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NUMERICAL MINIMIZATION OF EIGENMODES OF A MEMBRANE
WITH RESPECT TO THE DOMAIN

Édouard Oudet
1

Abstract. In this paper we introduce a numerical approach adapted to the minimization of the
eigenmodes of a membrane with respect to the domain. This method is based on the combination of
the Level Set method of S. Osher and J.A. Sethian with the relaxed approach. This algorithm enables
both changing the topology and working on a fixed regular grid.
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1. Statement and historical summary

Let Ω be a bounded open set of R
N and H1

0 (Ω) the Sobolev space defined as the closure of C∞ functions
with compact support in Ω with respect to the norm

‖u‖H1 :=
(∫

Ω

u(x)2 dx +
∫

Ω

|∇u(x)|2 dx

)1/2

.

The Laplace-Dirichlet operator on Ω being a self-adjoint operator with compact inverse, there is a sequence
of positive eigenvalues which tends to +∞ and an associated sequence of eigenvectors that will be labelled
0 < λ1(Ω) ≤ λ2(Ω) ≤ λ3(Ω) ≤ . . . and u1, u2, u3, . . . Thus, those sequences solve the problems

{ −∆uk = λk(Ω)uk in Ω,
uk = 0 on ∂Ω.

(1)

In any case, the eigenfunctions will be supposed to satisfy the condition

∫
Ω

uk(x)2 dx = 1. (2)

The eigenfunctions constitute an Hilbert base of L2(Ω).As a consequence of the hypo-analyticity of the laplacian
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e-mail: Edouart.Oudet@univ-savoie.fr

c© EDP Sciences, SMAI 2004



316 É. OUDET

they are analytic in Ω. Moreover, we shall use the following variational formulation:

λ1(Ω) = inf
v∈H1

0 (Ω),v �=0

∫
Ω |∇v(x)|2 dx∫

Ω
v(x)2 dx

· (3)

This infimum is reached when v = u1, the first eigenfunction of the Laplace-Dirichlet operator.
The investigations of the relations between the eigenmodes of the domain Ω, and specifically the isoperimetric

inequalities where they are involved, are an important issue both in the field of partial differential equations
and in differential geometry. In the beginning of the century, the first result obtained in this topic was the proof
of the Rayleigh conjecture by Faber [7] and Krahn [14]. They proved that the ball minimizes the first eigenvalue
of the Laplace-Dirichlet operator under a volume constraint. The domain which minimizes λ2 always with a
volume constraint is the union of two identical balls. This result was often attributed to Szegö as observed by
Pòlya in [20], but it seems that this result was already published in a paper of Krahn (see [15]). For k ≥ 3 fixed,
the question to identify the open set of the plane which minimizes λk amongst the sets of given area remains
open today (see [10] for a survey on this subject).

In 1973, Troesch proposes in [23] some numerical values of resonant frequencies for several types of convex
membranes of R

2. The following observations stand out from those experiments:
− the convex open set which minimizes the second eigenvalue of the Laplace-Dirichlet operator under

convexity and volume constraints displays two flat sections on its boundary;
− the stadium (see Fig. 1), i.e. the convex hull of two tangent identical disks, looks very close to the

optimal set.

Figure 1. One stadium.

In fact, as reported in [11] and [12], the stadium does not minimizes λ2 under convexity and volume con-
straints. The aim of this work is to present a new technique enabling to approximate numerically the solutions
of such optimizations problems. More precisely, we shall be interested in the two following problems:

min{λ2(Ω), Ω ⊂ R
2, Ω convex, |Ω| = 1} (4)

min{λk(Ω), Ω ⊂ R
2, |Ω| = 1} for k ≥ 3. (5)

The method we are presenting combines two approaches that were generated in the last twenty years, respectively
the homogenization method and the level set method. We shall start with a short description of the three main
numerical methods in shape optimization, namely the boundary variation, the homogenization and the level set
methods. For each of them we shall underline the drawbacks when applying those techniques to minimize the
eigenmodes of the Laplace operator. In consequence we shall develop a new process.

In conclusion we shall report numerical results. On one side we improve the values published in [24] and on
the other side we propose a geometrical description of the ten first optimal sets.

2. Boundary variation, derivative with respect to the domain

The boundary variation method is the first we used for our study of the eigenvalues. This allowed to obtain
satisfying results when minimizing λ2 under volume and convexity constraints. This approach turns out to be
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ineffective to investigate directly the minimization under volume constraint only, but unlike the technique that
will be introduced later, it does not require to modify the cost function.

2.1. General presentation

Many optimization methods are founded on the use of the so-called first order optimality conditions (as the
gradient and quasi-Newton methods). These techniques are descent methods which we try to make converge
to a local minimum of the cost function. The question which arises in shape optimization is the deficiency of a
natural derivative in a space of shapes. To by-pass this difficulty we introduce for each vector field V (so-called
deformation field) of R

N , the derivative (if it does exist) of J in the direction V by

d (J (Ω)) (Ω, V ) = lim
t→0

J (Ωt) − J (Ω0)
t

,

where
Ωt = {(Id + tV ) (x) , x ∈ Ω} ·

A function J which displays an extremum in Ω satisfies the relation

d (J (Ω)) (Ω, V ) = 0 (6)

for all vector fields V .

Remark 1. Under some regularity assumptions it can be proved (see [22]) that

∃hΩ ∈ D′(∂Ω) such that ∀V ∈ D(RN )N
, d (J (Ω)) (Ω, V ) =< hΩ, V · n >D′(∂Ω)×D(Ω),

where n is the normal vector field of ∂Ω. This result expresses that the boundary derivative only takes into
account the normal component of the deformation field.

We shall now specify the relation (6) in the frame of eigenvalue problems. More precisely let us report the
following Hadamard’s theorem:

Theorem 2 (Hadamard). Let Ω be an open set of class C2 and λk(Ω) be its kth eigenvalue of the Laplace-
Dirichlet operator. We assume that λk(Ω) is a simple eigenvalue. Then the function t 
→ λk(Ωt) has a derivative
at t = 0, which is given by

d (λk (Ω)) (Ω, V ) = −
∫

∂Ω

(
∂uk

∂n

)2

V · n dσ (7)

where uk is the kth eigenfunction associated to λk(Ω), normalized by
∫
Ω u2

k(x)dx = 1.

A complete proof of this result is reported in [22] or in [13]. Here we will only present a formal proof of the
relation (7). Let uk(t, x) and λk(Ωt) be the kth eigenfunction and eigenvalue of the open set Ωt. We suppose
that the derivative with respect to the real parameter t exists. Deriving formally at t = 0 the relation

−�uk = λk(Ωt)uk, (8)

we obtain
−�u′

k = λk(Ω)u′
k + λ′

k(Ω)uk in Ω. (9)
And the boundary condition

uk(t, (Id + tV ) (x)) = 0 for all x ∈ ∂Ω
becomes

u′
k +

N∑
i=1

∂uk

∂xi

d (Id + tV )i

dt
= u′

k +
N∑

i=1

∂uk

∂xi
Vi = 0.
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Then
u′

k = −∂uk

∂n
V · n (10)

since ∇uk = ∂uk

∂n .n (uk is constant on the boundary). Multiplying (9) by uk and integrating on Ω we obtain

−
∫

Ω

uk�u′
k dx = λk(Ω)

∫
Ω

uku′
k dx + λ′

k(Ω).

Hence by Green’s formula,

−
∫

∂Ω

∂u′
k

∂n
uk dσ +

∫
∂Ω

∂uk

∂n
u′

k dσ −
∫

Ω

u′
k�uk dx = λk(Ω)

∫
Ω

uku′
k dx + λ′

k(Ω). (11)

Moreover multiplying (8) at t = 0 by u′
k and integrating on Ω, we get the new relation

−
∫

Ω

u′
k�uk dx = λk(Ω)

∫
Ω

uku′
k dx. (12)

From (10)–(12) and the fact that uk equals zero on the boundary, we conclude that

d (J (Ω)) (Ω, V ) = λ′
k(Ω) = −

∫
∂Ω

(
∂uk

∂n

)2

V · n dσ.

Remark 3. According to the formula λk (lΩ) = λk(Ω)
l2 (for l > 0), we can neglect the volume constraint in the

problems (4) and (5). We have:
min

|Ω|=1, Ω open
λk (Ω) = min

Ω open
|Ω|λk (Ω) .

To estimate the derivative of |Ω|λk (Ω), we have to compute the derivative of the volume with respect to a
boundary variation. Such a result is easily obtained (see as an example [13]) going back to a fixed domain by
Green’s formula. Then

d (|Ω|) (Ω, V ) =
∫

∂Ω

V · n dσ. (13)

Thanks to this derivative we are able to describe the different steps of a boundary optimization algorithm
designed to minimize the kth eigenvalue under volume constraint:

• Polygonal discretization of the boundary: let Ω0 be a given initial shape; m control points on
∂Ω0 are selected and referred to as Pi i = 1, ..., m;

• Computation of the shape derivative: let n(Pi) be the exterior normal vector at the point Pi.
Thanks to (7) and (13), for each i = 1, ..., m, we compute the derivative

di = lim
t→0

J(Ωi
t) − J (Ω0)

t

of the function of one variable J(Ωi
t), where

{
J(Ω) = |Ω|λk (Ω) ,
Ωi

t = {(Id + tVi) (x) , x ∈ Ω} ,

for Vi = vi(x)n(x) where vi is a smooth real-valued function equal to 1 at Pi and zero on all other
control points. Therefore we make use of the approach reported for example in [19] about the problem
of electromagnetic shaping;

• Exit criterion: if the norm of the vector (di)i=1,...,m is small enough we stop the algorithm;
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• Boundary variation: each control point is moved along the exterior normal vector according to the
opposite of the derivative di. Precisely, Pi is translated from a vector −αdin(Pi) for an adaptive choice
of α > 0. In this context the quasi-Newton method can also be carried out (see [19]);

• Evaluation of the cost function: after having verified that the new control points (Pi)i=1,...,m still
generates a non crossing polygon, the value of the cost function for this new shape is evaluated. Then
the descent step α is adjusted exactly the same way as in the finite dimension case for a classical gradient
algorithm. An iteration takes end by going back to the step of derivative computation.

This method has been carried out in numerous situations different from the minimization of eigenvalues. How-
ever, it displays three major drawbacks that are respectively:

– no change of the topology;
– the risk to get a local minimum;
– a major computational cost due to the remeshing process for each iteration.

However this method was shown to be efficient for the investigation of the second eigenvalue under convexity
and volume constraints.

2.2. Application to the problem of the stadium

Let’s go back to the problem (4). In [12] we could prove that the shape optimization problem

min
Ω convex, |Ω|=1

λ2(Ω) = min
Ω convex

λ2(Ω) |Ω|

is well-posed and that the stadium does not realize this minimum. Moreover we have shown that the optimal
set has exactly two parallel segments on its boundary.

Here we wish to report a computational description of the optimal shape using the boundary variation
method. The only difficulty we still have to deal with is taking into account the convexity constraint. Therefore
the boundary variation algorithm is applied to the penalized function

J(Ω) := λ2(Ω) |Ω| + p(|Co(Ω)| − |Ω|)2

where Co(Ω) is the convex hull of Ω and p is a positive penalization number. In Figures 2 and 3 we present the
results obtained with two distinct initial shapes. Figure 2 illustrates the convex hulls of the shapes generated by
the boundary variation method. This post-processing has been involved since the penalization method does not
generate exact convex shapes. We observe the close similarity between a stadium and an optimal shape both
from the geometrical viewpoint and from their eigenvalues (see Tab. 1 where j0 
 2.4048256 and j1 
 3.8317060
are respectively the first zeros of the Bessel functions J0 and J1).

2.3. Remarks and precisions

In the previous computations, the boundary was discretized by 40 control points. We used classical finite
element method to approximate the eigenvalues of the laplacian. Since we need a good approximation of the
gradient of the eigenfunction on the boundary, we used a P2 finite element method with about 4000 triangles.
In the cases of the disc or of the square as initial shapes, convergence takes place in less than 40 iterations.

Alternatively, we attempted to change the penalization approach for a projection method. At each iteration
the new open set was replaced by its convex hull. Definitely this process was rather unefficient. The main
reason is the following: taking the convex hull introduces segments on the boundary. Now, in many cases, the
boundary variation method would like to push the nodes on the segment inside: then taking again the convex
hull will restore the initial domain. At this point the method is stationary.
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A stadium

Initial shape : a circle

Initial shape : a square

Figure 2. Optimization obtained for several initial shapes.

_____   A stadium
− − −    Shape obtained from a square

Figure 3. A test of superposition.

Table 1. Different values of λ2.

Domain Exact value Computed value
Square 5π2 49.348
Ball j2

1π 46.124
Best rectangle 4π2 39.478
Best ellipse 39.317
The stadium 38.001
The best convex domain1 37.980
Two balls2 2j2

0π 36.336
1 That we have obtained with our algorithm.
2 Best domain (without constraint).

3. The relaxed approach

3.1. Introduction

We are now presenting a relaxed method by homogenization which was very successful during the last years
both for obtaining existence results in shape optimization and developing numerical algorithms.
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Numerous shape optimization problems have no solution in the natural space of investigation (typically the
open subsets of a compact domain). As well as weak solutions have been introduced in the field of partial
differential equations, we are led to enlarge the space of shapes in order to obtain the existence of an optimal
generalized shape. This process was applied mainly in elastic structures (see [1,3,4]), where the expected domain
is deduced from the homogenized solution after a screening technique.

3.2. The relaxed approach for eigenmodes

Let D be a bounded regular open set of R
N and Ω an open set of D. For k ∈ N

∗, we consider uΩ ∈ H1
0 (Ω)

as the kth eigenvalue of the laplacian. Therefore uΩ is a solution of{−∆uΩ = λk(Ω)uΩ in Ω,

uΩ = 0 on ∂Ω.

We are interested in the shape optimization problem (5). Apart from k = 1 and 2, it is not yet established
whether such a problem has an open set solution. An important result in this field was obtained by Buttazzo
and Dal Maso (see [5]) who proved that a quasi open set solution of (5) does exist.

Hereunder we will introduce a relaxed approach adapted to the problem (5). For each µ a non-negative Borel
measure on D we consider the new eigenvalue problem as follows:{−∆u + µu = λ(µ)u in D,

u = 0 on ∂D.
(14)

By analogy with the classical weak solution of partial differential equations we shall define a solution (λ, u)
of (14) as a pair which satisfies{

λ ∈ R, u ∈ V 0
µ ,∫

D
∇u(x) · ∇v(x)dx +

∫
D

u(x)v(x)dµ = λ(µ)
∫

D
u(x)v(x)dx, ∀v ∈ V 0

µ ,
(15)

where V 0
µ = H1

0 (D) ∩ L2
µ(D) and L2

µ(D) is the set of measurable functions whose square value admits a
finite integral with respect to µ. It is easily shown that for each µ ∈ M0(D) (the set of non-negative Borel
measure on D absolutely continuous with respect to capacity) there are sequences of eigenvectors and eigenvalues
satisfying (15). Let us now develop how to associate for each open set in D an element of M0(D). Therefore
we consider the capacity measure on D defined for all E ∈ P(D) (the subsets of D) by:

capD(E) = inf
{∫

D

|∇u|2 dx : u ∈ C∞
0 (D), u ≥ 1 in a neighborhood of E

}
· (16)

For each Ω ⊂ D, we introduce µΩ ∈ M0(D) by

µΩ(B) =
{

0 if capD(B\Ω) = 0,
+∞ if capD(B\Ω) > 0 (17)

for each borelian set B of D. So a natural injection of the open sets of D into M0(D) is built. We still have to
define the volume of an element of M0(D). Let us define for each µ ∈ M0(D)

|µ| = |{x ∈ D, wµ(x) > 0}| (18)

where wµ is the weak solution of {−∆wµ + µwµ = 1 in D,

wµ ∈ H1
0 (D).
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Remark 4. The expected equality |µΩ| = |Ω| is deduced from the maximum principle and the definition (17).
Indeed the function wµΩ is formally zero outside Ω and sub-harmonic inside.

The following theorem can thus be established (see [8] or [13] for the proof and also for a precise definition
of the γ-convergence):

Theorem 5 (Dal Maso-Mosco). The set {µ ∈ M0(D), |µ| ≤ 1} is the completion with respect to the γ-
convergence of the family of open sets of D whose volume are less than 1. Moreover, M0(D) is compact
for this topology.

Having proved the continuity of the eigenvalues with respect to the γ-convergence and the monotonicity of
λk(Ω) with respect to set inclusion, it can be shown that the following problem

inf
µ∈M0(D), |µ|≤1

λk(µ) (19)

does admit a solution. In addition, this solution is a classical domain and not only a measure in M0(D).

3.3. Numerical approximation

In this section we shall show how the relaxed formulation (14) is well suited for finding an optimal shape.
This method however exhibits an important practical difficulty: in such a context the volume of a measure
appears to be non differentiable under its variation. A first application of this method for the minimization
of eigenvalues was reported in [8]. In this paper the author by-passes this difficulty by a smoothing process.
Unfortunately such a method requires the introduction in the algorithm of parameters whose adjustment proved
to be delicate. For this reason we did not apply this method directly and preferred a mixed method that will
be described in the following paragraph.

Let (Th)h=1,...,l be a triangulation of D. We aim to approximate the measure solution of (19) by a sequence
of absolute continuous measures with respect to the Lebesgue measure whose densities are constant on each
Th. Having applied the algorithm we expect a measure of type (17), i.e. a zero or “infinity” value measure on
almost each triangle (at least on each triangle which are not on the interface region). Let (mh)h=1,...,l ∈ R

l
+ be

the measure whose density is given by

l∑
h=1

mhχ
Th

where χ
Th

is the characteristic function of the triangle Th. Let us recall from [8] the following proposition (such
a formula can be obtained exactly as in Sect. 2).

Proposition 1. Let µ ∈ M0(D) with density (mh)h=1,...,l and k ∈ N
∗. Let λk(µ) i.e. the kth eigenvalue of the

operator −∆ + µI, be a simple eigenvalue and uk its eigenfunction. Then

∂λk

∂mh
=

∫
Th

(uk)2dx.

Having computed this derivative, the aim is to apply a classical gradient algorithm to the sequence (mh)h=1,...,l

(exactly the same way we optimized the positions of control points here above). As it has been already
mentioned, the volume of a measure µ is not differentiable with respect to mh. This problem is removed when
the level set method is carried out as shown in the next section. Moreover, this level set method allows us to
consider measures which take only the values 0 and “infinity” (i.e. a large value M , see below).
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4. The level set method and the relaxed formulation

4.1. Introduction

The method that will be reported is adapted from a paper of Osher and Santosa on problems of not
degenerated densities (see [16]). A level set method exhibits several advantages. In particular it does not imply
any topological restriction and enables working on a fixed regular mesh. Before detailing the different steps, let
us recall the principle of a level set method. Let Ω ⊂ D be an initial shape. The first step will be to parametrize
Ω by a function Φ, the so-called level set function, that must satisfy


Φ(x) < 0 if x ∈ Ω,
Φ(x) > 0 if x ∈ D\Ω,
Φ(x) = 0 if x ∈ ∂Ω.

Next, as suggested in [17], such a function will be initialized with the signed-distance which is given by{
Φ(x) = −dist(x, ∂Ω) if x ∈ Ω,
Φ(x) = dist(x, ∂Ω) if x ∈ D\Ω.

Let us observe that the constructed distance is generally not easily computed and often requires a specific
attention (see [21]). As far as we are concerned, the initial shapes have been estimated thanks to genetic
techniques (see Sect. 4.4). We choose an approximate signed-distance function which is constant on each
triangle of the mesh. Its value in the triangle T is computed by evaluating the distance between the center of
mass of T and the center of mass of the closest triangle lying on the boundary of the initial shape.

One Φ is defined, let its the level set 0 (i.e. ∂Ω) fluctuate with time under the vector field vn (where v is a real-
valued function). In other words, if x(t) describes the evolution of a point on ∂Ω under such a transformation,
it has to verify

Φ(t, x(t)) = 0 for all t.

Differentiating this expression, we obtain

∂Φ
∂t

(t, x(t)) +
dx

dt
(t) · ∇xΦ(t, (t, x(t)) =

∂Φ
∂t

(t, x(t)) + v(x(t))n(x(t)) · ∇xΦ(t, x(t)) = 0. (20)

Now the normal to a level set in a non stationary point is given by

n(x(t)) =
∇xΦ
|∇xΦ| (t, x(t)).

Hence according to (20),
∂Φ
∂t

(t, x(t)) + v(x(t)) |∇xΦ| (t, x(t)) = 0. (21)

In order to compute the evolution of Φ, we thus have to solve a Hamilton-Jacobi equation. It has to be mentioned
that the computation we have presented only concerns the level set 0. But since the vector field vn has a natural
extension on a D, we solve the equation (21) in the whole set D.

A major difficulty, that we did not yet mention and which will be treated in the next paragraph, is the
computation of a good velocity field vn for the shape optimization problem under investigation. For this
purpose, a very natural approach has been introduced in [2], which consists in choosing the vector field as the
field obtained by boundary variation.

Before going into details, let us summarize the different steps of the level set optimization:
1. initialization of Φ by the signed distance;
2. computation of the velocity field and checking of an exit criterion;
3. propagation of the level set solving the Hamilton-Jacobi equation (21);
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4. evaluation of the cost function;
5. redefinition of Φ and adjustment of the time step;
6. eventually, reinitialization of Φ with the signed distance. Back to step 2.

4.2. Computation of the derivative

We here report the computation of the variation of the eigenvalue with respect to Φ. Here again, we only
justify formally the derivative. We refer to [13] and [22] for a rigorous proof.

Let µ be a density on D having only 0 or M values. We notice that for M large enough, the value of λk(µ)
is closed of λk(Ω) where Ω = {x ∈ D : µ(x) = 0}. We have to estimate the derivative of λk(µ) with respect to
a variation of its level set subjected to a normal vector field vn. Let k ∈ N

∗ and uµ the solution of

{−∆uµ + µuµ = λk(µ)uµ in D,

uµ = 0 on ∂D
(22)

according to the preceding paragraph. Let uµ,t verify

{−∆uµ,t + µtuµ,t = λk(µt)uµ,t in D,

uµ,t = 0 on ∂D
(23)

where, for each x ∈ D,

µt(x) =

{
0 for x ∈ {(Id + tvn) (y) : µ(y) = 0}
M otherwise.

The derivability of λk(µt) and uµ,t with respect to vn can be proved as in [22] and [13]. Once this derivability
admitted, let us establish the formula of the derivative.

After multiplying (23) by a test function w ∈ C∞
0 (D) and by integrating it using Green’s formula we obtain

the weak formulation ∫
D

∇uµ,t · ∇w dx +
∫

D

uµ,tw dµt = λk(µt)
∫

D

uµ,tw dx (24)

for each w ∈ C∞
0 (D). Hence∫

D

∇uµ,t · ∇w dx + M

∫
ωt

uµ,tw dx = λk(µt)
∫

D

uµ,tw dx

where
ωt = {x ∈ D : µt(x) = M} ·

Deriving this latter identity with respect to t and using classical identities, we have
∫

D

∇u′
µ · ∇w dx + M

(∫
ω

u′
µw dx −

∫
∂ω

uµwv dσ

)
= λ′

k(µ)
∫

D

uµw dx + λk(µ)
∫

D

u′
µw dx, (25)

where ω stands for D\Ω (i.e. ωt fot t = 0). In order to eliminate u′
µ we evaluate (24) when t = 0 and w = u′

µ

and we deduce ∫
D

∇uµ · ∇u′
µ dx +

∫
D

uµu′
µ dµ = λk(µ)

∫
D

uµu′
µ dx. (26)

Combining (25) with w = uµ and (26), we get

λ′
k(µ)

∫
D

u2
µ dx = −M

∫
∂ω

u2
µv dσ
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so

λ′
k(µ) = −M

∫
∂ω u2

µv dσ∫
D u2

µ dx
= −M

∫
∂ω

u2
µv dσ

for a normalized function uµ.
Exactly in the same way as under boundary variation, the derivative of the measure’s volume can be evalu-

ated as:

|µ|′ =
∫

∂ω

v(x) dσ.

4.3. Computing a numerical solution of Hamilton-Jacobi equation

Now, the problem is to determine amongst the weak solutions the one that corresponds to the physical state
under investigation. Introducing the concept of viscosity solution, in 1983 Crandall and Lions (see [6]), brought
a satisfying answer to the global existence problem for Hamilton-Jacobi equations. We shall not go into technical
details for the definition of such a weak solution (we refer to [6] or [21]).

Our description will be limited to an algorithm reported in [17] designed to approach the weak viscosity
solution of our problem.

Let us consider the first order Cauchy’s system:




∂Φ
∂t

(t, x) − F (x) |∇Φ(t, x)| = 0 in R+ × D,

Φ(0, x) = u0(x) in D,

where D is a bounded rectangle of R
N and u0 and F are given functions. Hereunder we shall use the classical

notations for finite difference schemes on regular meshes of points indexed by i, j. Starting from Φ(0, x) = u0(x),
then the evolution of Φ after one time step ∆t is given by

Φn+1
ij = Φn

ij − ∆t
(
max(Fij , 0)∇+Φ + min(Fij , 0)∇−Φ

)
,

where,

∇+Φ =
[
max(D−x

ij Φ, 0)2 + min(D+x
ij Φ, 0)2 + max(D−y

ij Φ, 0)2 + min(D+y
ij Φ, 0)2

]1/2
,

and

∇−Φ =
[
max(D+x

ij Φ, 0)2 + min(D−x
ij Φ, 0)2 + max(D+y

ij Φ, 0)2 + min(D−y
ij Φ, 0)2

]1/2
,

where,

D+x
ij Φ =

Φi+1,j − Φi,j

∆x

for a space step equal to ∆x. The quantities D−x
ij Φ, D+y

ij Φ and D−y
ij Φ are easily deduced. Finally, to define

completely our problem, we add the following boundary condition:

∂∇Φ(t, x)
∂n

= 0 on ∂D.

Remark 6. We also considered the boundary condition:

∂Φ(t, x)
∂n

= 0 on ∂D.

In our situation, it was not possible to detect significant changes between those two types of boundary conditions.
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4.4. Initialization of the method

In this kind of minimization problem, the choice of the initial shape can be very important. For example,
if we use this level set method for λ3 starting from an ellipse with eccentricity greater than

√
3

2 , the method
converges to the union of 3 identical discs which is a local minimum. Therefore, it seems important to start
not too far from the global minimum. It is the reason why we have chosen to use a genetic algorithm as a
preprocessor. This genetic algorithm is inspired from the ideas developed by Schoenauer see e.g. [9]. We refer
to [18] for more details.

4.5. Handling non simple eigenvalues

One difficulty we met applying our method was the emergence of multiple eigenvalues. In such situation,
eigenvalues are well known to loose their derivability with respect to a boundary variation as well as in the
context of the relaxed approach. From a numerical viewpoint, an oscillatory behavior has been observed in the
case of multiple eigenvalues.

In order to reduce the oscillatory behavior, we modify our algorithm the following way. Every time we
estimated the eigenvalue λm too close from λm−1 (i.e. |Ω| (λm −λm−1) ≤ 1), we modified the descent direction
by favouring the minimization of λm + λm−1 as compared with λm. In other words we replaced the vector field

−u2
mn by −

(
u2

m+u2
m−1

2

)
n.

In Figure 4, the evolution of λ4 et λ3 is presented step by step during the minimization of λ4. A posteriori, it
can be observed that all the computed optimal shapes in fact generate at least double eigenvalues. The author
believes that this is a general property (but was unable to prove it):

Open problem. Let Ω∗
k be the minimizer of the problem (5), then λk−1(Ω∗

k) = λk(Ω∗
k) (let us recall from [11]

that we always have λk+1(Ω∗
k) �= λk(Ω∗

k)).
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Figure 4. Evolution of λ3 and λ4.

4.6. The volume constraint

The volume of the measure µΦ at the discrete level is by definition the volume of all the elements of the mesh
where µΦ = 0:

|µΦ| :=
∑
T

|T |,
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where T is a triangle of the mesh where µΦ(x) ≥ 0. In order to preserve this volume during iterations, we used
the Lagrange multiplier technique reported in [16], which consists in applying the optimization algorithm to the
function

L(Φ, ν) = λk(µΦ) + ν |µΦ| ,
where µΦ is the measure density associated to Φ by the relation

µΦ(x) =

{
0 if Φ(x) < 0,

M otherwise,

where M is a fixed positive constant. According to the derivative computed in Section 4.2, the level set function
Φ satisfies the Hamilton-Jacobi equation

∂Φ
∂t

(t, x) − (−Mu2
k(t, x) + ν) |∇Φ(t, x)| = 0 in R+ × D

where uk(t, .) is the eigenfunction associated to λk(µΦ(t,.)). As suggested by Osher and Santosa in [16], at each
iteration we adapted our Lagrange multiplier ν to preserve the volume constraint.

4.7. Parameters of the numerical experiments

In all our experiments on eigenvalues, we used a regular mesh of size ∆x = ∆y = 1/80. The system (23) is
solved by a classic P1 finite element method. The parameter M (the maximum of the density µ) was fixed to
the value 800. Usually the algorithm found the minimum in less than 100 iterations (see Fig. 4).

5. Results and conclusion

The shapes obtained following the combination of the genetic algorithm reported in [9] and the topological
optimization by the mixed relaxation/level set method are presented in Figures 6–9 and 10. The quality of the
results generated with the two first eigenvalues is particulary satisfying.

For λ3, it has been conjecture by Szegö (see [24]) that the minimum should be a disc. It is in accordance
with our numerical results.

For λ4, the conjecture states that the minimum is the union of 2 balls whose radii are in the ratio of j0
j1

(where
j0 and j1 are the first zeros of the Bessel function J0 and J1). Our method seems to confirm this conjecture.

Szegö raised the question to know whether the minimum was always to be chosen amongst discs or union of
discs. The unexpected result obtained for the minimization of λ5 has to be pointed out. As reported by Wolf
and Keller in [24], union of balls do not account for the only optimal shapes. It is noteworthy that this occurs
as soon as the 5th eigenvalue (the values reported in Fig. 5 being in fact upper bounds).

On the other hand, let us point out the limit of the process. As already mentioned, the major difficulty we
met is the non differentiability of multiple eigenvalues. The strategy proposed in Section 4.5 requires to choose
arbitrarily the moment when the vector field has to be modified.

For λ7, this approach did not allow to identify the shape presented in Figure 5 (see the shape obtained by
our method in Fig. 9). Indeed we obtain it using the following theorem of Wolf et Keller: let k ∈ N

∗, and for
j = 1, ..., k we define λ∗

j = min|Ω|=1 λj(Ω) = λj(Ω∗
j ).

Theorem 7 (Wolf-Keller). Let Ω∗
k be a non convex open set of R

N , which minimizes λk among open sets of
volume 1. Then:

(λk(Ω∗
k))N/2 = min

1≤j≤(k−1)/2

(
(λ∗

j )
N/2 + (λ∗

k−j)
N/2

)
and

Ω∗
k =

[(
λ∗

i

λ∗
k

)1/2

Ω∗
i

]
∪

[(
λ∗

k−i

λ∗
k

)1/2

Ω∗
k−i

]
.
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No Optimal union of discs Computed shapes

10

46.125 46.125

9

64.293 64.293

8

78.4782.462

7

88.9692.2506

107.47110.42

5

119.9127.88

4

133.52138.37

3

143.45154.62

Figure 5. Best-known shapes.

Figure 6. λ1 (left) and λ2 (right).

Figure 7. λ3 (left) and λ4 (right).
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Figure 8. λ5 (left) and λ6 (right).

Figure 9. λ7 (left) and λ8 (right).

Figure 10. λ9 (left) and λ10 (right).

So once known the k first optimal domains, the non convex optimal domain minimizing λk+1 can be determined.
This recursive procedure enabled to identify the shape figured in Figure 5 that has a smaller λ7 than the one
deduced from our algorithm.

Nevertheless, it seems that the combination of the Level Set method of Osher and Sethian with the relaxed
approach is quite promising for problems with Dirichlet boundary condition. The author believes that this
approach can be applied to a wide variety of shape optimization problems.
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