271+ 272(L + 27 ok _,)}
max{cg+ 2L, L(14+271 +272) + 27348 .}

[ IA IAIA

IN

N
max { og + 2L, LZ 277 4+ 2_N+100 < o9+ 2L.
j=0

Thus, for h < hg, we have
sup [ip] < |o, 41| < 00 + 2L,

[0,Ro
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which implies

sup lunllwres(o,ry)) < K (max{|uol, €|}, C,v), (18)
<ng

with K increasing in its first variable. To complete the proof of (3) it remains to show that for every M > 0,

hsufll) llunllwi.eo,m7) < K™ (max{|uol, [§o]}, C,v, M). (19)
<ho

Indeed we can cover [0, M] with a finite union of intervals of the form I; :=¢; + [0, Ro], t; < ti+1, t1 = 0 such
that I; N I;11 has at least length hg. By (18),

sup [lunlw 1.0 (1,) < K(max{|uol, [Sol}, C,v).
h<hgo

This is the case j = 1 of the following family of inequalities indexed by j, that we are going to prove by
induction; precisely, we claim that,

hSU.}I\L) Huhle,oo(]j) < Kj(max{|u0|, |€0|},C, l/) < 0.
<ho

Let us assume this holds for j — 1. Since the problem is autonomous we can apply (18) to get

Sup [unllwiee(r;y < K(max{[up(inf I;)], [un((inf 1))}, C,v).
<hg

On the other hand, since inf I; € I;_;, by the inductive hypothesis we have

K (max{|up (inf I;)], [in ((inf I;))[}, C,v) < K(Kj-1(max{|uo|, [$o]}, C,v), C,v)
= Kj(max{|u0|,|§0|},0,1/),

and the assertion is proved. Since with a finite number of steps we can cover [0, M], (19) is established.

4. PROOF OF THEOREM 2, PART B

The proofs of this section follow closely the ideas of Miiller and Ortiz [4].

Step 1. We first prove the following: there exists a constant [ > 0 depending only on C' and v such that, if
Y is a linear subspace of H (R; RN ) and u € Y is stationary with respect to variations in Y, i.e.,

0F (u,p,A) =0, VA€ & VpeY, with spte C A, (20)

then v minimizes F'(-, A) among all functions v € Y with ujp4 = vjga, for every A € £ such that LY(A) <1 In
fact we will need to apply this property only for Y = Xj,.

Let u be such that (20) holds, A = (a,b) € £ and let v € Y such that ¢ := v — u is zero on JA. Let us
consider the function

b
g(r) = / flu+re,a+re)dt.
a
By (20) we have that ¢’(0) = 0 and by Taylor’s Formula we obtain

b b 1
[ rseasga- [rwana = [ @ma-na
1 b
= [a-n [ Qrdel. o) dtar 21)
0 a
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where Q[r,t] : R" x R" — R is the quadratic form defined by

2 2
Q) = (G + o0, + o) ) + 2 (5 (ul0) + oo i0) 4 0.7
+ <g—€‘£ (u(t) + ro(t), ult) + ro(t)) T, T> :
By (7) and (2) it is easy to see that

14
Qls, t)(p,7) 2 vir|* = Clof* = 2Cpl|7| = I7[* = (C'+20C)|pf?,

where C” is a constant depending only on v and C. Therefore by (21) and by Poincaré’s Inequality we get
b b 1 b
[ ureisga- [ waa = [a-n [ (§e0F - €+ 20000F) dar
a a 0 a

/01(1 —) (gﬁ -C - QCC’) /ab lp(t)|? dt dr

> 0,

v

where the last inequality holds provided that (b — a)? < (en?)/(2C +4CC") =: .

Step 2. Let us consider a sequence {up}n with each up h-stationary and such that (4) hold. By (3) and
by Ascoli-Arzeld compactness criterion we infer that, up to extracting a subsequence, uj, — u in Wli’coo (R; RN),
where u € Wl’OO(R;RN). We want to prove that u is h-stationary for the action. Clearly it suffices to show

loc
that
F(u,A) < F(v,A), Yove HL (R;RY), with spt(v —u) C A,
for every A € € with £* (A) < I, where [ is defined as in step 1. It is in this part of the proof that a I'-convergence
argument is used.

Let us fix such an interval A and a function v. By (5) and by (2) we can apply De Giorgi-loffe lower
semicontinuity theorem (1], [2]) to see that

F(u,A) < l]igmian(wk,A)7 V{wptr € HY(A;RY), wy, —u w-H (A;RY).
— OC

In particular
F(u,A) < li}ILn iIO1f F(up, A). (22)

On the other hand, by Lemma 4.2.b in [4] there exists {v, };, C Xp with v, = v on OA such that vj, — v strongly
in H(4; RY) (in particular the convergence is strong in L>°). By (5) and the strong convergence of the vp’s
we have that

F(v,A) = hliinOF(,Uh’ A). (23)

In order to prove F(u, A) < F(v, A) and to conclude the proof we need to compare the behavior of {F'(up, A)}n
and {F(vp, A)}n. Clearly, if v, = up on OA, we conclude by a direct application of the result in step 1 for
Y = X}, combined with (22) and (23). If this is not the case we can argue as follows. Let us consider {Ap}, C €
such that A, = (an,bn) C A = (a,b), Ap, is compatible with 7, and ap — a, b, —b. Since u(ap) — v(ap) — 0
and u(bp) — v(by) — 0, there exists a sequence of affine functions {ps}, such that

vp+pr=up on 0Ap, pr—0 uniformly.
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Let wy, := v, + pp on Ap, and wy, = up on A\ Ap. By the minimality of u, on Ay proved in step 1 we now get
F(uh, Ah) § F(wh, Ah)

We claim that
F(u,A) < h}{nigf F(up, Ap), hlimo F(wp, Ap) = F(v, A),
clearly this will conclude the proof. The first inequality comes from (22) and the fact that F(up, A\Ap) —0

by (5) and (3). The second inequality holds since |F(wp, Ap) — F(vn, An)| = |F(vn + pr, An) — F(vp, Ap)| — 0
as h — 0. This is an easy consequence of the properties of f and of the uniform convergence of {py}n to zero.

5. A SHORT PROOF OF (3) IN THE MODEL CASE

Here we give a short proof of (3) in the model case f(s,¢) = |£|?/2 — V(s), where V is as in Theorem 1. Let
us consider a h-stationary uj, such that ul = ug and &8 = &. It is easy to see that the discrete Euler-Lagrange
equations can now be written as

ma= /01 tVV ([uf, uf (1) + (1= ) VV ([ufyq, w)o) (£)dE + &7

Since the second derivatives of V are uniformly bounded on RY we have |[VV|(s) < C(1 + |s|), and so we get
€ 1| < Ch(L+ |[uf, uly ]| + [[udyr, ulta]l) + 1€

As [ul, 1] < |ul| + h|E!| it follows that

il < Ch(L+ | + RIE + ul| + hIEH| + hIE 1) + €]
< 2Ch(1+ [uf]) + (1+2002) €8] + Ch2|€l 4,
o that 1+ 2Ch? 2Ch
Jr
h h h o —
&4 1] < Al [+ Br(1 + |ug]),  Ap = T—cme’ PP T 1T (24)
Since |ul| < |ug| + hZ;;é |§§l|, if we define of* := max{|§§l| : 1< j <i}, we get,
|£zh+1| < (Ap + ihBp)ol + Bp(1 + |uo)).
Let R > 0. For 1 < i < [R/h] by the previous equation we have
€211 < (An + RBn)o)" + Br(1 + [uol).
Since Ap, > 1, setting Dy, := (A, + RBp) > 1 we conclude
ote1 < Dyol + Br(1+ |uo|) < Diofy + Bu(1 + |uol)(1 + Dy)
< . < DyMoo+ Bu(1+|uol) Y Dy < Djtl (oo + iBu(1 + uol)).
§=0
Then R Inles
: +
linll o0, m) < Ofiespar < D ™2 (00 + ((R/B] + 1)Ba(1 + [ual)). (25)
Since

DR/ — exiy (IR/H] + 2) log(An + RBy)) = exp (([R/A] + 2)(2CRA + o(h))) |
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and {([R/h]+ 1)Br}n is bounded, we have that the right hand side of (25) is bounded for h small by a constant
depending on C, R, |ug| and |£y|. This proves (3) in this special case.
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