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REDUCTION BY GROUP SYMMETRY OF SECOND ORDER VARIATIONAL
PROBLEMS ON A SEMIDIRECT PRODUCT OF LIE GROUPS WITH

POSITIVE DEFINITE RIEMANNIAN METRIC ∗

Claudio Altafini1

Abstract. For a Riemannian structure on a semidirect product of Lie groups, the variational problems
can be reduced using the group symmetry. Choosing the Levi-Civita connection of a positive definite
metric tensor, instead of any of the canonical connections for the Lie group, simplifies the reduction
of the variations but complicates the expression for the Lie algebra valued covariant derivatives. The
origin of the discrepancy is in the semidirect product structure, which implies that the Riemannian
exponential map and the Lie group exponential map do not coincide. The consequence is that the
reduced equations look more complicated than the original ones. The main scope of this paper is to
treat the reduction of second order variational problems (corresponding to geometric splines) on such
semidirect products of Lie groups. Due to the semidirect structure, a number of extra terms appears
in the reduction, terms that are calculated explicitely. The result is used to compute the necessary
conditions of an optimal control problem for a simple mechanical control system having invariant
Lagrangian equal to the kinetic energy corresponding to the metric tensor. As an example, the case of
a rigid body on the Special Euclidean group is considered in detail.
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1. Introduction

The use of group symmetry to simplify the formulation of Euler-Lagrange equations defined on the tangent
bundle of a Lie group G is well-known in the literature on geometric mechanics, see [19]. The reduction is based
on factoring out the dependence from G in a G-invariant Lagrangian i.e., in studying a variational problem
on g � TG/G rather than on the whole of TG. Instead of Euler-Lagrange equations on TG, one obtains the
Euler-Poincaré equations on G × g. If the Lagrangian is given by kinetic energy only, then the Riemannian
counterpart of this formulation corresponds to the reduction of the first variational formula. Assume that G
is a semidirect product of a Lie group and a vector space, without nontrivial fixed points, and that the metric
tensor I is positive definite. Due to the semidirect product structure, such a metric cannot be biinvariant and
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therefore the Levi-Civita connection induced by I is (in the language of [14], Chap. X) neither natural nor
canonical. In this case, in fact, the natural connection is pseudo-Riemannian i.e., the corresponding quadratic
form has to have both positive and negative eigenvalues.

The advantage of choosing I positive definite (beside being compatible with simple mechanical systems having
G as configuration space) is that the reduction of the variations of curves can be carried out quite easily. In fact,
for families of proper variations the symmetry lemma, expressing the commutativity of the variational fields
along the main and transverse curves, still holds after the reduction since all the vector fields involved admit
invariant expressions. What gets more complicated is the reduction of the covariant derivatives, as the notion
of parallel transport given by the Riemannian connection does not fit with the reduction process. This is due to
the difference between the Riemannian exponential map associated with I and the Lie group exponential map,
and to the consequent mismatch between the two types of one-parameter subgroups. So, for example, geodesics
of I do not correspond to one-parameter subgroups of G. In spite of this complication, the reduction of the first
order variational formula (i.e., the Euler-Poincaré equations) is still quite easy to obtain and its advantage in
practical applications over the full Euler-Lagrange equations well-documented (for their exploitation in Robotic
applications see [4, 5]). The scope of this paper is to treat in a similar way the reduction of second order
variational problems on G that can be associated with I.

It is an elementary fact in calculus of variations that extremals of the energy functional give geodesic motion
through the first variational formula. This leads to Euler-Lagrange equations or to Euler-Poincaré after the
reduction. The corresponding necessary conditions for a cost function which is the L2 norm of the acceleration
were obtained in [10, 22, 24] for Riemannian manifolds and compact semisimple Lie groups. They resemble the
equations for the Jacobi fields associated with the connection and they generalize to Riemannian manifolds the
standard procedures to generate cubic splines in R

n.
The reduction process can be seen as the projection map π : TG → g of a globally trivial principal fiber

bundle (induced by left or right invariance of G) with base manifold g and structure group G. The mismatch
between Lie group exponential map and Riemannian exponential map implies that the horizontal vectors de-
termined by the Levi-Civita connection on TG are not anymore horizontal in the fiber bundle (i.e., they do
not reduce “exactly” as in Lie groups with biinvariant metric). The component which becomes vertical after
the reduction belongs to the vector space (in the semidirect decomposition of G) and gives an extra drift term
to the Euler-Poincaré equations with respect to the full Euler-Lagrange equations. These problems due to
the mismatch of the two exponential maps are amplified when computing the reduction of the second order
variational problem and several extra terms appear, which we compute explicitely.

As an application of the result, we consider a closely related optimal control problem for a (fully actuated)
simple mechanical control system [16]. The problem we consider here is the so-called “C2 dynamical inter-
polation problem” of [6, 10] in which the cost functional is the same “minimum acceleration” of the second
order variational problem. If the actuators are body fixed, then they form a left-invariant codistribution in
the cotangent bundle which fits in with (and motivates further) the reduction procedure. As a matter of fact,
one of the long term motivations behind this line of research is the generation of smooth trajectories for (fully
actuated) mechanical control systems composed of kinetic energy alone and that can be modeled as actuated
rigid bodies evolving on the Special Euclidean group SE(3), see [5, 21, 25, 26] for a general overview and [1]
for a particular application to Robotic Manipulation. For the particular case of SE(3), we carry out all the
calculations in detail.

The paper is organized as follows. Sections 2–5 contain known results presented in a uniform way: in
Sections 2, 4 and 5, we collect the background material on Riemannian geometry, on Riemannian geometry
on Lie groups and on the reduction procedure for the Hamilton principle respectively, while in Section 3 the
second order variational problem is formulated. Sections 6–8 contain the original contribution of the paper: the
reduction of the second order variational problem in Section 6; its application as an optimal control problem
for a mechanical control system in Section 7 and its explicit calculation for the SE(3) case in Section 8.
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2. Preliminaries of Riemannian geometry

The material in this section can be found in any book on Riemannian geometry, for example [9, 11, 15]. A
Riemannian metric on a smooth n-dimensional manifold M is a 2-tensor field I that is symmetric and positive
definite. I determines an inner product 〈 · , · 〉 on each tangent space TxM, x ∈ M. Call D(M) the space of
smooth sections of TM whose elements are smooth vector fields on M. An affine connection ∇ is a map taking
each pair of vector fields X and Y to another vector field ∇XY , called covariant derivative of Y along X , such
that for f ∈ C∞(M)

(1) ∇XY is R-bilinear in X and Y ;
(2) ∇fXY = f∇XY ;
(3) ∇X (fY ) = f∇XY + (LXf)Y

where LXf is the Lie derivative of f along X .
Given a curve γ(t) and a vector field X , the covariant derivative of X along γ is DX

dt = ∇γ̇(t)X. In coordinates
x = (x1, . . . , xn), if Xx = X i ∂

∂xi , Yx = Y i ∂
∂xi ∈ TxM, the covariant derivative is

(∇XY )k =
∂Y k

∂xi
X i + Γk

ijX
iY j (1)

where (∇XY )x = (∇XY )k ∂
∂xk and the n3 quantities Γk

ij are called Christoffel symbols and are given (at x) by

∇ ∂

∂xi

(
∂

∂xj

)
= Γk

ij
∂

∂xk . For a generic smooth curve γ(t) ∈ M the quantity ∇γ̇(t)γ̇(t) = D
dt

(
dγ
dt

)
represents the

acceleration. The length of the smooth curve γ is measured by the functional

�(γ) =
∫ tf

t0

〈γ̇(t), γ̇(t)〉 1
2 dt. (2)

A vector field Y is said parallel transported along γ if DY
dt = 0. In particular, if γ̇ is parallel along γ, then γ is

called a geodesic:

D

dt

(
dγ
dt

)
= ∇γ̇(t)γ̇(t) = 0. (3)

Geodesic motion corresponds to constant velocity and it gives an extremum of the length functional (2), as well
as of the kinetic energy integral

∫ tf

t0
〈γ̇(t), γ̇(t)〉dt. The condition for parallel transport of the vector Y along γ

in coordinates becomes dY k

dt + Γk
ij ẋ

iY j = 0 and the one for geodesic motion

ẍk + Γk
ij ẋ

iẋj = 0. (4)

As I is symmetric positive definite, it is compatible with the kinetic energy of a so-called simple mechanical
system [16] for which the geodesic equations (3) are normally called Euler-Lagrange equations.

The fundamental theorem of Riemannian geometry says that given I on a manifold M there exists a unique
affine connection ∇ on M such that

(1) ∇ is torsion free:

∇XY −∇Y X = [X, Y ]; (5)

(2) the parallel transport is an isometry

LZ〈X, Y 〉 = 〈∇ZX, Y 〉 + 〈X, ∇ZY 〉 (6)
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for all X, Y, Z ∈ D(M). Such a connection is called the Levi-Civita connection. From (6), we get the Koszul
formula:

〈Z, ∇XY 〉 =
1
2

(LY 〈X, Z〉 + LX〈Z, Y 〉 − LZ〈X, Y 〉 − 〈[Y, Z], X〉+
+〈[Z, X ], Y 〉 + 〈[X, Y ], Z〉) . (7)

A vector field X on a Riemannian manifold is called a Killing vector field (or an infinitesimal isometry) if the
local one-parameter subgroup of transformations generated by X via the exponential map of the connection in
a neighborhood of each point consists of isometries. We have the following equivalent characterizations:

Proposition 2.1 ([14], Prop. 3.2, Chap. VI). Given a vector field X on a Riemannian manifold with metric
connection (M, I), the following are equivalent:

(1) X is a Killing vector field;
(2) LXI = 0;
(3) the Killing equation holds:

LX〈Y, Z〉 = 〈[X, Y ], Z〉 + 〈Y, [X, Z]〉 ∀ Y, Z ∈ D(M) (8)

or equivalently
〈∇Y X, Z〉 + 〈Y, ∇ZX〉 = 0 ∀ Y, Z ∈ D(M). (9)

(4) the linear map AX given by AXY = −∇Y X, Y ∈ D(M) is skew symmetric with respect to 〈 · , · 〉
everywhere in M, i.e., 〈AXY, Z〉 + 〈Y, AXZ〉 = 0 ∀ Y, Z ∈ D(M).

The “measure” of the failure of the second covariant derivative to commute is expressed geometrically by the
notion of curvature, i.e., the map R : D(M) ×D(M) ×D(M) → D(M) defined by

R(X, Y )Z = ∇X∇Y Z −∇Y ∇XZ −∇[X, Y ]Z. (10)

In coordinates, the coefficient R l
ijk of R

(
∂

∂xi ,
∂

∂xj

)
∂

∂xk = R l
ijk

∂
∂xl are given by

R l
ijk =

(
∂Γl

jk

∂xi
− ∂Γl

ik

∂xj

)
+
(
Γm

jkΓl
im − Γm

ikΓl
jm

)
.

2.1. The variational principle of Hamilton

The geodesic equation (3) can be obtained from standard calculus of variation on the Riemannian manifold
(M, I), see for example [15]. Given the curve γ : [t0, tf ] → M, consider proper variations of γ i.e., the family
of fixed end-point curves G : (−ε, ε) × [t0, tf ] → M such that

G0(t) = G(s, t)|s=0 = γ(t) ∀ t ∈ [t0, tf ]

and
Gs(t0) = G(s, t0)|s=const = γ(t0), Gs(tf ) = G(s, tf )|s=const = γ(tf ) ∀ s ∈ (−ε, ε).

In the family of curves G, the curves with fixed s, Gs(t) = G(s, t)|s=const, are called main curves and those with
fixed t, G(t)(s) = G(s, t)|t=const, transverse curves. At infinitesimal level, we call a variation field δγ the tangent
vector with respect to a transverse variation taken for a fixed t ∈ [t0, tf ] and computed at s = 0:

δγ(t) =
d
ds

G(t)(s)
∣∣∣∣
s=0

.
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The variation field is proper if δγ(t0) = δγ(tf) = 0. If G is proper, then δγ is also proper. It is a standard
result that any C2 vector field along γ is the variation field of some variation of γ, and that if δγ is proper
so is the corresponding variation. This is proven via the Riemannian exponential map Exp associated with
the Levi-Civita connection ∇: the variation corresponding to a vector field V (t) along γ(t) will be of the type
G(s, t) = Exp (sV (t)). In fact, for a fixed t̄ ∈ [t0, tf ], if we have G(t̄)(s) = Exp (sV (t̄)) then

δγ(t̄) =
d
ds

Exp (sV (t̄))
∣∣∣∣
s=0

= V (t̄).

The variations G(, s) are continuous in (−ε, ε) × [t0, tf ] and smooth on rectangles (−ε, ε) × [tj , tj+1] for some
subdivision t0 � t1 � . . . � tk � tf . Another standard result is the symmetry lemma, that allows one to
exchange the order of the mixed second order derivatives along main and transverse curves. Calling

S(s, t) =
d
ds

G(t)(s) and T (s, t) =
d
dt

Gs(t) (11)

(so that S(0, t) = δγ(t) and T (0, t) = γ̇(t)), we have ∇ST = ∇TS. For a torsion-free connection, this implies,
from (5), that the vector fields T and S commute1 [T, S] = 0. Furthermore, from (6) we have

d
dt

〈S, T 〉 = LT 〈S, T 〉 = 〈∇TS, T 〉 + 〈S, ∇TT 〉· (12)

The Hamilton principle for the functional �(γ) gives the curve γ(t) for which � is stationary under proper
variations. Considering, for the sake of simplicity, in place of � the energy functional

E(γ) =
1
2

∫ tf

t0

〈γ̇, γ̇〉dt

we have

d
ds

E (Gs(t))
∣∣∣∣
s=0

=
1
2

d
ds

∫ tf

t0

〈T (s, t), T (s, t)〉dt
∣∣∣∣
s=0

=
∫ tf

t0

〈∇ST, T 〉dt
∣∣∣∣
s=0

=
∫ tf

t0

〈∇δγ γ̇, γ̇〉dt =
∫ tf

t0

〈∇γ̇δγ, γ̇〉dt by the symmetry lemma

=
∫ tf

t0

(
d
dt

〈δγ, γ̇〉 − 〈∇γ̇ γ̇, δγ〉
)

dt by (12)

= 〈δγ, γ̇〉|tf

t0
−
∫ tf

t0

〈∇γ̇ γ̇, δγ〉dt.

Since δγ(t0) = δγ(tf ) = 0, we obtain the first variation formula

d
ds

E (Gs(t))
∣∣∣∣
s=0

= 0 ⇐⇒ ∇γ̇(t)γ̇(t) = 0 (13)

which corresponds to the Euler-Lagrange equations for a Lagrangian equal to kinetic energy only.

1Here and in the following: when needed, operations involving T and S will be intended on rectangles of the type (−ε, ε) ×
[tj , tj+1].
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Considering only variations through geodesics, i.e., families G(s, t) such that all the main curves Gs(t) are
geodesics, a Jacobi field V is a vector field along γ satisfying the Jacobi equation

∇2
γ̇V +R(V, γ̇)γ̇ = 0. (14)

A vector field is a Jacobi field if and only if it is the variation field of some variations of γ among geodesics. The
Jacobi equation is essentially a linear system of second order differential equations in V along γ. If properly
initialized (its initial values being γ(t0), V (t0) and ∇γ̇V (t0)), then in the “variations through geodesics” case it
has a unique solution for all t.

2.2. Second order structures on a Riemannian manifold

Assume that the coordinate chart x1, . . . , xn is valid in a neighborhood U of x ∈ M. If v ∈ TxM is a tangent
vector, its coordinates description is naturally given by v = vi ∂

∂xi . If τ : TM → M is the tangent bundle
projection, (x1, . . . , xn, v1, . . . , vn) are called induced coordinates on τ−1(U) and they provide a basis of tangent
vectors of T(x,v)TM:

(
∂

∂x1 , . . . ,
∂

∂xn ,
∂

∂v1 , . . . ,
∂

∂vn

)
. By taking the tangent map τ∗ of the projection τ at the

point (x, v) of TM, τ∗ : T(x,v)TM → Tx=τ(v)M = τ−1(x), one can define the vertical subspace of the tangent
bundle at (x, v)

V(x,v) = ker τ∗ =
{
w ∈ T(x,v)TM s.t. τ∗(w) = 0 ∈ TxM

} ·
The vertical subspace is the subspace of T(x,v)TM whose vectors are tangent to the fiber τ−1(x) = TxM. Such
vectors are called vertical lifts and can be computed as follows: given the tangent vector u ∈ TxM the vertical
lift uv of u from Tτ(v)M to T(x,v)TM is

uv =
d
dt

(v + tu)
∣∣∣∣
t=0

.

For example
(

∂
∂xi

)v
=
(

∂
∂vi

) ·
The complementary subspace to V(x,v) in T(x,v)TM, in order to be identified, requires a notion of parallelism

to be defined, for example through the Levi-Civita connection ∇. The horizontal lift of u ∈ TxM to a tangent
vector on T(x,v)TM, in fact, is defined via the parallel transport of a vector field V ∈ D(M) such that V (0) = v

along a curve σ(t) ∈ M such that σ(0) = x and σ̇(0) = u (see [9], Chap. 13). In fact, calling σh = (σ, V ) the
horizontal lift of the curve σ through (x, v), the condition ∇u V |t=0 = 0 (in coordinates V̇ i + Γi

jkV
juk = 0)

provides an expression for the derivative of V at t = 0 and the horizontal lift uh of u from TxM to T(x,v)TM
can be defined as the tangent vector to σh at t = 0:

dσh

dt
= uh s.t. σh(0) = (σ(0), V (0)) .

If u = ui ∂
∂xi , its expression in coordinates

σ̇ = u

v̇i = −Γi
jkv

juk

or

uh = uk ∂

∂xk
− Γi

jkv
juk ∂

∂vi
· (15)

Since τ∗(uh) = u, horizontal lifts are complementary to the vertical subspace and form the horizontal subspace
H(x,v) of T(x,v)TM. Equivalently, H(x,v) can be defined in terms of sections of the tangent bundle, i.e., of
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smooth maps ς : M → TM such that τ(ς(x)) = x ∀x ∈ M. This is done by taking the push forward at
u ∈ Tτ(v)M of the sections that are parallel transported along the vector u

H(x,v) = {ς∗u s.t. ∇uς = 0} · (16)

For a curve γ ∈ M which is a geodesic, the horizontal lift (γ, γ̇) is also called the natural lift. In this case
u coincides with v and therefore the tangent vector to (γ, γ̇) at (x = γ(0), v = γ̇(0)) is the horizontal lift
vh ∈ T(x,v)TM of v. The vector field Γ on TM such that Γ(x,v) = vh is called the geodesic spray of the
connection. From (15), using the same coordinate notation as above for γ(t)

Γ(x,v) = vk ∂

∂xk
− Γi

jkv
jvk ∂

∂vi
· (17)

Γ is characterized by integral curves that are natural lifts of geodesics. Written as a system of first order
equations, the integral curves of Γ are (compare with (4))

ẋk = vk

v̇k = −Γk
ijv

ivj .

3. A second order variational problem

Following [6, 22, 26], the problem of constructing trajectories between given initial and final position and
velocity data on M can be formulated as an optimization problem on a Riemannian manifold, taking as cost
functional the square of the L2 norm of the acceleration:

J =
1
2

∫ tf

t0

〈∇γ̇ γ̇, ∇γ̇ γ̇〉dt. (18)

J has extremals that are generalizations to Riemannian manifolds of Euclidean cubic splines. Its first variation
gives the necessary conditions for curves to be extremals.

Theorem 3.1 [10, 22]. A necessary condition for a smooth curve γ(t) ∈ M, t ∈ [t0, tf ], such that γ(t0) = g0,

γ(tf ) = gf , dγ
dt

∣∣∣
t=t0

= v0 and dγ
dt

∣∣∣
t=tf

= vf , to be an extremum of J is that

∇γ̇∇γ̇∇γ̇ γ̇ +R(∇γ̇ γ̇, γ̇)γ̇ = 0. (19)

Proof. The proof has already appeared in the above mentioned references (see also [26]). It is repeated here
only for the sake of completeness. It follows the same arguments used in finding the critical curves of the energy
functional. Furthermore, it makes use of the following symmetry of the curvature tensor:

〈R(V, W )Z, U〉 = 〈R(U, Z)W, V 〉 (20)
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d
ds

J (Gs(t))
∣∣∣∣
s=0

=
∫ tf

t0

〈∇S∇TT, ∇TT 〉dt
∣∣∣∣
s=0

=
∫ tf

t0

〈∇T∇ST +R(S, T )T, ∇TT 〉dt
∣∣∣∣
s=0

by (10)

=
∫ tf

t0

〈∇γ̇∇δγ γ̇ +R(δγ, γ̇)γ̇, ∇γ̇ γ̇〉dt

=
∫ tf

t0

(
d
dt

〈∇δγ γ̇, ∇γ̇ γ̇〉 − 〈∇2
γ̇ γ̇, ∇δγ γ̇〉 + 〈R(δγ, γ̇)γ̇, ∇γ̇ γ̇〉

)
dt by (12)

= 〈∇δγ γ̇, ∇γ̇ γ̇〉|tf

t0
+

+
∫ tf

t0

(
− d

dt
〈∇2

γ̇ γ̇, δγ〉 + 〈∇3
γ̇ γ̇, δγ〉 + 〈R(δγ, γ̇)γ̇, ∇γ̇ γ̇〉

)
dt by (12)

=
(〈∇δγ γ̇, ∇γ̇ γ̇〉 − 〈∇2

γ̇ γ̇, δγ〉
)∣∣tf

t0
+
∫ tf

t0

(〈∇3
γ̇ γ̇, δγ〉 + 〈R(∇γ̇ γ̇, γ̇)γ̇, δγ〉) dt. by (20)

Since the variation is assumed proper, δγ and ∇δγ γ̇ both vanish at the end points and the result follows. �

4. Riemannian connection on a semidirect product of Lie groups

Consider a Lie group G and its left translation action Lg, g ∈ G. A vector field X on G is called left invariant
if for every g ∈ G we have (ThLg)Xh = Xgh ∀ h ∈ G. The set XL(G) of left invariant vectors on G is isomorphic
to the Lie algebra g = TeG. Call X the Lie algebra evaluated vector: X = Xe ∈ g.

The Lie group is made in a Riemannian manifold by defining an inner product on TeG = g and propagating
it on TG by left translation. This makes G automatically into a complete homogeneous Riemannian manifold.
As mentioned above, we are interested in the case in which the metric tensor I is compatible with the kinematic
energy of a simple mechanical system having G as configuration space, and therefore we restrict to symmetric
positive definite I. In this case, the geodesics of the Levi-Civita connection are the solutions of the Euler-
Lagrange equations for an invariant Lagrangian function corresponding to the kinetic energy.

The class of Lie groups we consider here has the structure of a semidirect product of a Lie group K and a
vector space V : G = K�V , see [13]. As a manifold, G is the Cartesian product of K and V , but the Lie group
multiplication includes the linear action of K on V , K → Aut(V ), so that the group multiplication looks like

(k1, u1) (k2, u2) = (k1k2, u1 + k1u2) k1, k2 ∈ K, u1, u2 ∈ V.

Consequently, the Lie algebra g of G includes the induced action k → End(V ) and is therefore the semidirect
sum of k and V with Lie bracket

[(K1, v1), (K2, v2)] = ([K1, K2], K1v2 − K2v1) K1, K2 ∈ k, v1, v2 ∈ V.

Obviously, V forms an ideal in g since it is abelian and therefore [K, v] ∈ V for all K ∈ k and v ∈ V .
We assume that V has no nonzero fixed points under K and that k has no nontrivial ideals.
Since K acts linearly on the vector space V , the whole Lie group G acts affinely on V :

(k, u1)u2 = ku2 + u1 ∀ (k, u1) ∈ G u2 ∈ V.

Hence, if Y = (K, v) ∈ g and u ∈ V , the infinitesimal generator of the one-parameter subgroup on V , φY (t)u =
etYu, is the affine vector field YG(u) = Ku+ v.

The Levi-Civita connection ∇, being defined from a left-invariant metric, retains the left-invariant property
along the coordinate directions of an invariant basis on TG. Calling Ai ∈ g the elements of an orthonormal



534 C. ALTAFINI

basis of left invariant vector fields:
∇gAi (gAj) = g∇AiAj = Γk

ijgAk (21)

for all g ∈ G. From (1), since the Γk
ij are not tensorial, left invariance of the connection has to be intended with

respect to affine transformations, i.e., if X is an infinitesimal affine transformation and φX the corresponding
local one-parameter group of local transformations in G generated by X (see Prop. 1.4, Chap. VI of [14]):
(φX)∗ (∇Y Z) = ∇(φX)∗(Y ) (φX)∗ (Z) ∀ Y, Z ∈ D(G). The infinitesimal generator above YG(u) is an example of
how one-parameter subgroups affinely generated emerge in a semidirect product.

A crucial point in the reduction program which will be carried out below is the understanding of the relation
between the operations of Lie and covariant derivative and the left invariance of the vector fields involved. For
example, in correspondence of X ∈ D(G) and Y, Z ∈ g, the equation (6) for the parallel transport simplifies to

LX〈Y, Z〉 = 〈∇XY, Z〉 + 〈Y, ∇XZ〉 = 0 (22)

since 〈Y, Z〉 is a constant. Hence if X is Killing the equation (8) becomes:

LX〈Y, Z〉 = 〈[X, Y], Z〉 + 〈Y, [X, Z]〉 = 0. (23)

A constant metric quadratic form like I, interpreted as an inertia tensor, is a map I : g → g∗ the dual of
g. Using ad∗

X, the dual of adX, defined as (adXZ;ψ) = (Z; ad∗
Xψ), X,Z ∈ g , ψ ∈ g∗ and ( · ; · ) indicating the

R-valued standard pairing between a Lie algebra and its dual, we get

〈adXZ,Y〉 = (adXZ; IY) = (Z; ad∗
XIY) = 〈Z, I−1ad∗

XIY〉· (24)

We need to adapt to the case of trivially reductive homogeneous spaces given by the left action of a Lie group
on itself the Theorem 3.3, Chapter X of [14]:

Theorem 4.1. Given (G, I), the Riemannian connection for I is expressed as

∇XY =
1
2
[X, Y] + U(X, Y) (25)

where U(X, Y) is the symmetric bilinear mapping g × g → g defined by

〈U(X, Y), Z〉 =
1
2

(〈adZX, Y〉 + 〈X, adZY〉) (26)

for all X, Y, Z ∈ g.

Applying the pairing (24) to U(X, Y) then we have:

Proposition 4.2. The left-invariant covariant derivative (21) can be expressed as

∇XY =
1
2
(
[X,Y] − I

−1 (ad∗
XIY + ad∗

YIX)
)
. (27)

Proof. Using (24) to extract Z on both terms on the right hand side expression (26) the result follows. �
A consequence is that the exponential map of the Lie group does not agree with the Riemannian exponential

map corresponding to I:

Proposition 4.3. The one-parameter subgroups of G do not coincide with the geodesics of I.

Proof. The one-parameter subgroups of a Lie group like G correspond to the autotransported curves through
the identity of an affine connection if and only if ∇XX = 0 for all the Lie algebra valued vectors X ([14], Prop. 2.9,
Chap. X). �
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In fact, using the language of [14], ∇XX = 0 means that the natural torsion-free and canonical connections
can be made to have the same geodesics. The coincidence holds only when the bilinear map U(X, Y) above is
compatible with the metric in the following way:

Proposition 4.4. Given a positive definite Riemannian metric on a group manifold G:

∇XX = 0 ∀ X ∈ g ⇐⇒ 〈U(X, Y), Z〉 = 0 ∀ X, Y, Z ∈ g.

Proof. The proof can be obtained from part 2 of Theorem 3.3 Chapter X in [14]. To see it directly use (25):
assuming the right hand side expression holds true, if ∇XX 
= 0 it has to be U(X, X) 
= 0 but then it is enough to
choose a suitable Z to obtain 〈U(X, Y), Z〉 
= 0 for some X, Y, Z therefore getting into contradiction. Similarly,
on the other direction, assume ∇XX = 0. If 〈U(X, Y), Z〉 
= 0 for some X, Y, Z then U(X, Y) 
= 0 and therefore
also U(X̃, X̃) 
= 0 for some X̃ because U is a symmetric bilinear map, which is again a contradiction. �

The condition 〈U(X, Y), Z〉 = 0 for all X, Y, Z ∈ g holds for the so-called naturally reductive homogeneous
spaces. This is the case for example of compact Lie groups with bi-invariant metric: its covariant derivative is
well-known to be simply ∇XY = 1

2 [X, Y].
It is perhaps worth to make a further comment on the relation between adX , left invariance and Killing

vectors. Since ∇XY = adXY −AXY , rewriting (6) as

LX〈Y, Z〉︸ ︷︷ ︸
(∗)

= 〈adXY, Z〉 + 〈Y, adXZ〉 + 〈AXY, Z〉 + 〈Y, AXZ〉︸ ︷︷ ︸
(∗∗)

(28)

we have:
(1) if Y, Z are left invariant, then (∗) = 0;
(2) if X is a Killing vector, (∗∗) = 0;
(3) if Y, Z are left invariant and X is a Killing vector (as in (23)), then adX is skew-symmetric with respect

to 〈 · , · 〉, i.e., the following equivalent quantities

〈adXY, Z〉 + 〈Y, adXZ〉 = 2〈U(Y, Z), X〉 = −〈I−1 (ad∗
Y IZ + ad∗

ZIY ) , X〉 (29)

are all vanishing.
A Lie group admits a bi-invariant metric if and only if adX is skew-symmetric with respect to 〈 · , · 〉 for all
X ∈ g ([20], Lem. 7.2). In our case, even considering left invariant vector fields, this is not the case as can be
deduced from the expression of U(Y, Z) calculated in Proposition 4.2.

Given X ∈ g, X = aiAi call Ẋ = ∂ai

∂t Ai. The local coordinate chart at γ ∈ G is given by left translating the
time-1 Lie group exponential map of A1, . . . , An: xi = γeAi (so that a basis of tangent vectors at γ is indeed

∂
∂xi = Bi = γAi). Such coordinates are not Riemannian normal coordinates since the Christoffel symbols are
nonnull. The covariant derivative of Y = γY, Y = biAi, in the direction of X = γX = γaiAi becomes:

∇XY = (∇XY )k
Bk =

(
ai ∂b

k

∂xi
+ aibjΓk

ij

)
Bk

=
((LXb

k
)

+ aibjΓk
ij

)
γAk = γ

(LXb
k
)
Ak + γaibj∇AiAj by (21)

= γ
((LXb

k
)
Ak + ∇XY

)
. (30)

Left invariance allows one to express vector fields on G and vector fields on TG by means of their pull-back
to g with respect to the same basis i.e., ∂

∂xi = γAi and ∂
∂vi = γAi, i = 1, . . . , n. The parallel transport of any

Y = γbiAi along γ gives rise to a horizontal lift of the curve γ̇ = γX to the tangent bundle curve γh = (γ, Y )
having as tangent vector

Xh =
dγh

dt
= γXh =

(
γakAk ; −γΓk

ija
ibjAk

)



536 C. ALTAFINI

(the first component living on TγG, the second on T(γ,γY)TG). For matrix groups, ∇γ̇Y = 0 corresponds to a
linear frame being parallel transported along γ, see (16). Calling Ẋ = ∂bi

∂t Ai, in general, from (25), the covariant
derivative is decomposed in the three parts:

γ

(
Ẏ +

1
2
[X, Y] + U(X, Y)

)
= 0.

Therefore a coordinate independent expression for Xh is

Xh =
(
γX ; −γ(

1
2
[X, Y] + U(X, Y))

)
(31)

whose integral curves are

γ̇ = γX

γẎ = −γ∇XY = −γ(
1
2
[X, Y] + U(X, Y)).

4.1. The fiber bundle picture for group symmetries

Consider the tangent bundle TG of the n-dimensional Lie group G. For each g ∈ G, the fiber τ−1(g) of this
tangent bundle is the tangent space at g, TgG, isomorphic to R

n. Left invariance gives to the tangent bundle
the structure of principal fiber bundle with structure group G and base manifold g, by using the isomorphism
between TgG and TeG = g that left (or right) translation implies. The three properties of a principal fiber
bundle (see [14], Ch. II, p. 50) are trivial to verify for TG(g, G). In fact, g is the quotient space of TG by
the equivalence relation induced by G, the projection π : TG → g is the left translation itself and the fibers
π−1(X), X ∈ g, are isomorphic to G since the left invariant action is free and transitive. Furthermore, by
considering left invariant vector fields, TG is made into a globally trivial fiber bundle via the map TgG→ G×g,
(g, vg) �→ (g, Lg−1∗vg). For a generic smooth manifold, there always exists a principal fiber bundle similar
to the one considered here and it is the frame bundle GLn(R) obtained by all possible linear changes of basis
of the tangent space (isomorphic to R

n) at any point of the manifold. In particular, the fiber bundle we are
considering is obtained by “reducing” GLn(R) to its subgroup G and is normally referred to as G-structure.

From (16), the condition ∇γ̇Y = 0 allows one to describe vectors fields of D(G) that are horizontal in the
tangent bundle with respect to ∇ and the lifting procedure described in Section 2.2. From Propositions 4.3 and
4.4, the compatibility condition between horizontal curves of I and horizontal curves of the fiber bundle structure
of G (i.e., the “G-structure” described above) is that ∇ invariant to left translations and that ∇XX = 0. In fact,
invariance plus ∇XX = 0 means that the parallel displacement can be carried out by left translations regardless
of the path to follow.

The appearing of a nonvanishing term U(X, Y) implies that the reduction process produces a “geometric
phase”, i.e., out of horizontal vector fields (in the tangent bundle) one also obtains a vertical vector field (in
the fiber bundle). From (25), this happens whenever ∇XY is not completely skew symmetric.

So for the horizontal lift (31) the T(γ,γY)TG term splits into the horizontal component (in the fiber bundle)
−γ 1

2 [X, Y] and the vertical one −γU(X, Y).

5. Reduction of Hamilton principle by group invariance

The variational principle as stated in Section 2.1 holds for generic Riemannian manifolds and does not take
advantage of the group structure of G. In particular, the left invariance properties of a Lie group allow to reduce
the infinitesimal variations from the tangent bundle to the corresponding Lie algebra: this subject is treated
extensively in the book [19]. Also the semidirect product structure of G can be exploited explicitly in what is
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called reduction by stages, especially when V has nonzero fixed points under K and the corresponding isotropy
subgroup is of particular interest, like in the heavy top case [8].

Left invariance allows one to express the vector field γ̇ ∈ TG in terms of its pullback to the identity:
Lγ

∗γ̇ = γ−1γ̇ ∈ g. Consider proper variations G(s, t) of γ(t) with tangent bundle infinitesimal variations
S(s, t) = d

dsG(t)(s) and T (s, t) = d
dtGs(t), along the main and transverse curves respectively. Call T(t) and S(t)

the g-valued infinitesimal variations corresponding to γ̇ and δγ. Since G0(t) = γ(t), they are uniquely defined
by the two relations:

T (0, t) = γ̇(t) = G0(t)T(t) = γ(t)T(t)

S(0, t) = δγ(t) = G0(t)S(t) = γ(t)S(t). (32)

We need to compute the covariant derivatives ∇δγ γ̇ and ∇γ̇δγ in terms of T and S. Considering the basis
A1, . . . , An of g, in coordinates T(t) = αi(t)Ai and S(t) = βi(t)Ai. Call Ṫ = ∂αi

∂t Ai and T′ = ∂αi

∂s Ai and
similarly for S. The coordinate functions αi and βi are defined along the family of curves G. In particular, from
(11), along the main and transverse curves Gs(t) and G(t)(s) the Lie derivatives LT · and LS · becomes derivatives
in t and s respectively. Therefore Lγ̇α

k = ∂αk

∂t and Lδγα
k = ∂αk

∂s and similarly for βk. Therefore (30) becomes
the following:

Proposition 5.1. Consider the Lie group G with left-invariant Riemannian connection ∇. For the proper
variations G(s, t), the covariant derivatives ∇γ̇δγ and ∇δγ γ̇ have the following left-invariant expressions:

∇γ̇δγ = γ
(
Ṡ + ∇TS

)
∇δγ γ̇ = γ (T′ + ∇ST) . (33)

Proof.

∇γ̇δγ = ∇γT(t)γS(t) = ∇αi(t)Bi
βj(t)Bj

=
(Lγ̇β

j
)
Bj + αiβj∇BiBj =

∂βj

∂t
Bj + γαiβj∇AiAj by (21)

= γ
∂βj

∂t
Aj +

1
2
γαiβj

(
[Ai, Aj ] − I

−1ad∗
Ai

IAj − I
−1ad∗

Aj
IAi

)
= γ

∂βj

∂t
Aj +

1
2
γ
(
[T, S] − I

−1ad∗
TIS − I

−1ad∗
SIT
)

= γ
(
Ṡ + ∇TS

)
and similarly

∇δγ γ̇ = ∇γS(t)γT(t) = γ
∂αi

∂s
Ai +

1
2
γ
(
[S,T] − I

−1ad∗
SIT − I

−1ad∗
TIS
)

= γ (T′ + ∇ST) . �

The presence of two terms in both the covariant derivatives (33) is due to the affine nature of the connection.
The terms T′ or Ṡ appear when the covariant derivative is calculated out of the identity of the group. Here and
in the following the covariant derivatives involving T or S are always calculated in the identity element of the
group.

Lemma 5.2 (symmetry lemma for reduction by group invariance in the Riemannian case). In the case of group
manifold with Levi-Civita connection, the Lie algebra valued mixed derivatives are related by

T′ = Ṡ (34)
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where T and S are respectively the Lie algebra valued infinitesimal variations for γ̇ and δγ defined in (32).
Furthermore

∇TS = ∇ST. (35)

Proof. From ∇γ̇δγ = ∇δγ γ̇ and the expression (33) for the two covariant derivatives:

T′ = Ṡ + [T, S]. (36)

But using left invariance: [T, S] = γ−1[γT, γS] = γ−1[γ̇, δγ] = 0 by the symmetry lemma. Consequently also
(35) follows. �

Notice that this is true only because we have chosen a torsion-free connection. In general when a different
connection is chosen on the Lie group (for example the (+) or (−) canonical connections of Cartan [7]), the
“covariant infinitesimal variations” for the reduced principle have the more general expression (36), see [18] and
references therein.

In general, it is not possible to conclude on T and S being Killing vector fields without knowing the metric
tensor I. By definition of Levi-Civita connection, the parallel transport along γ leaves the inner product
invariant. An equation like (22), corresponding to parallel transport of the inner product along γ for left
invariant vector fields, splits after the reduction into two types of Lie algebra valued infinitesimal covariant
variations, those indicated by “ ˙ “ (or “ ′ “ ) and those by the covariant derivative symbol. For Y, Z ∈ g along
the curve γ of tangent vector γ̇ = γT, abusing notation one could write:

d
dt

〈Y, Z〉 = ˙〈Y, Z〉 + ∇T〈Y, Z〉 = 0

where ˙〈Y, Z〉 = 〈Ẏ, Z〉 + 〈Y, Ż〉 and ∇T〈Y, Z〉 = 〈∇TY, Z〉 + 〈Y, ∇TZ〉 are, respectively, the affine part and the
linear part of the parallel transported inner product along γ. This complicates the expression for the reduced
equations as none of the infinitesimal variations alone is Killing. However, the following proposition shows that
each of them respects (22).

Proposition 5.3. Given T, Y, Z ∈ g, the equation (22) for parallel transport of the inner product along a curve
γ ∈ G with tangent vector T = γT splits into the two relations:

〈Ẏ, Z〉 = −〈Y, Ż〉 (37)
〈∇TY, Z〉 = −〈Y, ∇TZ〉. (38)

Proof. Straightforward calculation from (12):

d
dt

〈γY, γZ〉 = 〈∇γTγY, γZ〉 + 〈γY, ∇γTγZ〉

= 〈γ
(
Ẏ + ∇TY

)
, γZ〉 + 〈γY, γ

(
Ż + ∇TZ

)
〉

i.e.,

d
dt

〈Y, Z〉 = 〈Ẏ, Z〉 + 〈Y, Ż〉 + 〈∇TY, Z〉 + 〈Y, ∇TZ〉
0 = 〈Ẏ, Z〉 + 〈Y, Ż〉

from left invariance of the metric and (22). �
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Corollary 5.4. For the family of variations G(s, t) of γ, with the notation above,

〈Ṡ, T〉 = −〈S, Ṫ〉 (39)
〈∇TS, T〉 = −〈∇TT, S〉 (40)
〈∇SS, T〉 = −〈S, ∇ST〉· (41)

When the homogeneous space is naturally reductive, ∇TT = 0 implies in (40) that also 〈∇TS, T〉 = 0 and
therefore the situation is much simpler.

Remark 5.5. ∇TS = ∇ST is symmetric and belongs to V . In fact, from (27) and [T, S] = 0

∇TS = ∇ST = U(S, T) = −1
2

I
−1 (ad∗

SIT + ad∗
TIS) .

Another consequence of [T, S] = 0 is the following:

Remark 5.6. For the reduced infinitesimal variations of G(s, t), the covariant derivatives are vertical in the
fiber bundle.

From the reduced symmetry lemma we obtain the Euler-Poincaré equations. The result is well-known
(see [19]) although it is normally not obtained using exclusively the tools from Riemannian geometry as we
do here.

Theorem 5.7 (reduced Hamilton principle). For (G, I), the critical curves of the left invariant energy functional
E = 1

2

∫ tf

t0
〈T, T〉dt, where T = γ−1(t)γ̇(t), in correspondence of proper variations G(s, t) (and of their “covariant

infinitesimal variations”), are given by the Euler-Poincaré equations

Ṫ = −∇TT = I
−1ad∗

TIT. (42)

Proof. The proof can be obtained directly by inserting into the first variation formula (13) the value of the
covariant derivative (33). Likewise, going through the reduction of the functional E :

d
ds

E (Gs(t))
∣∣∣∣
s=0

=
∫ tf

t0

〈∇ST, T 〉dt
∣∣∣∣
s=0

=
∫ tf

t0

〈T′ + ∇ST,T〉dt

= −
∫ tf

t0

〈Ṫ, S〉dt−
∫ tf

t0

〈∇TT, S〉dt by (39) and (40)

= −
∫ tf

t0

〈Ṫ + ∇TT, S〉dt.

�

The geodesic spray whose integral curves are the Euler-Poincaré equations (42) is

Γ = γG = γ (T ; −U(T, T)) .

The component in T(γ,γT)TG is purely symmetric and therefore it is vertical in the fiber bundle. In fact, it
disappears on naturally reductive homogeneous spaces, where the reduced Euler-Lagrange equations (42) have
only a left hand side: γ̇ = γT, Ṫ = 0.

6. Reduction of the second order variational problem

For G = K�V , we want to compute the reduction by group symmetry of the necessary condition (19) of
Theorem 3.1.
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When reducing higher order covariant derivatives, the two components of the covariant derivative mentioned
in Section 5 mix up. For example, the “ ˙” part, applied to ∇XY results into:

˙(∇XY) =
∂aibj

∂t
∇AiAj =

(
∂ai

∂t
bj + ai ∂b

j

∂t

)
∇AiAj = ∇ẊY + ∇XẎ. (43)

A few useful relations are:

Proposition 6.1. For the family of variations G(s, t) on (G, I):

∇δγ∇γ̇ γ̇ = γ
(
(Ṫ)′ + ∇SṪ + ∇ṠT + ∇T Ṡ + ∇S∇TT

)
(44)

∇γ̇∇δγ γ̇ = γ
(

˙(T′) + ∇SṪ + ∇ṠT + ∇T Ṡ + ∇T∇ST
)

(45)

∇2
γ̇ γ̇ = γ

(
T̈ + 2∇TṪ + ∇ṪT + ∇2

TT
)

(46)

∇3
γ̇ γ̇ = γ

(...
T + 3∇TT̈ + 3∇ṪṪ + ∇T̈T + 3∇2

TṪ+ (47)

+2∇T∇ṪT + ∇Ṫ∇TT + ∇3
TT
)

R (S, T)T = ∇S∇TT −∇T∇ST = [∇S, ∇T ]T. (48)

Proof. We only prove (44), the other calculations being similar.

∇δγ∇γ̇ γ̇ = ∇δγ

(
γ
(
Ṫ + ∇TT

))
= Lδγ

(
∂αj

∂t

)
γAj + βi ∂α

j

∂t
γ∇AiAj + Lδγ

(
αiαj

)∇AiAj + γαiαjβk∇Ak
∇AiAj

= γ

(
∂2αj

∂s∂t
Aj +

(
βi ∂α

j

∂t
+
∂αi

∂t
αj + αi ∂α

j

∂t

)
∇AiAj + βk∇Ak

∇TT

)
= γ

(
(Ṫ)′ + ∇SṪ + ∇ṠT + ∇T Ṡ + ∇S∇TT

)
.

Concerning (48), from (10) with [δγ, γ̇] = [S, T] = 0, from (44) and (45)

R(δγ, γ̇)γ̇ = ∇δγ∇γ̇ γ̇ −∇γ̇∇δγ γ̇

R (γS, γT)γT = γ
(
(Ṫ)′ + ∇SṪ + ∇ṠT + ∇T Ṡ + ∇S∇TT−

− ˙(T′) −∇SṪ −∇ṠT −∇T Ṡ −∇T∇ST
)
.

Since R is a tensor it is left invariant; furthermore, the order of the mixed second derivative with respect to s
and t commutes also in g

˙(T′) =
∂2αj

∂s∂t
Aj =

∂2αj

∂t∂s
Aj = (Ṫ)′. (49)

Hence, the result. �
The left invariance of the curvature tensor R means that the curvature term of (19) is:

R(∇γ̇ γ̇, γ̇)γ̇ = R(Ṫ + ∇TT, T)γT = γ
(
R(Ṫ, T)T +R(∇TT, T)T

)
. (50)

The expressions (47) and (50) allows one to write down directly the reduced expression for (19) in terms of
left invariant vector fields. However, it is quite instructive to see the genesis of this formula, going through the
reduction of the cost functional J . We compute first the following equalities:
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Proposition 6.2. For the family of variations G(s, t) on (G, I):

〈(Ṫ)′, Ṫ〉 = 〈S, ...
T 〉 (51)

〈(Ṫ)′, ∇TT〉 = 〈S, ∇T̈T + 2∇ṪṪ + ∇TT̈〉 (52)

〈∇S∇TT, Ṫ〉 = 〈S, ∇2
T Ṫ +R(Ṫ, T)T〉 (53)

〈∇S∇TT, ∇TT〉 = 〈S, ∇3
TT +R(∇TT, T)T〉 (54)

〈∇T Ṡ, Ṫ〉 = 〈S, ∇Ṫ Ṫ + ∇TT̈〉 (55)

〈∇T Ṡ, ∇TT〉 = 〈S, ∇Ṫ∇TT + ∇T∇ṪT + ∇2
TṪ〉 (56)

〈∇SṪ, Ṫ〉 = 0 (57)

〈∇SṪ, ∇TT〉 = −〈Ṫ, ∇S∇TT〉 (58)

〈∇ṠT, Ṫ〉 = 〈S, ∇T T̈〉 (59)

〈∇ṠT, ∇TT〉 = 〈S, ∇T∇ṪT + 2∇2
TṪ +R(Ṫ, T)T〉. (60)

Proof. All the expressions are based on the equations (37) and (38). We see some of the significant calculations:
• Equation (51):

〈(Ṫ)′, Ṫ〉 = 〈 ˙(T′), Ṫ〉 = −〈T′, T̈〉 = −〈Ṡ, T̈〉 = 〈S, ...
T 〉 by (49);

• Equation (52):

〈(Ṫ)′, ∇TT〉 = 〈S, ¨(∇TT)〉 = 〈S, ∂
2αiαj

∂t2
∇AiAj〉

= 〈S,
(
∂2αi

∂t2
αj + 2

∂αi

∂t

∂αj

∂t
+ αi ∂

2αj

∂t2

)
∇AiAj〉

= 〈S, ∇T̈T + 2∇ṪṪ + ∇T T̈〉;

• Equation (53):

〈∇S∇TT, Ṫ〉 = 〈∇T∇ST +R(S, T)T, Ṫ〉
= −〈∇ST, ∇TṪ〉 + 〈R(S, T)T, Ṫ〉 by (48)

= −〈∇TS, ∇TṪ〉 + 〈R(Ṫ, T)T, S〉 by (35) and (20)

= 〈S, ∇2
TṪ〉 + 〈R(Ṫ, T)T, S〉;

• Equation (59):

〈∇ṠT, Ṫ〉 = 〈 ˙(∇ST) −∇SṪ, Ṫ〉 = −〈∇ST, T̈〉 − 〈∇SṪ, Ṫ〉 by (43)

= −〈∇TS, T̈〉 = 〈S, ∇TT̈〉 by (35) and (57).

The other relations are obtained using similar arguments. �

Theorem 6.3. A necessary condition for a smooth curve γ(t) ∈ G of tangent vector field T ∈ g and interpolating
γ(t0) = g0, γ(tf ) = gf , V0 = g−1

0 v0, Vf = g−1
f vf to be an extremum of J is that

...
T + 3∇TT̈ + 3∇ṪṪ + ∇T̈T + 3∇2

TṪ + 2∇T∇ṪT + ∇Ṫ∇TT + ∇3
TT +R(Ṫ, T)T +R(∇TT, T)T = 0. (61)
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Proof. From (47) and (50) we have already (61) by brute force. To see it directly, expand the expression for J
and use the computations of Proposition 6.2.

d
ds

J (Gs(t))
∣∣∣∣
s=0

=
∫ tf

t0

〈∇δγ∇γ̇ γ̇, ∇γ̇ γ̇〉dt

=
∫ tf

t0

〈γ
(
(Ṫ)′ + ∇SṪ + ∇ṠT + ∇T Ṡ + ∇S∇TT

)
, γ
(
Ṫ + ∇TT

)
〉dt by (44).

The ten inner products under the sign of integral are given in (51)–(60). The result follows by considering
extremals of J i.e., d

dsJ (Gs(t))
∣∣
s=0

= 0. �

Notice that, except for pulling back the velocities v0 and vf to g, the boundary data on the curve itself g0,
gf are not anymore entering into the problem, just like in the Euler-Poincaré equations.

7. Application to optimal control of mechanical systems

Recall that interpreting I as the quadratic form of a kinetic energy, equation (3) corresponds to the Euler-
Lagrange equation of a mechanical system having Lagrangian equal to kinetic energy. In this section we consider
a forced Euler-Lagrange equation and use the material of the previous sections to study the reduction of an
optimal control problem known in the literature as the “C2 dynamical interpolation problem”, see [10].

7.1. Simple mechanical control systems

If we add a forcing term to (3), we obtain a so-called simple mechanical control system [16] (without potential):

∇γ̇ γ̇ = F (γ) (62)

where F = (F1, . . . , Fn) is the control input distribution of M. The vector fields Fi = Fi(γ) are obtained by
lowering the indices of the covectors F̃i physically representing the forces or torques applied to the system:
Fi = I

−1F̃i. Assuming F1, . . . , Fn to be linearly independent on M, then we have a fully actuated mechanical
system. The system of first order differential equations corresponding to (62) was shown in [17] to be given
by the second order vector field on TM obtained from the geodesic spray plus the vertical lifts of the input
distribution:

Γ + F v (63)
having integral curves

ẋk = vk

v̇k = −Γk
ijv

ivj + F k.

From a control theory point of view, Γ is the drift of the system of first order differential equations and
F v =

(
0 ∂

∂xk + F k ∂
∂vk

)
is the corresponding input vector field.

7.2. A C2 dynamical interpolation problem

The presence of control inputs allows one to force the mechanical system along any suitable (feasible) tra-
jectory, not necessarily those satisfying Hamilton principle of least action but rather a user or task defined cost
functional. The condition (19) replaces the geodesic condition (3) in the sense that it superimposes a minimum
acceleration motion to the “natural” geodesic motion associated with I.

The resulting trajectory is C∞ on M and furthermore, by matching initial conditions of a new interval
with the terminal data of the previous one, C1 piecewise smooth trajectories on M can be obtained. These
are particularly useful for second order control systems as they represent the simplest curves feasible under
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the ordinary assumption of piecewise continuous, measurable control inputs, generalization to a Riemannian
manifold of Euclidean cubic splines. Equation (62) provides the expression for the control corresponding to a
solution of (19). The full actuation of the mechanical control systems is a sufficient condition for free feasibility
of the trajectories of (19).

If we restrict the class of control inputs to continuous piecewise smooth functions, then we have the above
mentioned C2 dynamical interpolation problem defined in [10]. A necessary condition for it can be obtained
from Theorem 3.1 by choosing different boundary conditions: g0, gf , v0 and F (t0) = ∇γ̇ γ̇|γ=g0, γ̇=v0

. This last
condition replaces the terminal boundary data vf of Theorem 3.1. Using (62) to insert the control input F into
(19), one obtains an equation that looks exactly like the Jacobi equation for F . However, the curve γ in this
case is not a geodesic, instead it has to be computed together with the control action. Hence, what is used in
the proposition below is not the Jacobi equation for ∇. If we assume that the unknown variables are γ̇ and F ,
then the equivalent of Theorem 3.1 is:

Proposition 7.1. If the control input is assumed to be in the class of continuous functions over M, then
the extremals of the cost function J can be obtained from the solutions of the following system of differential
equations in the unknowns γ̇ and F :

∇2
γ̇F +R(F, γ̇)γ̇ = 0 subject to ∇γ̇ γ̇ = F (64)

with the boundary conditions γ(t0) = g0, γ̇(t0) = v0, F (t0) = ∇γ̇ γ̇|γ=g0, γ̇=v0
and γ(tf ) = gf .

Indeed the solution γ̇ of the problem is not a constant velocity vector (i.e., the tangent vector of a geodesic
curve). The trajectory γ itself, if needed, can be recovered by integration of γ̇ from the initial condition g0.

From (62), instead of the acceleration, the cost functional (18) could be formulated in terms of the input
covector forces without any substantial modification: J̃ = 1

2

∫ T

0
〈F̃ , F̃ 〉dt = 1

2

∫ T

0
〈I∇γ̇ γ̇, I∇γ̇ γ̇〉dt.

7.3. Reduction of the optimal control problem

If the mechanical system has body fixed actuators, the input vector fields are already left invariant F = γF.
Therefore the reduction process under investigation in the previous sections comes as natural simplification also
for the control problems. For example, the forced second order vector field (63) reduces to

Γ + F v = γ (T ; −U(T, T) + F) .

Assume that the left invariant input distribution F has the coordinate expression F = f iAi.

Proposition 7.2. The covariant derivatives of the input vector distribution F are:

∇γ̇γF = ∇2
γ̇ γ̇ = γ

(
Ḟ + ∇TF

)
(65)

∇2
γ̇γF = ∇3

γ̇ γ̇ = γ
(
F̈ + 2∇TḞ + ∇ṪF + ∇2

TF
)
. (66)

Proof. Equation (66) is shown in the same way as (33). For (66), it can be obtained from computations of the
same type as in Proposition 6.1.

∇2
γ̇γF = ∇γ̇

(
γ
(
Ḟ + ∇TF

))
= Lγ̇

(
∂f j

∂t

)
γAj + Lγ̇

(
αif j

)∇AiAj + αi ∂f
j

∂t
γ∇AiAj + γαkαif j∇Ak

∇AiAj

= γ

(
∂2f j

∂t2
Aj +

(
αi ∂f

j

∂t
+
∂αi

∂t
f j + αi ∂f

j

∂t

)
∇AiAj + αkαif j∇Ak

∇AiAj

)
= γ

(
T̈ + ∇ṪF + 2∇TḞ + ∇2

TF
)
. �
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Therefore, the expression for the control F is obtained from (64) and the C2 dynamic interpolation problem
becomes:

Proposition 7.3. Under the same assumptions of Proposition 7.1, the left invariant control input F that
generates a smooth trajectory which is an extremal of J is given by the solution of

F̈ + 2∇TḞ + ∇ṪF + ∇2
TF +R(F, T)T = 0 subject to Ṫ + ∇TT = F (67)

from the boundary conditions γ(t0) = g0, γ(tf ) = gf , V0 = g−1
0 v0 and F0 = g−1

0 F (t0).

Proof. Since R is a left invariant tensor, this is the straightforward substitution in (64) of equation (66). �

8. Example: SE(3)

The Special Euclidean Group SE(3) = SO(3)�R
3 is the Lie group of rigid body transformations in R

3, i.e.,
the group of isometric rotations and translations. It is of widespread use in Robotics, see the books [21, 25],
and in the study of mechanical control systems, see [1, 4, 5, 16] for a few examples.

Using homogeneous coordinates,

SE(3) =
{
g ∈ Gl4(R), g =

[
R p
0 1

]
s.t. R ∈ SO(3) and p ∈ R

3

}
with SO(3) =

{
R ∈ Gl3(R) | RRT = I3 and detR = +1

}
. The Lie algebra of SE(3) is

se(3) =
{

X ∈M4(R), s.t. X =
[
ω̂X vX

0 0

]
with ω̂X ∈ so(3) and vX ∈ R

3

}
with so(3) =

{
ω̂X ∈M3(R) s.t. ω̂T

X = −ω̂X

}
and ·̂ : R

3 → so(3) such that ω̂Xσ = ωX × σ ∀ σ ∈ R
3.

The Lie group exponential map gives the one-parameter curves corresponding to constant generators in se(3)
i.e., to the orbits of (complete) constant vector fields and their left/right translations.

For SO(3) and SE(3), the Lie group exponential map corresponds to the ordinary matrix exponential and
closed form formulae are available. In SO(3) one can use the so-called Rodriguez’ formula:

eω̂X = I +
sin ‖ωX‖
‖ωX‖ ω̂X +

1 − cos ‖ωX‖
‖ωX‖2

ω̂2
X

while in SE(3):

e : se(3) → SE(3) (68)

X =
[
ω̂X vX

03×1 0

]
�→
[

eω̂X A(ω̂X)vX

0 1

]
where

A(ω̂X) = I +
1 − cos ‖ωX‖

‖ωX‖2
ω̂X +

‖ωX‖ − sin ‖ωX‖
‖ωX‖3

ω̂2
X.

In SE(3), the exponential map being onto means that every two elements can be connected by a one-parameter
curve called screw. Its (normalized) constant infinitesimal generator is called twist and corresponds to the axis
of the rigid body rototranslation.

The derivation of the adjoint map Adg(Y) = Lg∗Rg−1∗Y = gYg−1 with respect to g = etX, X ∈ se(3), at the
identity of the group

adX =
d
dt

(AdetX)
∣∣∣∣
t=0
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gives the Lie bracket adX(Y) = [X, Y] = X Y − YX. The linear representations of the operators Adg(·) and
adX(·) is:

Adg =
[
R 0
p̂R R

]
, adX =

[
ω̂X 0
v̂X ω̂X

]
. (69)

The natural affine connection that can be associated to a biinvariant nondegenerate symmetric (0, 2)-tensor is
called the (0)-connection and is studied by Cartan in [7]. However, since the corresponding quadratic form is
nondegenerate but not positive definite, it is not compatible with the standard definition of kinetic energy of a
rigid body in G because of the negative energy that can be associated along certain trajectories. Therefore we
neglect it and concentrate instead on a positive definite I. Because of the lack of bi-invariance of I, its natural
connection is not among the “canonical” ones studied in the classical literature [7,12], but rather it can be seen
as the torsion-free metric connection of a trivially reductive homogeneous space with respect to the left action
on itself and studied accordingly (see for example [23], Sect. 13).

For the metric structure we are adopting, the Riemannian exponential map Exp differs from the Lie group
exponential map (68). In fact, disregarding the action SO(3) → End(R3) means dropping the A(ω̂) term:

Exp : se(3) → SE(3) (70)

X =
[
ω̂X vX

03×1 0

]
�→
[

eω̂X vX

0 1

]
.

This corresponds to the exponential map for the direct product of Lie groups SO(3) ⊗ R
3 which pairs the

geodesics of SO(3) and the straight lines of R
3.

From (69), the expressions for the coadjoint and infinitesimal coadjoint actions Ad∗
g−1 and ad∗

X are:

Ad∗
g−1 = (Adg)

−T =
[
R p̂R
0 R

]
,

ad∗
X = − d

dt
Ad∗

e−tX

∣∣∣∣
t=0

= − (adX)T =
[−ω̂X −v̂X

0 −ω̂X

]
.

In (27), when we compute the covariant derivative of Y along X, due to the semidirect action of SO(3) on R
3,

the terms ad∗
XIY are nonnull, even when the metric tensor is diagonal, I = I. In this case I can be pulled out

and (with abuse of notation)

ad∗
XIY = ad∗

XY =
[

0
−ω̂XvY

]
=
[

0
vY × ωX

]

= 0.

In particular then

U(X, Y) = −1
2

(ad∗
XY + ad∗

YX) =
1
2

[
0

ω̂XvY + ω̂YvX

]
∈ R

3. (71)

Since adXY =
[

ω̂XωY

ω̂XvY − ω̂YvX

]
, the covariant derivative is

∇XY =
1
2
adXY + U(X, Y) =

[
1
2 ω̂XωY

ω̂XvY

]
. (72)

The linear map AY of Proposition 2.1 is

AY =
[

1
2 ω̂Y 0
v̂Y 0

]
which is skew-symmetric with respect to 〈 · , · 〉 for all X if and only if Y ∈ so(3). Therefore Y 
∈so(3) is not an

infinitesimal isometry for I = I i.e., all left invariant Killing vector fields of (SE(3), I) are of the form Y =
[
ωY

0

]
.
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In fact, Y ∈ so(3) implies that eY = Exp(Y) and therefore one parameter subgroups generated by Y coincide with
geodesics of I. Notice from (71) that this does not imply U = 0, only that for all X, Z ∈ se(3) the contribution
of U(X,Z) ∈ R

3 along Y is zero:

〈adYX, Z〉 + 〈X, adYZ〉 = 2〈U(X, Z), Y〉 = 0.

However, this holds true only in virtue of the choice of a diagonal metric tensor.
If X = Y one finds the usual Euler equations for rigid bodies (see (42))

Ẋ =
[
ω̇X

v̇X

]
= −∇XX =

[
0

−ω̂XvX

]

with geodesic spray

Γ = γXh = (γX ; −γU(X, X)) =
(
γ

[
ωX

vX

]
; γ
[

0
ω̂XvX

])
.

Similarly to (72), we have

∇ẊY =
[

1
2
̂̇ωXωŶ̇ωXvY

]
, ∇XẎ =

[
1
2 ω̂Xω̇Y

ω̂Xv̇Y

]
, ∇X∇YZ =

1
4

[
ω̂Xω̂YωZ

4ω̂Xω̂YvZ

]
(73)

and

∇W∇X∇YZ =
1
8

[
ω̂Wω̂Xω̂YωZ

8ω̂Wω̂Xω̂YvZ

]
.

From (10), using some vector algebra with the convention that a× b× c = a× (b× c), after a few calculations,
the values of the curvature tensor are given by2

R(X,Y)Z =
[
(ωX × ωY) × ωZ

r2

]

where r2 ∈ R
3 is

r2 =
3
4
ωX × ωY × vZ +

3
4
ωY × ωX × vZ +

1
4
(ωX × ωY) × vZ

+
1
4
ωX × ωZ × vY +

3
4
ωZ × ωX × vY − 1

4
(ωX × ωZ) × vY

+
1
4
ωY × ωZ × vX − 3

4
ωZ × ωY × vX − 1

4
(ωY × ωZ) × vX.

2Warning: in [26] a wrong expression is reported.
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In our case, since U(X,Y) is null if X,Y are both in so(3) or in R
3, the values of the curvature are given by:

• if X,Y ∈ so(3)

R(X,Y)Z = −1
4
[[X,Y],Z]

= −1
4

[
(ωX × ωY) × ωZ

(ωX × ωY) × vZ − ωZ × ωX × vY + ωZ × ωY × vX

]
;

• if X,Y ∈ R
3 R = 0;

• if X ∈ so(3), Y ∈ R
3

R(X,Y)Z =
[

0
1
4ωX × ωZ × vY + 3

4ωZ × ωX × vY − 1
4 (ωX × ωZ) × vY

]
.

Notice, furthermore, that it is easy to compute the sectional curvatures of (SE(3), I)

K(X,Y) =
〈R(X,Y)X,Y〉

|X|2|Y|2 − 〈X,Y〉2 ·

In fact, from [2,3], the general expression for the (non-normalized) two-plane curvature for a semidirect product
is given by:

〈R(X,Y)X,Y〉 = −3
4
〈[X,Y], [X,Y]〉 − 1

2
〈[X, [X,Y]],Y〉 − 1

2
〈[Y, [Y,X]],X〉

+ 〈U(X,Y), U(X,Y)〉 − 〈U(X,X), U(Y,Y)〉

therefore
• if X,Y ∈ so(3)

〈R(X,Y)X,Y〉 =
1
4
〈[X,Y], [X,Y]〉 =

1
4
|ωX × ωY|2 ;

• if X,Y ∈ R
3 R ≡ 0;

• if X ∈ so(3), Y ∈ R
3 then 〈[X, [X,Y]],Y〉 = 〈[Y, [Y,X]],X〉 = 0 and

〈R(X,Y)X,Y〉 = −3
4
〈adXY, adXY〉 + 〈U(X,Y), U(X,Y)〉 = −1

2
|ωX × vY|2 .

If we consider the curve γ of g-valued tangent vector field T =
[
ωT

vT

]
, then the necessary condition (61) corre-

sponds to the system:

...
ωT +

3
2
ωT × ω̈T +

1
2
ωT × ωT × ω̇T +

1
2
ωT × ω̇T × ωT + (ω̇T × ωT) × ωT = 0

...
v T + 3ωT × v̈T + 3ω̇T × v̇T + ω̈T × vT +

5
2
ωT × ωT × v̇T+

+
7
2
ωT × ω̇T × vT + 2ω̇T × ωT × vT +

1
2
ωT × ωT × ωT × vT = 0.

Substituting Ṫ + ∇TT with the control input F =
[
ωF

vF

]
of the mechanical system (62), equation (67) becomes

the system of ordinary differential equations which are linear and second order in F, quadratic and first order
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in T:

ω̈F + ωT × ω̇F +
1
2
ω̇T × ωF +

1
4
ωT × ωT × ωF + (ωF × ωT) × ωT = 0

v̈F + 2ωT × v̇F + ω̇T × vF − 1
4
ωT × ωT × vF+

+ωF × ωT × vT +
3
2
ωT × ωF × vT = 0.
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