
ESAIM: COCV ESAIM: Control, Optimisation and Calculus of Variations
April 2004, Vol. 10, 271–294

DOI: 10.1051/cocv:2004007

VISCOSITY SOLUTIONS FOR AN OPTIMAL CONTROL PROBLEM
WITH PREISACH HYSTERESIS NONLINEARITIES

Fabio Bagagiolo
1

Abstract. We study a finite horizon problem for a system whose evolution is governed by a controlled
ordinary differential equation, which takes also account of a hysteretic component: namely, the output
of a Preisach operator of hysteresis. We derive a discontinuous infinite dimensional Hamilton–Jacobi
equation and prove that, under fairly general hypotheses, the value function is the unique bounded
and uniformly continuous viscosity solution of the corresponding Cauchy problem.
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1. Introduction

The Preisach operator is a very important and well-studied mathematical model for describing hysteresis
phenomena (i.e. rate independent memory effects). It is probably the most used model for representing
hysteresis from physical and natural sciences, as for instance ferromagnetic hysteresis, hysteresis in filtration
through porous media, phase transitions, shape memory alloys and smart structure materials. It has also
applications to biology and economics. Its importance is also due to the fact it has two characteristic properties,
the so-called deletion and congruency properties. This means that, whenever a general input-output hysteresis
relationship satisfies those two properties (which are experimentally observable), then it is representable by a
Preisach operator.

Many mathematical works have been done on the analytical properties of the Preisach model, and on its con-
nection with other fields, in particular with the theory of evolutionary PDEs (see the monographs Krasnoselskii–
Pokrovskii [12], Mayergoyz [18], Visintin [21], Brokate–Sprekels [9], Krejci [13], and Della Torre [11], for the
analytical study as well as for applications and extensions). Also, several control problems, for systems with
hysteresis of Preisach type, have been studied.

The present paper, at least for our knowledge, is the first one concerning with an optimal control problem for
a system with Preisach hysteresis, within the theory of viscosity solutions for Hamilton–Jacobi equations. In
particular, we derive and study the infinite dimensional and discontinuous Hamilton–Jacobi–Bellman equation,
for a finite horizon optimal control problem, given by the following controlled ODE system


y′(t) = f(y(t), w(t), α(t)) t > 0
w(t) = Hµ[y, ξ0](t) t ≥ 0
y(0) = y0,

(1.1)
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and by the following cost functional and value function

J(y0, ξ0, t, α) : =
∫ t

0

e−λs�(y(s), w(s), α(s)) ds + e−λth(y(t), w(t));

V (y0, ξ0, t) : = inf
α∈A

J(y0, ξ0, t, α).

Here, A is the set of measurable controls α : [0,+∞[→ A, with A compact; the scalar functions y(·) and w(·)
are, respectively, the input and the output of the Preisach hysteresis operator Hµ, with initial configuration ξ0.
Our aim is to characterize the value function as the unique viscosity solution, in an adapted sense, of a suitable
Hamilton–Jacobi equation.

Control and optimal control problems for systems with hysteresis are of course of great importance for
applications (see for instance the book by Tao and Kokotovic [20], where some examples are illustrated).
Sometimes, it is important to optimally control a system where hysteresis cannot be neglected; other times it is
the hysteresis phenomenon itself what should be optimally controlled, in order to prevent undesirable effects.

An optimal control problem for ODE with the Preisach hysteresis model is studied by Brokate in [8], con-
cerning necessary conditions for optimality. In that work the author does not apply the dynamic programming
method. Belbas and Mayergoyz studied in [6] an optimal control problem for ODE with hysteresis of Madelung
type. They derive the dynamic programming principle, but they do not derive the corresponding Hamilton–
Jacobi equation. Recently, in [7], they write a set-valued Hamilton–Jacobi equation for an optimal control
problem with Preisach hysteresis. However, they do not perform a viscosity solutions analysis of that equation.
In [15], Lenhart, Seidman and Yong studied an optimal control problem for an ODE system with switching
hysteresis along one component of the three dimensional vectorial input. They are mainly concerned with the
existence of optimal controls. In [19], Tan and Baras apply the viscosity solutions technique to the continuous
and finite dimensional Hamilton–Jacobi equation for an optimal control problem with Duhem type hysteresis.

The works [6, 7, 19] explicitly refer to applications to magnetostrictive actuators, whereas the work [15] is
concerned with applications to a problem of bioremediation.

The Preisach operator consists of a superposition of (possibly infinite) rectangular hysteresis loops, the so-
called delayed relays. Every delayed relay gives a switching rule between a continuous time-dependent scalar
input and a discontinuous time-dependent scalar output which may assume only the values 1 or −1. Every
delayed relay is characterized by the thresholds ρ1 < ρ2, respectively for switching down (from 1 to −1) and for
switching up (from −1 to 1) (see Fig. 1), and hence it uniquely corresponds to a point of the so-called Preisach
plane

P :=
{
ρ = (ρ1, ρ2)

∣∣∣ρ1 < ρ2

}
·

Given a signed finite Borel measure µ on P , for every continuous input u ∈ C0([0,+∞[), and for every initial
configuration ξ : P → {1,−1} (which represents the initial state of all relays), the output w(·) = Hµ[u, ξ](·)
of the Preisach hysteresis model is constructed as the average, with respect to µ, of the outputs of all delayed
relays with the same input u.

The model exhibits the evolution of the so-called internal variable, which, for every t is a function on the
Preisach plane, which may assume only the values 1 and −1

t �→ ξt : P → {1,−1}· (1.2)

Under general hypotheses on µ, the output w is continuous. Moreover, for a suitable measure ν on P , the map
(u, ξ) �→ Hµ[u, ξ](·) is Lipschitz continuous for the topologies of C0([0, T ])× L2(P , ν) and C0([0, T ]).

Let us come back to the optimal control problem. The state of the problem is the couple (y, ξ), where y is
a real number and ξ is a function on the Preisach plane P . Note that we are working with two measures on
P : µ, which is signed and enters in the definition of the Preisach operator: it is a datum of the problem; ν,
which is positive and gives the space L2(P , ν) into which we are going to embed our problem: its choice is at
our disposal. Of course, µ and ν should be somehow related.
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By the regularity of Hµ, (1.1) has a unique solution, and, since Hµ satisfies a semigroup property, we easily
derive the dynamic programming principle for the value function V . From this, we deduce a Hamilton–Jacobi
equation satisfied by V in the (adapted) viscosity sense. Such equation consists of a usual “finite dimensional
part” (which involves the derivatives with respect to t and to y), and of a “infinite dimensional” part (which
involves the Fréchet differentials with respect to ξ ∈ L2(P , ν)).

After a suitable correspondence with the set of maximal antimonotone graphs on P , and after a suitable
change of variables, the probably “natural” setting for the functions ξ is a subset of a space of continuous
functions. But the space of continuous functions, with the L∞-norm, is not a suitable space for viscosity
solutions technique. This is in particular due to the fact that it does not have suitably regular “penalization
functions”, which are used for the comparison results. Another possible choice of a space into which embed
our problem is L1(P , ν). But, as before, it is not a good space for the viscosity solutions technique. Hence, we
embed our problem into L2(P , ν) (where the square of the norm is a differentiable penalization function).

However, the choice of L2(P , ν) brings some other problems. One problem, which is also due to the
Preisach hysteresis model, is the fact that the evolution t �→ ξt, given by (1.1) and (1.2), does not belong
to W 1,1((0, T ), L2(P , ν)). Indeed, using again the correspondence between the internal variables ξ and the
antimonotone graphs on P , if the input is increasing (respectively, decreasing), then the right derivative of
t �→ ξt is related to the possible final horizontal segment (respectively, final vertical segment) which links the
corresponding antimonotone graph to the line ρ1 = ρ2 (see Fig. 2). Hence, in the Hamilton–Jacobi equation, we
are lead to consider a quantity T u (respectively, T l), which in some sense is the trace from above (respectively,
from the left) on such a final horizontal segment (respectively, final vertical segment) of a suitable combination
of the first and second Fréchet differentials of the test function. The presence of the second Fréchet differential
is due to the fact that we have to control the difference of the values that a test function takes on two elements
of L2(P , ν), which differ only for the behavior on a thin rectangle. To this end, we need to work with the second
order Taylor formula.

A second problem is the fact that the two quantities T u = T u[φ](y, ξ) and T l = T l[φ](y, ξ), which depend
on the test function φ and on the state-space point (y, ξ), are not continuous for the topology of (y, ξ) ∈
R×L2(P , ν). This fact leads us to consider a “lower” and an “upper” Hamilton–Jacobi equation, given by the
two Hamiltonians

H−(y, ξ, φy, Dφ,D
2φ) := sup

a∈A

{
− φyf(y, w, a) −

(
f+(y, w, a) (T u[φ](y, ξ))+

+f−(y, w, a)
(
T l[φ](y, ξ)

)−)− �(y, w, a)
}
,

H+(y, ξ, φy, Dφ,D
2φ) := sup

a∈A

{
− φyf(y, w, a) +

(
f+(y, w, a) (T u[φ](y, ξ))−

+f−(y, w, a)
(
T l[φ](y, ξ)

)+)− �(y, w, a)
}
,

where (·)+ and (·)− are the positive and the negative part, and w =
∫
P ξ dµ.

This is of course coherent with the theory of viscosity solutions for discontinuous Hamilton–Jacobi equations,
where, typically, the definition of viscosity solution involves the upper and lower semicontinuous envelopes
of the Hamiltonian. The discontinuous part of the Hamiltonian is often somehow related to the boundary
conditions in the viscosity sense. Also in our case, the discontinuous “infinite dimensional” components of
the Hamiltonians, in some sense, play the role of a boundary condition, where the boundary is given by the
couples (y, ξ) corresponding to maximal antimonotone graphs with final horizontal or final vertical segment (if
such segments do not appear, then T u and T l vanish). The problem here is that such “boundary” is dense for
the topology of R × L2(P , ν) in the state-space, and moreover the topology of L2(P , ν) is not strong enough
in order to force the couple (y, ξ) to not belong to such “boundary”. However, under fairly general hypotheses
on the measure ν (without any pretension of sharpness), and working with suitable test functions in the usual
comparison technique, we are able to force the signs of T u and T l, in order to make them vanishing inside the
Hamiltonians. This permits us to work only with the continuous finite dimensional part. In this effort, we are
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also helped by the fact that the state-space has the property that every bounded subset has compact closure in
R × L2(P , ν), and hence we do not need to use any variational principle.

Our main result gives, under general hypotheses, the uniqueness of the value function V as viscosity solution
of the Cauchy problem




Vt(y, ξ, t) + λV (y, ξ, t) +H−(y, ξ, Vy(y, ξ, t), DV (y, ξ, t), D2V (y, ξ, t)) ≤ 0
Vt(y, ξ, t) + λV (y, ξ, t) +H+(y, ξ, Vy(yξ, t), DV (y, ξ, t), D2V (y, ξ, t)) ≥ 0
V (y, ξ, 0) = h(y, w),

with test functions from a suitable subset of C1(R×]0,+∞[) × C2(L2(P , ν)).
The model described up to now is a “scalar” model, in the sense that the input and the output of the Preisach

operator are scalar functions; moreover, the scalar input is the directly controlled quantity (i.e. y in (1.1)).
The main reason for that is the fact that the Preisach model is a scalar hysteresis operator (i.e. scalar input
and scalar output). Nevertheless, it is probably the most important, interesting and versatile hysteresis model.
Some extensions of the Preisach model to vectorial inputs and vectorial outputs are indeed studied, especially
in connection with ferromagnetic hysteresis. But the results are less satisfactory than the scalar case, both from
the analytical and from the applications point of view. However, most of the possible extensions are constructed
starting from the scalar Preisach model. For instance, an extension may be given by an average of the outputs
of scalar Preisach operators, each one of them respectively acting on a component of the vectorial input. Hence,
the analysis we perform in this paper for the “scalar” optimal control problem with Preisach hysteresis, is
certainly useful for studying many possible extensions to the vectorial case. Indeed, what is important and
novel in our analysis, is the study of the evolution of the infinite dimensional internal variable of the Preisach
model, in connection with the dynamic programming principle and the Hamilton–Jacobi theory. To show this
fact, we actually extend our results to a rather general vectorial control problem with Preisach-type hysteresis.
In particular, this general case covers the situations studied by other authors.

We recall that the viscosity solutions theory for Hamilton–Jacobi equations, and its connection with optimal
control problems, is a well known framework. We refer the reader to the book Bardi–Capuzzo Dolcetta [4] for
the theory in finite dimension, to the works Crandall–Lions [10] and Lions [17] for results about the infinite
dimensional case, and to Lions [16], Ishii [14] and Barles–Lions [5] for the case of discontinuous equations.

However, we point out that, from the viscosity solutions point of view, the infinite dimensional feature of
our Hamilton–Jacobi equation is new. Indeed, it is given by the nonlinear input-output Preisach hysteresis
relationship, and not by a PDE, as it is common in the known literature.

Finally we observe that the present author, in [1] and [2], studied two optimal control problems for ODE
with hysteresis. In those papers, a Hamilton–Jacobi equation satisfied by the value function is derived and
studied in the framework of viscosity solutions. However, those settings are different from the present one. In
particular, in [2] the case of the Play/Prandtl–Ishlinskii model and in [1] the case of a finite sum of delayed relays
are, respectively, studied (they respectively lead to a finite/infinite dimensional discontinuous Hamilton–Jacobi
equation and to a suitably coupled system of finite dimensional continuous Hamilton–Jacobi equations). See
also [3] for an extension of [1] to a vectorial case.

The plan of the paper is as follows. In Section 2, we describe the delayed relay and the Preisach model.
In Section 3, we state the control problem. In Section 4, we rigorously derive the Hamilton–Jacobi equation
satisfied by the value function. In Section 5, we prove the uniqueness result. In Section 6, we briefly study an
extension to the vectorial case.

2. The Preisach model

In this section we introduce the Preisach model of hysteresis. We essentially follow Visintin [21] (and we
refer the reader to it for a more precise and rigorous description). However, we change somewhere definitions
in order to fit better the control problem in the sequel.
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Figure 1. Delayed relay.

2.1. The discontinuous delayed relay

Let us fix two thresholds ρ1 < ρ2 and consider a graph as in Figure 1.
It represents the relationship between a continuous scalar input u(t) and a discontinuous output w(t) which

switches between the values 1 and −1. The (delayed) switching rule is as follows. Let u(0) ≤ ρ1. Then
w(0) = −1, and w(t) = −1 as long as u(t) < ρ2; if at some instant u reaches ρ2, then w switches up to 1, where
it remains as long as u(t) > ρ1; if later, u reaches ρ1 then w switches down to −1; and so on. Otherwise, if
u(0) ≥ ρ2, then w(0) = 1 and the evolution of w is similarly described. Finally, if ρ1 < u(0) < ρ2, then we
have to give the initial value of w, because both 1 and −1 are admissible, and then the evolution follows the
same rules as before. For any time interval [0, T ] and for every couple of thresholds ρ = (ρ1, ρ2), we define the
corresponding delayed relay operator in the following way

hρ : C0([0, T ])× {−1, 1} → L∞(0, T ), (u, ξ) �→ hρ[u, ξ](·) := w(·),

where ξ (the initial value of the output) plays a role only if ρ1 < u(0) < ρ2.

2.2. The Preisach model

The thresholds of the delayed relay operators form the so-called Preisach plane

P :=
{
ρ = (ρ1, ρ2) ∈ R

2
∣∣∣ρ1 < ρ2

}
·

We denote by R the family of Borel measurable functions P → {−1, 1}, and by ξ : ρ �→ ξ(ρ) a generic element
of R, which we intend to represent the initial configurations of all the delayed relays. We fix a finite signed
Borel measure µ over P , and introduce the corresponding Preisach operator

Hµ : C0([0, T ]) ×R → L∞(0, T )

w(t) = Hµ[u, ξ](t) :=
∫
P
hρ[u, ξ(ρ)](t) dµ(ρ) ∀t ∈ [0, T ].

Setting ξ0(ρ) = ξ(ρ), the evolution t �→ ξt, with ξt(ρ) = hρ[u, ξ0](t), represents the evolution of the internal
variables ξ. Note that, even if we know the evolution of the input u, the knowledge of the value of the output
w(t) is not enough for determining the evolution of w in ]t, T ]; we need to know the value of the internal variable
ξt, namely the configuration of all relays.

Looking at the Preisach plane, we can see an interesting and useful geometric interpretation of the evolution
of the internal variables ξt. Denoting by A+(t) (respectively by A−(t)) the subset of P given by the points



276 F. BAGAGIOLO

(ii)

−1

ρ

+1

1

ρ
2 (u(0),u(0))

(i)

−1

+1

ρ
1

ρ
2

(u(t’),u(t’))

ρ
2

ρ
1

−1

+1
(u(t*),u(t*))

(iv)

ρ1

−1

ρ
2 (u(t’’),u(t’’))

(iii)

+1

Figure 2. Evolution on the Preisach plane.

ρ corresponding to the relays which at the time t are switched on 1, i.e. ξt(ρ) = 1 (respectively −1, i.e.
ξt(ρ) = −1), then, by definition,

Hµ[u, ξ](t) = µ(A+(t)) − µ(A−(t)).
Let us fix an initial configuration ξ. Let us suppose that there exists a maximal antimonotone graph B on P
such that all the relays corresponding to the points ρ ∈ P which are above (respectively below) B are switched
on −1, i.e. ξ(ρ) = −1 (respectively on 1, i.e. ξ(ρ) = 1), see Figure 2i. The “end point” of the graph B is the
point (u(0), u(0)) on the line ρ1 = ρ2, where u(0) is the initial value of the input. Let us suppose that u increases
from u(0) to u(t′). Then some relays switch from −1 to 1 (precisely, those relays whose upper threshold ρ2

is reached by u), and the new configuration is represented by Figure 2ii: a horizontal segment is formed and
is up-ward moving on the Preisach plane. Now, let us suppose that the input decreases from u(t′) to u(t′′).
Then some relays switch from 1 to −1 (precisely, those relays whose lower threshold ρ1 is reached by u), and
the new configuration is represented by Figure 2iii: a vertical segment is formed and is left-ward moving on the
Preisach plane. If later, the input increases again to a value u(t∗), then the new configuration is represented by
Figure 2iv.

A rigorous proof of the following result can be found in Visintin [21].

Theorem 2.1. Let us take an initial configuration ξ which corresponds to a maximal antimonotone graph B
(as above explained). By applying an input u ∈ C0([0, T ]), at any time t ∈ [0, T ] we have a configuration on
the Preisach plane given by a maximal antimonotone graph, which equals B out of a compact set, and, near the
line ρ1 = ρ2, consists of at most a countable family of horizontal and vertical segments.

Remark 2.2. Note that we confine ourselves to the case of initial configurations corresponding to a maximal
antimonotone graph. The reasons are the following. First of all note that, as in Theorem 2.1, we can say
that, whichever the initial configuration is, possibly after a cycling evolution of the input, a “stair-shaped”
maximal monotone graph in the Preisach plane is formed around the point (u(t), u(t)). Also, for the same
reason, Theorem 2.1 assures that the set of maximal antimonotone graphs on P is invariant for the evolution
of the internal variables. Moreover, if we suppose starting from a (ideal) situation which has never experienced
past evolution (what may be called the “virgin state”), then a natural hypothesis is that the configuration
corresponds to the symmetric maximal antimonotone graph

{
(ρ1, ρ2) ∈ P

∣∣∣ρ1 = −ρ2

}
. Finally, without starting

from a configuration corresponding to a maximal antimonotone graph, some of the regularity properties of the
Preisach model do not hold anymore.
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Definition 2.3. We denote by B the set of all maximal antimonotone graphs on P, and by S the set of all
functions ξ : P → {−1, 1} such that there exists B ∈ B with ξ ≡ 1 (respectively ξ ≡ −1) below (respectively
above) B. Hence there exists a bijection between S and B. For every ξ ∈ S we denote by Bξ ∈ B the
corresponding maximal antimonotone graph. Moreover, we denote by O the set given by the couples (y, ξ) ∈
R×S such that (y, y) ∈ Bξ. Moreover, we say that a couple (u, ξ) ∈ C0([0, T ])×S is admissible if (u(0), ξ) ∈ O.

Note that we do not care about the value of ξ on the graph Bξ itself, indeed we will always use measures
on P for which such graphs have measure zero.

Sometimes, it is useful to consider a new system of coordinates on P :

σ1 :=
ρ2 − ρ1√

2
, σ2 :=

ρ1 + ρ2√
2

· (2.1)

With respect to those coordinates, every element of B is the graph of a Lipschitz continuous function σ1 �→ σ2,
with Lipschitz constant not larger than 1. For B ∈ B, ε > 0, we define the ε-neighborhood of B in P

N(B, ε) :=
{

(σ1, σ2 + δ) ∈ R
+ × R

∣∣∣(σ1, σ2) ∈ B, |δ| ≤ ε
}
·

Theorem 2.4. Let µ be a finite signed Borel measure on P. Let us suppose that there exists L > 0 such that

|µ|(N(B, ε)) ≤ Lε ∀ε > 0, ∀B ∈ B, (2.2)

where |µ| is the total variation of µ. Then, for every admissible couple (u, ξ) we have Hµ[u, ξ] ∈ C0([0, T ]), and
there exists C > 0 (depending only on L) such that for every admissible couples (u, ξ), (v, η)

‖Hµ[u, ξ] −Hµ[v, η]‖C0([0,T ]) ≤ C
(‖u− v‖C0([0,T ]) + ‖ξ − η‖L1(P,|µ|)

)
. (2.3)

For the proof see Visintin [21] pages 114 and 115, after slight modifications due to our definition of admissible
couples. For the proof of the following theorem see Visintin [21] (p. 100).

Theorem 2.5. For any signed Borel measure µ over P, the corresponding Preisach operator Hµ fulfills the
following semigroup property

if [t1, t2] ⊂ [0, T ], then Hµ[u, ξ](t2) = Hµ [u(t1 + ·), ξt1 ] (t2 − t1) for every admissible (u, ξ). (2.4)

Remark 2.6. Let ν be a finite positive Borel measure on P . If

|µ|(B) ≤ ν(B) ∀ Borel set B ⊆ P , (2.5)

then Hµ is also Lipschitz continuous when S has the topology of L1(P , ν).
Let (y, ξ) ∈ O. It is important to know how Bξ is linked to the line ρ1 = ρ2: by a horizontal segment or by

a vertical segment or in a “oblique” manner (the latter may hold only at the initial time). We define

ρ̂1(y, ξ) := inf
{
ρ1 ≤ y

∣∣∣[ρ1, y] × {y} ⊂ Bξ

}
, ρ̂2(y, ξ) := sup

{
ρ2 ≥ y

∣∣∣{y} × [y, ρ2] ⊂ Bξ

}
· (2.6)

For instance, when ρ̂1(y, ξ) < y, then Bξ is linked by a horizontal segment. At least one from ρ̂1(y, ξ), ρ̂2(y, ξ)
always coincides with y.

Remark 2.7. When we regard S as equipped with the topology of Lp(P , ν), we have to identify functions
which coincide ν-a.e. on P . A more rigorous definition of O should be: (y, ξ) ∈ R × Lp(P , ν) belongs to O if
and only if there exists a maximal antimonotone graph B on P, such that (y, y) ∈ B and ξ = 1 ν-a.e. below B,
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and ξ = −1 ν-a.e. above B. Hence, for any (y, ξ) ∈ O ⊂ R × Lp(P , ν), we may have different choices of the
representative element of the equivalence class, of the graph Bξ, and consequently of the quantities ρ̂1(y, ξ) and
ρ̂2(y, ξ). However, this will be not a problem for the sequel of the paper: we can just work with an arbitrary
choice of the representatives (see also Rem. 4.2). Note that Bξ, ρ̂1 and ρ̂2 are uniquely defined if S is equipped
with the norm of Lp(P , µ′), with µ′ satisfying

µ′(U) > 0 ∀U ⊂ P open.

However, even in that case, ρ̂1(y, ξ) and ρ̂2(y, ξ) are not continuous. Indeed, we can approximate any couple
(y, ξ) satisfying y − ρ̂1(y, ξ) > 0 by couples (yn, ξn) satisfying yn − ρ̂1(yn, ξn) ≡ 0.

Proposition 2.8. Let ν be a finite positive Borel measure on P. Then the closure of any bounded subset of
O ⊂ R × L2(P , ν) is compact.

Proof. First of all note that a subset of O is bounded if and only if its projection on the y-component is bounded
in R. Let (yn, ξn) be a bounded sequence in O. The boundedness of yn implies that, on every compact set of P ,
the graphs Bξn are equibounded and equilipschitzean with respect to the coordinates σ1, σ2. Note that the
uniform convergence of Bξn on a compact set K ⊂ P implies that the limit B is still a maximal antimonotone
graph on K, and that if ξ is the corresponding function on K (i.e. B = Bξ on K), then ξn → ξ in L2(K, ν).
Hence we obtain the conclusion by the Ascoli–Arzelà Theorem and the fact that ν is finite on P . �

3. The control problem

We consider the following controlled dynamical system


y′(t) = f(y(t), w(t), α(t)) t > 0
w(t) = Hµ[y, ξ0](t) t ≥ 0
y(0) = y0
(y0, ξ0) ∈ O,

(3.1)

where the continuous function f : R × R ×A→ R, with A ⊂ R
q compact, satisfies

∃M > 0 such that |f(y, w, a)| ≤M ∀(y, w, a) ∈ R × R ×A
|f(y1, w1, a) − f(y2, w2, a)| ≤M(|y1 − y2| + |w1 − w2|) ∀(y1, w1, a), (y2, w2, a) ∈ R × R ×A; (3.2)

and α is a measurable control, that is

α ∈ A := {β : [0,+∞[→ A measurable} ·

The following result follows from the Lipschitz continuity of f , and from the Lipschitz continuity and the
semigroup property of the Preisach operator (Ths. 2.4 and 2.5, see also Rem. 2.6). The regularity of the
output w comes from some regularity results of the Preisach operator (see Visintin [21]; however, we only
need continuity of w). The proof of the existence can be given by the contraction principle or by a delayed
approximation argument; the estimate (3.3) can be proved using also the Gronwall inequality (see for instance
Brokate–Sprekels [9] and Bagagiolo [2]).

Proposition 3.1. Let µ and ν be respectively a finite signed Borel measure and a finite positive Borel measure
on P satisfying (2.2) and (2.5). For any choice of (y0, ξ0) ∈ O and α ∈ A, there exists a unique solution
(y(·), w(·)) of the system (3.1), defined in [0,+∞[. Moreover, we also denote by t �→ ξt the evolution of the
internal variables ξ. It is easy to see that (y(t), ξt) ∈ O for every t ≥ 0. Moreover, we have the following
regularities: y(·) ∈ W 1,1

loc(0,+∞[,R), w(·) ∈ W 1,1

loc(0,+∞[,R), and ξ(·) ∈ C([0,+∞[, L1(P , ν)). Finally, for
every T > 0 there exists a modulus of continuity ωT such that, for every initial values (y1, ξ1), (y2, ξ2) ∈ O, and
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for every control α ∈ A the following inequality holds (here (yi(·), wi(·)) is the solution corresponding to (yi, ξi)
as initial datum, and α as control)

|y1(t) − y2(t)| + |w1(t) − w2(t)| ≤ ωT

(
max

{|y1 − y2|, ‖ξ1 − ξ2‖L1(P,ν)

}) ∀t ∈ [0, T ]. (3.3)

Remark 3.2. Since ‖ξ1 − ξ2‖L1(P,ν) = ‖ξ1 − ξ2‖2
L2(P,ν)/2 for every ξ1, ξ2 ∈ S, then the trajectory is also

continuous for the topology of L2(P , ν).
Remark 3.3. In general, the evolution of the internal variables t→ ξt does not belong to W 1,1(0, T ;L2(P , ν)),
even if the input u is very regular. Indeed, let us suppose that the input is increasing and that we start from an
initial configuration ξ0 which corresponds to a maximal antimonotone graph with horizontal final segment (for
instance the situation in Fig. 2ii). To simplify the calculation, let us suppose that ν locally around the horizontal
segment coincides with the Lebesgue measure. We take a function ψ ∈ C0(P), and a function ϕ ∈ C∞

c (0, T ).
Then, the function t→ ϕ(t)ψ(·) belongs to C∞

c (0, T ;L2(P , ν)). Let us call Qt the region of the Preisach plane
that, at time t, is delimited by the two graphs Bξ0 and Bξt : it is the “trapezoidal” region where we had the
switching from −1 to +1 (compare with Fig. 3 for a similar situation). Hence, we have (recall that the input u
is increasing) ξt = ξ0 + 2χQt , where χA is the characteristic function of the set A. Hence we get

∫ T

0

∫
P
ξt(ρ)ϕ̇(t)ψ(ρ) dρ dt = 2

∫ T

0

ϕ̇(t)
∫

Qt

ψ(ρ) dρ dt. (3.4)

Denoting by g(t) the function of time t → ∫
Qt
ψdρ, it is not hard to check that g ∈ W 1,1(0, T ) and that its

weak derivative is ġ(t) =
∫ ρ̂1(u(t),ξt)

u(t)
ψ(ρ1, u(t))dρ1. Hence, integrating by parts in (3.4), we get

−2
∫ T

0

ϕ(t)
∫ ρ̂1(u(t),ξt)

u(t)

ψ(ρ1, u(t)) dρ1,

which shows that the weak derivative of t→ ξt involves the evaluation on the horizontal segment, and hence it
is not a function.

Let us consider a nonnegative function (running cost)

� : R × R ×A→ [0,+∞[ continuous,

such that for some M > 0 and a some modulus of continuity ω it satisfies, ∀(y, w, a), (y1, w1, a), (y2, w2, a) ∈
R × R ×A,

|�(y, w, a)| ≤M, |�(y1, w1, a) − �(y1, w1, a)| ≤ ω(|y1 − y2| + |w1 − w2|). (3.5)
Moreover let us consider a nonnegative function (final cost)

h : R × R → [0,+∞[ bounded and uniformly continuous. (3.6)

Finally, let λ ≥ 0 be a discount factor. For any initial state (y, ξ) ∈ O, any control α ∈ A, and any time t ≥ 0,
we consider the following cost functional

J(y, ξ, t, α) :=
∫ t

0

e−λs�(y(s), w(s), α(s)) ds + e−λth(y(t), w(t)), (3.7)

where (y(·), w(·)) is the trajectory of (3.1) with initial state (y, ξ) and control α. The value function is

V (y, ξ, t) := inf
α∈A

J(y, ξ, t, α) ∀(y, ξ, t) ∈ O × [0,+∞[. (3.8)
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4. Dynamic programming

Due to the semigroup property (2.4) of the Preisach operator, the Dynamic Programming Principle holds.

Theorem 4.1 (DPP: Dynamic Programming Principle). For all (y, ξ) ∈ O, for all t ≥ 0 and for all 0 ≤ τ ≤ t

V (y, ξ, t) = inf
α∈A

(∫ τ

0

e−λs�(y(s), w(s), α(s)) ds + e−λτV (y(τ), ξτ , t− τ)
)
. (4.1)

4.1. Test functions

In this subsection, ν is a finite positive Borel measure on P . For every s > 0 and for every (y, ξ) ∈ O we
define the subsets of P

Pu
s (y, ξ) :=

{
ρ ∈ P

∣∣∣ρ̂1(y, ξ) ≤ ρ1 ≤ y, y ≤ ρ2 ≤ y + s
}
,

P l
s(y, ξ) :=

{
ρ ∈ P

∣∣∣y − s ≤ ρ1 ≤ y, y ≤ ρ2 ≤ ρ̂2(y, ξ)
}
·

The superscripts u and l respectively stay for “upper” and “left”.
Let us consider a function φ ∈ C2(L2(P , ν)). We identify L2(P , ν) with its dual and denote by Dφ(ξ) and by

D2φ(ξ) respectively the Fréchet differential and the second Fréchet differential of φ in ξ. In particular, Dφ(ξ)
represents the linear form on L2(P , ν) acting as

〈Dφ(ξ), ψ〉 =
∫
P
Dφ(ξ)ψ dν,

and D2φ(ξ) is a bounded symmetric bilinear form on L2(P , ν), whose value on the couple (ψ, η) we write as

[D2φ(ξ)](ψ, η).

Let L be the space of the symmetric bounded bilinear forms on L2(P , ν). For (y, ξ) ∈ O, (ψ, π) ∈ L2(P , ν)×L,
let T u[ψ, π](y, ξ) and T l[ψ, π](y, ξ) be respectively the following limits (which may possibly not exist)

T u[ψ, π](y, ξ) : = lim
s→0+

1
s

(
2
〈
ψ, χPu

s (y,ξ)

〉
+ 2π

(
χPu

s (y,ξ), χPu
s (y,ξ)

))
;

T l[ψ, π](y, ξ) : = lim
s→0+

1
s

(
2
〈
ψ, χPl

s(y,ξ)

〉− 2π
(
χPl

s(y,ξ), χPl
s(y,ξ)

))
; (4.2)

where χC is the characteristic function of C ⊂ P .

Remark 4.2. It is not hard to check that the definitions of T u and T l are independent from the particular
representative of the equivalence class of (y, ξ) ∈ O ⊂ R × L2(P , ν), and from the corresponding graph Bξ (see
also Rem. 2.7).

We define the following set of test functions

V :=
{
φ ∈ C2(L2(P , ν)) such that Dφ(ξ) ∈ L∞(P , ν) ∀ξ ∈ S, and

T u[Dφ(ξ), D2φ(ξ)](y, ξ), T l[Dφ(ξ), D2φ(ξ)](y, ξ) exist ∀(y, ξ) ∈ O
}
· (4.3)

Under fairly general hypotheses, the set V is certainly not empty. Indeed, let us suppose that ν is absolutely
continuous with respect to the Lebesgue measure, and that its density g(ρ) (i.e. dν(ρ) = g(ρ) dρ) is continuous
(we need much less, but note that after the condition (2.5), the choice of ν is at our disposal). On every
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horizontal and vertical segment of the form [a, b]×{y} and {y}× [c, d], we then have respectively the measures
dν1(ρ1) := g(ρ1, y) dρ1 and dν2(ρ2) := g(y, ρ2) dρ2 (dropping in the entry of νi the indication of y, which may
be obvious by the context). Moreover, for every ξ ∈ S, and for every horizontal and vertical segment [a, b]×{y}
and {y} × [c, d], let us define the “up-trace” ξu ∈ L2(a, b; ν1) and the “left-trace” ξl ∈ L2(c, d; ν2) respectively
as the traces on [a, b] × {y} and on {y} × [c, d] of ξ regarded as function on the rectangles (a, b) × (y, y + s)
and (y − s, y) × (c, d) with s > 0. Note that, by the definition of S, such traces are well defined, and they are
independent on the equivalence class of ξ in L2(P , ν). Now, let us take (y, ξ) ∈ O, and consider the function

φ : ξ �→ ‖ξ − ξ‖2
L2(P,ν). (4.4)

For every (y, ξ) ∈ O, we have (note that on Pu
τ (y, ξ) it is ξ ≡ −1)

T u[Dφ(ξ), D2φ(ξ)](y, ξ) = lim
s→0

1
s

(
2
〈
Dφ(ξ), χPu

s (y,ξ)

〉
+ 2

[
D2φ(ξ)

] (
χPu

s (y,ξ), χPu
s (y,ξ)

))
= lim

s→0

4
s

∫
Pu

s (y,ξ)

(ξ − ξ + 1) dν = lim
s→0

−4
s

∫
Pu

s (y,ξ)

ξ dν = −4
∫ y

ρ̂1(y,ξ)

ξu(ρ1, y) dν1(ρ1).

(4.5)

In the same way we have

T l[Dφ(ξ), D2φ(ξ)](y, ξ) = −4
∫ ρ̂2(y,ξ)

y

ξl(y, ρ2) dν2(ρ2).

Hence, when ξ ∈ S, the function (4.4) belongs to V . There are other examples of functions in V , which will be
useful in the sequel. In a similar way as before, we can see that for every open regular subset C ⊂ P , considering
the measure dνC := χC dν on P , the function

ϕ : ξ �→ ‖ξ − ξ‖2
L2(P,νC) (4.6)

belongs to V . Finally, the following function also belongs to V

φ : ξ �→ e
∫
P ξ dνC . (4.7)

4.2. The Hamilton–Jacobi equation

We will use the following hypothesis on the Borel finite measures µ (signed) and ν (positive) on P (L2 is the
Lebesgue measure on P)

ν has density g ∈ L∞(P ,L2) with respect to L2; the functions (4.4)–(4.7) belong to V ; (2.2), (2.5) hold.
(4.8)

We will always consider O equipped with the topology of R × L2(P , ν).
Remark 4.3. The hypothesis (4.8) certainly holds if, for instance, the measure µ has density with respect to
the Lebesgue measure which also belongs to L∞(P ,L2). This requirement is always satisfied in the engineering
applications of the Preisach operator, see Mayergoyz [18] and Della Torre [11].

We consider the following infinite dimensional Hamiltonian, defined on a subset of O × R × L2(P , ν) × L

H(y, ξ, p, ψ, π) := sup
a∈A

{
−pf(y, w, a)−(f+(y, w, a)T u[ψ, π](y, ξ) − f−(y, w, a)T l[ψ, π](y, ξ)

)−�(y, w, a)}, (4.9)

where f+ = max(0, f), f− = max(0,−f) and w =
∫
P ξ dµ.
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The hamiltonian (4.9) is not continuous for the topology of O (see Rem. 2.7). Hence, in order to perform
viscosity solution techniques, we consider the following “lower” and “upper” hamiltonians H− and H+:

H−(y, ξ, p, ψ, π) :=

sup
a∈A

{
− pf(y, w, a) −

(
f+(y, w, a) (T u[ψ, π](y, ξ))+ + f−(y, w, a)

(
T l[ψ, π](y, ξ)

)−)− �(y, w, a)
}
, (4.10)

H+(y, ξ, p, ψ, π) :=

sup
a∈A

{
− pf(y, w, a) +

(
f+(y, w, a) (T u[ψ, π](y, ξ))− + f−(y, w, a)

(
T l[ψ, π](y, ξ)

)+)− �(y, w, a)
}
· (4.11)

In the sequel BUC(O× [0, T ]) is the space of bounded and uniformly continuous functions on O× [0, T ]; Vt and
Vy mean derivatives, and D is the differential with respect to ξ ∈ L2(P , ν).
Theorem 4.4. Let (4.8) hold. For every T > 0 the following holds: the value function V belongs to BUC(O×
[0, T ]); moreover it is a viscosity solution of the following Cauchy problem for a Hamilton–Jacobi equation

{
Vt(y, ξ, t) + λV (y, ξ, t) +H

(
y, ξ, Vy(y, ξ, t), DV (y, ξ, t), D2V (y, ξ, t)

)
= 0 in O×]0, T ]

V (y, ξ, 0) = h(y, w),
(4.12)

with test functions taken in C1(R×]0, T ])× V, and w =
∫
P ξ dµ.

By viscosity solution of (4.12) with C1(R×]0, T ])×V as space of test functions we mean that V satisfies the
initial condition and that:
Subsolution. For every (y, ξ, t) ∈ O×]0, T ], every ϕ ∈ C1(R×]0, T ]), and every φ ∈ V such that (y, ξ, t) is a local
maximum for V (y, ξ, t) − ϕ(y, t) − φ(ξ) with respect to O×]0, T ], the following holds

ϕt(y, t) + λV (y, ξ, t) +H−
(
y, ξ, ϕy(y, t), Dφ(ξ), D2φ(ξ)

)
≤ 0; (4.13)

Supersolution. For every (y, ξ, t) ∈ O×]0, T ], every ϕ ∈ C1(R×]0, T ]), and every φ ∈ V such that (y, ξ, t) is a
local minimum for V (y, ξ, t) − ϕ(y, t) − φ(ξ) with respect to O×]0, T ], the following holds

ϕt(y, t) + λV (y, ξ, t) +H+
(
y, ξ, ϕy(y, t), Dφ(ξ), D2φ(ξ)

)
≥ 0. (4.14)

Proof. (Th. 4.4.) The fact that V ∈ BUC(O×[0, T ]) comes from (3.2)–(3.6) and Remark 3.2 (see Bardi–Capuzzo
Dolcetta [4] page 148 and Bagagiolo [2]).

By the definition, it is evident that V satisfies the initial condition.
Let us prove that V is subsolution. Since the equation consists of a “finite dimensional part” and of an

“infinite dimensional part” (i.e. the part involving T u and T l), and since the technique we are going to use
is standard for the finite dimensional one, we will be mostly concerned with the treatment of the infinite
dimensional part, referring the reader to Bardi–Capuzzo Dolcetta [4] for other details.

We prove that V satisfies (4.13) even replacing H− by H itself, which a fortiori will give the conclusion. Let
us take (y, ξ, t) ∈ O×]0, T ], ϕ ∈ C1(R×]0, T ]) and φ ∈ V such that V − ϕ − φ has a local maximum in (y, ξ, t)
with respect to O×]0, T ]. Recall that O is an invariant set for the trajectory (y(t), ξt) given by the solution of
the system (3.1). Fix any constant control α ≡ a ∈ A, write w =

∫
P ξ dµ and consider the evolutions y(·), w(·),

ξ(·) given by the system (3.1), with α as control, and (y, ξ) as initial datum. For δ > 0 sufficiently small, for
every 0 ≤ τ ≤ δ ≤ t we have

ϕ(y, t) + φ(ξ) − ϕ(y(τ), t − τ) − φ(ξτ ) ≤ V (y, ξ, t) − V (y(τ), ξτ , t− τ).
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Figure 3. Graphic explanation for the proof of Theorem 4.4.

By DPP (4.1), we get

ϕ(y, t) + φ(ξ) − ϕ(y(τ), t− τ) − φ(ξτ ) ≤
∫ τ

0

e−λs�(y(s), w(s), a) ds + V (y(τ), ξτ , t− τ)(e−λτ − 1). (4.15)

We divide (4.15) by τ and let τ → 0+. Since 0 < t − τ < T , by the regularity of ϕ, even if t = T , we can
perform such limit. Since the evolution of the internal variables is not differentiable (see Rem. 3.3), we cannot
apply the chain rule to the difference φ(ξ) − φ(ξτ ). We have three possibilities:

a) f(y, w, a) = 0. Then y(·) ≡ y, ξ(·) ≡ ξ, w(·) ≡ w and we get

ϕt(y, t) + λV (y, ξ, t) − �(y, w, a) ≤ 0; (4.16)

b) f(y, w, a) > 0. For small δ > 0, y(·) is increasing in [0, δ]. Hence, see Figure 3, in the Preisach plane P
the horizontal segment [ρ̂1(y(τ), ξτ ), y(τ)]×{y(τ)} is moving up, starting from the possibly degenerate (that is
a point) initial one [ρ̂1(y, ξ), y] × {y}. Hence, ρ̂2(y(τ), ξτ ) = y(τ) for every 0 < τ ≤ δ, and τ → ρ̂1(y(τ), ξτ ) is
non increasing and right-continuous in τ = 0.

We claim that

ξτ − ξ = 2χPu
f(y,w,a)τ (y,ξ) + σ(τ), (4.17)

where σ(τ) is a function ητ such that ‖ητ‖L1(P,ν)/τ → 0 as τ → 0. Indeed, ξτ − ξ = 2χP(τ) where P(τ) is a
“trapezoidal” region given by the disjoint union of the following sets:

i) the rectangle Pu
y(τ)−y(y, ξ) (which may be reduced to a vertical segment if ρ̂1(y, ξ) = y); ii) the triangle Tτ

with vertices (y, y), (y, y(τ)), (y(τ), y(τ)); iii) the “triangular region” Rτ = {(ρ1, ρ2) ∈ P|ρ1 ≤ ρ̂1(y, ξ), Bξ(ρ1) ≤
ρ2 ≤ y(τ)} (which, when Bξ is linked to the line ρ1 = ρ2 by a vertical segment or when ρ̂1(y, ξ) = −∞, at least

for small τ , may be empty). Note that ν(Tτ ) = o(τ) and ν
(
Pu

y(τ)−y(y, ξ)
)

= O(τ). We have also ν(Rτ ) = o(τ),
since limτ→0+ ρ̂1(y(τ), ξτ ) = ρ̂1(y, ξ) (see also (4.8)). Finally, since y(τ) = y + f(y, w, a)τ + o(τ), we get

χPu
y(τ)−y

(y,ξ) = χPu
f(y,w,a)τ (y,ξ) + σ(τ),
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and the claim is proven. Hence, by (4.17), using the Taylor’s second order formula for φ in ξ, and recalling that
Dφ(ξ) ∈ L∞(P , ν), we conclude that

lim
τ→0+

φ(ξτ ) − φ(ξ)
τ

= f(y, w, a) lim
τ→0+

2
〈
Dφ(ξ), χPu

f(y,w,a)τ

〉
+ 2

[
D2φ(ξ)

] (
χPu

f(y,w,a)τ
, χPu

f(y,w,a)τ

)
f(y, w, a)τ

= f(y, w, a)T u
[
Dφ(ξ), D2φ(ξ)

]
(y, ξ),

where we dropped the entry (y, ξ) in Pu
f(y,w,a)τ(y, ξ). This concludes b).

Note that we are forced to use the second order Taylor’s formula, since we are working in L2(P , ν). Indeed,
if we stop to the first order, then we get a term of the kind o(‖χPu

s
‖L2(P,ν))/s. But in general, we can only say

that ‖χPu
s
‖L2(P,ν) goes to zero at least as

√
s;

c) f(y, w, a) < 0. We argue as in the case b). We have that y(·) is decreasing in [0, δ] for small δ. Hence,
in the Preisach plane P the vertical segment {y(τ)} × [y, ρ̂2(y(τ), ξτ )] is moving towards left, starting from the
possibly degenerate (that is a point) initial one {y}×[y, ρ̂2(y, ξ)]. Hence, ρ̂1(y(τ), ξτ ) = y(τ) for every 0 < τ ≤ δ,
and τ → ρ̂2(y(τ), ξτ ) non decreasing and right-continuous in τ = 0. In a similar way as above, we have that

ξτ − ξ = −2χPl
−f(y,w,a)τ (y,ξ) + σ(τ). (4.18)

Hence, we conclude the step c) by (we drop again the entry (y, ξ))

lim
τ→0+

φ(ξτ ) − φ(ξ)
τ

= f(y, w, a) lim
τ→0+

2
〈
Dφ(ξ), χPl−f(y,w,a)τ

〉
− 2

[
D2φ(ξ)

] (
χPl−f(y,w,a)τ

, χPl−f(y,w,a)τ

)
−f(y, w, a)τ

= f(y, w, a)T l
[
Dφ(ξ), D2φ(ξ)

]
(y, ξ).

By the arbitrariness of a ∈ A, using standard techniques we can conclude.
Now, let us prove that V is supersolution. Let φ ∈ V , ϕ ∈ C1(R×]0, T ]), be such that (y, ξ, t) ∈ O×]0, T ]

is of local minimum for V − ϕ − φ with respect to O×]0.T ]. For any ε > 0 and any τ > 0 sufficiently small,
arguing as in the step b), by DPP we find a measurable control α(·), depending on ε and τ , such that

ϕ(y, t)+φ(ξ)−ϕ(y(τ), t− τ)−φ(ξτ ) ≥
∫ τ

0

e−λs�(y(s), w(s), α(s)) ds+V (y(τ), ξτ , t− τ)(1− e−λτ )− τε. (4.19)

As usual, to prove that the value function is a supersolution is slightly harder. The main reason is that we
cannot use constant controls as for the subsolution case. In particular, for what concerns our problem, y(·)
may not be monotone. Hence, we use some “memory effects” of the hysteresis relationship in order to recover
a monotone case. This will directly lead us to prove (4.14), and not the same inequality replacing H+ by H ,
which probably is not true.

Let us suppose that ρ̂2(y, ξ) = y. For any τ we define

y+(τ) := maxs∈[0,τ ] y(s), ξ+[τ ] := internal variable of Hµ[y+, ξ](τ);
y−(τ) := mins∈[0,τ ] y(s), ξ−[τ ] := internal variable of Hµ[y−, ξ](τ).

We claim that, at any instant τ ≥ 0, we have (σ is as in (4.17))

ξτ = ξ+[τ ] + σ(τ). (4.20)

We define r(τ) := max(y+(τ), ρ̂2(y−(τ), ξ−[τ ])). Since ρ̂2(y, ξ) = y, then limτ→0+ ρ̂2(y−(τ), ξ−[τ ]) = y and
hence limτ→0+ r(τ) = y. Moreover, |ξτ − ξ+[τ ]| ≤ 2χT , where T is the triangle of vertices (y−(τ), y−(τ)),



OPTIMAL CONTROL WITH PREISACH HYSTERESIS 285

ρ
1

ρ
2

y
y(

)

τ)
y+(τ)

y−(τ)

= r (τ

Figure 4. The filled graph is Bξτ ; the dashed graph is Bξ; the pointed-dashed lines define the
triangle T (see the proof of Th. 4.4).

(y−(τ), r(τ)), and (r(τ), r(τ)) (see the example in Fig. 4). Hence (4.20) follows. We suppose that (see also
Lem. 4.5 below), for every τ > 0 and ε > 0, the following inequality holds

y+(τ) − y =
∫ τ

0

χd(y(s), y+(s))f+(y+(s), w(s), α(s)) ds > 0. (4.21)

We use the notations c+(τ) := y+(τ) − y and χτ := χPu
c+(τ)(y,ξ). We get

φ(ξτ ) − φ(ξ)
τ

=
c+(τ)
τ

(
2〈Dφ(ξ), χτ 〉 + 2

[
D2φ(ξ)

]
(χτ , χτ )

c+(τ)

)
+O(τ)

≥ −1
τ

∫ τ

0

f+(y+(s), w(s), α(s)) ds

(
2〈Dφ(ξ), χτ 〉 + 2

[
D2φ(ξ)

]
(χτ , χτ )

c+(τ)

)−
+O(τ)

= −1
τ

∫ τ

0

f+(y+(s), w(s), α(s))
(
T u[Dφ(ξ), D2φ(ξ)](y, ξ)

)−
ds+O(τ).

On the other hand, if (4.21) does not hold, then ξ+[τ ] = ξ for all τ , and

lim
τ→0+

φ(ξτ ) − φ(ξ)
τ

= 0

≥ − lim
τ→0+

1
τ

∫ τ

0

f+(y+(s), w(s), α(s))
(
T u[Dφ(ξ), D2φ(ξ)](y, ξ)

)−
ds.

In both cases, we get

lim
τ→0+

ϕ(y, t) + φ(ξ) − ϕ(y(τ), t− τ) − φ(ξτ )
τ

≤ lim
τ→0+

(
− 1
τ

∫ τ

0

(
ϕy(y(s), t−s)f(y(s), w(s), α(s))−ϕt(y(s), t−s)

− f+(y+(s), w(s), α(s))
(
T u
[
Dφ(ξ), D2φ(ξ)

]
(y, ξ)

)− )
ds+O(τ)

)
· (4.22)

Since ρ̂2(y, ξ) = y, we have T l[Dφ(ξ), D2φ(ξ)](y, ξ) = 0. Hence, from (4.22), we conclude in a standard way
(see Bardi–Capuzzo Dolcetta [4], p. 151).

Finally, if ρ̂1(y, ξ) = y, we change the role between y+(·) and y−(·). �
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Lemma 4.5. Let y ∈W 1,1(0, T ) be given, and let us consider the functions

y+(t) := max
s∈[0,t]

y(s), y−(t) := min
s∈[0,t]

y(s) t ∈ [0, T ].

Then, for almost every t ∈ [0, T ], we have

y′+(t) = χd

(
y(t), y+(t)

)
(y′(t))+, y′−(t) = −χd

(
y(t), y−(t)

)
(y′(t))−, (4.23)

where (x1, x2) �→ χd(x1, x2) is the characteristic function of {x1 = x2} in R
2.

Proof. We sketch the proof for y+, which is characterized as the unique element of W 1,1(0, T ) such that


y′+(t)
(
y(t) − y+(t) + r) ≥ 0 ∀r ≥ 0, a.e. t ∈ (0, T )

y+(t) ≥ y(t) ∀t ∈ [0, T ]
y+(0) = y(0).

Indeed, we can regard y+(·) as the output of a particular case of the Play operator of hysteresis with input y(·)
(see Visintin [21], and also Bagagiolo [2]). From this we get

|y′+(t)| ≤ |y′(t)| a.e. t ∈ (0, T ). (4.24)

Let t ∈ (0, T ) be such that y′(t) and y′+(t) exist. If y+(t) > y(t), then, by continuity, (4.23) holds in t. Otherwise,
if y+(t) = y(t), we should have

y′(t) ≥ 0. (4.25)
Hence, by (4.24), (4.25) and the following, we conclude.

y′+(t) = lim
h→0

y+(t+ h) − y+(t)
h

≥ lim
h→0

y(t+ h) − y(t)
h

= y′(t). �

5. Uniqueness

We assume the following hypothesis

ν(U) > 0 for all open set U ⊂ P ; in particular, assuming (4.8),
∀K ⊂ P bounded ∃c > 0 such that g ≥ c a.e. in K. (5.1)

Theorem 5.1. Let (4.8) and (5.1) hold. Let u and v be bounded and uniformly continuous functions on
O × [0, T ] ⊂ R × L2(P , ν) × [0, T ] for every T > 0, which respectively are viscosity subsolution and viscosity
supersolution of the Cauchy problem (4.12) for every T > 0. Then

u(y, ξ, t) ≤ v(y, ξ, t) ∀(y, ξ, t) ∈ O × [0,+∞[. (5.2)

As usual, from (5.2), the uniqueness of the viscosity solution of (4.12) follows. We prove Theorem 5.1 using
Theorem 5.2 below, which gives the same result under the following hypothesis (in the following σ1 is defined
as in (2.1)).

∃r > 0 such that, setting Qr :=
{
(ρ1, ρ2) ∈ P

∣∣∣0 < σ1 < r
}

,
ν(Qr) = 0, ν(U) > 0 for every open set U ⊂ P \Qr.

(5.3)

The hypothesis (5.3) can be assumed for instance when the support of µ is confined on a compact set of P
(which is open).
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Theorem 5.2. Let us suppose that the hypotheses of Theorem 5.1 are satisfied, but (5.1) is replaced by (5.3).
Then the thesis of Theorem 5.1 holds.

Remark 5.3. The same proof as for Theorem 5.2 shows that, whenever u and v are bounded and uniformly
continuous in O × [0, T ] for every T > 0, and whenever they are respectively sub- and supersolution of the
Hamilton–Jacobi equation in (4.12) satisfying u(y, ξ, 0) ≤ v(y, ξ, 0) for every (y, ξ) ∈ O, then u(y, ξ, t) ≤ v(y, ξ, t)
in O × [0,+∞[.

Proof. (Th. 5.1.) For every r > 0 we consider the strip Qr and define two measures µr and νr on P by

dµr := χP\Qr
dµ, dνr := χP\Qr

dν. (5.4)

Note that µr and νr satisfy (4.8) and (5.3). Moreover, for every r > 0 we consider the Preisach operator Hµr

corresponding to the measure µr. Hence, we have a family of optimal control problems {Pr}r>0, which are
given by f , �, h, A and Hµr . Finally, we denote by the subscript r every formula, quantity, equation and set
corresponding to the problem Pr and to the measure νr. However, we consider O as independent from r (see
Rems. 2.6 and 4.2).

A similar argument as in Proposition 2.8, shows that, for every (y, ξ) ∈ O,

Sr(y, ξ) :=
{
η ∈ S

∣∣∣(y, η) ∈ O, η = ξ in P \Qr

}
(5.5)

is compact for the topology of L2(P , ν). Hence, for every r > 0 we define

ur(y, ξ, t) = max
{
u(y, η, t)

∣∣∣η ∈ Sr(y, ξ)
}
, vr(y, ξ, t) = min

{
v(y, η, t)

∣∣∣η ∈ Sr(y, ξ)
}
·

We are now going to prove three claims. First claim: for every T > 0, ur, vr are bounded and uniformly
continuous in O× [0, T ] ⊂ R×L2(P , νr)× [0, T ]. Let us prove the claim for vr, the other case being analogous.
For every (y, ξ, t) let us take an element (y, ξ̃, t) where the minimum in the definition is achieved. For every
(y1, ξ1), (y2, ξ2) ∈ O, we can choose a function ξ1ξ2

such that (y1, ξ1ξ2
) ∈ O, ξ1ξ2

= ξ1 in P \Qr and

‖ξ1ξ2
− ξ2‖L2(Qr ,ν) ≤ ωr

(|y1 − y2| + ‖ξ1 − ξ2‖L2(P\Qr ,νr)

)
,

where ωr is a modulus of continuity depending only on r. Indeed, by (5.1) and (5.4), it certainly holds in every
compact set of O, i.e. compact with respect to y ∈ R (in particular note that the distance of the two points
where Bξ1 and Bξ2 intersect the line σ1 = r is uniformly controlled by ‖ξ1 − ξ2‖L2(P\Qr ,νr)), and moreover, out
of a compact set, if |y1 − y2| is small the ‖ξ1 − ξ2‖L2(Qr ,ν) is also small, since ν is finite on P . Then, we have
(ω is a modulus of continuity)

vr(y1, ξ1, t1) − vr(y2, ξ2, t2) ≤ v(y1, ξ1ξ̃2
, t1) − v(y2, ξ̃2, t2)

≤ ω
(
|y1 − y2| + ‖ξ1ξ̃2

− ξ̃2‖L2(P,ν) + |t1 − t2|
)

= ω

(
|y1 − y2| +

(
‖ξ1 − ξ2‖2

L2(P\Qr ,νr) + ‖ξ1ξ̃2
− ξ̃2‖2

L2(Qr,ν)

)1/2

+ |t1 − t2|
)
,

and the uniform continuity of vr follows. The boundedness is obvious.
Second claim: ur and vr respectively pointwise converge to u and v on O× [0,+∞[ as r → 0+. It follows from

the uniform continuity of u, v and the fact that ‖ξ − η‖L2(P,ν) = O(r), uniformly with respect to η ∈ Sr(y, ξ).
Third claim: ur and vr are respectively sub- and super-solution of the Hamilton–Jacobi equation of the

Cauchy problem (4.12)r. We prove that vr is supersolution. Let (y, ξ, t) ∈ O×]0, T ] be a minimum point in
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O×]0, T ] ⊂ R × L2(P , νr)×]0, T ] for vr − ϕ− φr with ϕ ∈ C1(R×]0, T ]) and φr ∈ Vr. First of all note that the
function

φ : L2(P , ν) → R, η �→ φr(χP\Qr
η)

belongs to V and moreover for every (y, ξ) ∈ O we have

T u
r [Drφr(ξ), D2

rφr(ξ)](y, ξ) = T u[Dφ(ξ), D2φ(ξ)](y, ξ),
T l

r[Drφr(ξ), D2
rφr(ξ)](y, ξ) = T l[Dφ(ξ), D2φ(ξ)](y, ξ).

Moreover (y, ξ̃, t) (see above) is a point of local minimum for v − ϕ − φ with respect to O×]0, T ] ⊂ R ×
L2(P , ν)×]0, T ]. Hence, the claim is proven.

Now, for every r > 0 we take C(r) > 0, with C(r) → 0 as r → 0, such that ur(y, ξ, 0) ≤ vr(y, ξ, 0) +C(r) for
every (y, ξ) ∈ O (this is possible for the definitions of ur and vr, and since the density of ν is bounded). Since
vr +C(r) is still a supersolution, by Remark 5.3 we have ur ≤ vr +C(r) in O × [0,+∞[. By the claims above,
we then get:

u(y, ξ, t) ≤ v(y, ξ, t) ∀(y, ξ, t) ∈ O × [0,+∞[. �

Proof of Theorem 5.2. This proof is mainly concerning the treatment of the infinite dimensional part of
the equation. For standard techniques in the comparison result for viscosity solutions of finite dimensional
Hamilton–Jacobi equations, we refer to Bardi–Capuzzo Dolcetta [4].

By contradiction, let T > 0 be such that

m := sup
O×[0,T ]

(u− v) > 0. (5.6)

By virtue of Proposition 2.8, it is enough to consider two different cases: 1) the supremum in (5.6) is achieved
on a point (y, ξ, t) ∈ O× [0, T ]; 2) there is a sequence {(yδ, ξδ, tδ)}δ>0 ⊆ O× [0, T ], with |yδ| → +∞ as δ → 0+,
and

u(yδ, ξδ, tδ) − v(yδ, ξδ, tδ) ≥ m− δ > 0. (5.7)

Case 1). We consider two sub-cases: a) ρ̂2(y, ξ) = y; b) ρ̂1(y, ξ) = y.
Sub-case a). We use the following notations: ‖ · ‖ := ‖ · ‖L2(P,ν), and {ξ = 1} := {ρ ∈ P|ξ(ρ) = 1} (similarly

for {ξ = −1}). We define

ψ(ξ) := e−
∫
{ξ=−1} ξ dν − e−

∫
{ξ=−1} ξ dν − 2

∫
{ξ=−1}

(1 + ξ) dν +
∫
P

(ξ − ξ)2 dν.

Hence ψ ∈ V . We claim that there exists a constant c > 0 such that

ψ(ξ) ≥ c‖ξ − ξ‖2 ∀ξ ∈ S. (5.8)

Indeed, the claim follows from the following relations (note that −a ≤ b ≤ a⇒ ea − eb ≥ e−a(a− b))

e−
∫
{ξ=−1} ξ dν − e−

∫
{ξ=−1} ξ dν ≥ e

∫
{ξ=−1} ξ dν

2

∫
{ξ=−1}∩{ξ=1}

(ξ − ξ)2 dν;

−2
∫
{ξ=−1}

(1 + ξ) dν +
∫
P

(ξ − ξ)2 dν =
∫
{ξ=1}∩{ξ=−1}

(ξ − ξ)2 dν.
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For every ε > 0, on (O × [0, T ]) × (O × [0, T ]), we define the function

Ψ(y1, ξ1, t1, y2, ξ2, t2) := u(y1, ξ1, t1) − v(y2, ξ2, t2) − |y1 − y2|2
ε

− 1
ε
(ψ(ξ1) + ψ(ξ2)) − |t1 − t2|2

ε
− |y1 − y|2 − β(b(y1) + b(y2)), (5.9)

where b : R → R is nonnegative, differentiable with bounded derivative, b(y) = 0, and b(y) → +∞ as |y| → +∞;
β is a positive parameter. We have

Ψ
(
y, ξ, t, y, ξ, t

)
= u

(
y, ξ, t

)− v
(
y, ξ, t

)
= m > 0,

and, using the boundedness of u and v, for |y1|, |y2| large enough, we have

Ψ(y1, ξ1, t1, y2, ξ2, t2) < 0.

Hence (see Prop. 2.8), Ψ has a positive maximum on (O× [0, T ])× (O× [0, T ]). Let (yε
1, ξ

ε
1, t

ε
1, y

ε
2, ξ

ε
2 , t

ε
2) be such

a maximum point. By (5.8), and by standard techniques, we obtain

|yε
1 − yε

2|2
ε

+ c
‖ξε

1 − ξ‖2

ε
+ c

‖ξε
2 − ξ‖2

ε
+

|tε1 − tε2|2
ε

+ |yε
1 − y|2 ≤

ω (|yε
1 − yε

2| + ‖ξε
1 − ξε

2‖ + |tε1 − tε2|) ≤M, (5.10)

with ω modulus of continuity. Hence, for ε→ 0+, we have

max
( |yε

1 − yε
2|2

ε
,
‖ξε

1 − ξ‖2

ε
,
‖ξε

2 − ξ‖2

ε
,
|tε1 − tε2|2

ε
, |yε

1 − y|2
)

→ 0. (5.11)

By (5.11), yε
1 and yε

2 tend to y, and, since ρ̂2(y, ξ) = y, by (5.3), we can suppose (recall (5.3) and Rem. 2.7)

ρ̂2(yε
i , ξ

ε
i ) = yε

i for i = 1, 2 and ε sufficiently small. (5.12)

Indeed, if (5.12) is not possible, then ‖ξε
i − ξ‖ �→ 0: there is a triangle in P \Qr where |ξε

i − ξ| = 2 for all ε (the
triangle T2 in Fig. 5).

As usual, (yε
1, ξ

ε
1 , t

ε
1) is of maximum in O×]0, T ] (note that tεi > 0) for

(y, ξ, t) �→ u(y, ξ, t) − |y − yε
2|2

ε
− ψ(ξ)

ε
− |t− tε2|2

ε
− |y − y|2 − βb(y), (5.13)

as well as (yε
2, ξ

ε
2, t

ε
2) is a minimum point in O×]0, T ] for

(y, ξ, t) �→ v(y, ξ, t) +
|y − yε

1|2
ε

+
ψ(ξ)
ε

+
|t− tε1|2

ε
+ βb(y). (5.14)

By (5.12), we have T l[Dψ(ξε
i ), D2ψ(ξε

i )](yε
i , ξ

ε
i ) = 0 for i = 1, 2 and small ε (this is the main reason for which we

introduced the hypothesis (5.3)). The exponential terms of ψ do not give contributions to T u. Hence, see (4.5),

T u

[
D
ψ

ε
(ξε

i ), D2ψ

ε
(ξε

i )
]

(yε
i , ξ

ε
i ) = lim

s→0+
− 4
εs

(
ν
(
Pu

s (yε
i , ξ

ε
i ) ∩ {ξ = −1})+

∫
P u

s (yε
i ,ξε

i )

ξ dν

)

= lim
s→0+

− 4
εs
ν
(
Pu

s (yε
i , ξ

ε
i ) ∩ {ξ = 1}) ≤ 0.
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Figure 5. Graphic explanation for the proof of Theorem 5.2. The filled graph ξ is such that
ρ̂1(y, ξ) = ρ̂2(y, ξ) = y.

Hence, in the Hamilton–Jacobi equation, the terms involving T u and T l vanish (note that ψ appears with
different signs in (5.13) and (5.14)). We can then apply standard techniques to the “finite dimensional” part of
the equation, and get the contradiction.

Sub-case b). In this sub-case we define the function γ ∈ V

γ(ξ) := e
∫
{ξ=1} ξ dν − e

∫
{ξ=1} ξ dν − 2

∫
{ξ=1}

(1 − ξ) dν +
∫
P

(ξ − ξ)2 dν.

There exists c > 0 such that (replacing ψ with γ) (5.8) holds. We then define

Γ(y1, ξ1, t1, y2.ξ2, t2) := u(y1, ξ1, t1) − v(y2, ξ2, t2) − |y1 − y2|2
ε

− 1
ε
(γ(ξ1) + γ(ξ2)) − |t1 − t2|2

ε
− |y1 − y|2 − β(b(y1) + b(y2)).

As before, Γ has a local maximum point (yε
1, ξ

ε
1 , t

ε
1, y

ε
2, ξ

ε
2, t

ε
2) in (O×]0, T ]) × (O×]0, T ]), with the same con-

vergence as in (5.11). Moreover, we have ρ̂1(yi, ξi) = yi, and T l[Dγ(ξε
i ), D

2γ(ξε
i )](y

ε
i , ξ

ε
i ) ≥ 0 for i = 1, 2 and

small ε (see the triangle T1 in Fig. 5). We then get the conclusion as in the sub-case a).
Case 2). For every ε, δ > 0, on (O × [0, T ]) × (O × [0, T ]), we define

Λ(y1, ξ1, t1, y2, ξ2, t2) := u(y1, ξ1, t1) − v(y2, ξ2, t2) − |y1 − y2|2
ε

− ‖ξ1 − ξ2‖2

ε
− |t1 − t2|2

ε
− |y1 − yδ|2 − β(bδ(y1) + bδ(y2)),

where bδ(y) is positive with derivatives uniformly bounded with respect to δ, bδ(y) → +∞ as |y| → +∞ and
bδ(yδ) = 0. Again, Λ has a maximum point (yε,δ

1 , ξε,δ
1 , tε,δ

1 , yε,δ
1 , ξε,δ

1 , tε,δ
1 ) on (O×]0, T ]) × (O×]0, T ]), and as

max{ε, δ} → 0,

max

(
|yε,δ

1 − yε,δ
2 |2

ε
,
‖ξε,δ

1 − ξε,δ
2 ‖2

ε
,
|tε1 − tε2|2

ε
, |yε,δ

1 − yδ|2
)

→ 0.

Since |yδ| → +∞ as δ → 0, and ν(P) < +∞, for every fixed ε > 0 we can find δε > 0 such that for δ ≤ δε we
have ν({ρ ∈ P|ρ2 ≥ |yδ|}) ≤ ε2 and ν({ρ ∈ P|ρ1 ≤ −|yδ|}) ≤ ε2. Moreover we can suppose that δε → 0 as
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ε→ 0. We then recover two test functions ζ1 and ζ2 (depending on ε) such that
(
yε,δ

i , ξε,δ
i , tε,δ

i

)
is, respectively

for i = 1, 2, a point of local maximum and local minimum for u− ζ1 and v − ζ2, and

δ ≤ δε ⇒
∣∣∣T j

[
Dζi

(
ξε,δ
i

)
, D2ζi

(
ξε,δ
i

)](
yε,δ

i , ξε,δ
i

)∣∣∣ ≤ ε. ∀i = 1, 2 ∀j = u, l.

Hence, the “infinite dimensional” terms are infinitesimal as ε → 0. We then obtain the desired contradiction
applying standard techniques to the remaining “finite dimensional” part of the equation.

Remark 5.4. The hypotheses (5.1) and (5.3) are probably not necessary for the uniqueness result. Moreover,
the hypothesis (5.3) can be weakened, considering not a strip Qr but other geometrical situation. However, we
point out again that ν is not a datum of the control problem, but, after (2.5), its choice is at our disposal, in
order to fit the problem in a suitable functional space.

6. The vectorial case

In this section we give a possible extension of the control problem. In particular, such extension covers the
case of a controlled hysteresis dynamical system in R

n, where the hysteresis is given by a weighted average of a
finite number of Preisach operators, each one of them having, as input, a suitable function of the state y ∈ R

n.
The simplest example is given by one Preisach operator only, which acts on the evolution of a fixed component
of the input y ∈ R

n. This is indeed the situation in [6–8,15,19], possibly with a hysteresis model different from
the Preisach one. However, we set the problem in a very general way.

When non specifically stated, the notations are the same as in the previous sections. Let n, m, and r be
nonnegative integers. Let us consider the functions

f : R
n × R

m ×A→ R
n, G : R

r → R
m, gi : R

n → R, i = 1, . . . , r,
� : R

n × R
m ×A→ [0,+∞[, h : R

n × R
m → [0,+∞[.

The hypotheses are: f is bounded, continuous, and Lipschitz continuous with respect to its first two entries,
uniformly with respect to the third one; G is Lipschitz continuous; for every i, gi is C1; � is bounded, continuous,
and uniformly continuous with respect to its first two entries, uniformly with respect to the third one; h is
bounded and uniformly continuous. Moreover, for every i = 1, . . . , r, we have a pair of measures (µi, νi) on the
Preisach plane, which, pair by pair, satisfy all the hypotheses as the pair (µ, ν) in the previous sections. Finally
we define

Õ :=
{
(y, ξ) = (y, ξ1, . . . , ξr) ∈ R

n × S × · · · × S
∣∣∣(gi(y), ξi) ∈ O ∀ i = 1, . . . , r

}
,

and we equipped it with the graph-norm of R
n × L2(P , ν1) × · · · × L2(P , νr).

We consider the optimal control problem given by



y′(t) = f(y(t), w(t), α(t)) t > 0
w(t) = G(w1(t), . . . , wr(t)) t ≥ 0
wi(t) = Hµi [gi ◦ y, ξi0](t) t ≥ 0, i = 1, . . . , r
y(0) = y0
(y0, ξ0) = (y0, ξ10, . . . , ξr0) ∈ Õ.

The cost functional and the value function are, respectively

J(y0, ξ0, t, α) : =
∫ t

0

e−λs�(y(s), w(s), α(s)) ds + e−λth(y(t), w(t)),

V (y0, ξ0, t) = inf
α∈A

J(y0, ξ0, t, α).
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Let Li be the space of symmetric bounded bilinear forms on L2(P , νi). For every (y, ξ) ∈ Õ, and every
collection of pairs (ψi, πi)i=1,...,r, (ψi, πi) ∈ L2(P , νi) × Li, we consider the collections of upper and left limits
(T u

i [ψi, πi](gi(y), ξi))i and
(
T l

i [ψi, πi](gi(y), ξi)
)

i
where, for every i = 1, . . . , r, the limits are calculated as in the

previous sections, but with respect to the topology of L2(P , νi), respectively.
We consider the following infinite dimensional hamiltonians, defined on (a subset of)

Õ × R
n × (L2(P , ν1) × L1

)× · · · × (L2(P , νr) × Lr

)
,

by (here w = G(w1, . . . , wr), where wi =
∫
P ξi dµi; and ∇ is the gradient with respect to y ∈ R

n)

H(y, ξ, p, (ψ1, π1), . . . , (ψr, πr)) := sup
a∈A

{
− p · f(y, w, a) −

r∑
i=1

[(
∇gi(y) · f(y, w, a)

)+

T u
i [ψi, πi](gi(y), ξi)

−
(
∇gi(y) · f(y, w, a)

)−
T l

i [ψi, πi](gi(y), ξi)
]
− �(y, w, a)

}

H−(y, ξ, p, (ψ1, π1), . . . , (ψr, πr)) := sup
a∈A

{
− p · f(y, w, a) −

r∑
i=1

[(
∇gi(y) · f(y, w, a)

)+(
T u

i [ψi, πi](gi(y), ξi)
)+

+
(
∇gi(y) · f(y, w, a)

)−(
T l

i [ψi, πi](gi(y), ξi)
)−]

− �(y, w, a)
}

H+(y, ξ, p, (ψ1, π1), . . . , (ψr, πr)) := sup
a∈A

{
− p · f(y, w, a) +

r∑
i=1

[(
∇gi(y) · f(y, w, a)

)+(
T u

i [ψi, πi](gi(y), ξi)
)−

+
(
∇gi(y) · f(y, w, a)

)−(
T l

i [ψi, πi](gi(y), ξi)
)+
]
− �(y, w, a)

}
·

Theorem 6.1. For every T > 0, the value function is the unique bounded and uniformly continuous viscosity
solution of the following Cauchy problem

{
Vt(y, ξ, t) + λV (y, ξ, t) +H(y, ξ,∇V (y, ξ, t), DV (y, ξ, t), D2V (y, ξ, t)) = 0 in Õ×]0, T ]
V (y, ξ, 0) = h(y, w).

The definition of viscosity solution is the following. For every i, let Vi be the set of test functions as in (4.3),
where we have replaced ν, T u, and T l by νi, T u

i , and T l
i respectively. Then, for every choice of the test functions

ϕ ∈ C1(Rn×]0,+∞[), φi ∈ Vi, i = 1, ..., r, we have the following:
1) if V (y, ξ, t) − ϕ(y, t) − φ1(ξ1) − · · · − φr(ξr) has a local maximum at (y, ξ, t) in Õ×]0,+∞[, then

ϕt(y, t) + λV (y, ξ, t) +H−
(
y, ξ,∇ϕ(y, t),

(
Dφ1(ξ1), D2φ1(ξ1)

)
, . . . ,

(
Dφr(ξr), D2φr(ξr)

)) ≤ 0;

2) if V (y, ξ, t) − ϕ(y, t) − φ1(ξ1) − · · · − φr(ξr) has a local minimum at (y, ξ, t) in Õ×]0,+∞[, then

ϕt(y, t) + λV (y, ξ, t) +H+
(
y, ξ,∇ϕ(y, t),

(
Dφ1(ξ1), D2φ1(ξ1)

)
, . . . ,

(
Dφr(ξr), D2φr(ξr)

)) ≥ 0.

Proof. (Sketched proof of Th. 6.1.) We confine this sketched proof only to the proof that V is viscosity solution
of the Cauchy problem. With respect to what previously done, the difference here is that we have to work with
the sign of ∇gi(y) · f(y, w, a) and not with the sign of f(y, w, a). Moreover, the function t �→ gi(y(t)) is not
solution of the ODE.
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Let us prove that V is subsolution. By DPP (which still holds), we obtain a similar inequality as (4.15),
where we now have the r differences φi(ξi) − φi(ξiτ ). Again, the problem is passing to the limit as τ → 0+ in
(φi(ξi) − φi(ξiτ))/τ . Note that the evolution of ξi is governed by the evolution of gi ◦ y. Again, we have some
cases.

a) ∇gi(y) · f(y, w, a) = 0. This does not imply that gi(y(t)) ≡ gi(y) (and hence ξiτ ≡ ξi), since we are not
working with the solution of an ODE. However, we have gi(y(τ))− gi(y) = o(τ), and hence ‖ξiτ − ξi‖2

L2(P,νi)
=

2‖ξiτ−ξi‖L1(P,νi) = o(τ). Hence, using the second order Taylor’s formula for φi and recalling that, by hypothesis,
Dφi(ξi) ∈ L∞(P , νi), we get

lim
τ→0+

φi(ξiτ ) − φi(ξi)
τ

= lim
τ→0+

1
τ

(
〈Dφi(ξi), ξiτ − ξi〉 +

1
2
[
D2φi(ξi)

]
(ξiτ − ξi, ξiτ − ξi)

)
= 0

=
(
∇gi(y) · f(y, w, a)

)+

T u
i

[
Dφi(ξi), D2φi(ξi)

]
(gi(y), ξi)

−
(
∇gi(y) · f(y, w, a)

)−
T l

i

[
Dφi(ξi), D2φi(ξi)

]
(gi(y), ξi).

b) ∇gi(y) · f(y, w, a) > 0 (resp. ∇gi(y) · f(y, w, a) < 0). Then, at least for small times, the quantity gi(y(τ)) is
increasing (resp. decreasing). Hence, we can argue as before, replacing (4.17) (resp. (4.18)) by

ξiτ − ξi = 2χPu
∇gi(y)·f(y,w,a)τ (gi(y),ξi) + σ(τ),

(
resp. by ξiτ − ξi = −2χPl

−∇gi(y)·f(y,w,a)τ (gi(y),ξi) + σ(τ)
)
,

and we obtain the conclusion.
To prove that V is a supersolution, using Lemma 4.5 and its notations, we can replace (4.20) by ξiτ =

ξi+[τ ] + σ(τ), where τ �→ ξi+[τ ] is the evolution of the internal variables of Hµi [(gi ◦ y)+, ξi](·); and (4.21) by

(gi(y(τ))+ − gi(y) =
∫ τ

0

χd

(
(gi(y(s))+, gi(y(s))

)(
∇gi(y(s)) · f(y(s), w(s), α(s)

)+

ds.

Hence, we obtain the same inequality as in (4.22), with the replacing of f+(y+(s), w(s), α(s)) by (∇gi(y(s)) ·
f(y(s), w(s), α(s))+ as major change. We then can conclude.

To prove the uniqueness result, we just repeat the proofs of Theorems 5.1 and 5.2. In particular, repeating
the proof of Theorem 5.2, we have to suppose that a condition as (5.3) holds for every measure νi. Moreover,
we have to use the test functions ψi or the test functions γi, i = 1 . . . , r as in that proof, by separately analyzing
case by case all the r “components” of Õ, i.e. (gi(y), ξi), i = 1, . . . r. �

Remark 6.2. As we already said, if the function G is scalar-valued, it may represent a weighted average of
a finite number of Preisach operators, with, respectively, a suitable function of the vector y (for instance a
component) as input. We believe that similar results to the ones presented in this work, may be obtained
by a similar analysis, in the case that the finite average is replaced by a series or even by a superposition
of a continuum of Preisach operators. For instance, a similar analysis as in Bagagiolo [2] may be performed.
Indeed in [2], the case of the Prandtl–Ishlinskii model is studied. That model is given by the superposition of
a continuum of Plays operators, which are continuous hysteresis operators (by the way, note that the Preisach
model is a superposition of a continuum of delayed relays, which however are discontinuous hysteresis operators).
Hence, starting from the results of the present paper, the case of a continuum of Preisach models, which are
continuous hysteresis operators, may be not very complicated. However, we did not check the details.
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