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IS IT WISE TO KEEP LAMINATING?
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Abstract. We study the corrector matrix P ε to the conductivity equations. We show that if P ε con-
verges weakly to the identity, then for any laminate det P ε ≥ 0 at almost every point. This simple
property is shown to be false for generic microgeometries if the dimension is greater than two in the
work Briane et al. [Arch. Ration. Mech. Anal., to appear]. In two dimensions it holds true for
any microgeometry as a corollary of the work in Alessandrini and Nesi [Arch. Ration. Mech. Anal.
158 (2001) 155-171]. We use this property of laminates to prove that, in any dimension, the classi-
cal Hashin-Shtrikman bounds are not attained by laminates, in certain regimes, when the number of
phases is greater than two. In addition we establish new bounds for the effective conductivity, which are
asymptotically optimal for mixtures of three isotropic phases among a certain class of microgeometries,
including orthogonal laminates, which we then call quasiorthogonal.
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1. Introduction

This paper is devoted to a detailed study of properties of sequences of solutions to conductivity equations
in any dimension. The goal and the achievements will be described in the present section. In an attempt to
a crude summary, the present paper studies the correctors to conductivity equations. In conjunction with the
work [6], it shows, quite unexpectedly, that even in a simple linear conduction problem, in dimension greater
than two, laminates and non laminates can be discriminated by a very simple property which will be stated
later in the section. This property is always enjoyed by laminates but (as shown in [6]), not necessarily by non
laminates.

The precise mathematical definitions will be reviewed briefly in Section 2. In the present section we will
assume that the reader has already some familiarity with the notions of G and H-convergence. We consider the
following family of PDEs (conductivity problems) making the usual assumptions of the linear framework.{ − div (σε∇uε) = f in Ω

uε = g on ∂Ω.
(1.1)
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We consider the associated limiting problem{ − div
(
σ0∇u0

)
= f in Ω

u0 = g on ∂Ω.
(1.2)

The (symmetric) matrix σ0 is called the G-limit (or the H-limit) of the sequence σε. It is well known that, up
to subsequences such a limiting problem exists and one has that{

uε ⇀ u0 weakly in H1(Ω),

σε∇uε ⇀ σ0∇u0 weakly in L2(Ω; Rd).
(1.3)

The convergence of the sequence uε is not strong in general. For this reason one introduces the so called
corrector matrix P ε. which has the property that

∇uε − P ε∇u0 −→ 0 strongly in L1(Ω; Rd). (1.4)

We will focus on proving properties of the corrector matrix for special sequences related to the so called laminates.
We are interested in a class of G-closure problems which we now define. Given an integer N ≥ 3 (called the
number of phases), N nonnegative numbers pi with

∑N
i=1 pi = 1 (called the volume fractions) and N real

numbers 0 < σ1 < · · · < σN (called the conductivities of the phases), consider the family of conductivity
matrices

σε :=
N∑

i=1

σi χi
ε Id with χi

ε
L∞-w∗

⇀ θi, i = 1, . . . , N, (1.5)

where Lp-w(∗) denotes the Lp-weak(∗) convergence.
The goal is to describe the family of all possible limits σ0 of the above sequences in some systematic way.

Thanks to the localization principle we have (roughly speaking) that the G-closure can be represented by a
finite dimensional space. We will make use of this principle only in this introduction.

Indeed set p = (p1, . . . , pN), σ = (σ1, . . . , σN ) and define G = G(p, σ) as the closure of the set of constant
and symmetric matrices σ∗ defined according to the following rule

σ∗ =
∫

Y

N∑
i=1

σiXi(y) (DU�(y) + Id) dy (1.6)

where DU =
[

∂Uj

∂yi

]
1≤i,j≤d

, the Xi’s are characteristic functions of disjoint measurable subsets summing up to

one, Y = (0, 1)d and U� is the solution to the cell problem{
div

(
σ (∇U� + I)T

)
= 0 in R

d

U� ∈ H1
� (Y )d.

(1.7)

Then one proves that
σ0(x) ∈ G(θ(x), σ) a.e. in Ω.

Therefore, for issues like establishing bounds it is often sufficient to consider periodic composites. The kind of
questions we address in the present paper differ from the customary one and the more general approach seems
the most appropriate.

When N = 2, the G-closure is known. It is unknown for N ≥ 3. This paper makes some progress in the
latter problem. To state our result it is convenient to set up some notation. We identify the G-closure with
one of its finite dimensional representations and call it G. A set B is called a bound for G if B ⊇ G. A point
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B ∈ ∂B is called attainable if there exists σ∗ ∈ G with σ∗ = B. It is called optimal if there exists a sequence
of the form (1.5) which H-converges to a constant σ0 ∈ G with σ0 ≡ B. Notationally we will not distinguish
the two cases and we simply write M ∈ G in both cases. The latter are the usual definitions. Now we want
to consider a family of G-closure problems. To fix ideas set N = 3 and suppose that p, σ1 and σ2 are given.
Regard G and any bound on it as a function of σ3 (the most conducting phase).

Definition 1.1. Assume that for any σ3 ∈ [σ2,∞) there exists M = M(σ3) ∈ G(σ3) and there exists a bound
B(σ3) ⊇ G(σ3) such that

i) the sets B(σ3) converge in the sense of Kuratowski to a set B(∞), namely any convergent sequence
(as σ3 tends to infinity) P (σ3) ∈ B(σ3) converges to a point of B(∞) and any point of B(∞) is the
limit of such a sequence;

ii) the sequence of matrices M(σ3) converge to a matrix M(∞);
iii) M(∞) ∈ ∂B(∞).

Then we say that the set B(∞) is asymptotically optimal (A.O.) as σ3 tends to infinity. We also say that any
point of type M(∞) is A.O. Throughout the paper the sentence “as σ3 tends to infinity” will be systematically
omitted.

The set of all possible matrices M(∞) defined above is denoted by AG. In words our definition requires that
the bounds approach the G-closure as σ3 diverges. A mathematically more satisfactory approach requires an
appropriate definition of the G-closure for composite with infinitely conducting phases. We believe that such an
approach would fully motivate our definition. We will not pursue this idea in the present paper. Let us however
remark that this definition is implicit in the work of Cherkaev [7], Gibiansky and Sigmund [9] and many others.
We are now ready to explain our results.

1.1. Dimension d = 2

We begin with dimension two where our analysis is based on the work of the second author and of Cherkaev
to better motivate our work in dimension d ≥ 3.

In dimension d = 2 we consider a class of microgeometries proposed by Cherkaev [7] and prove A.O. for N = 3
for a large (one dimensional) part of B(∞). In our language A.O. was already established by Cherkaev [7] under
the two following assumptions. First, the composite is isotropic, second the following (Cherkaev-condition) holds

p2(1 − p2)σ1 − p1(1 + p2)σ2 ≥ 0. (1.8)

We extend his analysis to anisotropic composites showing that the condition above is not necessary. The
set B(∞) is unbounded above and it is described by the condition that in eigenvalue space the AG has to lie
above an unbounded curve which is shown in Section 3, Figure 3.

Our analysis shows that Cherkaev’s microgeometries give some portion of this curve which has positive
(actually infinite) length. If in addition (1.8) holds, one obtains that the whole curve belongs to AG and hence
the latter is fully characterized. It is important to note that the set B(∞) is found using the bounds proved
in [20] by the second author (see Sect. 3 for a review) that, in this regime are strictly tighter than the previously
known one. Remark that the bounds do not reduce themselves to those of Hashin and Shtrikman [10] when the
composites are isotropic. They are indeed tighter in certain regimes.

Our work complements the one by Gibiansky and Sigmund [9]. In their work they also look at what we
call AG and prove that, when

p1(σ1 + σ2) − 2 (
√

p2 − p2)σ1 ≥ 0 (1.9)

(Gibiansky-Sigmund regime), the Hashin-Shtrikman bounds for isotropic composites are A.O.
It can also be checked that there is still an intermediate regime where neither Cherkaev’s nor Gibiansky-

Sigmund condition holds. In this case we have only the following limited information. First, the best available
bounds are again those by the second author. (So the work of Gibiansky and Sigmund was remarkably efficient
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giving the best possible regime of attainability for the Hashin-Shtrikman bounds.) Second, A.O. of the bounds
in [20] is not known.

In order to explain the other results of the present paper let us remark that the improved bounds in dimension
d = 2 hinge on the following fact which has an interest on its own.

If d = 2 and U� is a solution of (1.7) , then det (DU� + I) > 0 a.e. (1.10)

This result has been proved in [1] (see [2] for application to composites of the latter result). Similarly if Y is
replaced by any simply connected domain which is convex and the solution is searched for in H1

0 rather than
in H1

� , the same conclusion hold [1]. A weaker but equally useful result was previously proved in [3].
A corollary of any of these results can be obtained thank to the work of Tartar and Murat [17] yielding that

for any sequence σε satisfying (1.5) and for which the H-limit σ0 is constant, the corrector matrix converges to
a constant matrix P 0 and it satisfies the following property in dimension d = 2.

If P ε ⇀ P 0 in L2, with det
(
P 0

)
> 0, then det (P ε) ≥ 0 a.e. (1.11)

Let us summarize the results of dimension two. From (1.11) one obtains A.O. bounds for three phases (and
actually also for N > 3 phases in certain regimes).

1.2. Dimension d ≥ 3

We turn now our attention to dimensions d ≥ 3. A natural question to ask is whether the following happens.
For any sequence σε satisfying (1.5) and for which the H-limit σ0 is constant, the corrector matrix converges
to a constant matrix P 0 and it satisfies

if d ≥ 2 and P ε ⇀ P 0 in L2, with i2
(
P 0

)
> 0, then i2 (P ε) ≥ 0 a.e., (1.12)

where i2 denotes the second invariant defined by

i2(F ) :=
1
2

(Tr (F ))2 − 1
2

Tr
(
F 2

)
. (1.13)

If this were the case, then new bounds in the spirit of [20], would easily be proved. However, we prove (see
Prop. 2.14) that (1.12) is false in general for composites with more than two phases. More precisely, we show in
Section 6.2 based on Example 2.17, that (1.12) is violated in any dimensions d ≥ 3 by a rank-3 laminate made
of three isotropic phases.

We proceed explaining our strategy. In dimension d ≥ 3, we address a sub-problem of the G-closure one
namely find the “lamination” closure. For precise definitions we refer to Section 2. Our strategy is very different
from the previously most explored one. We ask the following question. Is it possible to establish rigorous bounds
which have the following properties?

i) They are established only for laminates microstructures;
ii) they improve upon the classical bounds in a (sub)regime of the parameters where the Tartar-Murat

bounds are not optimal.
We show that the answer is positive. The basic idea is to use the following higher dimensional analog of (1.11)
for laminates microstructures (in the sense defined in Sect. 2.2.). Indeed, we prove (see Th. 2.13.) that the
corrector matrix P ε associated to a laminate satisfies (1.11) in any dimension d ≥ 2.

Remark that the corrector P ε is not uniquely defined. Our results holds when one chooses it according to
the rule proved by the first author [5] (see Sect. 2).

An explicit improved bound using (1.11) can be written down using a slightly modified version of Tartar’s
method. However it requires a very long and tedious calculation. Instead of presenting the proof of this new
bound, we present the proof of the following fact.
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Theorem 1.2. Consider a sequence σε satisfying (1.5) and let σ0 be its H-limit. Then
(i) if, in some set of positive measure, the following condition holds true(

N∑
i=1

θi

σi + (d − 1)σ1

)d

<
N∑

i=2

θi

(σi + (d − 1)σ1)
d

a.e. , (1.14)

then the (Hashin-Shtrikman type) lower bound

d

Tr (σ0) + d(d − 1)σ1
≤

N∑
i=1

θi

σi + (d − 1)σ1
a.e. (1.15)

is not attained by a laminate.
(ii) Similarly, if the following condition holds true

(
N∑

i=1

θi

σi + (d − 1)σN

)d

<

N−1∑
i=1

θi

(σi + (d − 1)σN )d
a.e., (1.16)

then the (Hashin-Shtrikman type) upper bound

d

d + (d − 1)σN Tr ((σ0)−1)
≤

N∑
i=1

θi

1 + (d − 1)
σN

σi

a.e. (1.17)

is not attained by a laminate.

Remark 1.3. In fact the same arguments used to prove Theorem 1.2 can be generalized to show that the
Hashin-Shtrikman type lower bound (4.1) obtained in [13, 15, 23] is not attained by a laminate under the same
regime (1.14).

An immediate consequence is that if the Hashin-Shtrikman bounds are optimal and (1.14) holds, then they
are attained by non laminate structures. Our result should probably be interpreted as a very strong support to
the non optimality in the given regime even among all microstructures.

Let us briefly digress to comment on the fact that in dimension d ≥ 3 Milton and the authors [6] proved
that there exists a (non laminate) periodic two-phase geometry such that the solution to the problem analogue
to (1.7) but in dimension d greater or equal to three, satisfies the following properties. It is defined almost
everywhere and∣∣ {x ∈ (0, 1)d : det (DU� + Id) > 0

} ∣∣ > 0,
∣∣ {x ∈ (0, 1)d : det (DU� + Id) < 0

} ∣∣ > 0,

where |·| denotes the d-dimensional Lebesgue measure. Therefore in higher dimensions there are microgeometries
for which det (P ε) changes sign and some for which it does not. Laminates always satisfy the latter property.
This is a surprisingly simple instance showing once again that laminates cannot catch all the possible behaviors
of general microstructures.

In the same spirit as before, we prove bounds for a subclass of composites which includes one that has been
very successful so far, namely the class of orthogonal laminates. (The latter simply means that the lamination
directions are always taken in a fixed orthonormal basis.) This class is not sufficient to obtain the full lamination
closure. However, if one restricts attention to isotropic composites, we do not know of any example where this
class does not suffices. For instance this class is sufficient when treating the d-dimensional G-closure of a
polycrystal made of a single crystal, provided one restricts attention to isotropic composites!
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The new class we propose, which we call quasiorthogonal composites is the following slight modification of
the class satisfying (1.12). We ask that the following property for the corrector P ε holds.

If P ε ⇀ P 0 in L2, with i2
(
P 0

) ≥ 0 a.e. then χ1
ε i2 (P ε) ≥ 0 a.e. (1.18)

We prove two facts about this class.
First, we prove A.O. bounds in any dimension and for any number of isotropic phases in appropriate regimes.

The bounds are obtained using the same argument as in [20] and the A.O. is obtained with a straightforward
extension to higher dimensions of Cherkaev’s microgeometries.

Second, we prove that this class of composites contains the class of orthogonal laminates. This is the reason
to name this class quasiorthogonal composites. Remark that, in dimension two, all composites with a constant
H-limit are quasiorthogonal, but, in dimension d > 2, there are composites which are not quasiorthogonal.

The paper is organized as follows. In Section 2 we review the necessary results from homogenization theory.
We then state our main results about laminates, namely the positivity of the determinant of the corrector
matrix, the quasiorthogonality of orthogonal laminates and the violation of (1.12). We also present some
relevant examples of rank-three laminates.

In Section 3, we focus on dimension d = 2. We review the known results in terms of bounds and we state
our new one. In Section 4, we present known and new results in higher dimension. Section 5 is devoted to the
proof of the bounds for quasiorthogonal composites in any dimension. Finally, in Section 6 we prove the result
stated in Section 2.

The moral of the story in dimension greater than two is the following. Since we proved A.O. of Cherkaev’s
microgeometries among all possible quasiorthogonal laminates, one has the following consequence in addressing
the G-closure problem. If one looks for new microgeometries with more extremal properties, then one is forced
to restrict the search to non-quasiorthogonal composites. On the other hand, our incompatibility result for the
Hashin-Shtrikman bounds show that either the bound need to be improved in that regime, or, if those bounds
are optimal in the appropriate regime, then the corresponding microgeometries are not of a laminate type.

2. Homogenization and lamination

2.1. Homogenization and H-convergence

Notation 2.1. Let d be a positive integer.
We denote by Md the set of the d × d real matrices, by Ms

d its subset made of the symmetric matrices and
by Id the identity matrix. R

d is provided with the usual scalar product denoted by · and with the associated
norm denoted by | · |.

Md is provided with the scalar product : defined by A : B := Tr
(
AT B

)
, where Tr is the trace and AT the

transposed of A.
Md is also provided with the norm | · | defined by |A| := (A : A)

1
2 .

Let κ ≥ 1. We denote by Md(κ) the subset of Ms
d made of the invertible matrices A such that

∀ ξ ∈ R
d, min

(
Aξ · ξ, A−1ξ · ξ) ≥ κ−1|ξ|2.

Note that any matrix A ∈ Md(κ) satisfies |A| ≤ κ.
Let Ω be a bounded open subset of R

d.
Let ε be a positive number.

Consider the following family of conduction problems:{ − div (σε∇uε) = f in Ω

uε = g on ∂Ω,
(2.1)
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where σε is a sequence of measurable matrix-valued functions from Ω into Md(κ), f belongs to H−1(Ω) and
g to H1/2(Ω). The asymptotic behavior of problem (2.1) has been studied at depth. Spagnolo introduced the
notion of G-convergence [21,22], Murat and Tartar that of H-convergence [16–18]. We will use the language of
H-convergence which is the most appropriate for the problem we want to address.

One crucial result of the theory is the following.

Theorem 2.2 (Murat-Tartar). There exists a subsequence of ε (still denoted by ε) and a measurable matrix-
valued function σ0 from Ω into Md(κ) such that for any f in H−1(Ω) and g in H1/2(Ω), the following conver-
gencies hold true {

uε ⇀ u0 weakly in H1(Ω),

σε∇uε ⇀ σ0∇u0 weakly in L2(Ω; Rd),
(2.2)

where u0 is the solution of problem (2.1) with ε = 0.

Definition 2.3. When the weak convergencies (2.2) hold true for the whole sequence σε and for any right-hand
sides f and g, σε is said to H-converge to σ0 and σ0 is called the H-limit of σε. In this case we write σε H

⇀ σ0.

The H-convergence does not in general implies the strong convergence of ∇uε to ∇u0 in L2(Ω, Rd). In order
to measure the oscillations of ∇uε around its weak limit ∇u0 one has to introduce a corrector term which is
defined as follows.

Definition 2.4. Assume that σε H
⇀ σ0. Let P ε be a matrix-valued function in L2(Ω; Md). The sequence P ε is

said to be a corrector associated to σε if for any f in H−1(Ω) and g in H1/2(Ω), the solution uε of problem (2.1)
satisfies

∇uε − P ε∇u0 −→ 0 strongly in L1(Ω; Rd). (2.3)

Murat and Tartar [17] proved the following existence result.

Theorem 2.5 (Murat-Tartar). Assume that σε H
⇀ σ0. Then there exists a corrector P ε associated to σε.

In fact the existence of a corrector is deduced from the following compensated compactness properties due
to Murat and Tartar [17]:

Theorem 2.6 (Murat-Tartar). Assume that the sequence σε H-converges to σ0 and let P ε be a bounded sequence
in L2(Ω; Md) such that for any ξ ∈ R

d,
P εξ ⇀ ξ weakly in L2(Ω; Rd),

curl (P εξ) is compact in H−1(Ω; Rd),

div (σεP εξ) is compact in H−1(Ω).

(2.4)

Then P ε is a corrector associated to σε and the H-limit σ0 of σε is given by the weak limit

σεP ε ⇀ σ0 weakly in L2(Ω; Md). (2.5)

Remark 2.7. The H-convergence of σε and the corrector P ε do not depend on any subdomain of Ω but only
on the given sequence σε. The H-convergence is thus local.

2.2. Lamination

2.2.1. Definitions

In this section we will consider multiphase microstructures in which the conductivity matrix σε is constant
in each phase, i.e.

σε :=
∑
i∈I

χi
ε σi a.e. in Ω, (2.6)
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where σi are matrices in Md and χi
ε are measurable characteristic functions of disjoint sets making a partition

of Ω, such that ∑
i∈I

χi
ε = 1 a.e. in Ω. (2.7)

The sequence of characteristic functions carries geometric information and is often called microstructure. We
will consider conductivity matrices σε of type (2.6) for which there exists a corrector P ε which has the same
multiphase structure, i.e.

P ε :=
∑
i∈I

χi
ε P i, where P i ∈ Md are constant matrices. (2.8)

This assumption is justified. Indeed for a large class of microstructures such a qualified corrector exists as
proved by the first author in [5].

We will restrict ourselves to the class of microstructures called laminates.

Definition 2.8. Let σ̂ :=
{
σi
}

i∈I
be a finite family of Md(κ), let ε be a positive number and let ξ be a

unit-norm vector in R
d. The matrix-valued function σε is said to be a rank-1 laminate of phases

{
σi
}

i∈I
, at

the scale ε, in the direction ξ (ξ ∈ R
d , |ξ| = 1) if

σε(x) :=
∑
i∈I

Xi

(
ξ · x
ε

)
σi a.e. x ∈ Ω, (2.9)

where Xi are 1-periodic measurable characteristic functions defined on R.
We define Lε

1(σ̂) := σε.

Definition 2.9. Let n be a positive integer, let ε be a positive number and let ξ1, . . . , ξn be n unit-norm vectors
in R

d. The matrix-valued function σε is said to be a rank-n laminate if it is defined by the following inductive
procedure.

• At level k = n and for any j in a finite subset Jn of N, σε
n−1,j is a rank-1 laminate of constant

phases σn,i ∈ Md(κ), at the scale εn and in the direction ξn.
• At level k < n and for any j in a finite subset Jk of N, σε

k−1,j is a rank-1 laminate of phases which are
either constant matrices in Md(κ) or composites of type σε

k,i (defined at level k), at the scale εk and in
the direction ξk.

• At level k = 1, σε is a rank-1 laminate of type σε
0.

Let σ̂ :=
{
σi
}

i∈I
be the finite family of all the constant matrices in Md(κ) which define the laminate. We then

denote σε = Lε
n(σ̂).

We again restrict ourselves to a subclass of rank-n laminates which have the following extra property.

Definition 2.10. Let n be a positive integer. The matrix-valued function σε := Lε
n(σ̂) is said to be an

admissible rank-n laminate if there exists a subset P̂ :=
{
P i

}
i∈I

of Md such that the matrix-valued function

P ε := Lε
n(P̂ ) is a corrector associated to σε (according to Def. 2.4.), which satisfies the following conditions.

For any (constant or composite) phases P ε
k,i and P ε

k,j of the rank-n laminate P ε at level k, we have
P = Id,

P
k,i − P

k,j
= ξk ⊗ ηk,i,j , where ηk,i,j ∈ R

d,(
Q

k,i − Q
k,j

)T

ξk = 0,

(2.10)
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where P is the weak limit of P ε, P
k,i

the weak limit of P ε
k,i and Q

k,i
the weak limit of σε

k,iP
ε
k,i. Moreover we

have
Q

k,i
= σ0

k,i P
k,i

, where σ0
k,i ∈ Md(κ). (2.11)

Remark 2.11. Conditions (2.4) can be written as a large linear system the solutions of which are the matri-
ces P i of P̂ . The first condition in (2.10) corresponds to the first one in Theorem 2.6. The second condition
of (2.10) takes in account the jump of the curl between P ε

k,i and P ε
k,j . The third condition of (2.10) corre-

sponds to the jump of the divergence between σε
k,iP

ε
k,i and σε

k,jP
ε
k,j . The matrix σ0

k,i in (2.11) is the H-limit
(in the sense of Def. 2.3) of the composite σε

k,i at level k thanks to Theorem 2.6. The conditions which define
the admissible rank-n laminates are quite natural since the separation of scales allow us to consider simply
the averaged quantities between two neighboring composites at any level of lamination. So in [5] (see also
Ex. 2.16. below) the first author proves that, if at each level k one considers the rank-1 laminate of a constant
matrix σk and a composite σε

k, the Conditions (2.3) are satisfied and define a rank-n laminate corrector in a
unique way. But more general rank-n laminations are admissible (see Ex. 2.17. below).

Finally we define the orthogonal laminates as follows.

Definition 2.12. A rank-n laminate is said to be orthogonal if the directions of lamination ξ1, . . . , ξn belong
to an orthonormal basis (e1, . . . , ed) of R

d.

The rank-3 laminate of Example 2.17 is an orthogonal laminate (see Fig. 2).

2.2.2. Properties of the laminates

The most remarkable new property of the laminates that we prove is the following.

Theorem 2.13. Let σε = Lε
n(σ̂) be an admissible rank-n laminate and let P ε = Lε

n(P̂ ) its associated corrector.
Then det (P ε) is positive a.e. in Ω.

Remark that, with our definition P 0 is the identity matrix.
It is natural to ask ourselves if the result of Theorem 2.13 can be extended to another matrix invariant and

in particular to the (quadratic) second invariant defined by (1.13). There is no such an extension as shown by
the following result.

Proposition 2.14. For any dimension d ≥ 3, there exists a 3-phases admissible rank-3 laminate which violates
property (1.12).

However the situation is more favorable in the case of the orthogonal lamination.

Theorem 2.15. Orthogonal laminates with isotropic phases are quasiorthogonal in the sense of Definition 1.18.

2.2.3. Examples

This subsection is devoted to give some explicit examples of laminates. The aim is two-fold. First, we want
to familiarize the reader with the notations giving them a geometric interpretation. Second, our Example 2.17
allows us to prove Proposition 2.14 showing that (1.12) does not hold in general.

Example 2.16. We consider the following 2-dimensional (d = 2 or d = 3 for a cylindrical configuration) rank-3
laminate (Fig. 1).

Let ξ1, ξ2, ξ3 be 3 unit-norm vectors in R
d and let χk

ε , k = 1, 2, 3, be the characteristic function defined by

χk
ε(x) := Xk

(
ξk · x
εk

)
a.e. x ∈ Ω,

where Xk is a 1-periodic characteristic function of averaged-value pk.
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Figure 1. A 2d rank-3 laminate.

Let σ̂ := {σ1, σ2, σ3, σ4} be a family of 4 matrices in Md(κ) and let us define the rank-3 laminate σε =
Lε

3(σ̂) by

σε := χ1
ε σ1 + (1 − χ1

ε)
(

χ2
ε σ2 + (1 − χ2

ε)
(
χ3

ε σ3 + (1 − χ3
ε)σ4︸ ︷︷ ︸

3rd rank-1 lamination

)
︸ ︷︷ ︸

2nd rank-1 lamination

)

︸ ︷︷ ︸
1st rank-1 lamination

. (2.12)

The laminate σε is admissible and it is associated to the corrector P ε = Lε
3(σ̂) where P̂ := {P 1, P 2, P 3, P 4} is

defined by the following linear system deduced from Conditions (2.10):



P = p1 P 1 + (1 − p1)
(
p2 P 2 + (1 − p2)

(
p3 P 3 + (1 − p3)P 4

))
= Id,

P 3 − P 4 = ξ3 ⊗ η3,

P 2 − P
2

= ξ2 ⊗ η2, P
2

:= p3 P 3 + (1 − p3)P 4,

P 1 − P
1

= ξ1 ⊗ η1, P
1

:= p2 P 2 + (1 − p2)P
2
,

(σ3P 3 − σ4P 4)T ξ3 = 0,

(σ2P 2 − Q
2
)T ξ2 = 0, Q

2
:= p3 σ3P 3 + (1 − p3)σ4P 4,

(σ1P 1 − Q
1
)T ξ1 = 0, Q

1
:= p2 σ2P 2 + (1 − p2)Q

2
.
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This system has a unique solution P̂ given by (see [5] for more details)

P 4 = (M1M2M3)−1,

P 3 = p−1
3

(
(M1M2)−1 − (1 − p3) (M1M2M3)−1

)
,

P 2 = p−1
2

(
(M1)−1 − (1 − p2) (M1M2)−1

)
,

P 1 = p−1
1

(
Id − (1 − p1) (M1)−1

)
,

(2.13)

where the matrices Mk, k = 1, 2, 3, are defined by

M3 := Id +
p3

σ3ξ3 · ξ3
(ξ3 ⊗ ξ3) (σ4 − σ3),

M2 := Id +
p2

σ2ξ2 · ξ2
(ξ2 ⊗ ξ2) (σ0

2 − σ2),

M1 := Id +
p1

σ1ξ1 · ξ1
(ξ1 ⊗ ξ1) (σ0

1 − σ1),

(2.14)

and

{
σ0

2 := σ3 + (1 − p3) (σ4 − σ3) (M3)−1,

σ0
1 := σ2 + (1 − p2) (σ0

2 − σ2) (M2)−1.

In (2.14) σ0
2 is the H-limit of the third rank-1 lamination of {σ3, σ4} and σ0

1 is the H-limit of the second rank-1
lamination of {σ2, σ0

2}. The H-limit of the rank-3 laminate σε defined by (2.12) is then equal to

σ0 = σ1 + (1 − p1) (σ0
1 − σ1) (M1)−1. (2.15)

Example 2.17. We consider the following 3-dimensional rank-3 laminate (Fig. 2).

Let (ξ1, ξ2, ξ3) be an orthonormal basis of R
3 and let χj

ε, j = 1, 2, χ3,k
ε , k = 1, 2, 3, be the characteristic

functions defined by 
χj

ε(x) := Xj

(
ξj · x
εj

)
χ3,k

ε (x) := X3,k

(
ξ3 · x
ε3

) a.e. x ∈ Ω,

where Xj , X3,k, are 1-periodic characteristic functions of averaged-values pj , p3,k, such that X3,1+X3,2+X3,3 = 1
a.e.

Let σ̂ := {σ1, σ2, σ3,1, σ3,2, σ3,3} be a family of five matrices in M3(κ) and let us define the rank-3 laminate
σε = Lε

3(σ̂) by

σε := χ1
ε σ1 + (1 − χ1

ε)
(

χ2
ε σ2 + (1 − χ2

ε)
(
χ3,1

ε σ3,1 + χ3,2
ε σ3,2 + χ3,3

ε σ3,3︸ ︷︷ ︸
3rd rank-1 lamination

)
︸ ︷︷ ︸

2nd rank-1 lamination

)

︸ ︷︷ ︸
1st rank-1 lamination

. (2.16)

In contrast to Example 2.17 the third rank-1 lamination is composed by three phases. This laminate is also
admissible and the associated corrector P ε = Lε

3(P̂ ) with P̂ := {P 1, P 2, P 3,1, P 3,2, P 3,3} is deduced from the
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Figure 2. A 3-d rank-3 laminate.

following formulas similar to that of (2.13):
P 3,k = (M1M2M3,k)−1, k = 1, 2, 3,

P 2 = p−1
2

(
(M1)−1 − (1 − p2) (M1M2)−1

)
,

P 1 = p−1
1

(
I3 − (1 − p1) (M1)−1

)
,

(2.17)

where the matrices M1, M2, M3,k, k = 1, 2, 3, are defined by

M3,k := I3 +
∑
j �=k

p3,j

σ3,jξ3 · ξ3
(ξ3 ⊗ ξ3) (σ3,k − σ3,j), k = 1, 2, 3,

M2 := I3 +
p2

σ2ξ2 · ξ2
(ξ2 ⊗ ξ2) (σ0

2 − σ2),

M1 := I3 +
p1

σ1ξ1 · ξ1
(ξ1 ⊗ ξ1) (σ0

1 − σ1),

(2.18)

and

 σ0
2 := σ3,1 +

3∑
j=2

p3,j (σ3,j − σ3,1) (M3,j)−1,

σ0
1 := σ2 + (1 − p2) (σ0

2 − σ2) (M2)−1.
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In (2.18) σ0
2 is the H-limit of the third rank-1 lamination of {σ3,1, σ3,2, σ3,3}. Similarly to Example 2.16 σ0

1 is
the H-limit of the second rank-1 lamination of {σ2, σ0

2} and the H-limit of the rank-3 laminate σε (2.16) is also
obtained by formula (2.15).

3. Warming-up: statements in dimension d = 2

Throughout the present section we consider composites made of a finite but arbitrary number of isotropic
phases in prescribed volume fractions. In other words we assume that σε satisfies (1.5) and we denote by σ0 its
H-limit.

Theorem 3.1 (bounds: [20]). Assume

(1 − θ2)σ1 − θ1σ2 > 0 a.e. (3.1)

Then, the H-limit, σ0 of a composite made of N ≥ 3 isotropic phases with scalar conductivities 0 < σ1 < σ2 <
· · · < σN in prescribed volume fractions θ1, θ2, · · · , θN satisfy the following bounds. For any λ ∈ [σ1, σ2],

Trσ0 − 2λ

det σ0 − λ2
≤ 2

N∑
i=1

θi

σi + σi ∧ λ
a.e. (3.2)

The symbol a ∧ b denotes the maximum between a and b. Remark that for λ = σ1 one obtains the Lurie-
Cherkaev [11], Murat-Tartar [23] bounds. If in addition the composite is isotropic the bound reduce to the
original Hashin-Shtrikman one [10].
Proof. See [20]. �

To state the next results, recall the notion of A.O. in Definition 1.1.

Theorem 3.2 (A.O. for Hashin-Shtrikman: [9]). Under the hypotheses of Theorem 3.1 the bounds (3.2) spe-
cialized to the case N = 3, λ = σ1 and σ0 = λ0 Id are A.O. provided

θ1 (σ2 + σ1) − 2 (
√

θ2 − θ2)σ1 ≥ 0 a.e. (3.3)

Proof. See [9]. �

Remark 3.3. The result of Gibiansky and Sigmund is sharp in the following sense. When (3.3) does not hold
and σ3 = +∞, the bounds (3.2) specialized to the case σ0 = λ0 Id, are strictly tighter than the Hashin-Shtrikman
one.

We also need the following result due Milton [14] (see also [12] and [15]).

Theorem 3.4 (A.O. for anisotropic composites: [14]). The hypotheses of Theorem 3.1 in conjunction with

σ0
1 ≥

(
θ1

σ1
+

θ2

σ2

)−1

a.e. (3.4)

fully characterize the AG-closure provided

θ1 (σ2 + σ1) − 2 (1 − θ2)σ1 ≥ 0 a.e. (3.5)

Proof. See [15]. �

Our new result in this context is the following.
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σ :=
(

θ1

σ1
+

θ2

σ2

)−1

, τ1 :=
(1 − θ2)2

θ1
σ1 + θ2 σ2, τ2 :=

σ2

θ2
·

Figure 3. The A.O. curve Γc.

Theorem 3.5 (attainment of (3.2 with λ = σ2)). Under the hypotheses of Theorem 3.1 the bounds (3.2)
specialized to the case N = 3, λ = σ2 are A.O. More precisely, in eigenvalue space (σ0

1 , σ0
2), consider the

(unbounded) curve Γ defined by equality in (3.2) and λ = σ2. Then its subset Γc defined as

Γc := Γ ∩
{

(σ0
1 , σ0

2) :
σ2

θ2
≤ max (σ0

1 , σ0
2)
}

(3.6)

is A.O.

For Figure 3, we have chosen θ1, θ2, σ1, σ2 such that Condition (3.7) does not hold or equivalently τ1 < τ2.
Any point of the curve Γc in the eigenvalue space (σ0

1 , σ0
2), satisfies the equality in (3.2) and is asymptotically

attained by a rank-2 orthogonal laminate. The curve Γc has a “hole” near the isotropic point (2 σ−σ2, 2 σ−σ2).
The “hole” is the region for which attainability (3.2) is not known.

Corollary 3.6 (Cherkaev [7]). If one has

θ2 (1 − θ2)σ1 − θ1 (1 + θ2)σ2 ≥ 0 a.e., (3.7)

then Γc ≡ Γ and the AG-closure is therefore characterized.

Remark 3.7. The exact statement proved by Cherkaev is that when (3.7) holds, the point on Γc which satisfies
σ0

1 = σ0
2 is A.O.
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4. The core: statements in dimension d ≥ 3

As usual we assume that σε satisfies (1.5) and we denote by σ0 its H-limit.

Theorem 4.1 (bounds: [13,15,23]). The H-limit σ0 of a composite made of N ≥ 3 isotropic phases with scalar
conductivities 0 < σ1 < σ2 < · · · < σN in prescribed volume fractions θ1, θ2, . . . , θN satisfy the following bounds:

1

σ1 +
(
Tr (σ0 − σ1 Id)

−1
)−1 ≤ d

N∑
i=1

θi

(d − 1)σ1 + σi
· (4.1)

Proof. See [15]. �

Theorem 4.2 (A.O. for Hashin-Shtrikman: [14]). Under the hypotheses of Theorem 4.1, the bounds (4.1)
specialized to the case N = 3, in conjunction with (3.4), fully characterize the AG-closure provided

θ1 [σ2 + (d − 1)σ1] − d (1 − θ2)σ1 ≥ 0 a.e. (4.2)

Proof. See [14]. A different derivation was found later in [12]. See also [15] for a review. �

Remark 4.3. The two-dimensional result of Gibiansky and Sigmund [9] suggests that (4.2) is not sharp. Let us
also emphasize that Milton, as well as Lurie and Cherkaev proved more. We have stated their result restricting
attention to A.O.

Our new results in this context are the following. First, the negative result Theorem 1.2 stated in the intro-
duction which will be proved in Section 5.3. On the positive side, we have a result of A.O. for quasiorthogonal
composites which is the content of the next subsection.

4.1. Bounds for quasiorthogonal composites

Let us recall from the introduction that when there exists a corrector P ε which satisfies (1.18) we say that
the microgeometry is quasiorthogonal. The definition is suggested by the fact that, as proved in Section 6.3,
orthogonal laminates always satisfy it. Also, Proposition 2.14 shows that the class of quasiorthogonal microge-
ometries is strictly larger than that of orthogonal laminates. Let us also emphasize that, although we do know of
laminates which are not quasiorthogonal, we are unable to prove that in this class one can find composites which
lie outside the set prescribed by our bounds. In two dimensions, as already pointed out any microgeometry
leading to a constant H-limit is quasiorthogonal.

Theorem 4.4 (bounds for quasiorthogonal composites). The H-limit σ0 of a composite made of N ≥ 3 isotropic
phases in prescribed volume fractions and which, in addition, is quasiorthogonal satisfies the following bounds.
Assume (3.1). Then, for any t ∈ [σ1, σ2],

1

t +
(
Tr (σ0 − t Id)

−1
)−1 ≤ d

N∑
i=1

θi

σi + (d − 1)σi ∧ t
a.e. (4.3)

The proof is presented in Section 5.1.

Theorem 4.5. Under the hypotheses of Theorem 4.4 the bounds (4.3) specialized to the case N = 3, λ = σ2

are A.O. More precisely, in eigenvalue space (σ0
1 , σ0

2 , . . . , σ0
d), consider the (unbounded) surface S defined by

equality in (4.3) and λ = σ2. Then, there exists a subset Sc of S of (d− 1)-dimensional measure which is A.O.
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Figure 4. The A.O. surface Sc with a bounded “hole” for d = 3.

For Figure 4, we have chosen d = 3, θ1 := 0.07, θ2 := 0.4, σ1 := 1, σ2 := 2 and σ3 := +∞ such that
Condition (4.4) does not hold. Any point of the surface Sc in the eigenvalue space (σ0

1 , σ0
2 , σ0

3), satisfies the
equality in (4.3) and is asymptotically attained by a rank-3 orthogonal laminate. The surface Sc does not “hit”
the isotropic line σ0

1 = σ0
2 = σ0

3 . The unshaded triangle shaped “hole” is the region for which attainability (4.3)
is not known.

Corollary 4.6 (Cherkaev’s type result). If one has

θ2 (1 − θ2)σ1 − θ1 (d − 1 + θ2)σ2 ≥ 0 a.e., (4.4)

then Sc ≡ S and the AG-closure is fully characterized.

5. Proofs concerning bounds

5.1. Proof of Theorem 4.4

We need some preliminary definitions and a few lemmas. Let f : M × M × Ms × R → R be defined by

f(S, A, B, t) := 2 A : B − Tr
(
AT SA

)− 2 t i2 (A) , (5.1)

g(S, B, t) := sup
A∈M

f(S, A, B, t). (5.2)

Lemma 5.1. Assume that S = s Id and 0 < t < s, then

g(S, Id, t) =
d

s + (d − 1) t
· (5.3)

The proof is an elementary linear algebra exercise and it is omitted.
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Lemma 5.2 (Tartar [24]). Consider a sequence of conductivity matrices satisfying (1.5). Assume that σε is
H-converging to σ0. Let P ε be the corrector matrix associated to the conductivity σε and let P 0 be its L2-weak
limit. Then one has

∀ϕ ∈ C∞
0 (Ω), ϕ ≥ 0, lim inf

ε→0+

∫
Ω

ϕf(σε, P ε, Id, t) dx ≥
∫

Ω

ϕf(σ0, P 0, Id, t) dx. (5.4)

See [24].

Corollary 5.3. Under the same hypotheses of Lemma 5.2, set

tε(x) := t1 χε
1(x) + t2

N∑
i=2

χε
i (x) with 0 < t1 < σ1 ≤ t2 < σ2. (5.5)

If (1.18) holds, then for any P 0 with
i2 (P 0) ≥ 0 a.e. (5.6)

which in addition satisfies (1.18), one has

lim inf
ε→0+

∫
Ω

ϕg(σε, Id, tε) ≥
∫

Ω

ϕf(σ0, P 0, Id, t2). (5.7)

Sketch of the proof. It is just a straightforward adaptation of Tartar’s proof to the situation under consider-
ation. At almost every point and for every admissible test function ϕ, one has

ϕg(σε, Id, tε) ≥ ϕf(σε, P ε, Id, tε),

hence ∫
Ω

ϕg(σε, Id, tε) ≥
∫

Ω

ϕf(σε, P ε, Id, tε) =
∫

Ω

ϕf(σε, P ε, Id, t2) + 2 (t2 − t1)
∫

Ω

ϕχ1
ε i2 (P ε) .

Using (5.5), (5.6), and the assumption (1.18), one has

2 (t2 − t1)
∫

Ω

ϕχ1
ε i2 (P ε) ≥ 0.

Therefore, using Lemma 5.2,

lim inf
ε→0+

∫
Ω

ϕg(σε, Id, tε) ≥ lim inf
ε→0+

∫
Ω

ϕf(σε, P ε, Id, t2) ≥
∫

Ω

ϕf(σ0, P 0, Id, t2). (5.8)

Proof of Theorem 4.4. We compute both sides of inequality (5.7). Using Lemma 5.1 and the Definition 5.5

one has

lim inf
ε→0+

∫
Ω

ϕg(σε, Id, tε) = d

∫
Ω

ϕ

[
θ1

σ1 + (d − 1) t1
+

N∑
i=2

θi

σi + (d − 1) t2

]
·

Next choose
P 0 := p0 Id, p0 :=

d

Trσ0 + d(d − 1) t2
·

With the above choice, P 0 verifies (5.6) and therefore we can use (1.18). One has

f(σ0, p0Id, Id, t2) =
d2

Trσ0 + d(d − 1) t2
·
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It follows that for all the admissible test functions ϕ,

∫
Ω

ϕ

[
θ1

σ1 + (d − 1) t1
+

N∑
i=2

θi

σi + (d − 1) t2

]
≥
∫

Ω

ϕ

[
d2

Trσ0 + d(d − 1) t2

]
· (5.9)

Finally sending t1 to σ1 and setting t2 = t one obtains that for any t ∈ [σ1, σ2], the following inequality holds

∫
Ω

ϕ

[
θ1

d σ1
+

N∑
i=2

θi

σi + (d − 1) t

]
≥

∫
Ω

ϕ

[
d2

Trσ0 + d(d − 1) t

]
· (5.10)

The latter implies (4.3) when σ0 = h0 Id for some scalar h0.
The more general case of anisotropic composites is handled similarly. We omit further algebraic details which

can be found in [19].
Let us remark that our choice of the function tε may appear rather mysterious. In fact better choices are

possible for multiphase composites made by more than three phases. See [20] for more details. The main point
however is that the new bounds, when evaluated in subregions of Ω where θ1 = 0, delivers an optimal bound
(in contrast with the classical one) because it reduces itself to the two-phase bound. �

5.2. Proof of Theorem 4.2

We explain the strategy due to Cherkaev in dimension d. Consider a rank-d laminate. At the first step
laminate all the d phases along the coordinate direction ed in volume fractions q1, q2, . . . , qd to be specified
later. At the following (d−1) steps, laminate in directions ed−1, . . . , e1 respectively the previous composite with
phase of conductivity σ2 Id with fractions βd−1, . . . , β1. In this way one obtains a (d− 1)-dimensional family of
composites parameterized by the βi’s. One has to check that they are optimal. We give the details of the proof
in two dimensions following Cherkaev. Extension to any dimension is straightforward.

We begin with a rank one laminate of the three given phases σ1, σ2 and σ3 in volume fractions q1, q2 and q3

respectively. Choose e2 as direction of lamination. The effective conductivity of this “sub-composite” is diagonal
and the explicit formulas for its eigenvalues are given by

λ1 = q1σ1 + q2σ2 + q3σ3, λ2 =
(

q1

σ1
+

q2

σ2
+

q3

σ3

)−1

· (5.11)

Now laminate the latter subcomposite with σ2 I2 in direction e1 in volume fraction 1 − β, β respectively. The
resulting composite is a rank-two laminate. The final volume fractions of the three given phases are given by

p1 = q1β, p3 = q3β, p2 = 1 − p1 − p3. (5.12)

We choose qi > 0 with
∑3

i=1 qi = 1, so that

(1 − β) + βq2 = p2.

We then regard each of the qi’s as a function of β. Their ranges imposes the constraint

β ∈ [p1 + p3, 1] (5.13)

as one easily verifies. The effective conductivity of the final (rank-two) composite is also diagonal and its
eigenvalues are

ν1 =
(

β

λ1
+

1 − β

σ2

)−1

, ν2 = β λ2 + (1 − β)σ2. (5.14)
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We regard the latter two as functions of β. As β varies in its admissible range as given by (5.13), the pair
(ν1, ν2) describes a curve in eigenvalue space denoted by Γc (see Fig. 3).

An easy calculation shows that

∀β ∈ (p1 + p3, 1), lim
σ3→+∞

[
ν1(β) + ν2(β) − 2σ2

ν1(β) ν2(β) − σ2
2

− 2
(

p1

2σ1
+

p2

2σ2
+

p3

σ2 + σ3

)]
= 0.

Now we ask under which condition the curve Γc intersects the diagonal or, in other words, under which condition
the curve “hits” an isotropic composite. A lengthy but straightforward calculation that we omit shows that the
exact condition is that

βC :=
2

1 − σ2

(
1
a

+
1

b σ2
2

) (5.15)

where a and b are defined by

a := p1(σ1 − σ2) + p3(σ3 − σ2), b :=
p1(σ2 − σ1)

σ1σ2
+

p3(σ2 − σ3)
σ3σ2

· (5.16)

When βC ∈ (p1 + p3, 1), we set β = βC . This implies, by construction, ν1(βC) = ν2(βC) so that the rank-two
laminate described before is indeed isotropic.

Next it is easy to check that in the limit as σ3 tends to infinity, the condition on βC reduces to (3.7), i.e.
to (4.4) specialized to the case d = 2. Explicit calculation shows that Γc reduces to the one stated in the
theorem. In higher dimensions the A.O. surface can have a “hole” near the isotropic point in general (see
Fig. 4). Notice that this hole can be also non-bounded and then the A.O. surface is not connected.

5.3. Proof of Theorem 1.2

The positivity of the determinant for the laminate correctors implies the incompatibility result stated in the
introduction (Th. 1.2).

Proof of part (i). By localization we can assume that the homogenized matrix and the volumes fractions are

constant. Let us consider the conductivity matrix σε defined by (1.5).
Let F be the mapping defined on M × M × R by

F (P, σ, t) := 2 TrP − Tr
(
P T σP

)− 2 t i2 (P ) (5.17)

where i2 is defined by (1.13), and let G be the mapping defined on M × R by

G(σ, t) := sup
P∈M

F (P, σ, t). (5.18)

A computation due to Tartar (Prop. 1 of [24]) yields for any σ ≥ t Id,

G(σ, t) =
1

t +
(
Tr (σ − t Id)

−1
)−1 · (5.19)

By applying Tartar’s method [24] (see Lem. 5.2.) we obtain

G(σ0, σ1) ≤ lim
D′

G(σε, σ1) = lim
L∞-w∗

G(σε, σ1). (5.20)

Moreover by a convexity argument we have for any positive definite matrix C,(
Tr

(
C−1

))−1 ≤ d2 TrC. (5.21)
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Inequalities (5.20) combined with (5.21) yield

d2

Trσ0 + (d2 − d)σ1
≤ G(σ0, σ1) ≤ lim

L∞-w∗
G(σε, σ1) = d

N∑
i=1

pi

σi + (d − 1)σ1
(5.22)

which implies the Hashin-Shtrikman bound (1.15).
Now let us assume that bound (1.15) is optimal. Then the inequalities (5.22) are all equalities. The left-hand

side (in)equality of (5.22) implies that (5.21) is an equality for C := σ0, whence σ0 = h Id. Let P 0 be a matrix
such that G(σ0, σ1) = F (P 0, σ0, σ1).

Let us also assume that σ0 is attained by lamination, i.e. x σε is a laminate, and let us consider the associated
corrector P ε which weakly∗ converges to P 0 in L∞.

First, by compensated compactness and the definition of the homogenized matrix we have

G(σ0, σ1) = F (P 0, σ0, σ1) = lim
D′

F (P ε, σε, σ1) = lim
L∞-w∗

F (P ε, σε, σ1) (5.23)

since P ε and σε are bounded in L∞.
Second, we have

F (P ε, σε, σ1) ≤ G(σε, σ1) = F (P ′
ε, σ

ε, σ1) (5.24)
where P ′

ε is a critical point of F , namely

(σε − σ1 Id)P ′
ε + σ1 Tr (P ′

ε) Id = Id a.e. in Ω \ {χ1
ε = 1},

which implies

P ′
ε = P ′

ε χ1
ε +

N∑
i=2

1
σi + (d − 1)σ1

Id χi
ε. (5.25)

Then the second (in)equality of (5.22) combined with (5.23) and (5.24) implies that F (P ′
ε, σ

ε, σ1)−F (P ε, σε, σ1)
is a non-negative sequence which weakly∗ converges to 0 in L∞ and thus strongly converges to 0 in L2.

Now let ωε be a subdomain of the set where σε = σi Id, for i > 1, of limit volume fraction p > 0, and in
which P ε takes a constant value P . We thus have the L2-weak convergence

1ωε (F (P ε, σε, σ1) − F (P ′
ε, σ

ε, σ1)) ⇀ 0 = p (F (P, σi, σ1) − F (P ′
i , σi, σ1)) (5.26)

which implies F (P, σi Id, σ1) = F (P ′
i , σi Id, σ1) = G(σi Id, σ1). Then by the uniqueness of the maximum we

obtain P = P ′
i = 1

σi+(d−1) σ1
Id. Therefore the laminate corrector also reads

P ε = P ε χ1
ε +

N∑
i=2

1
σi + (d − 1)σ1

Id χi
ε. (5.27)

On the other hand, thanks to the positivity of the determinant of P ε we have

det (P ε) ≥
N∑

i=2

1

(σi + (d − 1)σ1)
d

χi
ε,

whence by the rank-1 affinity of the determinant

det
(
P 0

)
= lim

D′
det (P ε) ≥

N∑
i=2

pi

(σi + (d − 1)σ1)
d
· (5.28)
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Moreover, since G(σ0, σ1) = F (P 0, σ0, σ1), P 0 is a critical point of F (·, σ0, σ1) whence P 0 = 1
h+(d−1) σ1

Id.
Finally bound (1.15) combined with inequality (5.28) yields

(
N∑

i=1

pi

σi + (d − 1)σ1

)d

≥ 1

(h + (d − 1)σ1)
d
≥

N∑
i=2

pi

(σi + (d − 1)σ1)
d

which contradicts Condition (1.14). Therefore the incompatibility of the optimality of the Hashin-Shtrikman
lower bound (1.15) with the existence of an optimal laminate is proved. �

Proof of part (ii). It is very similar to the part (i) by following Tartar’s method [24] thanks to the mapping

F̃ (Q, σ, t) := (d − 1)Tr
(
QT Q

)− (TrQ)2 − t (d − 1)Tr
(
QT σ−1Q

)
+ 2 TrQ

and the compact divergence sequence Qε := σε P ε which also has a non-negative determinant. �

Remark 5.4. Condition (1.14) holds true for small enough volume fraction p1 and for any choice of the values
of the conductivities thanks to the strict convexity of the function t �→ td in [0, +∞[. Indeed set

S(p1) :=
1

1 − p1

N∑
i=2

pi

σi + (d − 1)σ1
and T (p1) :=

1
1 − p1

N∑
i=2

pi

(σi + (d − 1)σ1)
d
·

We have for fixed volume fractions pi

1−p1
, i > 1,

lim
p1→0

(
p1

1
d σ1

+ (1 − p1)S(p1)
)d

= S(0)d < T (0) = lim
p1→0

(1 − p1)T (p1),

whence (1.14) holds for small enough p1.

6. Proofs concerning properties of laminates

6.1. Proof of Theorem 2.13

Let P ε
k,i be any (constant or composite) phase of P ε at the level k of lamination, according to Definition 2.10,

and let P
k,i

be its L∞-weak∗ limit.
Let us first prove that for any k, i, j,

det (P
k,i

) = ck,i,j det (P
k,j

) where ck,i,j > 0. (6.1)

The Conditions (2.10) and (2.11) which are satisfied by P
k,i

and P
k,j

can be written in the following simpler
way

P
k,i

= Mk,i,j P
k,j

where Mk,i,j := Id +
1

σ0
k,iξ

k · ξk
(ξk ⊗ ξk) (σ0

k,j − σ0
k,i), (6.2)

and we easily check that

det (Mk,i,j) =
σ0

k,jξ
k · ξk

σ0
k,iξ

k · ξk
> 0.

Therefore (6.1) holds true with ck,i,j := det (Mk,i,j).
Let us now prove by induction on the level k of lamination, that for any k, j, det (P

k,j
) > 0.
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By Definition 2.10 at the first level of lamination P ε is a rank-1 laminate at scale ε of the phases {P ε
1,j}j∈J1

which are constant or composite phases at scales ε2, . . . , εn. Then thanks to the separation of scales in the weak
convergence of oscillating sequences and by the first condition of (2.10) we have

Id =
∑
j∈J1

p1,jP
1,j

where p1,j ≥ 0 and
∑
j∈J1

p1,j = 1, (6.3)

and by the second condition of (2.10) we also have for any i, j ∈ J1, P
1,i − P

1,j
= ξ1 ⊗ ηi,j . Therefore the

rank-1 affinity of the determinant yields

det (Id) = 1 =
∑
j∈J1

p1,j det (P
1,j

),

which combined to (6.1) with k = 1 implies that for any j ∈ J1, det (P
1,j

) > 0. The result is thus satisfied
for k = 1.

Assume that the result holds true for (k−1) and let P ε
k−1,i be a composite phase at level k. By Definition 2.10,

P ε
k−1,i is a rank-1 laminate of the phases {P ε

k,j}j∈Jk,i
. Then, similarly to the case k = 1, by using the separation

of scales, the rank-1 affinity of the determinant and the induction hypothesis, we obtain

det (P
k−1,i

) =
∑

j∈Jk,i

pk,i,j det (P
k,j

) > 0 where pk,i,j ≥ 0 and
∑

j∈Jk,i

pk,i,j = 1

which combined with (6.1), implies that for any j ∈ Jk,i, det (P
k,j

) > 0. The result is thus satisfied for k, which
ends the induction proof.

Finally each constant phase P i in P̂ of the rank-n laminate P ε = Lε
n(P̂ ) is equal to some matrix P

k,j
and

thus has a positive determinant. Therefore since P ε can be written

P ε =
∑
i∈I

χi
ε P i

where χi
ε are characteristic functions whose the sum is equal to 1, we obtain

det (P ε) =
∑
i∈I

χi
ε det (P i) > 0 a.e. in Ω,

which concludes the proof of Theorem 2.13.

6.2. Proof of Proposition 2.14

Let us start by the dimension d = 3. Let us consider the rank-3 laminate of Example 2.16 with isotropic
phases σk := σk I3, k = 1, . . . , 4 and σ4 = σ2. This laminate is a 3-phases composite in dimension d = 3. We
define the second and third directions of lamination by ξ2 :=

(
1√
2
, 1√

2
, 0
)

and ξ3 := (1, 0, 0), the first one will
be chosen later.
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By Definition (2.14) we have

M3 = I3 + a (ξ3 ⊗ ξ3) where a :=
p3

σ3
(σ2 − σ3) > 0,

M2 = I3 − ξ2 ⊗ ξ2 + O(1 − p2) + O

(
σ3

σ2

)
+ O

(
(1 − p3)

(σ2 + σ3)
σ2

)
,

M1 = I3 − ξ1 ⊗ ξ1 + O(1 − p1) + O

(
σ2

σ1

)
+ O

(
(1 − p2)

(σ1 + σ2 + σ3)
σ1

)
.

Set
M :=

(
I3 − ξ2 ⊗ ξ2

) (
I3 + a (ξ3 ⊗ ξ3)

)
. (6.4)

We can then choose σ3 � σ2 � σ1 and 1 − pk � 1 for k = 1, 2, 3, in such a way that

M3 = I3 + a (ξ3 ⊗ ξ3) with a � 1,

M2 = I3 − ξ2 ⊗ ξ2 + o(1),

M1 = I3 − ξ1 ⊗ ξ1 + o(1),

M2M3 = M + o(1),

M1M2M3 = M − (ξ1 ⊗ ξ1)M + o(1),

where o(1) means a small term in a given matrix norm.
Let MS be the symmetrized of the matrix M defined by (6.4) and let λ1 ≤ λ2 ≤ λ3 be the eigenvalues of MS .

We can check that

M =
1
2

 1 + a −1 − a/2 0
−1 − a/2 1 0

0 0 2


and λ1 =

1 −√
2

4
a + o(a), λ2 = 1, λ3 =

1 +
√

2
4

a + o(a).

Now we choose ξ1 as the unit-norm eigenvector associated to the eigenvalue λ3. By the previous estimates we
have

Tr (M1M2M3) = Tr (MS) − MSξ1 · ξ1 + o(1) = λ1 + λ2 + o(1),
which implies that for a large enough Tr (M1M2M3) < 0.

Finally, by the Definition (2.13) of the last phase P 4 of the corrector P ε and the Definition (1.13) of the
second invariant, we obtain

i2(P 4) = det (P 4)Tr (M1M2M3) < 0.

Therefore the second invariant of the rank-3 laminate P ε is not non-negative a.e. in Ω, which concludes

the proof of Proposition 2.14.

Example 6.1. Numerically we computed the following values.
1) Let us consider the 3-rank and 3-phases laminate defined as follows. The directions of lamination are
ξ1 :=

(
t,
√

1 − t2, 0
)

with t := −0.9, ξ2 :=
(

1√
2
, 1√

2
, 0
)
, ξ3 := (1, 0, 0), the layers volume fractions are p1 := 0.95,

p2 = p3 := 0.9 and the layers conductivity are σ1 := 103 I3, σ2 = σ3 := 10 I3, σ3 := 10−1 I3.
We obtain that the corrector in the fourth layer satisfies

P 4 =

 0.4280983664 −0.1566620987 0
17.98398313 −3.673461792 0

0 0 1

 and i2(P 4) = −2.000557878 < 0.
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2) Let us consider the 3-rank and 3-phases laminate defined as follows. The directions of lamination are ξ1 :=(
t,
√

1 − t2, 0
)

with t := 0.3, ξ2 :=
(

1√
2
, 1√

2
, 0
)
, ξ3 := (1, 0, 0), the layers volume fractions are p1 = p2 = p3 := 0.9

and the layers conductivity are σ1 := 103 I3, σ2 = σ4 = 10−1 I3, σ3 := 102 I3.
We obtain that the corrector in the fourth layer satisfies

P 4 =

 −8.331725368 −51.35846901 0
0.01643576281 0.07230966407 0

0 0 1

 and i2(P 4) = −8.017764352 < 0.

Remark 6.2. In the previous counter-examples the geometry has a cylindrical symmetry so that it is essentially
2-dimensional because the directions of lamination belong to the same plane.

Let us prove now that the result of Proposition 2.14 also holds for dimension d > 3. We will do this thank
to a slight modification of the 3-dimensional counter-example. Let σε

3 be the 3-dimensional laminate of the first
example in Example 6.1 and P ε

3 its associated corrector. Set

σε :=
(

σε
3 0
0 Id−3

)
and P ε :=

(
P ε

3 0
0 Id−3

)
. (6.5)

It is easy to see that σε is a d-dimensional laminate and P ε its associated corrector. By Example 6.1 we know
that the constant value P 4

3 of the fourth phase of P ε
3 satisfies i2(P 4

3 ) < 0 and we can also choose Tr (P 4
3 ) < 0 as

large we want. Then the constant value P 4 of the fourth phase of P ε satisfies according to (6.5),

i2(P 4) =
1
2
(
Tr (P 4

3 ) + d − 3
)2 − 1

2
(
Tr (P 4

3 )2 + d − 3
)

= i2(P 4
3 ) + (d − 3)

(
Tr (P 4

3 ) +
d − 4

2

)
< 0,

whence the non-positivity of the second invariant for any dimension d ≥ 3.

6.3. Proof of Theorem 2.15

Let σε = Lε
n(σ̂) be an orthogonal admissible rank-n laminate such that the family σ̂ is composed of isotropic

phases, i.e. σ̂ = {σi Id}i∈I . We can assume that the directions of lamination belong to the canonic basis of R
d.

First, let us prove by a decreasing induction on k that any matrix σ0
k,i defined by (2.11) is diagonal.

The result holds true for k = n since by Definition 2.10 at level n any matrix σ0
n,i is equal to a matrix of σ̂

and is thus isotropic.
Assume that the result holds true for k. Let σ0

k−1,i be a matrix at level k of lamination. By Definition 2.10
and Remark 2.11 σ0

k−1,i is the H-limit of the sequence σε
k−1,i which is a rank-1 lamination at scale εk of the

phases {σε
k,j}j∈Jk,i

, i.e.

σε
k−1,i(x) :=

∑
j∈Jk,i

Xk,j

(
ξk · x
εk

)
σε

k,j , a.e. x ∈ Ω, (6.6)

where Xk,j are 1-periodic characteristic functions. By the principle of reiterated homogenization (see e.g. [4])
the matrix σ0

k−1,i is also the H-limit of the same rank-1 lamination (6.6) with the phases {σ0
k,j}j∈Jk,i

, where
each matrix σ0

k,j is the H-limit of σε
k,j obtained by a homogenization process at scales εk+1, . . . , εn. Then the

homogenization formula for rank-1 lamination in direction ξk yields

σ0
k−1,i =

∑
j∈Jk,i

pk,j σ0
k,j

Id +
∑
h �=j

pk,h

σ0
k,hξk · ξk

(ξk ⊗ ξk) (σ0
k,j − σ0

k,h)

 , (6.7)
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where each pk,j is the averaged-value of the characteristic function Xk,j in (6.6). By the induction hypothesis
each matrix σ0

k,j is diagonal as well as the product (ξk⊗ξk) by the orthogonal lamination assumption. Therefore
formula (6.7) implies that the matrix σ0

k−1,i is also diagonal and positive since σ0
k−1,i ∈ Md(κ). The result is

thus satisfied for (k−1), which ends the induction proof.
Second, let us prove by an increasing induction on k that any matrix P

k,i
defined in (2.10) is positive diagonal.

Let us start by the following preliminary remark. Since any product (ξk ⊗ ξk) is positive diagonal as well as any
matrix σ0

k,i by the previous result, it is easy to check that any matrix Mk,i,j defined by (6.2) is also positive
diagonal. Let us now come back to the induction proof.

For k = 1 and by (6.2), (6.3) we have for any i, j,

P
1,i

= M1,i,j P
1,j

and Id =
∑
j∈J1

p1,j P
1,j

where p1,j ≥ 0,
∑
j∈J1

p1,j = 1.

These equalities combined with M1,i,j positive diagonal clearly imply that any matrix P
1,i

is positive diagonal.
The result is thus satisfied for k = 1.

Assume that it holds true for (k − 1). By the rule (6.2) and by the definition of the rank-1 lamination at
level k, any matrix P

k−1,i
is associated to a family {P k,j}j∈Jk,i

such that for any j1, j2 ∈ Jk,i,

P
k,j1 = Mk,j1,j2 P

1,j2 and P
k−1,i

=
∑

j∈Jk,i

pk,j P
k,j

where pk,j ≥ 0,
∑

j∈Jk,i

pk,j = 1.

Since the matrix P
k−1,i

is positive diagonal by the induction hypothesis as well as any matrix Mk,j1,j2 , we
deduce from the previous equalities that any matrix P

k,j
is positive diagonal. The result is thus satisfied for k,

which ends the induction proof.
Finally, any matrix P i in P̂ , which is of type P

k,j
, is positive diagonal. Therefore the corrector P ε = Lε

n(P̂ )
is positive diagonal a.e. in Ω. In particular, all its invariants are positive a.e. in Ω, which concludes the proof
of Theorem 2.15.
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INSA de Rennes and the Centre de Mathématiques Appliquées at the École polytechnique.
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