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Abstract. In this paper, we propose a topological sensitivity analysis for the Quasi-Stokes equations.
It consists in an asymptotic expansion of a cost function with respect to the creation of a small hole in
the domain. The leading term of this expansion is related to the principal part of the operator. The
theoretical part of this work is discussed in both two and three dimensional cases. In the numerical
part, we use this approach to optimize the locations of a fixed number of air injectors in an eutrophized
lake.

Mathematics Subject Classification. 49Q10, 49Q12, 74P05, 74P10, 74P15.

Received August 28, 2002. Revised November 6, 2003.

1. Introduction

The goal of topological optimization is to find an optimal design even with a priori poor information on the
optimal shape. Unlike the case of classical optimization, the topology of the structure may change during the
optimization process, as for example by the inclusion of holes.

Most of the known results in this field concern structural mechanics. In such cases, classical topology
optimization involves relaxed formulations or homogenization (see e.g. [2, 3, 5, 9, 26, 30]). This method leads
to a Neumann condition on the unknown boundary. This boundary condition is quite natural in structural
mechanics but this is not the case in fluid dynamics. In that direction, global optimization techniques like
genetic algorithms or simulated annealing, have been proposed (see e.g. [36]). But these methods are very slow
and can hardly be applied to industrial problems.

The recently introduced notion of topological sensitivity gives new perspectives on shape optimization. It
provides an asymptotic expansion of a cost function with respect to the creation of a small hole in the domain.
To present the basic idea, we consider Ω a domain of R

N , N = 2, 3 and j(Ω) = J(Ω, uΩ) a cost function to be
minimized, where uΩ is the solution to a given PDE problem defined in Ω. For ε > 0, let Ωε = Ω\(x0 + εω) be
the domain obtained by removing a small part (x0 + εω) from Ω, where x0 ∈ Ω and ω ⊂ R

N is a fixed bounded
domain containing the origin. Then, an asymptotic expansion of the function j is obtained in the following
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form:

j(Ωε) = j(Ω) + ρ(ε)δj(x0) + o(ρ(ε))
lim
ε→0

ρ(ε) = 0, ρ(ε) > 0,

where ρ(ε) is a scalar function known explicitly and δj(x0) is easy to compute at each point x0 of Ω.
The topological sensitivity δj(x0) gives us the information where to create holes, in fact if δj(x0) < 0, then

j(Ωε) < j(Ω) for small ε. The function δj can be used as a descent direction of the domain optimization process.
The optimality condition δj(x0) ≥ 0 in the domain recalls the one obtained by Buttazzo-Dal Maso [5] for the

Laplace equation using the homogenization theory. The notion of topological asymptotic gives an interesting
alternative to homogenization methods and genetic algorithms: its applications field is very large and using
topological sensitivity information, one can build fast algorithms.

The total energy variation with respect to the creation of a small hole is well known [16]. Schumacher intro-
duced the bubble method that uses this energy variation for topological optimization in [35]. Then Sokolowski
extended this idea to more general cost functions using the adjoint approach in [37] but still with Neumann
boundary condition. A topological sensitivity framework using an adaptation of the adjoint method [7,29] and
a truncation technique was introduced in [29] in the case of the Laplace equation with a circular hole and a
Dirichlet condition on the boundary of the hole. It was generalized in [15] to the elasticity equations in the case
of arbitrary shaped holes. Recently, the same technique is adapted, using a Dirichlet boundary condition and
non circular holes, to the Poisson equation in [23] and to Stokes equations in [24].

All these contributions concern operators which symbol is an homogeneous polynomial. The goal of this
paper is to address the situations where non homogeneous polynomials arise. We will illustrate our approach
by the Quasi-Stokes equations case. The basic idea is to say that the leading term of the topological expansion
is given by the elementary solution of the principal part of the operator. The theoretical part of this work
is discussed in both two and three dimensional cases. Such an expansion is obtained for a large class of cost
functions and arbitrary shaped holes.

In the numerical part, we consider the aeration process of eutrophized lakes. Eutrophication leads to a 3-
layer situation, the bottom layer being quite poor in oxygen necessary to aquatic life [1]. The aeration process
consists in inserting air by the means of injectors located at the bottom of the lake in order to generate a vertical
motion mixing up the water of the bottom with that in the top, thus oxygenating the lower part by bringing it
in contact with the surface air. A simplified model based on incompressible Quasi-Stokes equations is used, only
considering the liquid phase, which is the dominant one. The injected air is taken into account through local
boundary conditions for the velocity on the injectors holes. We aim to optimize the injectors location in order
to generate the best motion in the fluid with respect to the aeration purpose. The main idea is to compute
the asymptotic topological expansion with respect to the insertion of an injector. The injector is modeled as a
small hole ωε around a point x0, having an injection velocity Uinj. The best locations and orientations are the
one for which the cost function decrease most, i.e. the sensitivity is as negative as possible. Numerical tests
clearly indicate the approach to be quite efficient.

An outline of the paper is as follows. In Section 2, we recall briefly the adaptation of adjoint method to
the topological optimization. In Section 3, we derive the Quasi-Stokes equations and we give a description of
the shape optimization problem that we consider. Next in Section 4 the truncation technique is applied to the
problem. The main results are presented in Section 5. An asymptotic expansion is given in a general form, for a
large class of cost functions and arbitrary shaped holes. In Section 6, we present, for the two dimensional case,
some numerical experiments validating the above analysis. Finally in Section 7, some background materials
related to the Stokes and Quasi-Stokes equations are reviewed.

2. The generalized adjoint method

In this section, we recall the fundamental results introduced in [14,29] which extends the adjoint method [7]
to the topology shape optimization.
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Let V be a fixed Hilbert space. For ε ≥ 0, let aε be a bilinear, symmetric, continuous and coercive form
on V and lε be a linear and continuous form on V , that is, there exist constants M > 0, γ > 0 and L > 0,
independent of ε such that for all ε ≥ 0,

aε(u , v) ≤M ‖u‖ ‖v‖ , ∀u, v ∈ V
aε(u , u) ≥ γ ‖u‖2 , ∀u ∈ V
lε(v) ≤ L ‖v‖ , ∀v ∈ V .

Assume that there exist a bilinear and continuous form δa, a linear and continuous form δl, and a real function
ρ(ε) > 0 defined on R+ such that

‖aε − a0 − ρ(ε)δa‖L2(V) = o(ρ(ε)), (1)

‖lε − l0 − ρ(ε)δl‖L(V) = o(ρ(ε)), (2)

lim
ε→0

ρ(ε) = 0,

where L(V) (respectively L2(V)) denotes the space of continuous and linear (respectively bilinear) forms on V .
For ε ≥ 0, let uε be the solution to the problem: find uε ∈ V such that

aε(uε , v) = lε(v), ∀v ∈ V . (3)

Lemma 2.1 [15]. For ε ≥ 0, problem (3) has a unique solution uε, and

‖uε − u0‖ = O(ρ(ε)). (4)

Next we consider a cost function of the form j(ε) = Jε(uε), where Jε is defined on V for ε ≥ 0 and J0 is
differentiable with respect to u, its derivative being denoted by DJ0(u).
Suppose that there exists a function δJ defined on V such that: for all ε > 0

Jε(v) − J0(u) = DJ0(u)(v − u) + ρ(ε)δJ(u) + o(‖v − u‖+ ρ(ε)) ∀u, v ∈ V . (5)

Theorem 2.1 [15, 29]. Under the hypotheses (1), (2) and (5) the function j has the following asymptotic
expansion

j(ε) = j(0) + ρ(ε) [δa(u0, v0)− δl(v0) + δJ(u0)] + o(ρ(ε)) (6)
where v0 ∈ V is the solution to the adjoint problem: find v0 ∈ V such that

a0(w, v0) = −DJ0(u0)w, ∀w ∈ V.

3. Position of the problem

3.1. The Quasi-Stokes equations

We consider Ω a bounded domain of R
N , N = 2,3. We denote by Γ its boundary.

The standard form of the Navier-Stokes equations describing the motion of an incompressible fluid in Ω is
given by: 


∂uΩ

∂t
+ (uΩ.∇)uΩ − ν∆uΩ +∇pΩ = F in Ω

∇.uΩ = 0 in Ω
uΩ = Ud on Γ

(7)

where uΩ and pΩ denote respectively the velocity and the pressure fields, F is a given body force per unit of
mass, ν denotes the kinematic viscosity of the fluid and Ud is a given boundary velocity.
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Because of the divergence-free condition on uΩ, Ud must necessary satisfy the compatibility condition∫
Γ

Ud.n ds = 0,

where n is the unit normal vector along the boundary Γ.
Denoting by ∆t the time step and posing tn = n∆t and tn+1 = tn + ∆t.
Using the characteristic method (see, e.g., [12]), an approximation for the convection term is given by

(
∂uΩ

∂t
(t, x) + uΩ.∇uΩ(t, x)

) ∣∣∣∣(t=tn) =
duΩ

dt
(t, x(t))

∣∣∣∣
(t=tn)

� uΩ(tn+1, x(tn+1))− uΩ(tn, x(tn))
∆t

·

By an implicit scheme, a time discretization of the system (7) can be written as




1
∆t

un+1
Ω − ν∆un+1

Ω +∇pn+1
Ω = Fn+1 +

uΩ(tn, x(tn))
∆t

∇.un+1 = 0.

Then, at each time step, we have to solve a steady state Quasi-Stokes problem, called also generalized Stokes
problem, having the following generic form


αuΩ − ν∆uΩ +∇pΩ = f in Ω

∇.uΩ = 0 in Ω
uΩ = Ud on Γ.

(8)

3.2. The shape optimization problem

For a given x0 ∈ Ω, consider the modified domain Ωε = Ω\ωε, ωε = x0 + εω, where ω is a given fixed and
bounded domain of R

N , containing the origin, whose boundary ∂ω is connected and piecewise of class C1.

Ω

Γ Γ

Ωε

∂ωε

ωε

Figure 1. The initial domain and the same domain after creation of a small hole ωε.

In the modified domain Ωε, the velocity and pressure fields are required to satisfy

αuΩε − ν∆uΩε +∇pΩε = f in Ωε

∇.uΩε = 0 in Ωε
uΩε = Ud on Γ
uΩε = Uinj on ∂ωε

(9)

where Uinj is a given velocity on ∂ωε.
Note that for ε = 0, one has uΩ0 = uΩ and pΩ0 = pΩ.
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Theorem 3.1 [4,17,38]. Let ε ≥ 0, for a given f ∈ L2(Ωε)N , Uinj ∈ H1/2(∂ωε)N and Ud ∈ H1/2(Γ)N , the prob-

lem (9) has a unique solution (uΩε , pΩε) ∈ H1(Ωε)N×L2
0(Ωε)

N where L2
0(Ωε)

N =
{
θ ∈ L2(Ωε)N ,

∫
Ωε

θ dx = 0
}

.

Let uΩε an extension of the boundary data Ud and Uinj in Ωε, (∂Ωε = Γ ∪ ∂ωε), satisfying



αuΩε − ν∆uΩε +∇pΩε

= 0 in Ωε
∇.uΩε = 0 in Ωε
uΩε = Ud on Γ
uΩε = Uinj on ∂ωε.

(10)

The solution uΩε can be recuperated as uΩε = wΩε + uΩε , with wΩε is the solution of the system (9) with a
homogeneous Dirichlet boundary condition on ∂Ωε.

Thanks to the previous variable substitution, in the theoretical part of this work, we will consider only a
homogeneous boundary condition. Then, we will assume that Ud = 0 on Γ and Uinj = 0 on ∂ωε.

We now consider a cost function j(ε) of the form

j(ε) = J̃ε(uΩε), (11)

with J̃ε being defined on H1(Ωε)N for ε ≥ 0.
Our aim is to obtain an asymptotic expansion of j with respect to ε. The velocity field uΩε is defined in the
variable domain Ωε, thus it belongs to a functional space which depends on ε. Hence, if we want to derive the
asymptotic expansion of j we cannot apply directly the results of Section 2, which require a fixed functional
space (cf. Th. 2.1).

In classical shape optimization, this condition is satisfied by the mean of a domain parameterization method.
This method involves a fixed domain and a bi-Lipshitz map between the initial domain and the modified one.
In the topology optimization context, such a map does not exist between Ω and Ωε.
However, a functional space independent of ε can be constructed by using a domain truncation technique
described in the next paragraph (see also [29] and [15]).

This truncation is needed only for analysis, and will never be used for practical computation. During the
optimization process, we have just to solve the system (8) and the adjoint problem associated to the cost
function (11).

4. The truncated problem

Let R > 0 be such that the closed ball B(x0, R) is included in Ω and ωε ⊂ B(x0, R).

  

Γ

ΩR

ΓRR

x0

  

Γ

ΩR

ΓR
Dε

Figure 2. The truncated domain.
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We denote by ΓR the boundary of B(x0, R) and we consider the fixed domain ΩR = Ω\B(x0, R) and
Dε = B(x0, R)\ωε. Also we use the following space of traces on ΓR

H
1/2
V (ΓR)N =

{
φ ∈ H1/2(ΓR)N ;

∫
ΓR

φ.n dx = 0
}

(12)

where n is the unit vector normal to ΓR. Its dual space is denoted by H−1/2
V (ΓR)N .

For a given f ∈ L2(Ω)N , ϕ ∈ H1/2
V (ΓR)N and ε > 0, let uf,ϕε , pf,ϕε be the solution to the problem:

find (uf,ϕε , pf,ϕε ) ∈ H1(Dε)N × L2
0(Dε)N such that



αuf,ϕε − ν∆uf,ϕε +∇pf,ϕε = f in Dε

div uf,ϕε = 0 in Dε

uf,ϕε = ϕ on ΓR
uf,ϕε = 0 on ∂ωε.

(13)

This problem has a unique solution [4, 17, 38].
For ε = 0, (uf,ϕ0 , pf,ϕ0 ) is the solution to



αuf,ϕ0 − ν∆uf,ϕ0 +∇pf,ϕ0 = f in B(x0, R)

div uf,ϕ0 = 0 in B(x0, R)
uf,ϕ0 = ϕ on ΓR.

(14)

Clearly we have
uf,ϕε = uf,0ε + u0,ϕ

ε , pf,ϕε = pf,0ε + p0,ϕ
ε , ∀ε ≥ 0. (15)

This decomposition will be used to construct the bilinear form aε and the linear form lε presented in Section 2.
For ε ≥ 0, we consider the Dirichlet-to-Neumann operator

Tε : H1/2
V (ΓR)N −→ H

−1/2
V (ΓR)N

ϕ �−→ Tεϕ = σ(u0,ϕ
ε ).n

(16)

where σ(u0,ϕ
ε ) = (ν∇u0,ϕ

ε − p0,ϕ
ε I) is the stress tensor.

And the function fε ∈ H−1/2
V (ΓR)N

fε = −σ(uf,0ε ).n = −(ν∇uf,0ε − pf,0ε I).n (17)

with the normal n is chosen outward to Dε on ΓR and ∂ωε.
Hence, for all ε ≥ 0 and ϕ ∈ H1/2

V (ΓR)N we have σ(uf,ϕε ).n = Tεϕ− fε.
Finally, we define for ε ≥ 0 the solution uε, pε to the truncated problem


αuε − ν∆uε +∇pε = f in ΩR

div uε = 0 in ΩR
uε = 0 on Γ

σ(uε).n+ Tεuε = fε on ΓR.

(18)

The variational formulation associated to (18) is: find uε ∈ VR such that

aε(uε, v) = lε(v), ∀v ∈ VR (19)
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where the functional space VR, the bilinear form aε and the linear form lε are defined by

VR =
{
u ∈ H1(ΩR)N ; div u = 0, u = 0 on Γ

}
,

aε(u, v) = α

∫
ΩR

u.v dx+ ν

∫
ΩR

∇u : ∇v dx+
∫

ΓR

Tεuv dγ(x), (20)

lε(v) =
∫

ΩR

fv dx+
∫

ΓR

fεv dγ(x). (21)

Symmetry, continuity and coercivity of aε and continuity of lε follow directly from∫
ΓR

Tεϕψ dγ(x) = α

∫
Dε

u0,ϕ
ε .u0,ψ

ε dx+ ν

∫
Dε

∇u0,ϕ
ε : ∇u0,ψ

ε dx, (22)

∫
ΓR

fεψ dγ(x) =
∫
Dε

fu0,ψ
ε dx, (23)

and the relation

α

∫
Dε

uf,0ε .u0,ψ
ε dx+ ν

∫
Dε

∇uf,0ε : ∇u0,ψ
ε dx = 0. (24)

Proposition 4.1. Let ε ≥ 0. Problems (9) and (18) have unique solution.
Moreover, the restriction to ΩR of the solution uΩε , pΩε to (9) is the solution uε, pε to (18), and we have in Dε

(uΩε)|Dε
= uf,ϕε , (pΩε)|Dε

= pf,ϕε (25)

where ϕ is the trace of uΩε on ΓR.

Proof. We refer to [4, 17, 38] for the existence and uniqueness of the solutions to both problems (9) and (18).
Recall that we have denoted by (uΩε , pΩε) the solution of (9) and by (uε, pε) the solution of (18).

Let ϕ = uΩε |ΓR
and uR = uΩε |ΩR

. Clearly (25) holds for this ϕ, and it remains to prove that uR = uε.
Let θ ∈ VR and ψ = θ|ΓR

. We extend θ on Dε by u0,ψ
ε . Its extension is still denoted by θ, and it is divergence

free on Dε.
Using (22), (23), (24) and the definition of uΩε , we have

α

∫
ΩR

uR.θ dx+ ν

∫
ΩR

∇uR : ∇θ dx+
∫

ΓR

(TεuR − fε)θ dγ(x)

= α

∫
ΩR

uR.θ dx+ ν

∫
ΩR

∇uR : ∇θ dx+
∫

ΓR

TεuRθ dγ(x)−
∫

ΓR

fε.θ dγ(x)

= α

∫
ΩR

uR.θ dx+ ν

∫
ΩR

∇uR : ∇θ dx+ α

∫
Dε

u0,ϕ
ε .u0,ψ

ε dx

+ ν

∫
Dε

∇u0,ϕ
ε : ∇u0,ψ

ε dx−
∫
Dε

f.u0,ψ
ε dx

= α

∫
Ωε

uε.θ dx+ ν

∫
Ωε

∇uε : ∇θ dx−
∫

ΓR

f.u0,ψ
ε dγ(x)

= α

∫
Ωε

uε.θ dx+ ν

∫
Ωε

∇uε : ∇θ dx−
∫
Dε

f.θ dx =
∫

ΩR

f.θ dx.

This proves that uR is the solution to (19). From uniqueness of the solution, we deduce that uR = uε. �
Now we have at our disposal the fixed Hilbert space VR required by Section 2. The cost function (11) can

be redefined in the following way:
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for u ∈ VR, let ϕ = u|ΓR
, one defines ũε ∈ H1(Ωε)N the extension of u on Ωε as follow

ũε =
{
u on ΩR
uf,ϕε on Dε.

(26)

Then, a function Jε can be defined on VR by

Jε(u) = J̃ε(ũε). (27)

Particularly, we have from the previous proposition that

j(ε) = J̃ε(uΩε) = Jε(uε). (28)

Remark that Jε(uε) is independent of the choice of R. For example, for a given target function Ug, if

J̃ε(uΩε) =
∫

Ωε

|uΩε − Ug|2 dx (29)

then, we have for all u ∈ VR

Jε(u) =
∫

ΩR

|u− Ug|2 dx+
∫
Dε

∣∣uf,ϕε − Ug
∣∣2 dx, with ϕ = u|ΓR

. (30)

5. Main result: the asymptotic expansion

In this section, we present the main results of this paper, which concern the asymptotic analysis with respect
to the parameter ε of the functional (27). An asymptotic expansion is obtained for the Quasi-Stokes operator
for a large class of cost functions and arbitrary shaped holes.

We begin by the three dimensional case. The principal result is given by Theorem 5.1, it gives the topological
sensitivity expression δj(x0) if a hole is created at x0. The proof of Theorem 5.1 is relegated to Section 7.

5.1. The three dimensional case

In order to derive the topological sensitivity of the function j, we introduce two auxiliary problems.
The first problem, which we call the “exterior problem”, is formulated in R

3\ω and consists to find (U, P )
solution to 


−ν∆U +∇P = 0 in R

3\ω
div U = 0 in R

3\ω
U = 0 at infinity
U = uΩ(x0) on ∂ω

(31)

where uΩ is the solution to Quasi-Stokes problem (8). Recall that f ∈ L2(Ω)3, so that uΩ is continuous inside Ω.
Here, one can remark that just the principal part of the Quasi-Stokes operator is used, which is the Stokes

equations. A such approach can be justified by the fact that operators −∆ and I −∆ have the same behavior
near the hole ωε and give the same leading terms for topological expansion. Moreover, this approach has a good
advantage, it avoids calculations with the complicated expression of the Quasi-Stokes fundamental solution,
which involves the convolution product of Green functions for both operators I −∆ and ∆.

We return now to the system (31). The functions U, P can be expressed by a simple layer potential on ∂ω.
Coordinate system can be changed, in what follows one can suppose for convenience that x0 = 0.

Posing r = ‖y‖ and er =
y

‖y‖ , the fundamental solution system to the Stokes equations in R
3 can be

written as
GU (y) =

1
8πνr

(I + ere
T
r ), GP (y) =

y

4πr3
(32)
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such that
−ν∆GUj +∇GPj = δej (33)

where GUj denote the jth column of GU , {ej}j=1,3 is the canonical basis of R
3 and δ is the Dirac distribution.

Then, the functions U, P read [11]

U(y) =
∫
∂ω

GU (y − x)T (x) dγ(x), y ∈ R
3\ω

P (y) =
∫
∂ω

GP (y − x).T (x) dγ(x), y ∈ R
3\ω

(34)

where T ∈ H−1/2(∂ω)3 is a solution to the boundary integral equation (see e.g. [11])∫
∂ω

GU (y − x)T (x) dγ(x) = uΩ(x0), y ∈ ∂ω. (35)

One can observe that the function T is determined up to a function proportional to the normal, hence it is
unique in H−1/2(∂ω)3/Rn.

Using the first order Taylor expansion of GU at the point y �= 0 for x bounded, we have

GU (y − x) = GU (y) +O

(
1
r2

)
, GP (y − x) = GP (y) +O

(
1
r3

)
; (36)

from which follows the asymptotic expansion at infinity of U and P :

U(y) = SU (y) + LU (y), P (y) = SP (y) + LP (y) (37)

where SU (y) and SP (y) are the dominant part respectively of U and P

SU (y) = GU (y)A(uΩ(x0)), SP (y) = GP (y).A(uΩ(x0)) (38)

with
A(uΩ(x0)) =

∫
∂ω

T (x) dγ(x) ∈ R
3. (39)

Notice that α −→ A(α) is linear on R
3 and SU ∈ L2

loc(R
3).

The last parts of U and P are respectively given by

LU (y) = O

(
1
r2

)
, LP (y) = O

(
1
r3

)
· (40)

The second problem, which we call “interior problem”, is formulated in D0 = B(x0, R) and consists to find
(RhU , R

h
P ) solution to 


αRhU − ν∆RhU +∇RhP = 0 in B(x0, R)

div RhU = 0 in B(x0, R)

RhU = SU on ΓR.

(41)

Here, the idea is to consider an interior and exterior problems that gives the asymptotic behavior of
(
uf,ϕε

−uf,ϕ0

)
|Dε with ϕ = uΩ|ΓR in a sense which will be stated in Section 7.

It will not be possible to derive the asymptotic behavior of uf,ϕε − uf,ϕ0 from RhU − SU . We have first to take
into account the error due to the simplification of the fundamental solution. We propose to cancel this error by
adding a correcting term to RhU .
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In such a case, we consider the correcting term (RcU , R
c
P ) as solution to


αRcU − ν∆RcU +∇RcP = αSU in B(x0, R)

div RcU = 0 in B(x0, R)
RcU = 0 on ΓR.

(42)

Setting RU = RhU +RcU , RP = RhP +RcP , then (RU , RP ) is solution to

αRU − ν∆RU +∇RP = αSU in B(x0, R)

div RU = 0 in B(x0, R)
RU = SU on ΓR.

(43)

We will prove in Section 7, using the corrected interior problem (43), it will be possible to derive the asymptotic
behavior of

(
uf,ϕε − uf,ϕ0

)
|Dε

. The main result is the following. It will be proved in Section 7.

Theorem 5.1. Let f ∈ H2(Ω)3, and let j(ε) = Jε(uε). Suppose that Jε satisfy the hypothesis (5): for all
v ∈ VR and all ε > 0

Jε(v)− J0(u0) = DJ0(u0)(v − u0) + εδJ(u0) + o
(
ε+ ‖v − u0‖VR

)
, (44)

where DJ0(u0) is linear and continuous on VR, and uε, ε ≥ 0 is the solution to (19).
Let v0 ∈ VR be the solution to the adjoint equation

a0(w, v0) = −DJ0(u0)w, ∀w ∈ VR. (45)

Then, the function j has the following asymptotic expansion

j(ε) = j(0) + εδj(x0) + o(ε) (46)

with
δj(x0) =

∫
ΓR

(σ(RU − SU )).nv0 dγ(x) + δJ(u0). (47)

The functional δj(x0) is called the “topological sensitivity” of the Quasi-Stokes operator. It is also called the
“topological gradient”.

The cost function j is independent of R and δj(x0) is independent of ε, then δj(x0) is also independent of
R. This follows from the uniqueness of an asymptotic expansion. As we will observe in Section 7, this is not
necessarily true for the terms δa(u0, v0), δl(v0) or δJ(u0), because a, l and J do depend on R.

Practically, we need just to compute the solution uΩ to (8) and vΩ the solution to the associated adjoint
problem

α

∫
Ω

wvΩ dx+ ν

∫
Ω

∇w : ∇vΩ dx = −DJ̃0(uΩ)w, ∀w ∈ V0 (48)

with V0 =
{
v ∈ H1

0 (Ω)3; div v = 0 in Ω
}
.

It has been shown in Proposition 4.1 that u0 is the restriction to ΩR of uΩ. Similarly, v0 is the restriction
to ΩR of vΩ, this can be proved in the same way. Consequently, the function uΩ (or u0) and the adjoint state
vΩ (or v0) do not depend on x0. Hence, the basic property of an adjoint technique is here satisfied: only two
systems have to be solved in order to compute the topological sensitivity δj(x) for all x ∈ Ω.

Moreover, there exists a unique qΩ ∈ L2
0(Ω)3 such that

α

∫
Ω

wvΩ dx+ ν

∫
Ω

∇w : ∇vΩ dx−
∫

Ω

qΩ div w dx = −DJ̃0(uΩ)w, ∀w ∈ H1
0 (Ω)3. (49)
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Corollary 5.1. Let x0 ∈ Ω. Under the hypotheses of Theorem 5.1 and that αvΩ − ν∆vΩ +∇qΩ ∈ L2(D0)3, we
have

δj(x0) = A(uΩ(x0)).vΩ(x0) +
∫
D0

(αvΩ − ν∆vΩ +∇qΩ) (RU − SU ) dx+ δJ(u0). (50)

Moreover in the particular case; ω is the unit ball B(0, 1), U(y), T (y) and A(uΩ(x0)) are given explicitly by

U(y) = πν(6GU + ∆GU )(y)uΩ(x0)

T (y) = 3ν
2 uΩ(x0), ∀y ∈ ∂ω

A(uΩ(x0)) = 6πνuΩ(x0).

(51)

Proof. Thanks to Green’s Formula together with (41) (with SU = RU on ΓR), (47) reads also

δj(x0) =
∫

ΓR

[(ν∇RU −RP I)− (ν∇SU − SP I)] .n vΩ dγ(x) + δJ(u0)

=
∫

ΓR

(ν∇vΩ − qΩI).n SU dγ(x)−
∫

ΓR

(ν∇SU − SP I).n vΩ dγ(x)

+
∫
D0

(αvΩ − ν∆vΩ +∇qΩ)RU dx− α
∫
D0

SUvΩ dx+ δJ(u0).

(52)

Using a regularizing and localization technique, we derive

∫
ΓR

(ν∇vΩ − qΩI).n SU dγ(x)−
∫

ΓR

(ν∇SU − SP I).n vΩ dγ(x)

=
∫
D0

(ν∆vΩ −∇qΩ)SU dx− 〈ν∆SU −∇SP , ϕvΩ〉 (53)

where ϕ ∈ D(D0) satisfies ϕ(x0) = 1.
Finally, from (38) and (33) one can check that

〈−ν∆SU +∇SP , ϕvΩ〉 = 〈−ν∆(GU A(uΩ(x0))) +∇(GP .A(uΩ(x0))) , ϕvΩ〉
=

∑
j

Aj(uΩ(x0))〈δej , ϕvΩ〉

= A(uΩ(x0)).vΩ(x0),

(54)

which proves (50).
For the case ω = B(0, 1), one can derive the explicit expressions of the terms U(y), T (y) and A(uΩ(x0))

from (32), (35) and ∫
∂B(0,1)

GU (y − x) dγ(x) =
2
3ν
I, ∀y ∈ ∂B(0, 1). (55)

For more details concerning the explicitly calculation of this terms, one may consult [24]. �
Now we discuss briefly the hypothesis (5) used in Theorem 5.1. It concerns the variation of the cost func-

tion Jε. This question has been examined in [23] for the Dirichlet problem and in [24] for the Stokes problem.
Here we limit ourselves to cost functions of the form

J̃ε(u) =
∫

Ωε

g(x, u(x)) dx, u ∈ H1(Ωε)3 (56)

with g is a given function defined on Ω× R
3.
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The case where g depends on the pressure p is more complicated and we don’t consider it in this paper.
Next we suppose that g satisfy the following hypotheses:

• for all x ∈ Ω, the function s �−→ g(x, s) is of class C1 on R
3, its gradient being denoted by ∇sg(x, s);

• for all x ∈ Ω, the function s �−→ ∇sg(x, s) is Lipschitz continuous and there exists a constant M such that

|∇sg(x, t)−∇sg(x, s)| ≤M |t− s|, ∀(x, s, t) ∈ Ω× R
3 × R

3, (57)

where |t| denotes the usual norm on R
n;

• the function x �−→ ∇sg(x, 0) belongs to L2(Ω)3 and x �−→ g(x, 0) belongs to L2(Ω)3/2.

These hypotheses imply that for all (x, s) ∈ Ω× R
3

|g(x, s)| ≤ |g(x, 0)|+ |∇sg(x, 0).s|+ M

2
|s|2

|∇sg(x, s)| ≤ |∇sg(x, 0)|+M |s|,
(58)

and the functions x �−→ g(x, u(x)) and x �−→ |∇sg(x, u(x))|2 are integrable on Ω for all u ∈ L2(Ω)3.
A standard example of this functions is given by

g(x, u) = |u(x)− Ug(x)|2. (59)

The following result is taken from [24].

Proposition 5.1. Under the previous hypotheses and f ∈ L2(Ω)3, we have

δJ(u0) =
∫
D0

∇sg(x, uΩ)(RU − SU ) dx.

The adjoint state (vΩ, qΩ) ∈ V0 × L2
0(Ω) is the solution to

αvΩ − ν∆vΩ +∇qΩ = −∇sg(x, uΩ). (60)

The function j has the asymptotic expansion

j(ε) = j(0) + εA(uΩ(x0))vΩ(x0) + o(ε). (61)

If ω is the unit ball B(1, 0), then

j(ε) = j(0) + 6πνε uΩ(x0).vΩ(x0) + o(ε). (62)

5.2. The two dimensional case

In this paragraph, we intend to derive the asymptotic expansion of the function j in the two dimensional
case. The technique used is similar to that of the three dimensional case. We use the principal part of the
Quasi-Stokes operator to derive the topological sensitivity expression. Next we briefly describe the transposition
of the previous results to the two dimensional case. First, let us recall that uΩ and the adjoint state vΩ are
respectively the solution to (8) and (48).
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Let (U, P ) be the solution to the Stokes exterior problem



−ν∆U +∇P = 0 in R

2\ω
div U = 0 in R

2\ω
U/ log ‖y‖ = uΩ(x0) at infinity

U = 0 on ∂ω.

(63)

In 2D, the fundamental solution system to the Stokes equations is given by

GU (y) =
1

4πν
(−( logr)I + ere

T
r ), GP (y) =

y

2πr2
· (64)

The functions U and P are written

U(y) = uΩ(x0) log ‖y‖+ SU (y) + LU (y), P (y) = SP (y) + LP (y) (65)

where at infinity SU (y) = O (1), LU (y) = O (1/r), SP (y) = O (1/r) and LP (y) = O
(
1/r2

)
.

The associated interior problem consists in finding (RU , RP ) such that

αRU − ν∆RU +∇RP = αSU in D0

div RU = 0 in D0

RU = SU on ΓR.
(66)

In this case, a first order expansion of
(
uf,ϕε − uf,ϕ0

)
|Dε with ϕ = uΩ|ΓR is given by

−1
log ε

(
uΩ(x0) log

‖x‖
R

+RU − SU
)
|Dε .

Theorem 5.2. Under the same hypotheses of Theorem 5.1, the function j has the following asymptotic expan-
sion

j(ε) = j(0)− 1
logε

δj(x0) + o

(
1

logε

)
(67)

with

δj(x0) =
∫

ΓR

σ(RU − SU ).n v0 dγ(x) + δJ(u0) (68)

where v0 ∈ VR is the solution to the adjoint equation

a0(w, v0) = −DJ0(u0)w, ∀w ∈ VR. (69)

And for a cost function of the form (56), we have:

Proposition 5.2. Let J̃ε a cost function of the form

J̃ε(u) =
∫

Ωε

g(x, u(x)) dx, u ∈ H1(Ωε)2. (70)

Under the same hypotheses of Proposition 5.1, the function j has the following asymptotic expansion

j(ε) = j(0)− 4πνuΩ(x0).vΩ(x0)
logε

+ o

(
1

logε

)
· (71)
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6. Numerical results

Here, we limit ourselves to the two dimensional case. As application of the previous theoretical results, we
present two examples. The first example concerns the identification of locations and orientations of several
injectors in a water reserve. In the second example we treat the water eutrophication phenomena in a lake via
dynamic aeration process.

In both cases, we deal with a cost function J of the form

J(uΩ) =
∫

Ωm

|uΩ − Ug|2 dx,

with Ωm ⊂ Ω is the measurement domain and Ug is a given target flow.
Recall that we consider the Quasi-Stokes equations with a non homogeneous boundary condition on ∂ωε (uΩε

= Uinj) (see (9)). From (71) we deduce that

δj(x) = (uΩ(x)− Uinj) .vΩ(x), ∀x ∈ Ω (72)

where uΩ and vΩ are, respectively, solution to{
αuΩ − ν∆uΩ +∇pΩ = 0 in Ω

∇.uΩ = 0 in Ω (73)

{
αvΩ − ν∆vΩ +∇qΩ = −2 (uΩ − Ug)χΩm in Ω

∇.vΩ = 0 in Ω (74)

where χΩm is the characteristic function of the measurement domain.
Our implementation is based on the following optimization algorithm introduced by Céa et al. [6] and

presented in the topological asymptotic context in [8].

The algorithm:

• initialization: choose Ω0 = Ωd, and set k = 0;
• repeat until target is reached:

• solve (73) and (74) in Ωk;
• compute the topological sensitivity δjk;
• set Ωk+1 = {x ∈ Ωk, δjk(x) ≥ ck+1} where ck+1 is chosen in such a way that the cost function de-

creases;
• k ←− k + 1.

This algorithm can be seen as a descent method where the descent direction is determined by the topological
sensitivity δjk and the step length is given by the volume variation.

We propose an adaptation of the previous algorithm to our context. We consider the set {x ∈ Ωk; δjk(x) <
ck+1}. Each connected component of this set is a hole created by the algorithm. Our idea is to replace each
hole by an injector located at the local minimum of δjk(x).

In the above algorithm, the systems (73) and (74) are discretized by a finite element method. The computation
of the approximate solution is achieved by Uzawa algorithm.

6.1. Test 1: identification of some injectors in a reserve water

In this example, the computational domain Ω is a reserve water. Our purpose is to insert some injectors in
Ω in order to reach a given target flow Ug. Each injector Injk is supposed as a small hole ωk around xk ∈ Ω,
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having an injection velocity Ukinj . The velocity field Ug is chosen as the solution to (73) in Ωl = Ω\{∪lk=1ωk},
satisfying the following boundary conditions

u =



Uwind on Γs
0 on Γw
Ukinj on ∂ωk, k = 1, ..., l

(75)

where Γs is the free surface, Γw is the wall and Uwind is the velocity of wind.
Our aim here is to identify the locations and orientations of injectors from velocity measurement on the

upper layer of Ω. The magnitude of the velocity is known. The locations are given by the local minima of the
topological sensitivity δj. From the δj expression we deduce that the optimal orientations are given by the

adjoint state
(

vΩ
‖vΩ‖

)
·

We consider here three cases, respectively one injector (l = 1), two injectors (l = 2) and three injectors
(l = 3). For each case, we give a table summarizing the main parameters used to compute Ug.
6.1.1. First case: one injector

Injector Location Injection velocity
Injector 1 x = 0.1338773E+ 01, y = 0.2861623E+ 00 Ux = −0.8, Uy = −1.0

6.1.2. Second case: two injectors

Injector Location Injection velocity
Injector 1 x = 0.1338773E+ 01, y = 0.2861623E+ 00 Ux = −0.8, Uy = −1.0
Injector 2 x = 0.6195151E+ 00, y = 0.2911333E+ 00 Ux = −1.0, Uy = 1.3

6.1.3. Third case: three injectors

Injector Location Injection velocity
Injector 1 x = 0.1338773E + 01, y = 0.2861623E+ 00 Ux = −0.8, Uy = −1.0
Injector 2 x = 0.6195151E + 00, y = 0.2911333E+ 00 Ux = −1.0, Uy = 1.3
Injector 3 x = 0.8965202E + 00, y = 0.5851877E+ 00 Ux = 0.0, Uy = 1.6

Using the previous algorithm, the numerical results that we present are obtained in one iteration.
In Figure 3, we present the initial flow, which is the same for the three considered cases. The results of

this test are given by Figures 4–6. For each case, the injectors locations are given by the local minima of the
topological sensitivity δj, see Figures 4c, 5c and 6c. At each local minima, we introduce a pointwise Dirichlet
condition (an injector inserted) and new resolution of (73) is performed. The new velocity obtained is shown in
Figures 4d, 5d and 6d.

Figure 3. The initial flow uΩ.
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Figure 4. One injector case.

Figure 5. Two injectors case.

6.2. Test 2: dynamic aeration process in an eutrophized lake

Here, the computational domain Ω is an eutrophized lake. In this example, we treat the water eutrophication
phenomena by dynamic aeration process. It consists in inserting some injector holes ωk at the lower layer of
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Figure 6. Three injectors case.

the lake in order to create a motion mixing the bottom water with the well oxygenated water from the top.
We suppose that a “good” lake oxygenation can be described by a target velocity Ug. Our aim in this test, is to

determine the optimal location in Ω of some injector holes ωk in order to minimize the function
∫

Ωl

|uΩ−Ug|2 dx,

with Ωl = Ω\{∪lk=1ωk}.
After only sixth iterations, we obtain a velocity (see Fig. 7) approaching the objective flow Ug. We present

for each iteration l = 1, 6 the injector location and the obtained flow uΩl
. Then, Figure 7 shows the initial,

desired and the obtained flow. In order to have more idea of what is happening, we represent on Figure 8 several
intermediate injectors locations and velocity obtained during the optimization process.

This work can be considered as a preliminary step to study the transient Navier-Stokes problem.

7. Variations of the bilinear and linear form

We now turn to the proof of the main results given by Theorem 5.1. We will use the result given in [15, 29],
which is recalled in Section 2. More precisely, we will prove in Sections 7.3 and 7.4 that there exist a bilinear
form δa ∈ L2(VR) and a linear form δl ∈ L(VR) such that

‖aε − a0 − εδa‖L2(VR) = O
(
ε3/2

)
, (76)

‖lε − l0 − εδl‖L(VR) = O
(
ε3/2

)
. (77)

First we need some definitions and preliminary lemmas.
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a - The initial flow uΩ.

b - The desired flow Ug.

c - The obtained flow uΩ (after sixth iterations).

Figure 7. The initial, desired and obtained flow.

7.1. Definitions

Let O be a bounded open domain of R
3 and ∂O its boundary, assumed polygonal and simply connected.

• Hm(O)3 stands for the Hilbert Sobolev space of order m, where m is a positive integer. It is provided with
the norm

‖u‖2m,O =
m∑
k=0

|u|2k,O (78)

where the semi-norms |.|k,O are defined

|u|2k,O =
∑
|α|=k

∫
O
|∂αu|2 dx. (79)

• The usual space of traces (of H1(O) elements) on the boundary of O is denoted H1/2(∂O), and its norm is
denoted by ‖.‖1/2,∂O. The subspace

H
1/2
V (∂O)3 =

{
ϕ ∈ H1/2(∂O)3;

∫
∂O

ϕ.ndγ(x) = 0
}

(80)

is equipped with the norm induced by H1/2(∂O)3 and H−1/2
V (∂O)3 denotes its dual space.
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Figure 8. Injectors locations and velocity obtained during optimization process.

• Let ε > 0; for a given function u defined on O, we define the function ũ on Õ := O/ε by

ũ(y) = u(x), y = x/ε.
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Using that Du(x) = Dũ(y)/ε and the definition (79), we obtain

|u|21,O =
∫
O
|Du(x)|2 dx = 1/ε

∫
Õ
|Dũ(y)|2 dy,

hence
|u|1,O = ε1/2 |ũ|1,Õ . (81)

Similarly, we have
‖u‖0,O = ε3/2 ‖ũ‖0,Õ . (82)

7.2. Preliminary lemmas

The aim of this section is to give some technical results which will be used in Sections 7.3 and 7.4. Let
us begin by recalling some estimates describing the behavior of the two parts SU and LU of the fundamental
solution U , see (37).

Lemma 7.1 [15]. For φ ∈ H1/2
V (∂ω)3; let U, P be the solution to the Stokes exterior problem


−ν∆U +∇Q = 0 in R

3\ω
divU = 0 in R

3\ω
U = 0 at infinity
U = φ on ∂ω.

(83)

The function U is splited into

U(y) = SU (y) + LU (y) ∀y ∈ R
3\ω,

with SU (y) = GU (y)
∫
∂ω

T (x) dγ(x)

where GU (y) is defined in (32) and T ∈ H−1/2
V (∂ω)3 is the unique solution [11] to∫

∂ω

GU (y − x)T (x) dγ(x) = φ(y), ∀y ∈ ∂ω. (84)

There exists a constant c > 0, independent of φ and ε, such that

‖SU‖0,C(R/(2ε),R/ε) ≤ cε−1/2 ‖φ‖1/2,∂ω
‖SU‖0,Dε/ε

≤ cε−1/2 ‖φ‖1/2,∂ω
|SU |1,C(R/(2ε),R/ε) ≤ cε1/2 ‖φ‖1/2,∂ω

|SU |1,Dε/ε
≤ c ‖φ‖1/2,∂ω

‖LU‖0,C(R/(2ε),R/ε) ≤ cε1/2 ‖φ‖1/2,∂ω
|LU |1,C(R/(2ε),R/ε) ≤ cε3/2 ‖φ‖1/2,∂ω

‖LU‖1,Dε/ε
≤ c ‖φ‖1/2,∂ω .

(85)

Lemma 7.2. For a given ε > 0 and ϕ ∈ H1/2
V (ΓR)3, let vε, qε be the solution to the problem


αvε − ν∆vε +∇qε = 0 in Dε

div vε = 0 in Dε

vε = ϕ on ΓR
vε = 0 on ∂ωε.

(86)
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Then, there exists two constants c > 0 (independent of ϕ and ε) and ε1 > 0 such that for all 0 < ε < ε1, we
have

‖vε‖1,Dε
≤ c ‖ϕ‖1/2,ΓR

. (87)

Proof. For all ε > 0, problem (86) is well posed and the solution vε ∈ H1(Dε)3. Particularly for a given ε0 > 0,
vε0 ∈ H1(Dε0)3 and there exists a constant c > 0 such that

‖vε0‖1,Dε0
≤ c ‖ϕ‖1/2,ΓR

.

Let ε1 < ε0 be such that Dε0 ⊂ Dε for all ε < ε1, and let ṽε0 be the extension of vε0 to Dε by 0. The function
vε is solution to the Quasi-Stokes problem (86), it can be shown also as a solution to the following minimization
problem

min
v∈U

{
α ‖v‖0,Dε

+ ν |v|1,Dε

}

where U =
{
v ∈ H1(Dε)3; v = ϕ on ΓR, div v = 0 in Dε and v = 0 on ∂ωε

}
. Hence, for all ε < ε1 we have

‖vε‖1,Dε
≤ ‖ṽε0‖1,Dε

= ‖vε0‖1,Dε0
≤ c ‖ϕ‖1/2,ΓR

. (88)

�
Lemma 7.3. For ε > 0 and ψ ∈ H1(D0)3 such that, divψ = 0, let uε, pε be the solution to the Quasi-Stokes
problem 


αuε − ν∆uε +∇pε = 0 in Dε

div uε = 0 in Dε

uε = 0 on ΓR
uε = ψ on ∂ωε.

(89)

Then, there exists two constants c > 0 (independent of ψ and ε) and ε1 > 0 such that for all 0 < ε < ε1

|uε|1,C(R/2,R) ≤ cε ‖ψ(εy)‖1/2,∂ω
‖uε‖0,Dε

≤ cε ‖ψ(εy)‖1/2,∂ω
|uε|1,Dε

≤ cε1/2 ‖ψ(εy)‖1/2,∂ω .
(90)

Proof. First, we denote by (Vε, Qε) the solution to the exterior problem (83) obtained using φ(y) = ψ(εy) on
the boundary ∂ω.

Posing vε = Vε(x/ε), then the function wε = vε − uε itself is the solution to

αwε − ν∆wε +∇sε = αvε in Dε

div wε = 0 in Dε

wε = vε on ΓR
wε = 0 on ∂ωε.

(91)

Thanks to Lemma 7.2 and elliptic regularity it can be shown that there exists c > 0 and ε1 > 0 such that for
all 0 < ε < ε1

‖wε‖1,Dε
≤ c

(
‖vε‖1/2,ΓR

+ α ‖vε‖0,Dε

)
. (92)

In the other hand, we have

‖vε‖1/2,ΓR
≤ ‖vε‖1,C(R/2,R) ≤ ‖vε‖0,C(R/2,R) + |vε|1,C(R/2,R) .
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From (81), (82) and Lemma 7.1, we obtain

‖vε‖0,C(R/2,R) = ε3/2 ‖Vε‖0,C(R/2ε,R/ε) ≤ cε ‖ψ(εy)‖1/2,∂ω ,
|vε|1,C(R/2,R) = ε1/2 |Vε|1,C(R/2ε,R/ε) ≤ cε ‖ψ(εy)‖1/2,∂ω .

Hence,
‖vε‖1/2,ΓR

≤ cε ‖ψ(εy)‖1/2,∂ω . (93)
Similarly we get

‖vε‖0,Dε
= ε3/2 ‖Vε‖0,Dε/ε

≤ cε ‖ψ(εy)‖1/2,∂ω ,
|vε|1,Dε

= ε1/2 |Vε|1,Dε/ε
≤ cε1/2 ‖ψ(εy)‖1/2,∂ω .

(94)

Relation (92), (93) and (94) implies that

‖wε‖1,Dε
≤ cε ‖ψ(εy)‖1/2,∂ω .

The desired results follows from the following inequalities

|uε|1,C(R/2,R) = |vε − wε|1,C(R/2,R) ≤ |vε|1,C(R/2,R) + |wε|1,C(R/2,R)

≤ cε ‖ψ(εy)‖1/2,∂ω
‖uε‖0,Dε

≤ ‖vε‖0,Dε
+ ‖wε‖0,Dε

≤ cε ‖ψ(εy)‖1/2,∂ω
|uε|1,Dε

≤ |vε|1,Dε
+ |wε|1,Dε

≤ cε1/2 ‖ψ(εy)‖1/2,∂ω + cε ‖ψ(εy)‖1/2,∂ω
≤ cε1/2 ‖ψ(εy)‖1/2,∂ω . �

The following lemma summarize the results shown in Lemmas 7.2 and 7.3.

Lemma 7.4. For a given ε > 0, hε ∈ L2(Dε)3, ϕ ∈ H1/2
V (Γ)3 and ψ ∈ H1(D0)3 such that , divψ = 0, let vε, qε

be the solution to the Quasi-Stokes problem

αvε − ν∆vε +∇qε = hε in Dε

div vε = 0 in Dε

vε = ϕ on ΓR
vε = ψ on ∂ωε.

(95)

Then, there exists a constant c > 0 (independent of ϕ, ψ and ε), and ε1 > 0 such that for all 0 < ε < ε1

|vε|1,C(R/2,R) ≤ c
(
‖ϕ‖1/2,ΓR

+ ε ‖ψ(εy)‖1/2,∂ω + ‖hε‖0,Dε

)
‖vε‖0,Dε

≤ c
(
‖ϕ‖1/2,ΓR

+ ε ‖ψ(εy)‖1/2,∂ω + ‖hε‖0,Dε

)
|vε|1,Dε

≤ c
(
‖ϕ‖1/2,ΓR

+ ε1/2 ‖ψ(εy)‖1/2,∂ω + ‖hε‖0,Dε

)
.

(96)

Proof. The proof follows easily by combining Lemmas 7.2 and 7.3 and using the linearity of the Quasi-Stokes
operator. �

7.3. Variation of the bilinear form

Let us now compute the variation of the bilinear form aε with respect to the creation of a small hole ωε in
the domain Ω. Then, according to (20), we have

aε(u, v)− a0(u, v) =
∫

ΓR

(Tε − T0)u.v dγ(x). (97)
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So, we first need to compute the operator Tε variation. To this aim, we introduce some notations.
For ϕ ∈ H1/2

V (ΓR), recall that u0,ϕ
ε is the solution to (13) or (14) if ε = 0. We denote by (U0,ϕ , P 0,ϕ) the

solution to the exterior problem (83) with φ = u0,ϕ
0 (x0) on the boundary ∂ω.

As in (37), (U0,ϕ , P 0,ϕ) can be decomposed into two parts:

U0,ϕ = S0,ϕ
U + L0,ϕ

U , P 0,ϕ = S0,ϕ
P + L0,ϕ

P (98)

with S0,ϕ
U = GU (y)A(u0,ϕ

0 (x0)), S
0,ϕ
P = GP (y)A(u0,ϕ

0 (x0)) are the dominant parts respectively of U0,ϕ and P 0,ϕ.

Now, let R0,ϕ
U be the solution to the associated interior problem


αR0,ϕ

U − ν∆R0,ϕ
U +∇R0,ϕ

P = αS0,ϕ
U in D0

div R0,ϕ
U = 0 in D0

R0,ϕ
U = S0,ϕ

U on ΓR.

(99)

Then, the linear operator δT (independent of ε) is defined as follows:

δT : H1/2
V (ΓR)3 −→ H

−1/2
V (ΓR)3

ϕ → δTϕ = σ(R0,ϕ
U − S0,ϕ

U ).n.
(100)

Proposition 7.1. The operator Tε has the following asymptotic expansion

‖Tε − T0 − εδT ‖L(H
1/2
V (ΓR)3;H

−1/2
V (ΓR)3)

= O
(
ε3/2

)
. (101)

Proof. As we have shown in Section 5 (see (37), (38), (40)); for y = x/ε, we have

S0,ϕ
U (x/ε) = εS0,ϕ

U (x), L0,ϕ
U (y) = O

(
1/ ‖y‖2

)
, S0,ϕ

P (x/ε) = ε2S0,ϕ
P (x), and L0,ϕ

P (y) = O
(
1/ ‖y‖3

)
.

Next, for simplicity, we may drop the subscripts (.)0,ϕ. Let

ψε(x) = (Tε − T0 − εδT )ϕ(x). (102)

We have

ψε = σ(uε − u0).n− εσ(RU − SU ).n
= (ν∇uε − pεI) .n− (ν∇u0 − p0I) .n− ε [(ν∇RU −RP I) .n− (ν∇SU − SP I) .n] .

Posing
wε = uε − u0 + U(x/ε)− εRU
sε = pε − p0 + 1/εP (x/ε)− εRP (x). (103)

Then, ψε is written as

ψε = ν∇(wε(x)− LU (x/ε)).n− (sε(x)− 1/εLP (x/ε))I.n = σ(wε(x)− LU (x/ε)).n.

The functions wε, sε are solution to

αwε − ν∆wε +∇sε = αLU (x/ε) in Dε

div wε = 0 in Dε

wε = U(x/ε)− εRU (x) on ΓR
wε = −u0(x) + u0(x0)− εRU (x) on ∂ωε.

(104)
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In order to use Lemma 7.4, we need to estimate the right hand side terms. For the boundary terms, we will
proceed in the same way as in [24] for the Stokes problem.

• On ΓR, due to RU (x) = SU (x), we have

U(x/ε)− εRU (x) = LU (x/ε)

and from the definitions of the functions U and RU , we get∫
ΓR

(U(x/ε)− εRU (x)) .n dγ(x) = 0.

Using (81), (82) and Lemma 7.1, we check that

‖U(x/ε)− εRU (x)‖1/2,ΓR
= ‖LU (x/ε)‖1/2,ΓR

≤ c ‖LU (x/ε)‖1,C(R/2,R)

≤ c
(
‖LU (x/ε)‖0,C(R/2,R) + |LU (x/ε)|1,C(R/2,R)

)
≤ c

(
ε3/2 ‖LU (y)‖0,C(R/2ε,R/ε) + ε1/2 |LU (y)|1,C(R/2ε,R/ε)

)
≤ cε2 ‖u0(x0)‖1/2,∂ω
≤ cε2 ‖ϕ‖1/2,ΓR

.

(105)

• On ∂ωε, let θε(x) = (−u0(x) + u0(x0)− εRU (x))/ε, we have div θε = 0 in D0 and for small ε

‖θε(εy)‖1/2,∂ω ≤ c ‖θε(εy)‖1,ω
≤ c

∥∥∥∥u0(εy)− u0(x0

ε
+RU (εy)

∥∥∥∥
1,ω

≤ c
(
‖u0‖C2(B(0,R/2)) + ‖RU‖C1(B(0,R/2))

)
≤ c

(
‖ϕ‖1/2,ΓR

+ ‖SU‖1/2,ΓR

)
≤ c ‖ϕ‖1/2,ΓR

.

Then, using Lemmas 7.4 and 7.1 we get

|wε|1,C(R/2,R) ≤ c
(
ε2 ‖ϕ‖1/2,ΓR

+ ε ‖θε(εy)‖1/2,∂ω + α ‖LU (x/ε)‖0,Dε

)
≤ cε3/2 ‖ϕ‖1/2,ΓR

.
(106)

Now, noting that div (wε(x)− LU (x/ε)) = 0 in C(R/2, R) and wε(x) = LU (x/ε) on ΓR.
Then, from the fact that

α(wε(x)− LU (x/ε))− ν∆(wε(x) − LU (x/ε)) +∇(sε(x)− 1/εLP (x/ε)) = αLU (x/ε) in C(R/2, R),

we deduce

‖ψ‖−1/2,ΓR
= ‖σ(wε(x) − LU (x/ε)).n‖−1/2,ΓR

≤ c
(
|wε(x) − LU (x/ε)|1,C(R/2R) + ‖LU (x/ε)‖0,C(R/2R)

)
.
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Finally, due to (106), (81), (82) and Lemma 7.1, we obtain

‖ψ‖−1/2,ΓR
≤ cε3/2 ‖ϕ‖1/2,ΓR

.

Hence ‖(Tε − T0 − εδT )ϕ‖1/2,ΓR
= O

(
ε3/2

)
. �

Proposition 7.2. Let

δa(u, v) =
∫

ΓR

δTu.v dγ(x) ∀u, v ∈ VR. (107)

The asymptotic expansion of the linear form aε is given by

‖aε − a0 − εδa‖L2(VR) = O
(
ε3/2

)
. (108)

7.4. Variation of the linear form

We search now to compute the variation of the linear form lε. For that purpose, we will use the same technique
as in the preceding section. The unique difference comes from the boundary condition imposed on ∂ω to the
solution of the exterior problem. Indeed, for the study of the bilinear form we have used U0,ϕ = u0,ϕ

0 (x0) but
for the study of the linear form we will use Uf,0 = uf,00 (x0). As consequence, estimations involving ‖ϕ‖1/2,ΓR

will be replaced by estimations involving ‖f‖2,D0
.

The variation of the linear form lε reads

lε(v) − l0(v) =
∫

ΓR

(fε − f0).v dγ(x). (109)

First, we denote by (Uf,0 , P f,0) the solution to the exterior problem (83) corresponding to the boundary
condition φ = uf,00 (x0) on ∂ω, with uf,00 (x0) is the solution to (13) or (14) if ε = 0.

Using the same decomposition like in (38), we have

Uf,0 = Sf,0U + Lf,0U , P f,0 = Sf,0P + Lf,0P (110)

with Sf,0U (y) = GU (y)A(uf,00 (x0)), S
f,0
P (y) = GP (y)A(uf,00 (x0)).

Now, let (Rf,0U , Rf,0P ) be the associated solution to (41) with Rf,0U = Sf,0U on ΓR.
Then the linear form δf (independent of ε ) is given by

δf = σ(Rf,0U − Sf,0U ).n. (111)

Proposition 7.3. Let f ∈ H2(Ω)3. The asymptotic expansion of fε is given by

‖fε − f0 − εδf‖−1/2,ΓR
= O

(
ε3/2

)
. (112)

Proof. We use the same proof as in Proposition 7.1 with

wε = uf,0ε − uf,00 + Uf,0(x/ε)− εRf,0U ,

θε(x) =
(
−uf,00 (x) + uf,00 (x0)− εRf,0U (x)

)
/ε.

In this case, elliptic regularity implies∣∣∣uf,00 (x0)
∣∣∣ ≤ ∥∥∥uf,00

∥∥∥
C0(D0)

≤
∥∥∥uf,00

∥∥∥
2,D0

≤ c ‖f‖0,D0
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and for small ε, we have

‖θε(εy)‖1/2,∂ω ≤ c ‖θε(εy)‖1,ω

≤ c
∥∥∥∥∥u

f,0
0 (εy)− uf,00 (x0

ε
+Rf,0U (εy)

∥∥∥∥∥
1,ω

≤ c
(∥∥∥uf,00

∥∥∥
C2(B(0,R/2))

+
∥∥∥Rf,0U ∥∥∥

C1(B(0,R/2))

)
≤ c ‖f‖2,D0

. �

Proposition 7.4. Let δl(v) =
∫

ΓR

δf.v dγ(x), v ∈ VR.

The asymptotic expansion of lε is given by

‖lε − l0 − εδl‖−1/2,ΓR
= O

(
ε3/2

)
. (113)

7.5. Proof of Theorem 5.1

Thanks to the previous results given in Propositions 7.2 and 7.4, we deduce that the hypotheses (1) and (2)
hold. Then, we are now ready to apply the tools of Section 2. So that, from Theorem 2.1 we have

j(ε) = j(0) + ε [δa(u0, v0)− δl(v0) + δJ(u0)] + o(ε).
Due to (31), (98) and (110) we derive

U = Uf,0 + U0,ϕ,

and
SU = Sf,0U + S0,ϕ

U ,

RU = Rf,0U + R0,ϕ
U .

Then, using (100), (111), Propositions 7.2 and 7.4, we obtain

δa(u0, v0)− δl(v0) =
∫

ΓR

σ(R0,ϕ
U − S0,ϕ

U ).nv0 dγ(x) +
∫

ΓR

σ(Rf,0U − Sf,0U ).nv0 dγ(x)

=
∫

ΓR

[(ν∇Rf,ϕU −Rf,ϕP I)− (ν∇Sf,ϕU − Sf,ϕP I)].nv0 dγ(x)

=
∫

ΓR

σ(Rf,ϕU − Sf,ϕU ).nv0 dγ(x).

This ends the proof of the theorem. �
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