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THE STEEPEST DESCENT DYNAMICAL SYSTEM WITH CONTROL.
APPLICATIONS TO CONSTRAINED MINIMIZATION

Alexandre Cabot1

Abstract. Let H be a real Hilbert space, Φ1 : H → R a convex function of class C1 that we wish to
minimize under the convex constraint S. A classical approach consists in following the trajectories of
the generalized steepest descent system (cf. Brézis [5]) applied to the non-smooth function Φ1 + δS.
Following Antipin [1], it is also possible to use a continuous gradient-projection system. We propose here
an alternative method as follows: given a smooth convex function Φ0 : H → R whose critical points
coincide with S and a control parameter ε : R+ → R+ tending to zero, we consider the “Steepest
Descent and Control” system

(SDC) ẋ(t) + ∇Φ0(x(t)) + ε(t)∇Φ1(x(t)) = 0,

where the control ε satisfies
∫ +∞
0

ε(t) dt = +∞. This last condition ensures that ε “slowly” tends to 0.
When H is finite dimensional, we then prove that d(x(t), argminSΦ1) → 0 (t → +∞), and we give
sufficient conditions under which x(t) → x̄ ∈ argminSΦ1. We end the paper by numerical experiments
allowing to compare the (SDC) system with the other systems already mentioned.
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Introduction

Let H be a real Hilbert space and Φ1 : H → R a smooth function that we wish to minimize on the constraint
set S. More precisely, we are interested in the following problem

(P) min {Φ1(x), x ∈ S} ,

and we will denote the solution set by argminSΦ1. To deal with problem (P), a classical approach consists in
following the trajectories of a gradient-like dynamical system, hopefully converging toward some solution of (P).
For example, when the data Φ1 and S are convex, one can consider the generalized steepest descent system
applied to the non-smooth function Φ1 + δS , namely

(S1) ẋ(t) + ∇Φ1(x(t)) ∈ −NS(x(t)), t ≥ 0,
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where δS is the indicator function of S and NS(x(t)) is the normal cone to S at the point x(t). This differential
inclusion has been widely studied (Brezis [5], Bruck [6], ...) and the trajectories of (S1) are proved to converge
to some element x̄ ∈ argminSΦ1. The condition x̄ ∈ argminSΦ1 can be rewritten as ∇Φ1(x̄) ∈ −NS(x̄), which
in turn is equivalent to

x̄ = PS (x̄ − µ∇Φ1(x̄)) , for any µ > 0.

This remark leads us to consider the following dynamical system

(S2) ẋ(t) + x(t) − PS (x(t) − µ∇Φ1(x(t))) = 0,

which has been initiated by Antipin [1]. The trajectories of (S2) converge toward a minimum of Φ1 on S and
enjoy moreover a viability property: the orbits starting in S are lying in S.

We propose in this paper an alternative method to solve (P) by studying the following “Steepest Descent
and Control” system

(SDC) ẋ(t) + ∇Φ0(x(t)) + ε(t)∇Φ1(x(t)) = 0, t ≥ 0,

where Φ0 : H → R is a C1 function whose critical points coincide with S and ε : R+ → R+ is a control parameter
tending to 0 when t → +∞. The (SDC) system can be interpreted as a steepest descent method (applied to
the function Φ0) plus a control term ε(t)∇Φ1(x(t)).

Some variants of the (SDC) system have been studied by several authors. For example in [3], Attouch
and Cominetti couple approximation methods with the steepest descent one. To consider only a particular
case of their paper, they prove that, when Φ0 is convex and ε : R+ → R+ is a C1 control function such
that

∫ +∞
0 ε(t) dt = +∞, then each trajectory of the system

ẋ(t) + ∇Φ0(x(t)) + ε(t)x(t) = 0 ((SDC) with Φ1(x) = |x|2/2)

strongly converges to the point of minimal norm of argminΦ0. The condition
∫ +∞
0 ε(t) dt = +∞ expresses

that ε(t) tends to zero slowly enough to allow the Tikhonov regularization term ε(t)x(t) to be effective asymp-
totically. Attouch and Czarnecki study in [4] a second-order in time version of the previous system and obtain
the same type of result.

In another direction, Cabot and Czarnecki consider in [7] a particular case of the (SDC) system where
H = R

2, Φ0(x, y) = φ(x) + φ(y) and Φ1(x, y) = V (x − y), thus leading to

{
ẋ(t) + ∇φ(x(t)) + ε(t)∇V (x − y)(t) = 0
ẏ(t) + ∇φ(y(t)) − ε(t)∇V (x − y)(t) = 0.

They focus their attention on the case where the potential V modelizes a repulsion force. Such a potential
allows a better exploration of the minima of φ than a (simple) steepest descent method. Cabot and Czarnecki
show in this paper that the condition

∫ +∞
0 ε(t) dt = +∞ plays once more an essential role in order to make the

repulsion efficient.
Coming back to the general (SDC) system and assuming that ε is a slow control, i.e.

∫ +∞
0

ε(t) dt = +∞, we
prove in this paper that, under convex-type conditions on Φ0 and Φ1, the distance of the (SDC) trajectory x(.)
to the set argminSΦ1 tends to 0 when t → +∞. Moreover, we obtain sufficient conditions on Φ0 and Φ1

ensuring the convergence of x(.) toward some solution of (P).
The paper is organized as follows. In Section 1, we give global existence results relative to (SDC) and we

show the interest of a slow control ε. Section 2 deals with the minimization properties of (SDC) trajectories in
the case of a slow control and we prove that they tend to minimize Φ1 over the set S = argminΦ0. In Section 3,
we illustrate our theoretical results by numerical experiments and we compare the (SDC) system respectively
with (S1) and (S2). The technical proofs of the paper are postponed in Section 4.
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1. General results

1.1. Global existence

Let H be an Hilbert space and Φ0 : H → R, Φ1 : H → R, ε : R+ → R+ functions of class C1. In the whole
paper, we assume the following (rather standard) set of hypotheses (H):

(HΦ0)
{

i − the map Φ0 is bounded from below on H ;
ii − the map ∇Φ0 is Lipschitz continuous on the bounded subsets of H.

(HΦ1)
{

i − the map Φ1 is bounded from below on H ;
ii − the map ∇Φ1 is Lipschitz continuous on the bounded subsets of H.

(Hε)




i − the map ε is non-increasing, i.e. ε̇(t) ≤ 0 ∀t ∈ R+;
ii − the map ε is Lipschitz continuous on R+;
iii− limt→+∞ ε(t) = 0.

Let us then consider the following dynamical system

(SDC)
{

ẋ(t) + ∇Φ0(x(t)) + ε(t)∇Φ1(x(t)) = 0
x(0) = x0

which will be referred to as the “Steepest Descent and Control” system. We recognize the steepest descent
system applied to Φ0 plus the “control term” ε(t)∇Φ1(x(t)). We can define along every trajectory of (SDC)
the function E by

E(t) = Φ0(x(t)) − inf Φ0 + ε(t) (Φ1(x(t)) − inf Φ1).

By differentiating E, we obtain

Ė(t) = 〈ẋ(t),∇Φ0(x(t)) + ε(t)∇Φ1(x(t))〉 + ε̇(t) (Φ1(x(t)) − inf Φ1) (1.1)

= −|ẋ(t)|2 + ε̇(t) (Φ1(x(t)) − inf Φ1).

From assumption (Hε − i), we have ε̇(t) ≤ 0 and hence Ė(t) ≤ 0: the function E is non-increasing along every
trajectory, i.e. defines a Lyapounov function for the (SDC) system. The existence of a Lyapounov function for
a differential equation is useful in the study of the asymptotic stability of its equilibria. Lyapounov methods
and other power tools (like the Lasalle invariance principle) have been developed to study such a question. We
refer to the abundant literature on this subject (Arnold [2], Haraux [8], Hirsch-Smale [9], Lasalle-Lefschetz [10],
Reinhardt [12], ...). The central result of this section is given by the following proposition, whose proof mainly
relies on the existence of the Lyapounov function E.

Proposition 1.1. Let us assume that Φ0, Φ1 and ε satisfy the assumptions (H). Then, the following properties
hold

(i) for all x0 ∈ H, there exists a unique maximal solution x : R+ → H of (SDC), which is of class C1,
and which satisfies the initial condition x(0) = x0. Moreover, the following estimate holds: ẋ ∈
L2([0, +∞); H);

(ii) assuming additionally that x is bounded (which is the case for example if Φ0 is coercive, i.e.
lim

|x|→+∞
Φ0(x) = +∞), then we have limt→+∞ ẋ(t) = 0 and limt→+∞ ∇Φ0(x(t)) = 0.

Proof. (i) For x0 ∈ H , the Cauchy-Lipschitz theorem and hypotheses (HΦ0 − ii), (HΦ1 − ii) ensure the existence
of a unique local trajectory x(.) solution of (SDC). Let x denote the maximal solution defined on the inter-
val [0, Tmax) with 0 < Tmax ≤ +∞. In order to prove that Tmax = +∞, let us show that ẋ ∈ L2([0, Tmax); H).
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By integrating formula (1.1) on [0, t], we deduce that
∫ t

0
|ẋ(s)|2 ds ≤ E(0)−E(t), which combined with E(t) ≥ 0

implies ∫ Tmax

0

|ẋ(s)|2 ds ≤ E(0) < +∞.

By a standard argument, we derive that Tmax = +∞. Indeed, let us assume that Tmax < +∞. From the
Cauchy-Schwarz inequality, we have

|x(t) − x(t′)| =
∣∣∣∣
∫ t

t′
ẋ(s) ds

∣∣∣∣ ≤
∫ t

t′
|ẋ(s)| ds ≤

(∫ Tmax

0

|ẋ(s)|2 ds

)1/2 √
t − t′,

and since Tmax < +∞, limt→Tmax x(t) := x∞ exists. But, applying again the local existence theorem with initial
data x∞, we can extend the maximal solution to a strictly larger interval, a contradiction. Hence, Tmax = +∞,
which completes the proof of (i).

(ii) We now assume that x(.) is bounded. Equation (SDC) and assumptions (HΦ0 − ii), (HΦ1 − ii) clearly
imply that ẋ is bounded, i.e. the map x is Lipschitz continuous on R+. Using again assumptions (HΦ0 − ii)
and (HΦ1 − ii), we deduce that

t �→ ∇Φ0(x(t)) and t �→ ∇Φ1(x(t)) are Lipschitz continuous and bounded on R+.

From assumptions (Hε) the map ε is Lipschitz continuous and bounded. We then conclude that t �→ ẋ(t) =
−∇Φ0(x(t))−ε(t)∇Φ1(x(t)) is Lipschitz continuous on R+. As a consequence the function h := ẋ satisfies both

h ∈ L2([0, +∞); H) and h ∈ Lip([0, +∞); H).

According to a classical result, these two properties imply limt→+∞ h(t) = 0, i.e. limt→+∞ ẋ(t) = 0. Then, in
view of limt→+∞ ε(t) = 0, equation (SDC) immediately gives limt→+∞ ∇Φ0(x(t)) = 0, which ends the proof
of (ii). �

1.2. Interest of a slow control ε

When ε ≡ 0, the (SDC) system reduces to the steepest descent dynamical system applied to Φ0 and it is
well-known that its trajectories weakly converge to a minimum of Φ0 (cf. Bruck [6]). This last result can be
generalized when ε tends to zero fast enough; indeed, we have

Proposition 1.2. In addition to the hypotheses (H), let us assume that the map Φ0 is convex with argminΦ0 
= ∅
and that

∫ +∞
0

ε(t) dt < +∞ (fast control). Let x(.) be the unique solution of (SDC). If x(.) is bounded, then
there exists x∞ ∈ argmin Φ0 such that

lim
t→+∞ x(t) = x∞ w − H.

Proof. The central idea is to prove the weak convergence of the trajectory x by using the Opial lemma [11].

Lemma 1.3 (Opial). Let H be a Hilbert space and x : [0, +∞[→ H be a function such that there exists a non
void set S ⊂ H which verifies:

(i) ∀z ∈ S, limt→+∞ |x(t) − z| exists;
(ii) ∀tn → +∞ with x(tn) → x∞ weakly in H, we have x∞ ∈ S.

Then, x(t) weakly converges as t → +∞ to some element x∞ of S.
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Let us apply the Opial lemma with S = argminΦ0.

(i) For any z ∈ argmin Φ0 
= ∅, let us set hz(t) = 1
2 |x(t) − z|2. Since Φ0 is convex, we have

ḣz(t) = 〈x(t) − z, ẋ(t)〉
= −〈x(t) − z,∇Φ0(x(t))〉 − ε(t) 〈x(t) − z,∇Φ1(x(t))〉
≤ −ε(t) 〈x(t) − z,∇Φ1(x(t))〉.

On the other hand, the boundedness of the trajectory x(.) implies the existence of C > 0 such that, for every
t ≥ 0, |〈x(t) − z,∇Φ1(x(t))〉| ≤ C. As a consequence, the following inequality holds

ḣz(t) ≤ C ε(t).

Taking the positive part of the previous relation, we finally obtain (ḣz)+(t) ≤ C ε(t). By applying the following
lemma, we conclude that limt→+∞ |x(t) − z| exists.

Lemma 1.4. Let h : R+ → R a function of class C1 which is bounded from below and such that ḣ+ ∈ L1(0, +∞).
Then, limt→+∞ h(t) exists.

(ii) Let us now consider a sequence (tn) such that limn→+∞ x(tn) = x∞ w − H .

We have to prove that x∞ ∈ argmin Φ0. From the convexity of Φ0, we have, for every ξ ∈ H

Φ0(ξ) ≥ Φ0(x(tn)) + 〈∇Φ0(x(tn)), ξ − x(tn)〉.

By using the weak lower semicontinuity of the convex continuous function Φ0, and noticing that, in the duality
bracket 〈∇Φ0(x(tn)), ξ−x(tn)〉, the two terms are respectively norm converging to zero and weakly convergent,
we can pass to the lower limit to obtain Φ0(ξ) ≥ Φ0(x∞). This being true for every ξ ∈ H , we deduce that
x∞ ∈ argminΦ0. The Opial lemma allows us to conclude. �

When ε is a fast control, the previous result shows the convergence of the trajectories, but the limit does
not depend explicitly on Φ1. We now show how the assumption of slow control (i.e.

∫ +∞
0

ε(t) dt = +∞) allows
to rescale conveniently the (SDC) system, then giving rise to the minimization of Φ1 over the set argminΦ0.
Indeed, let us divide the (SDC) equation by ε(t) so as to obtain

ẋ(t)/ε(t) + ∇Φ0(x(t))/ε(t) + ∇Φ1(x(t)) = 0. (1.2)

Introducing a time-rescaling t = τ(s), the new function y(s) := x(τ(s)) satisfies ẏ(s) = ẋ(τ(s)) τ̇ (s), so that we
are naturally led to choose τ(s) such that

τ̇ (s) = 1/ε(τ(s)) (1.3)
in such a way that (1.2) is transformed into

ẏ(s) + ∇Φ0(y(s))/ε(τ(s)) + ∇Φ1(y(s)) = 0. (1.4)

Setting E(t) =
∫ t

0 ε(s) ds, equality (1.3) is equivalent to

Ė(τ(s)) τ̇ (s) = 1

so that we obtain E(τ(s)) = s. Clearly E is a strictly increasing function from [0, +∞[ onto [0, +∞[ since∫ +∞
0

ε(s) ds = +∞. We then have τ(s) = E−1(s) with lims→+∞ τ(s) = +∞, and then

lim
t→+∞ x(t) exists ⇐⇒ lim

s→+∞ y(s) exists
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in which case both limits coincide. On the other hand, equation (1.4) can be rewritten under the equivalent
form

ẏ(s) + ∇Ψ(s, y(s)) = 0,

where Ψ(s, y) = (Φ0(y) − inf Φ0)/ε(τ(s)) + Φ1(y). Assuming for simplicity that Φ0 is convex and satisfies
S := argminΦ0 
= ∅, then we have

lim
s→+∞ Ψ(s, y) = δS(y) + Φ1(y),

where δS is the indicator function of S. It is then quite natural to expect the (SDC) trajectories to minimize
the function Φ1 on the set S = argminΦ0, at least under convex-type assumptions on Φ0 and Φ1. The purpose
of the next paragraphs is precisely to exhibit situations in which convergence holds. As we shall see later, the
proofs are much more difficult than in the case of a fast control.

2. Minimization of Φ1 over argminΦ0 when ε is a slow control

2.1. Convergence of the distance function t �→ d(x(t), argminSΦ1)

We state our main theorem in the general framework of quasi-convex functions, i.e. functions whose sublevel
sets are convex. Let us recall the following two properties about quasi-convex functions f : H → R which are
differentiable:

• f is quasi-convex if, and only if

∀x, y ∈ H, f(y) ≤ f(x) =⇒ 〈∇f(x), y − x〉 ≤ 0;

• f is strictly quasi-convex if, and only if it is quasi-convex and

∀x, y ∈ H, f(y) < f(x) =⇒ 〈∇f(x), y − x〉 < 0.

Theorem 2.1. In addition to the hypotheses (H), let us assume that H = R
n and

• Φ0 : H → R is quasi-convex and S := {x ∈ H, ∇Φ0(x) = 0} 
= ∅.
• Φ1 : H → R is strictly quasi-convex and ∅ 
= argminSΦ1 ⊂ argminΦ0.
• ∫ +∞

0 ε(t)dt = +∞ (slow control).

If the trajectory x(.) of the (SDC) system is bounded, then

(i) limt→+∞ d(x(t), argminSΦ1) = 0,
(ii) limt→+∞ Φ0(x(t)) = min Φ0,

(iii) limt→+∞ Φ1(x(t)) = minS Φ1,

where d(., argminSΦ1) stands for the distance function to the set argminSΦ1. As a consequence, if argminSΦ1

is reduced to a singleton {p}, then the trajectory x(.) converges to p.

Proof. The proof is an extension of Attouch-Czarnecki [4] where the authors show the convergence toward the
point of minimal norm of argminΦ0 in the case where Φ1(x) = |x|2/2. In the present situation, the proof mainly
relies on the study of the function h defined by

h(t) =
1
2
d(x(t), C)2,

where C := argminSΦ1 ⊂ argminΦ0. To improve the clarity of the exposition, the proof is postponed in
Section 4. �
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Corollary 2.2. In addition to the hypotheses (H), let us assume that H = R
n and

• Φ0 : H → R is convex and S = argminΦ0 
= ∅.
• Φ1 : H → R is convex and argminSΦ1 
= ∅.
• ∫ +∞

0 ε(t)dt = +∞ (slow control).
If the trajectory x(.) of the (SDC) system is bounded, then limt→+∞ d(x(t), argminSΦ1) = 0. As a consequence,
if argminSΦ1 is reduced to a singleton {p}, then the trajectory x(.) converges to p.

Proof. Immediate from Theorem 2.1 and the fact that any convex function is strictly quasi-convex and hence
quasi-convex. �

We now give a sufficient condition which ensures that the (SDC) trajectory is bounded.

Proposition 2.3. Under the assumptions of Theorem 2.1, let x(.) be the unique solution of the (SDC) system.
If the following condition holds

(C) for every M > 0, the set {x ∈ H, Φ0(x) ≤ M} ∩ {x ∈ H, Φ1(x) ≤ min
S

Φ1} is bounded,

then the trajectory x(.) is bounded and hence, in view of Theorem 2.1, limt→+∞ d(x(t), argminSΦ1) = 0.
Moreover, condition (C) is satisfied in each of the following cases
(a) Φ0 is coercive, i.e. lim|x|→+∞ Φ0(x) = +∞;
(b) Φ1 is coercive, i.e. lim|x|→+∞ Φ1(x) = +∞.

Proof. It is postponed in Section 4. �

2.2. Convergence of the trajectory when argminΦ0 ∩ argminΦ1 �= ∅
When argminΦ0 ∩ argminΦ1 is non empty, the following convergence result holds

Proposition 2.4. In addition to the hypotheses (H), let us assume that H = R
n and

• Φ0 : H → R and Φ1 : H → R are convex.
• The set argminΦ0 ∩ argminΦ1 is non empty.
• ∫ +∞

0
ε(t)dt = +∞ (slow control).

Then, the trajectory x(.) of the (SDC) system converges to some x̄ ∈ argminΦ0 ∩ argminΦ1.

Proof. Given any z ∈ argminΦ0 ∩ argminΦ1, let us define the function hz by

hz(t) :=
1
2
|x(t) − z|2.

By differentiation of h, we obtain

ḣz(t) = 〈ẋ(t), x(t) − z〉 = −〈∇Φ0(x(t)), x(t) − z〉 − ε(t) 〈∇Φ1(x(t)), x(t) − z〉· (2.1)

From the convexity of Φ0 and Φ1 and since z ∈ argminΦ0 ∩ argminΦ1, we have 〈∇Φ0(x(t)), x(t) − z〉 ≥ 0 and
〈∇Φ1(x(t)), x(t) − z〉 ≥ 0, which combined with (2.1) yields ḣz(t) ≤ 0 and hence hz is non increasing; thus

lim
t→+∞ |x(t) − z| exists for any z ∈ argminΦ0 ∩ argminΦ1. (2.2)

Hence, in particular the trajectory x(.) is bounded and we can extract a converging subsequence: there exist x̄ ∈
H and x(tn) such that limn→+∞ x(tn) = x̄. Since x(.) is bounded, Corollary 2.2 applies and we have x̄ ∈
argminSΦ1 = argminΦ0 ∩ argminΦ1. Taking z = x̄ in (2.2), we deduce that limt→+∞ |x(t) − x̄| exists, which
combined with limn→+∞ |x(tn) − x̄| = 0, finally yields limt→+∞ |x(t) − x̄| = 0. �
It is interesting to notice that the result of the previous proposition remains true in infinite dimensional spaces
if one strengthens the assumption on ε. More precisely, we have the following result
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Proposition 2.5. In addition to the hypotheses (H), let us assume that
• Φ0 : H → R and Φ1 : H → R+ are convex.
• The set argminΦ0 ∩ argminΦ1 is non empty.
• There exists m > 0 such that ε(t) ≥ m/t for t large enough.

Let x(.) be the unique trajectory of the (SDC) dynamical system. Then we have
(i) Φ0(x(t)) − min Φ0 = o(1/t) (t → +∞).

(ii) Φ1(x(t)) − min Φ1 = o(1/(t ε(t))) (t → +∞).
(iii) The trajectory x(.) weakly converges to some x̄ ∈ argminΦ0 ∩ argminΦ1.

Proof. We adopt here the same notations as in the proof of Proposition 2.4. The starting point lies in equal-
ity (2.1). From the convexity of Φ0 and Φ1 and since z ∈ argminΦ0∩argminΦ1, we have 〈∇Φ0(x(t)), x(t)−z〉 ≥
Φ0(x(t)) − min Φ0 and 〈∇Φ1(x(t)), x(t) − z〉 ≥ Φ1(x(t)) − min Φ1, which combined with (2.1) yields

ḣz(t) + Φ0(x(t)) − min Φ0 + ε(t) (Φ1(x(t)) − min Φ1) ≤ 0. (2.3)

This implies in particular that ḣz(t) ≤ 0 and hence hz is non increasing; thus

lim
t→+∞ |x(t) − z| exists for any z ∈ argminΦ0 ∩ argminΦ1. (2.4)

Coming back to inequality (2.3) and integrating on [0, t], we obtain

hz(t) − hz(0) +
∫ t

0

Φ0(x(s)) − min Φ0 + ε(s) (Φ1(x(s)) − min Φ1) ds ≤ 0

and therefore ∫ +∞

0

Φ0(x(s)) − min Φ0 + ε(s) (Φ1(x(s)) − min Φ1) ds ≤ hz(0) < +∞.

The energy function t �→ Φ0(x(t)) − min Φ0 + ε(t) (Φ1(x(t)) − min Φ1) is non increasing, and from a classical
result we deduce that it is negligible compared with 1/t in the neighbourhood of +∞. Therefore, we have

Φ0(x(t)) − min Φ0 = o(1/t) (t → +∞), (2.5)

which proves (i), and moreover

Φ1(x(t)) − min Φ1 = o(1/(t ε(t))) (t → +∞),

which proves (ii). Taking into account the assumption ε(t) ≥ m/t for t large enough, we then obtain

lim
t→+∞Φ1(x(t)) = min Φ1. (2.6)

In order to prove the weak convergence of the trajectory, we use the Opial lemma with the set argminΦ0 ∩
argminΦ1.

• Let z ∈ argminΦ0 ∩ argminΦ1. From (2.4), limt→+∞ |x(t) − z| exists.
• Let us now assume that a subsequence (x(tn)) weakly converges to some x̄ and prove that x̄ ∈ argminΦ0∩

argminΦ1. Since Φ0 and Φ1 are convex and continuous, they are weakly lower semicontinuous and
therefore

Φ0(x̄) ≤ lim inf
n→+∞ Φ0(x(tn)) and Φ1(x̄) ≤ lim inf

n→+∞ Φ1(x(tn).

In view of (2.5) and (2.6), we conclude that Φ0(x̄) ≤ min Φ0 and Φ1(x̄) ≤ min Φ1, i.e. x̄ ∈ argminΦ0∩argminΦ1.
Then the Opial lemma applies and there exists x̄ ∈ argminΦ0 ∩ argminΦ1 such that x(t) ⇀ x̄ (t → +∞),
which proves (iii). �
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2.3. Cases of convergence: Conclusion

Unless otherwise specified, we assume in this section that H is finite dimensional, that Φ0 : H → R and Φ1 :
H → R are convex functions and ε : R+ → R+ is a slow control. We assume moreover that S := argminΦ0 and
argminSΦ1 are non empty. We are going to explore the situations in which the (SDC) trajectories are known
to converge to some point x̄ ∈ argminSΦ1.

• First assume that argminSΦ1 ∩ int(S) 
= ∅ and let x ∈ argminSΦ1 ∩ int(S). Since x ∈ argminSΦ1,
we have ∇Φ1(x) ∈ −NS(x). On the other hand, x ∈ int(S) implies that NS(x) = {0} and finally
∇Φ1(x) = 0, i.e. x ∈ argminΦ1. Since x ∈ argminΦ0, we deduce that argminΦ0 ∩ argminΦ1 
= ∅. In
such a situation, from Proposition 2.4, the trajectory converges to some point x̄ ∈ argminΦ0∩argminΦ1.

• Conversely, assume that argminSΦ1 ⊂ bd(S) = S \ int(S). In such a case, the convex set argminSΦ1

has an empty interior, which classically implies that argminSΦ1 is contained in some hyperplane H.
When argminSΦ1 is reduced to a singleton {p}, then the (SDC) trajectory converges to p in view of
Corollary 2.2. This is the case for example when

– the boundary bd(S) of S contains no segment line other than trivial ones;
– the function Φ1 is strictly convex.

In the general case, the question of the convergence of the (SDC) trajectory is still an open problem.

3. Numerical aspects

3.1. Convergence rate

Since we have numerical purposes in mind, it is crucial to evaluate the convergence rate of the (SDC) tra-
jectory toward its limit. In this direction, estimates (i) and (ii) of Proposition 2.5 give a first answer in the
case where argminΦ0 ∩ argminΦ1 
= ∅. Finding the expression of the convergence rate in the general case is a
difficult and open problem. In the sequel, we focus on the particular situation where the function Φ0 is strongly
convex. We then show that the distance (at time t) between the (SDC) trajectory and its limit is majorized
by C ε(t), for some C > 0. More precisely, we have the following result:

Proposition 3.1. In addition to the hypotheses (H), let us assume that Φ0 is convex and admits a ∈ H as a
strong minimum, i.e. there exists some positive α > 0 such that

∀x ∈ H, Φ0(x) ≥ Φ0(a) + α |x − a|2. (3.1)

We assume moreover that limt→+∞ ε̇(t)/ε(t) = 0. Then the trajectory x(.) of the (SDC) system converges
toward a and the following convergence rate holds:

|x(t) − a| = O (ε(t)) (t → +∞). (3.2)

Proof. For every p ∈]1, 2], let us define the function h by h(t) := 1
p |x(t) − a|p. The function h is differentiable

and its first derivative is given by

ḣ(t) = 〈ẋ(t), x(t) − a〉 |x(t) − a|p−2

(observe that the function h is no more differentiable for p = 1). In view of (SDC), the previous expression
of ḣ becomes

ḣ(t) = −〈∇Φ0(x(t)), x(t) − a〉 |x(t) − a|p−2 − ε(t) 〈∇Φ1(x(t)), x(t) − a〉 |x(t) − a|p−2. (3.3)

From (3.1), the function Φ0 is coercive and hence the trajectory x(.) is bounded. As a consequence, there exists
a constant C ∈ R+ (independent of p) such that

|〈∇Φ1(x(t)), x(t) − a〉| |x(t) − a|p−2 ≤ |∇Φ1(x(t))| |x(t) − a|p−1 ≤ C. (3.4)
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On the other hand, from the convexity of Φ0, we have 〈∇Φ0(x(t)), x(t)−a〉 ≥ Φ0(x(t))−Φ0(a), which combined
with (3.1) yields

〈∇Φ0(x(t)), x(t) − a〉 ≥ α |x(t) − a|2. (3.5)

Taking into account (3.3), (3.4) and (3.5), we finally obtain

ḣ(t) + p αh(t) ≤ C ε(t).

Let us multiply this last inequality by epαt and integrate on [0, t] to find epαt h(t) − h(0) ≤ C
∫ t

0
ε(s) epαs ds,

which can be rewritten as

h(t) ≤ e−pαt h(0) + C e−pαt

∫ t

0

ε(s) epαs ds. (3.6)

To compute the integral of the right member, let us perform an integration by parts

∫ t

0

ε(s) epαs ds =
1
pα

(
ε(t) epαt − ε(0)

)− 1
pα

∫ t

0

ε̇(s) epαs ds.

Since ε̇(t) = o(ε(t)) when t → +∞, we also have
∫ t

0
ε̇(s) epαs ds = o

(∫ t

0
ε(s) epαs ds

)
and we deduce

∫ t

0

ε(s) epαs ds ∼ 1
pα

(
ε(t) epαt − ε(0)

)
(t → +∞).

In view of (3.6), we infer the existence of C1, C2 ∈ R+ (independent of p ∈]1, 2]) such that, for t large enough

h(t) ≤ C1 e−p αt + C2 ε(t). (3.7)

Using again the assumption ε̇(t) = o(ε(t)), it is immediate to verify that, for every η > 0, e−η t = o(ε(t)) in
the neighbourhood of +∞. This remark combined with (3.7) implies the existence of C3 ∈ R+ (independent
of p ∈]1, 2]) such that, for t large enough, h(t) ≤ C3 ε(t), i.e.

|x(t) − a|p ≤ p C3 ε(t).

This being true for every p ∈]1, 2], we can pass to the limit when p → 1 to obtain |x(t) − a| ≤ C3 ε(t), which
concludes the proof. �

Remark 3.2. When Φ1 ≡ 0, it is easy to verify (directly or by using the previous proof) that the map
t �→ |x(t) − a| exponentially decreases to 0: |x(t) − a| = O (e−αt). This speed of convergence is faster than the
one given by the previous proposition (especially if the control ε is slow). As a consequence, the term ε(t)∇Φ1(x)
has a slowing down effect on the convergence rate (when Φ1 
≡ 0).

Remark 3.3. The convergence rate given by Proposition 3.1 is optimal in the sense that it cannot be improved
in general. Indeed, consider the one-dimensional case H = R and given two distinct real numbers a and b, take
Φ0(x) = 1

2 (x − a)2 and Φ1(x) = 1
2 (x − b)2. With such data, the (SDC) system reduces to a linear differential

equation. An elementary computation then leads to the following estimate when t → +∞: x(t)−a ∼ (b−a) ε(t).
Hence, the upper bound (3.2) for the convergence rate is achieved, which proves its optimality.

3.2. Numerical illustrations

Given a convex set S ⊂ H and a convex function Φ1 : H → R, consider the problem of minimizing Φ1 over S:

(P) min{Φ1(x), x ∈ S}·
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A classical method consists in using the generalized steepest descent system applied to the non-smooth func-
tion Φ1 + δS , namely

(S1) ẋ(t) + ∇Φ1(x(t)) ∈ −NS(x(t)).
This differential inclusion has the following remarkable property: at each t > 0, the velocity ẋ(t) selects the
element of minimal norm in the set −∇Φ1(x(t)) − NS(x(t)), so that (S1) can be equivalently interpreted as a
gradient-projection method

ẋ(t) = PTS(x(t))(−∇Φ1(x(t))),
where TS(x(t)) is the tangent cone to S at x(t). From a numerical point of view, the system (S1) is difficult to
handle due to the presence of the multivalued object NS(x).

Antipin [1] has initiated another interesting dynamical system

(S2) ẋ(t) + x(t) − PS(x(t) − µ∇Φ1(x(t))) = 0,

whose trajectories are known to converge toward some minimum of Φ1 on the set S. In the numerical treatment
of (S2), the main difficulty comes from the projection operator PS . If the structure of the set S is complex,
the mapping PS may be quite complicated to compute. In the (SDC) system, the constraint S arises through
the function Φ0. The only request for Φ0 is to satisfy argminΦ0 = S, which allows a certain latitude in the
choice of Φ0. In theoretical problems, it is convenient to take Φ0(x) = 1

2d(x, S)2, whose gradient is given by
∇Φ0(x) = x − PS(x). When the set S has a particular structure, it is also possible to adapt the function Φ0.
For example, consider the convex program

min Φ1(x) under the constraint S := {x ∈ H, θ1(x) ≤ 0, ..., θn(x) ≤ 0},

where n ∈ N and θ1,..., θn are convex functions defined on H . In such a situation, it is pertinent to take

Φ0(x) =
n∑

i=1

(θ+
i (x))2,

where θ+ := max{θ, 0} denotes the non-negative part of θ. The gradient of such a function Φ0 is easier to
compute than the corresponding projection mapping PS .

We are now going to compare (SDC) with (S1) and (S2) on a simple example of quadratic programming.
We want to minimize the function Φ1(x, y) = 1

2 (4(x+y+1)2+(x−y−1)2) on the non-negative orthant S = R
2
+:

(P) min
{

1
2
(4(x + y + 1)2 + (x − y − 1)2), x ≥ 0, y ≥ 0

}
,

whose solution is the point (0, 0). The respective trajectories of (SDC), (S1) and (S2) are shown in Figure 1
(left). The points of the different trajectories are computed by an explicit discretization technique. The
(SDC) system is performed with Φ0(x, y) = 1/2 d((x, y), S)2 and ε(t) = 1/t for t ≥ 1. The (S2) trajectory is
drawn with the value µ = 0.1. The initial condition for the three curves is (x0, y0) = (5, 2). We observe that the
(SDC) system acts as a penalization method whereas (S2) is an interior point method. The direction of the
(S1) trajectory is a “pure” gradient one before hitting the boundary of S and then follows the boundary. It is
interesting to test the influence of the control parameter ε on the (SDC) trajectories. Figure 1 (right) shows the
(SDC) trajectories corresponding respectively to ε(t) = 1/(t ln t), 1/t, 1/

√
t for t ≥ 2. We notice that, the more

the control ε is slow, the more the (SDC) trajectory escapes from the “attraction” of the set S. Figure 2 shows
the evolution of the distance

√
x2 + y2 between the trajectory (SDC) (resp. (S1), (S2)) and the point (0, 0).

We observe that the convergence of the (SDC) (resp. (S1), (S2)) system is approximately achieved for t = 10
(resp. t = 20, t = 5). This numerical experiment seems to indicate that the convergence rate of (SDC) is
comprised between the other two ones. It is not surprising that the convergence speed of (SDC) is rather slow.
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Figure 1. Left: comparison of the (SDC), (S1) and (S2) trajectories. Right: influence of the
control parameter ε on the (SDC) trajectories: ε(t) = 1/(t ln t), 1/t, 1/

√
t for t ≥ 2.
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Figure 2. Comparison of the convergence rates for the (SDC), (S1) and (S2) trajectories.

Indeed, in view of Paragraph 3.1 it is majorized by ε(t), which is itself a slow control. Notice that, if the control
map ε tends to 0 too slowly, the convergence of (SDC) will be very long to obtain. On the other hand, if one
chooses a too fast control ε, the trajectory (SDC) may not converge to some element of argminSΦ1. Therefore,
in numerical applications, one has to find a suitable balance between these two extremes.

4. Proof of the main results

In this section, we give the technical proofs of the main results of the paper.

4.1. Proof of Theorem 2.1

Let us first remark, that if we are able to prove (i), then we immediately infer (ii) and (iii). Indeed, let
(Φ0(x(tn)))n≥0 (resp. (Φ1(x(tn)))n≥0) a converging subsequence of the bounded map (Φ0(x(t)))t≥0

(resp. (Φ1(x(t)))t≥0). Since x(tn) is bounded, there is a subsequence of x(tn), still denoted by x(tn) which con-
verges to x ∈ H . From (i), we have limn→+∞ d(x(tn), argminSΦ1) = 0 and hence x ∈ argminSΦ1 ⊂ argminΦ0.
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As a consequence, limn→+∞ Φ0(x(tn)) = min Φ0 (resp. limn→+∞ Φ1(x(tn)) = minS Φ1). Since min Φ0

(resp. minS Φ1) is the limit of every converging subsequence of (Φ0(x(t)))t≥0 (resp. (Φ1(x(t)))t≥0), we deduce
that limt→+∞ Φ0(x(t)) = min Φ0 (resp. limt→+∞ Φ1(x(t)) = minS Φ1), which proves (ii) (resp. (iii)).

Let us now come back to the proof of (i). It relies on the study of the function h defined by

h(t) =
1
2
d(x(t), C)2,

where C := argminSΦ1 ⊂ argminΦ0. We have to prove that h converges to 0. The following claim tells us
that C is convex and hence, that h is differentiable.

Claim 4.1. Under the assumptions of Theorem 2.1, we have

argminSΦ1 = argminΦ0 ∩ [Φ1 ≤ min
S

Φ1],

and hence the set C := argminSΦ1 is convex as an intersection of convex sets.

Proof. Let us remark that argminSΦ1 ⊂ [Φ1 ≤ minS Φ1], which combined with the assumption argminSΦ1 ⊂
argminΦ0 gives

argminSΦ1 ⊂ argminΦ0 ∩
[
Φ1 ≤ min

S
Φ1

]
.

On the other hand, since argminΦ0 ⊂ S,

argminΦ0 ∩
[
Φ1 ≤ min

S
Φ1

]
⊂ S ∩

[
Φ1 ≤ min

S
Φ1

]
= argminSΦ1,

which proves the second inclusion. �

By differentiating h, we find

ḣ(t) = −〈x(t) − PC(x(t)),∇Φ0(x(t))〉 − ε(t)〈x(t) − PC(x(t)),∇Φ1(x(t))〉·

From the quasi-convexity of Φ0, the inequality min Φ0 = Φ0(PC(x(t))) ≤ Φ0(x(t)) implies

〈PC(x(t)) − x(t),∇Φ0(x(t))〉 ≤ 0,

and hence,
ḣ(t) ≤ ε(t)〈PC(x(t)) − x(t),∇Φ1(x(t))〉· (4.1)

The main idea of the proof is now to respectively distinguish the cases where 〈PC(x(t)) − x(t),∇Φ1(x(t))〉 > 0
and 〈PC(x(t)) − x(t),∇Φ1(x(t))〉 ≤ 0. Precisely, we distinguish the three cases:

(a) ∃T ≥ 0, ∀t ≥ T 〈PC(x(t)) − x(t),∇Φ1(x(t))〉 ≤ 0;
(b) ∃T ≥ 0, ∀t ≥ T 〈PC(x(t)) − x(t),∇Φ1(x(t))〉 > 0;
(c) ∀T ≥ 0, ∃t ≥ T 〈PC(x(t)) − x(t),∇Φ1(x(t))〉 > 0.

Case (c) obviously contains case (b), but the main points of the proof are made clearer with this distinction.
In the whole proof, we use the following notation

EC := {x ∈ H, 〈PC(x) − x,∇Φ1(x)〉 ≥ 0} ·

Let us state a first claim which will be useful in the sequel.

Claim 4.2. Under the assumptions of Theorem 2.1, we have EC ∩ S = C.
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Proof. First of all, it is immediate that C ⊂ EC ∩ S. Let us prove the reverse inclusion EC ∩ S ⊂ C. Let
x ∈ EC ∩ S; from the definition of EC , we have

〈PC(x) − x,∇Φ1(x)〉 ≥ 0,

which combined with the strict quasi-convexity of Φ1, yields Φ1(PC(x)) ≥ Φ1(x), i.e. minS Φ1 ≥ Φ1(x).
Since x ∈ S, we conclude that x ∈ C = argminSΦ1. �

Case (a). We assume that there is T ≥ 0, such that, for every t ≥ T , 〈PC(x(t)) − x(t),∇Φ1(x(t))〉 ≤ 0, hence
from (4.1), we deduce that, for every t ≥ T , ḣ(t) ≤ 0. This implies that limt→+∞ h(t) exists and hence

lim
t→+∞ d(x(t), C) exists. (4.2)

We now prove that limt→+∞ d(x(t), C) = 0. Let us argue by contradiction and assume that limt→+∞ d(x(t),
C) > 0. Let us first prove that lim supt→+∞〈PC(x(t)) − x(t),∇Φ1(x(t))〉 < 0. Indeed, if it is not true, there
exists a sequence (tn) such that limn→+∞ tn = +∞ and limn→+∞〈PC(x(tn)) − x(tn),∇Φ1(x(tn))〉 = 0. Since,
the function x is bounded, without any loss of generality, we may assume that there is x ∈ H such that x(tn)
converges to x. At the limit when n → +∞, we obtain that

〈PC(x) − x,∇Φ1(x)〉 = 0,

which implies x ∈ EC . From Proposition 1.1 (ii), we get that limn→+∞ ∇Φ0(x(tn)) = 0, and hence x ∈ S.
Finally x ∈ EC ∩ S = C. On the other hand, we have d(x, C) = limn→+∞ d(x(tn), C) > 0, a contradiction. As
a consequence, lim supt→+∞〈PC(x(t)) − x(t),∇Φ1(x(t))〉 < 0, i.e. there exists l > 0 and t1 > 0 such that, for
every t ≥ t1,

〈PC(x(t)) − x(t),∇Φ1(x(t))〉 ≤ −l.

Hence ḣ(t) ≤ −ε(t)l. By integrating this last inequality between t1 and t and passing to the limit when t → +∞,
we get

lim
t→+∞h(t) + l

∫ +∞

t1

ε(s) ds ≤ h(t1)

which contradicts the fact that ε 
∈ L1(0, +∞). Hence we conclude that limt→+∞ d(x(t), C) = 0.

Case (b). We assume that there is T ≥ 0, such that, for every t ≥ T , 〈PC(x(t))−x(t),∇Φ1(x(t))〉 > 0 and hence
for every t ≥ T , x(t) ∈ EC .
Since x(.) is bounded, from Proposition 1.1 (ii), we get that limt→+∞ ∇Φ0(x(t)) = 0. Considering a subse-
quence x(tn), we then have limn→+∞ ∇Φ0(x(tn)) = 0. Applying the following claim to the sequence (x(tn)),
we obtain that limn→+∞ d(x(tn), C) = 0, which concludes the proof of case (b).

Claim 4.3. Let (xn) be a bounded sequence in EC , such that limn→+∞ ∇Φ0(xn) = 0. Then
limn→+∞ d(xn, C) = 0.

Proof. Let (d(xσ(n), C))n≥0 a converging subsequence of (d(xn, C))n≥0. Since (xn) is bounded, there exist
x ∈ EC and a subsequence of (xσ(n)), still denoted by (xσ(n)) such that limn→+∞ xσ(n) = x. In view of
limn→+∞ ∇Φ0(xσ(n)) = 0, we get that x ∈ S. On the other hand, from Claim 4.2, EC ∩ S = C, so that
we obtain x ∈ C and hence limn→+∞ d(xσ(n), C) = 0. Since 0 is the limit of every convergent subsequence
of (d(xn, C))n≥0, we deduce that the sequence (d(xn, C))n≥0 converges to 0. �

Case (c). We now assume that, for every T ≥ 0, there exists some t ≥ T such that 〈PC(x(t))−x(t),∇Φ1(x(t))〉 >
0. Take any sequence (tn) ⊂ R+ such that limn→+∞ tn = +∞ and let us prove that limn→+∞ d(x(tn), C) = 0.
First assume that there is a subsequence (t′n) of (tn) such that x(t′n) ∈ EC . Since the map x is bounded, from
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Proposition 1.1 (ii), we have limt→+∞ ∇Φ0(x(t)) = 0 and hence limn→+∞ ∇Φ0(x(t′n)) = 0. Since x(t′n) ∈ EC ,
from Claim 4.3, we deduce that limn→+∞ d(x(t′n), C) = 0.

We now assume that there is a subsequence (t′′n) of (tn) such that x(t′′n) /∈ EC and we prove that
limn→+∞ d(x(t′′n), C) = 0. We need the following claim.

Claim 4.4. Let t ≥ 0 such that x(t) /∈ EC , and let

τ(t) = inf
{
u ∈ [0, t]

∣∣∣ x([u, t]) ∩ EC = ∅
}
·

Then we have d(x(t), C) ≤ d(x(τ(t)), C).

Proof. For every u ∈]τ(t), t], x(u) /∈ EC , that is, 〈PC(x(u))−x(u),∇Φ1(x(u))〉 ≤ 0. From (4.1), we deduce that
ḣ(u) ≤ 0, which immediately yields the expected inequality. �

We now come back to the proof of case (c). Since x(t′′n) /∈ EC , let τ(t′′n) be defined by Claim 4.4. We
first notice that limn→+∞ τ(t′′n) = +∞ and x(τ(t′′n)) ∈ EC for n large enough. Let n be large enough. Since
x(τ(t′′n)) ∈ EC , from Claim 4.3, we have limn→+∞ d(x(τ(t′′n)), C) = 0. Hence, in view of Claim 4.4, we deduce
that limn→+∞ d(x(t′′n), C) = 0, which concludes the proof of case (c).

4.2. Proof of Proposition 2.3

We keep here the notations of the proof of Theorem 2.1. Setting C := argminSΦ1, we still use the function h
defined by h(t) = 1

2d(x(t), C)2 and the set EC = {x ∈ H, 〈PC(x) − x,∇Φ1(x)〉 ≥ 0}. From Claim 4.1, the set
C equals to argminΦ0 ∩ [Φ1 ≤ minS Φ1], which is bounded in view of condition (C).
From the energy decay, there exists E0 ∈ R such that, for every t ≥ 0, Φ0(x(t)) ≤ E0, i.e.

{x(t), t ≥ 0} ⊂ [Φ0 ≤ E0]. (4.3)

On the other hand, from the strict quasi-convexity of Φ1, we have for every x ∈ H ,

〈PC(x) − x,∇Φ1(x)〉 ≥ 0 =⇒ Φ1(x) ≤ Φ1(PC(x)) = min
S

Φ1

and therefore

EC ⊂
[
Φ1 ≤ min

S
Φ1

]
. (4.4)

We now distinguish the same cases (a), (b) and (c) as in the proof of Theorem 2.1.

Case (a). From (4.2), limt→+∞ d(x(t), C) exists, which implies that the map t �→ d(x(t), C) is bounded and
since C is bounded, we conclude that the map x is bounded too.

Case (b). The trajectory {x(t), t ≥ T } is contained in EC , hence from (4.3) and (4.4) in the set [Φ1 ≤
minS Φ1] ∩ [Φ0 ≤ E0], which is bounded in view of condition (C); so the map x is bounded on [T, +∞) hence,
since it is continuous, it is bounded on [0, +∞).

Case (c). Let T ≥ 0 such that x(T ) ∈ EC and consider t ≥ T . If x(t) ∈ EC , then d(x(t), C) ≤ ρ, where ρ is
the diameter of the bounded set [Φ1 ≤ minS Φ1] ∩ [Φ0 ≤ E0]. If x(t) /∈ EC , let τ(t) be defined by Claim 4.4.
Clearly T ≤ τ(t) < t and x(τ(t)) ∈ EC , which implies that d(x(τ(t)), C) ≤ ρ. In view of Claim 4.4, we deduce
that d(x(t), C) ≤ ρ. This proves that the map t �→ d(x(t), C) is bounded on [T, +∞). Since it is continuous, it
is bounded on the interval [0, +∞). Using again the boundedness of C, this implies that the map x is bounded.
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