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NEWTON AND CONJUGATE GRADIENT FOR HARMONIC MAPS
FROM THE DISC INTO THE SPHERE

Morgan Pierre1

Abstract. We compute numerically the minimizers of the Dirichlet energy

E(u) =
1

2

∫
B2
|∇u|2dx

among maps u : B2 → S2 from the unit disc into the unit sphere that satisfy a boundary condition
and a degree condition. We use a Sobolev gradient algorithm for the minimization and we prove that
its continuous version preserves the degree. For the discretization of the problem we use continuous P1

finite elements. We propose an original mesh-refining strategy needed to preserve the degree with the
discrete version of the algorithm (which is a preconditioned projected gradient). In order to improve
the convergence, we generalize to manifolds the classical Newton and conjugate gradient algorithms.
We give a proof of the quadratic convergence of the Newton algorithm for manifolds in a general setting.
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1. Introduction

This paper is devoted to the numerical computation of minimizing harmonic maps from the unit disc B2 into
the unit sphere S2 with boundary condition and degree condition.

More precisely, we define the Sobolev space [15]

H1
g (B

2, S2) :=
{
u ∈ H1(B2,R3), |u| = 1 a.e., u|∂B2 = g in the sense of trace

}
,

where B2 =
{
(x, y) ∈ R2, x2 + y2 < 1

}
is the unit disc, S2 = {u ∈ R3, |u| = 1} is the unit sphere and the

boundary condition g belongs to C1(∂B2, S2). We want to minimize numerically the Dirichlet energy

E(u) =
1
2

∫
B2
|∇u|2dxdy

for u in connected components of H1
g (B

2, S2), in order to find (approximations of) harmonic maps.
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gradient.
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Recall that a map u ∈ H1
g (B

2, S2) is harmonic if it is a critical point of E or equivalently if it satisfies the
following equation in the sense of distributions:

−∆u = u|∇u|2 in D′(Ω).

The theory of harmonic maps has been considered by numerous authors (see the report [12]) and is related to
simplified models in the theory of liquid crystals [1, 8]. However, numerical computations are difficult because
of the condition |u(x)| = 1 and the only efficient algorithm is a preconditionned projected gradient given by
Alouges [1].

Let us first recall the theoretical results on the problem. Following Brézis and Coron [5] we define the
connected components of H1

g (B
2, S2) as homotopy classes. Let

Q(u) =
1
4π

∫
B2
u · (ux ∧ uy)dxdy, (1.1)

and choose a reference map u ∈ H1
g (B2, S2). For u ∈ H1

g (B2, S2), Q(u)− Q(u) is an integer called the degree
of the map u with respect to u. It is actually the degree of the map

u ? u(z) :=

{
u(z) if |z| ≤ 1
u(1/z̄) if |z| ≥ 1

from S2 ' C into S2 which is obtained by “gluing together” u and u. The homotopy classes

Eg,p = {u ∈ H1
g (B

2, S2), Q(u)−Q(u) = p}

for p ∈ Z are the connected components of H1
g (B2, S2).

The space H1
g (B

2, S2) is not empty and it is easy to see (by using a minimizing sequence) that there exists
an absolute minimizer for E in H1

g (B
2, S2) (not necessarily unique) which is a harmonic map. In the following

we use an absolute minimizer as our reference map u for the numbering of the degree: with this convention
the class Eg,0 always has a minimizer. The hope is to obtain other harmonic maps by minimizing E in Eg,p.
However, depending on the boundary condition and the degree, this problem may have a solution or not.

When g is constant, Lemaire [19] proved that the only harmonic extension of g is the constant map. When g
is not constant, Brézis and Coron [5] and Jost [16] showed that at least one of the classes Eg,1 or Eg,−1 admits
a minimizer.

A few years later, Soyeur [30] gives a generalization of this result by using the holomorphic structure of
S2: B2 is considered as a subset of C and S2 is identified to C via the stereographic projection of south pole.
The key example is the following: if g(z) = azn with a > 0 small enough, then u+(z) = azn is the absolute
minimizer (with degree 0), u−(z) =

a

z̄n
is the minimizer in Eg,−n and the class Eg,p admits a minimizer if and

only if p ∈ [−n, 0].
Qing [25] and Kuwert [18] completed the result of Soyeur and independently established the following theorem,

where we use the notation
Λp := inf

u∈Eg,p

E(u).

Theorem 1.1. Let u+ (u−, respectively) be the meromorphic (anti-meromorphic) extension of g from ∂B2

to B2, and let p+ ≥ 0 be the degree of u+ (p− ≤ 0 the degree of u−) ; we set p+ = +∞ (p− = −∞) if the
extension u+ (u−) does not exist.

Then Λp is achieved if and only if p ∈ [p−, p+]. Moreover, let (uk)k be a minimizing sequence in Eg,p relative
to Λp that converges weakly in H1 to some u ∈ H1

g (B2, S2).



144 NEWTON AND CONJUGATE GRADIENT FOR HARMONIC MAPS

For p ≥ p+ we have u = u+ and Λp = Λp+ + 4π|p− p+| (for p ≤ p− respectively, we have u = u− and
Λp = Λp− + 4π|p− p−|).
For p ∈ [p−, p+] the sequence (uk)k converges strongly to u which minimizes the energy in Eg,p.

In order to conclude these theoretical results, let us point out that any minimizer of E in Eg,p is smooth up to
the boundary [22, 27].

What happens when p > p+? The heuristic reason for which a minimizing sequence in Eg,p with p > p+

does not converge strongly is that it concentrates the energy on a finite number of points in B2; on each of
these points the “limit map” covers the sphere a finite number of times, which explains how the degree is lost
and why the gap in the energy is a multiple of 4π. In order to describe this concentration phenomenon it is
necessary to enlarge the class of admissible solutions and to consider the convergence in the sense of graphs:
this is the quite technical concept of cartesian currents introduced by Giaquinta, Modica and Souček [10, 11].

In the following, we compute numerically the regular minimizers which are not known explicitely for the
boundary condition g(z) = azn.

We first use the very general algorithm [1] to obtain minimizing sequences and we prove that it preserves the
degree in a continuous setting. We use continuous P1 elements to discretize the problem. The discretization
which is based on a triangulation of the disc gives good results for the computation of the absolute minimiser.
However for the other regular minimizers we need a mesh-refinement method in order to guarantee the preserva-
tion of the degree. Indeed, because of the P1 elements, the constraint |uh(x)| = 1 is respected for the discretized
solution uh only at the nodes of the triangulation. The mesh-refinement method we use is the usual “cut the
triangles in 4” method, but the error estimator we use is original and geometric: we impose a maximum edge
length in the image mesh living in S2. We observe the limits of the refinement-method in the computation of
singular solutions.

Since the original algorithm [1] requires a great number of iterations in the case of a solution with strong
gradients, we improve its speed of convergence. By interpreting this algorithm as a Sobolev gradient [23] with
step-size 1 on a Riemannian submanifold, we develop a Newton algorithm and conjugate gradient algorithm [20]
for Riemannian manifolds. In the appendix, we give a proof of the quadratic convergence of the Newton
algorithm for manifolds in a general setting.

2. Sobolev gradient for harmonic maps

In this section we first recall the algorithm for finding minimizing harmonic maps [1]. We interpret this
algorithm in the continuous case as a (projected) Sobolev gradient [23] and show that it preserves the degree.
We then give the discretization of the algorithm by P1 finite element discretization: in numerical interpretation,
the algorithm is a (projected) gradient computed with a preconditionned conjugate gradient method. We explain
how to implement the discretized algorithm in our 2d problem by adding a refinement technique in order to
preserve the degree. We finally comment the numerical results.

2.1. The continuous algorithm

The key point of the algorithm is to define for every u ∈ H1
g (B2, S2) a “tangent space”:

Tu :=
{
w ∈ H1

0 (D2,R3) such that w(x) · u(x) = 0 a.e.
}
. (2.1)

Notice that Tu is a closed subspace of H1
0 (B2,R3) and thus it is a Hilbert space for the usual scalar product on

H1(D2,R3). Let a(·, ·) be the continuous symmetric bilinear form on H1(D2,R3):

a(u, v) =
∫
B2
∇u · ∇v dxdy ∀u, v ∈ H1(B2,R3).
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By the Poincaré inequality a(·, ·) is coercive on H1
0 (B2,R3) (it is actually the natural scalar product on H1

0 )
and a fortiori on Tu. By the Lax-Milgram theorem (see [4]), the problem:

Find w ∈ Tu such that a(w,ϕ) = a(u, ϕ) ∀ϕ ∈ Tu (2.2)

has a unique solution which is also the unique solution to the problem:

Minimize E(u− w) for w ∈ Tu. (2.3)

The algorithm [1] reads as follows:

Algorithm 2.1 (Projected Sobolev gradient).
Initial Data. Set k = 0 and choose uk ∈ H1

g (B2, S2) with given degree.
Step 1. Find wk ∈ Tuk such that

a(wk, ϕ) = a(uk, ϕ) ∀ϕ ∈ Tuk .

Step 2. Set

uk+1 =
uk − wk

|uk − wk| ·

Replace k by k + 1 and go to step 1.

2.1.1. Projected Sobolev gradient

Let u ∈ H1
g (B2, S2) and ϕ ∈ Tu. Then E being a continuous quadratic form on H1(B2,R3) is differentiable

and
dE
dt

(u + tϕ)|t=0 = a(u, ϕ).

This gives an interpretation of the solution wk of step 1 as the gradient of E in the tangent space Tuk with
respect to the scalar product on H1

0 (given by a(·, ·)). The idea here is to choose the H1
0 scalar product instead

of the L2 scalar product which is usual in distributions: such a gradient wk is called Sobolev gradient. The
numerical computation of this gradient which we will see in the next section, is made by a preconditionned
conjugate gradient (the preconditionning being given by the scalar product H1

0 ).
Since we project the result on the sphere in step 2, the Algorithm 2.1 is then a projected Sobolev gradient

algorithm (see [2]) with step-size 1 and this step-size is almost optimal because of the Sobolev gradient.

We recall the important convergence result of this algorithm:

Theorem 2.1 (Alouges [1]). Step 1 and step 2 are energy decreasing and the algorithm converges in the sense
that (up to a subsequence) (uk) weakly converges in H1(B2,R3) to a harmonic map u ∈ H1

g (B
2, S2).

2.1.2. Preservation of the degree

It is important in our problem to know that uk+1 and uk have the same degree. The following proposition

implies that the map [0, 1] 3 t→ uk + twk

|uk + twk| ∈ H
1
g (B

2, S2) is a continuous path in H1
g (B

2, S2) joining uk (t = 0)

to uk+1 (t = 1), that is a homotopy between uk and uk+1. Of course, the space H1
g (B2, S2) has the metric

induced by the norm || · ||H1(B2,R3). Morevover it is clear that the map u → Q(u) defined in formula (1.1) is
continuous with respect to the strong convergence in H1(B2,R3). We deduce that the function

[0, 1] → Z

t → Q

(
uk + twk

|uk + twk|

)
−Q(u)

is continuous with values in Z and therefore constant.
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Proposition 2.1. Let u ∈ H1
g (B

2, S2). The map

φu : Tu → H1
g (B

2, S2)

w → u+ w

|u+ w|

is defined and continuous, where H1
g (B2, S2) has the metric induced by the norm || · ||H1(B2,R3). In particular,

for w ∈ Tu the map [0, 1] 3 t→ u+ tw

|u+ tw| ∈ H
1
g (B

2, S2) is a homotopy between u and
u+ w

|u+ w| ·

Proof. First notice that for w ∈ Tu, φu(w) =
u+ w√
1 + |w|2

, so that φu(w) is defined a.e. and |φu(w)(x)| = 1 a.e.

Second we show that φ̃u : H1(B2,R3) 3 w→ u+ w√
1 + |w|2

∈ H1(B2,R3) is defined and continuous. For w ∈

H1(B2,R3), ∣∣∣∣∣ u(x) + w(x)√
1 + |w(x)|2

∣∣∣∣∣ ≤ 1 + |w(x)|√
1 + |w(x)|2

≤
√

2 a.e., (2.4)

so φ̃u(w) ∈ L2(B2,R3). Let i ∈ {1, 2} ; from classical lemmas [4] on weak derivatives,

∂iφ̃u(w) =
∂iu+ ∂iw

(1 + |w|2) 1
2
− (u+ w)(∂iw · w)

(1 + |w|2) 3
2

· (2.5)

Then, using (2.4)

|∂iφ̃u(w)(x)| ≤ |∂iu(x)|+ |∂iw(x)| +
√

2|∂iw(x)|, (2.6)

and ∂iφ̃u(w) ∈ L2. We have proved so far that φ̃u(w) ∈ H1(B2,R3).
Now let (wk) be a sequence converging to w in H1. There exists a subsequence (wkl) such that wkl(x) → w(x)

a.e. We have φ̃u(wkl )(x) → φ̃u(w)(x) a.e. and |φ̃u(wkl )(x)| ≤
√

2 a.e. by (2.4), so by the Lebesgue dominated
convergence theorem φ̃u(wkl) → φ̃u(w) in L2. Since for every subsequence of φ̃u(wk) we can extract by the
same means a subsequence converging to φ̃u(w) in L2, we obtain that the entire sequence converges to φ̃u(w)
in L2.

Now let i ∈ {1, 2} ; there exists a subsequence wkl and f ∈ L2 such that wkl(x) → w(x) a.e., ∂iwkl(x) →
∂iw(x) a.e. and |∂iwkl(x)| ≤ f(x) a.e. Then ∂iφ̃u(wkl)(x) → ∂iφ̃u(w)(x) a.e. and using (2.6),

|∂iφ̃u(wkl)(x)| ≤ |∂iu(x)|+ 3f(x) a.e.,

so by the Lebesgue dominated convergence theorem ∂iφ̃u(wkl ) → ∂iφ̃u(w) in L2. By unicity of the limit (same
argument as above), we conclude that the entire sequence ∂iφ̃u(wk) converges to ∂iφ̃u(w) in L2. Summing up,
we have proved that the sequence

(
φ̃u(wk)

)
converges to φ̃u(w) in H1(B2,R3) and that φ̃u is continuous.

It is now easy to see that tr
(
φ̃u(w)

)
= tr(u) for all w ∈ H1

0 , where tr denotes the trace of a H1 function

on ∂B2. The equality is immediate if w has a compact support in B2 because in this case φ̃u(w) ≡ u on a
neighbourhood of ∂B2. For w ∈ H1

0 the equality comes by density of C∞c into H1
0 and by continuity of the trace

and of φ̃u.
In conclusion we have shown that the map φ̃u : H1

0 → H1
g (B

2, S2) is continuous, and so is its restriction φu
to Tu. �
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2.2. Discretization

2.2.1. Continuous P 1 elements

We use continuous P 1 elements. Let B2,h be a polygon with vertices on ∂B2 which is a discretization of B2.
Let T h be an admissible triangulation (see [3]) of B2,h. Let

P 1,h :=
{
uh ∈ C0(B2,h) such that uh is affine on every triangle Ti of T h

}
.

We denote by N the number of nodes of the triangulation, x1, . . . , xN the nodes of the triangulation and
Ibd ⊂ {1, . . . , N} the set of indices i such that xi belongs to the boundary ∂B2,h. We recall that P 1,h is a
subspace of H1(B2,h,R3) of dimension 3N , an isomorphism to R3N being given by

P 1,h → (R3)N

uh → (uh(xi))1≤i≤N . (2.7)

The discrete energy is defined for every u ∈ H1(B2,h,R3) by

Eh(u) :=
1
2

∫
B2,h

|∇u|2dx.

This discrete energy is associated to the continuous symmetric bilinear form

ah(u, v) :=
∫
B2,h

∇u · ∇v dx ∀u, v ∈ H1(B2,h,R3).

Let us point out that there is a consistency error which comes from the approximation of B2 by the polygon
B2,h ; this consistancy error is again present in the energy where the integration is done on B2,h instead of B2.

2.2.2. Preservation of the degree

The discretized version of H1
g (B

2, S2) is

Ehg :=
{
uh ∈ P 1,h, |uh(xi)| = 1 ∀i, uh(xi) = g(xi) ∀i ∈ Ibd

}
.

Notice that Ehg is not a subset of H1
g (B

2, S2) since |uh(x)| < 1 in general if x is not a node of the triangulation.
However, if uh ∈ Ehg is a map that satisfies uh(x) 6= 0 for all x ∈ B2,h, then we can define the degree of uh as

the degree of the map
uh

|uh| which is continuous with values in S2 and imposed boundary values. Now with such

a definition, the discrete energy is not in general greater than the discrete degree, yet this was a fundamental
property in the theoretic study.

In the minimizing algorithm we fix a small δ > 0 and we choose a starting point uh ∈ Ehg such that
|uh(xi) − uh(xj)| ≤ δ for every edge [xi, xj ] of the triangulation: this ensures that |uh(x)| ≥ 1 − ε(δ) for all
x ∈ B2,h, where ε(δ) tends to 0 when δ tends to 0. In this case uh is a good approximation of a map with
values in S2 and its degree is well defined. In order to guarantee the preservation of the degree during the
minimization, for every new uh ∈ Ehg that we get, we test whether |uh(xi)− uh(xj)| ≤ δ for every edge [xi, xj ];
if some edge [xi, xj ] does not satisfy this condition, then we divide in four each of the two triangles that share
this edge.

We describe below this refinement procedure:

Algorithm 2.2 (Refinement).
Input Data. Choose

- a refinement angle δ small enough;
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- a triangulation T h(nodes, triangles, edges) of B2,h;
- a map uh ∈ Ehg such that uh(x) 6= 0 for every x ∈ B2,h.

Initial Data. Set T h′ = T h and uh
′
= uh.

Step 1: testing edges. Color in red every edge [xi, xj ] of T h′ such that

uh
′
(xi) · uh

′
(xj) < cos(δ).

If no edge is colored, stop the refinement algorithm.
Step 2: nodes. For every red edge, find the 2 triangles Ti and Tj that share this edge (1 triangle Ti if it is a

boundary edge), and color in red the edges of Ti and Tj (of Ti).
Add to the nodes of the triangulation T h′ the middle point of every red edge.

Step 3: triangles and edges. Divide each triangle Ti of T h′ in 4, 3, 2, or 1 according to the number 3, 2, 1,
or 0 of colored edges that Ti has. Change and add the corresponding edges of T h′ according to this division.

Step 4: interpolation. Let uh
′′

be the map in P 1,h′ such that uh
′′
(x′i) =

uh
′
(x′i)

|uh′(x′i)|
for every node x′i of the

new triangulation T h′ .
Replace uh

′
by uh

′′
and go to step 1.

Output Data.
- A triangulation T h′ of B2,h which is a subtriangulation of T h.
- The interpolation uh

′
of uh on T h′ that satisfies uh

′
(xi) · uh

′
(xj) ≥ cos(δ) for every edge [xi, xj ] of

the triangulation T h′ .

Remarks.
1. The output uh

′
has the same degree as the input uh.

2. The refinement procedure converges in a finite (small, usually 1) number of iterations.

2.2.3. Discrete algorithm

Using the identification P 1,h ≡ (R3)N defined above (2.7), it is easy to see Ehg as a submanifold of R3. The
tangent space T huh at point uh ∈ Ehg is obtained by linearization of the constraints:

T huh :=
{
wh ∈ P 1,h, wh(xi) · uh(xi) = 0 ∀i, wh(xi) = 0 ∀i ∈ Ibd

}
.

T huh is the discretized version of Tu.
The discrete algorithm has the same structure as in the continuous case plus the refinement technique.

Algorithm 2.3 (SG/CG for discrete harmonic maps).
Initial Data.

- Let T h be a triangulation of B2,h.
- Choose a refinement angle δ > 0 small enough.
- Set k = 0 and choose uh,k ∈ Ehg with given degree.
- Refinement with respect to δ. Replace h by h′.

Step 1. Find wh,k ∈ T huh,k such that

ah(wh,k, ϕ) = ah(uh,k, ϕ) ∀ϕ ∈ T huh,k .

Step 2. Let uh,k+1 be the map in P 1,h such that

uh,k+1(xi) =
uh,k − wh,k

|uh,k − wh,k| (xi) for i = 1, 2 . . . , N.
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Step 3. Refinement with respect to δ. Replace h by h′.
Replace k by k + 1 and go to step 1.

Remarks.
1. After each refinement step, the finite element stiffness matrix has to be computed.
2. The difficult step 1 is solved using a conjugate gradient method [1].
3. We are not able to prove that the degree of the map uh,k+1 computed in step 2 is the same as the

degree of uh,k. If
uh,k − twh,k

|uh,k − twh,k| (x) 6= 0 for all x ∈ B2,h and all t ∈ [0, 1], then the map

[0, 1] → C0
(
B2,h,R3 − {0}

)
t → uh,k − twh,k

|uh,k − twh,k|

is a homotopy with fixed boundary values between uh,k and uh,k+1: in this case the degrees are the
same. Otherwise, the degree changes. So we should actually check this and stop the algorithm if a
problem occurs. In practice, this never happens with this algorithm, because |wh,k(xi)| is small.

However, in the case of the Newton Algorithm 3.1, this situation sometimes occured (because of the
instability of Newton). In those cases we used a visual check to see the problem!

4. The convergence of such an algorithm is difficult to prove. For given δ > 0 and initial triangulation, if the
refinement stops after a certain iteration, then the discrete energy decreases and we have a convergence
result similar to the Theorem 2.1: the sequence (uh,k)k converges (up to a subsequence) to a critical
point of Eh in Ehg . But in some cases (the singular ones) the refinement never stops.

Another open question would be to prove that the discrete solution converges to a smooth harmonic
map (for the regular cases).

2.3. Numerical results

2.3.1. Starting point

For the computation, we need to find the starting map u0.
Since the boundary condition g is of class C1, g(∂B2) is of (Hausdorff) dimension 1 at most, there exists a

point P ∈ S2 such that P 6∈ g(∂B2). We suppose in the following that the north pole is such a point. Let
PS := −P be the south pole, then we can define a homotopy between g and the south pole,

Fg : [0, 1] × ∂B2 → S2

(t , z) → (1 − t)PS + tg(z)
|(1 − t)PS + tg(z)| ,

which belongs to C1([0, 1]× ∂B2).
We also define for a given degree n ∈ Z, vn : B2(0, 1

2 ) → C by

vn(z) =



PS if n = 0,
(tan(π|z|)z/|z|)n if n > 0,
(tan(π|z̄|)z̄/|z̄|)|n| if n < 0,

which covers n times the sphere S2. Let finally ΠS denote the stereographic projection from the south pole on
the equator plane R2. Then

Π−1
S : R2 → S2 ⊂ R3

(x, y) →
(

2x
1 + x2 + y2

,
2y

1 + x2 + y2
,
1− (x2 + y2)
1 + x2 + y2

)
·
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Figure 1. SG/CG for 2(1)1 (rescaled).

The reference map u chosen is u(z) = Fg(|z|, z|z|). The initial map of degree n ∈ Z is

u0(z) =




Π−1
S (vn(z)) |z| < 1

2

Fg

(
2

(
|z| − 1

2

)
,
z

|z|

)
1
2 ≤ |z| ≤ 1.

Remark. it is clear that u0 is continuous on B2 and has the degree n. For the algorithm 2.3, we actually use
as a starting point the P1 interpolate of u0 on the mesh T h, which clearly belongs to H1(B2,h,R3).

2.3.2. Numerical results

The boundary condition g is of the type g(z) = ΠS(azn). With this choice, we know according to Soyeur [30]
that the minimum in the class Eg,0 is ΠS(

a

z̄n
), that the minimum in the class Eg,n is ΠS(azn), and that the only

classes that admit a minimum are Eg,0, Eg,1,. . . , Eg,n. The minima in the intermediate classes Eg,1, Eg,2,. . . ,
Eg,n−1 are not known explicitly.

We use a triplet n(a)p to indicate that we have computed the minimizer in Eg,p with g(z) = ΠS(azn).
If the figures shown we have set δ = π/8. The stopping test is that the refinement has stopped since at least

20 iterations and |E(uk+1)− E(uk)| ≤ 10−5.



M. PIERRE 151

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

2(1)1 / iteration 27/ E=15.4957
y

Figure 2. SG/CG for 2(1)1.

Harmonics maps. Figure 1 shows the minimizer in Eg,1 for g(z) = z2 (with rescaled axes): the rescaling points
out that this surface covers +1 time the north hemisphere and −1 time the south hemisphere (actually, the
degree can be simply computed by the number of north hemisphere that are covered). The symetries of this
map can be observed on its projection on the xOy plan in Figure 2 (with normalized axes). The solution has
the same symetry around the axe Ox than the boundary condition.

Figure 3 shows (the projection on the xOy plan of the minimizer in Eg,1 for g(z) = z3: it covers +1 time the
north hemisphere and −2 times the south hemisphere. It is interesting to notice that the boundary condition
has 2 symetry axes Ox and Oy whereas the solution only has the symetry axe Ox. This indicates that we could
obtain another harmonic map by minimizing E among maps in Eg,1 which have the symetry of the boundary.

Figure 4 show the minimizer in Eg,2 with the same boundary condition g(z) = z3, which covers +2 times the
north hemisphere and −1 time the south. Its projection on the xOy plan in Figure 5 is identical to the previous
one.

It is worth noticing that (because of the starting point for the algorithm) this latter map requires more
computation than the previous one (it has actually been computed by a conjugate gradient algorithm, see
Sect. 4). In Figure 6 the final mesh for the computation of this map 3(1)1 is shown. This mesh shows the
history of the computation: the larger triangles stand for the initial mesh; the fine refinement in the center and
around a circle of radius ∼3/4 were made for the starting map. The coverging of the south pole in the final
solution can be seen a litlle bit in the intermediate refinement around thepoint (−0.8, 0).
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Figure 3. SG/CG for 3(1)1.

Limits of the algorithm. We explain some general features of the Sobolev gradient Algorithm 2.3 for a given
n ≥ 1 and a ≥ 1:

- The minimizer in Eg,0, which is also the absolute minimizer, is computed with few (usuallly less than
20) iterations of the algorithm and without refinement;

- For a degree p 6= 0, without the refinement procedure, the algorithm converges in most cases to the
absolute minimizer found above;

- With the refinement procedure and for a degree p ∈ {1, . . . , n}, the refinement stops after a certain
iteration k0 and the algorithm converges to the (discrete) minimizer in Ep in more iteration than for
the degree 0 (from 20 to 2000, depending mainly on the strong gradient of the final solution and its
localisation);

- For a degree p 6∈ {1, . . . , n}, the refinement procedure never stops.

3. Newton algorithm for harmonic maps

In this section we first remind that the metric space H1
g (B

2, S2) fails to be a submanifold of H1(B2,R3).
However, in the discrete case Ehg is clearly a submanifold of P 1,h and we can apply the Newton algorithm for
manifolds 5.1. The idea of this algorithm is to write the classical Newton algorithm for Banach spaces [7] by
using a local chart which approaches well the Riemannian structure of the manifold. Here we are able to do
the numerical computation, which in the general case is too complexe, because we deal with S2 and the local
charts are trivial. The hope is to improve the convergence of the Sobolev gradient Algorithm 2.3. We comment
the numerical results.
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Figure 4. CG/CG for 3(1)2 (rescaled).

3.1. Remark on the structure of H1
g(B2, S2)

Let m ≥ 0 be an integer. Define as in the introduction

H1
g (B

m, S2) :=
{
u ∈ H1(BM ,R3), |u(x)| = 1 a.e., u|∂Bm = g|∂Bm

}
where Bm := {x ∈ Rm, |x| < 1} is the unit ball in Rm and g is the boundary condition which belongs to
C1(Bm, S2) so that H1

g (B
m, S2) is not empty .

If m = 1, then H1
g (B

m, S2) is a submanifold of H1(Bm,R3) of infinite dimension, modelled on the (unique)
separable Hilbert space l2. This is a well known fact used in the theory of geodesics (see [17]), especially when
we deal with a general surface of R3 instead of S2. For u ∈ H1

g (B1, S2) the tangent space is

Tu :=
{
w ∈ H1

0 (B1,R3) such that w(x) · u(x) = 0 a.e.
}
,

and a local chart is given by:

φu : Tu → H1
g (B

1, S2)

w → u+ w

|u+ w| ·

One key point in the proof is the Sobolev imbedding H1(B1) ⊂ C0(B1).
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Figure 5. CG/CG for 3(1)2.

If m ≥ 2 then we can still define the space Tu (as we did in formula (2.1) for m = 2) and the map φu but
the Sobolev imbedding is no longer valid and H1

g (Bm, S2) has no differentiable structure (see [15]). The reason
for which φu fails to be a local chart is because it is not locally surjective.

3.2. The Newton/CG algorithm for discrete harmonic maps

Unlike H1
g (B

2, S2), its discrete version Ehg does have a differentiable structure because of the finite dimension:
Ehg is a submanifold of P 1,h. In order to compute discrete harmonic maps we can thus use a Newton algorithm
for manifolds 5.1 as described in the appendix.

In the following we use notations of Section 2.2. We make a constant use of the identification P 1,h ≡ (R3)N

and of the shortcut ui = uh(xi) for an element uh ∈ Ehg and a node xi of the triangulation. We remind that
Ibd ⊂ {1, . . . , N} is the set of indices i such that xi belongs to the boundary ∂B2,h.

We see this time Ehg as a submanifold of R3N (rather than a subspace of P 1,h),

Ehg :=
{
(ui)1≤i≤N ∈ (R3)N , |ui| = 1 ∀i, ui = g(xi) ∀i ∈ Ibd

}
,

and the tangent space is

T huh :=
{
(wi) ∈ (R3)N , wi · ui = 0 ∀i, wi = 0 ∀i ∈ Ibd

}
.
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Figure 6. CG/CG for 3(1)2.

It is easy to see that for every uh ∈ Ehg , (T huh , φ
h
uh) is a local chart that satisfies Assumptions 5.1, where

φhuh : T huh → Ehg

(wi)1≤i≤N →
(
ui + wi
|ui + wi|

)
1≤i≤N

.

We want to find critical points of the energy Eh(uh) = 1
2a
h(uh, uh) on the submanifold Ehg ⊂ R3N . Since Eh

is a continuous quadratic form on R3N it is smooth on R3N . As a consequence the map Jhuh := Eh ◦ φhuh is
smooth on T huh . For i ∈ {1, . . . , N}

ui + wi√
1 + |wi|2

= ui + wi −
ui
2
|wi|2 + o

(
|wi|2

)
,

so we find:

Jh′uh(0) · wh = ah(uh, wh)

Jh′′uh (0)〈wh, wh〉 = ah(wh, wh)− bhuh(wh, wh)
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for all wh ∈ T huh . Here bhuh(·, ·) is the bilinear symetric form such that

bhuh(wh, wh) = ah(uh, uh|wh|2) ∀wh ∈ T huh ,

where uh|wh|2 denotes the element (ui|wi|2)1≤i≤N in (R3)N ≡ P 1,h.
For the Newton algorithm we use the same refining strategy 2.2 as in the Algorithm 2.3.

Algorithm 3.1 (Newton/CG for discrete harmonic maps).
Initial Data.

- Let T h be a triangulation of B2,h;
- Choose a refinement angle δ > 0 small enough;
- Set k = 0 and choose uh,k ∈ Ehg with given degree;
- Refinement with respect to δ. Replace h by h′.

Step 1. Find wh,k ∈ T huh,k such that

Jh′′uh (0)〈wh,k, ϕ〉 = −Jh′uh(0) · ϕ ∀ϕ ∈ T huh,k .

Step 2. Let uh,k+1 be the map in P 1,h such that

uh,k+1(xi) =
uh,k + wh,k

|uh,k + wh,k| (xi) for i = 1, 2 . . . , N.

Step 3 Refinement with respect to δ. Replace h by h′.
Replace k by k + 1 and go to step 1.

3.3. Numerical results

We used the same boundary condition and initial value as in Section 2.3 (a test-case in given by a triplet
n(a)p). Here follows the conclusions of the tests:

- The Newton Algorithm 3.1 computes the minimizer in E0 in very few iterations (less than 10) and the
convergence is quadratic. But this case in not really interesting since the Sobolev gradient algorithm
was satisfactory and great precision is not required;

- For a degree p ∈ {1, . . . , N} the Newton algorithm does not work in general: either it converges to the
absolute minimizer by changing homotopy class (the map uh,k+1 computed in step 2 does not have the
same degree as uh,k, see the remarks following Algorithm 2.3), either it exploses quickly;

- Nevertheless in Figure 7 that compares the convergence-rates we have used the test-case 1(3)1 for which
the Newton algorithm converges. We clearly see the quadratic convergence.

In conclusion the Newton algorithm has the usual advantages and drawbacks of the Newton method: when it
converges, the convergence is fast, otherwise it exploses or converges to another critical point than expected.
The convergence is only local: it is garanteed if the starting point is close enough from the solution. Another
algorithm is needed in order to guarantee both global and fast convergence: that is the conjugate gradient.

4. Conjugate gradient for harmonic maps

In this section we write the conjugate gradient algorithm for manifolds 6.2 in the case of discrete harmonic
maps. The idea of this algorithm is to write the classical (nonlinear) conjugate gradient [29] by using a local
chart which approaches well the Riemannian structure of the manifold. As in the Newton algorithm, we are able
to do the numerical computation (which for a general manifold is too complexe) because we deal with S2 and
the local charts are trivial. The generalization is more complexe than the Newton algorithm since in order to
do the computation at the current iteration, we need some information from the former iteration. We comment
the numerical results.
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4.1. Conjugate gradient/CG

We have already seen that Ehg (the discrete version of H1
g (B

2, S2)) is a submanifold of R3N . We write the
algorithm given in Appendix 6.2 in this case, using the refining strategy 2.2. We use notations of Section 3.2.
The integer Nbd is the number of nodes in the boundary.

Algorithm 4.1 (CG/CG for discrete harmonic maps).
Initial Data.

- Let T h be a triangulation of B2,h.
- Choose a refinement angle δ > 0.
- Set k = 0 and choose uh,k ∈ Ehg with given degree.
- Refinement with respect to δ. Replace h by h′.
- Choose an integer lmax ≤ 2N − 2Nbd and set l = 0.

Step 1. Find rh,l ∈ T huh,k such that

ah(rh,l, ϕ) = ah(uh,k, ϕ) ∀ϕ ∈ T huh,k . (4.1)

Step 2. If l ≥ 1 let d̄h,l−1 = (d̄l−1
i )1≤i≤N be the map in Tuh,k defined by:

d̄l−1
i =



− dl−1

i · wl−1
i√

1 + |wl−1
i |2

uk−1
i +

dl−1
i · wl−1

i√
1 + |wl−1

i |2
wl−1
i

|wl−1
i |2

if wl−1
i 6= 0,

0 if wl−1
i = 0,

for all i ∈ {1, . . . , N}.
Step 3. If l = 0 set dh,l = rh,l, else set

dh,l = rh,l +
ah(rh,l, rh,l)

ah(rh,l−1, rh,l−1)
d̄h,l−1.

Step 4. If ah(rh,l, dh,l) ≤ 0 set l = 0 and dh,l = rh,l.
Step 5. Set

µl = − ah(rh,l, dh,l)
Jh′′
uh (0)〈dh,l, dh,l〉 ·

Step 6. Set wh,l = µldh,l and let uh,k+1 = (uk+1
i )1≤i≤N be the map in P 1,h such that

uh,k+1
i =

uh,ki + wh,li∣∣∣uh,ki + wh,li

∣∣∣ ∀i ∈ {1, . . . , N}.

Step 7.
- Refinement with respect to δ. Replace h by h′.
- If l = lmax set l = 0.
- Replace l by l + 1, k by k + 1 and go to step 1 (until convergence).

Remarks.

1. The refining method used here is a slight modification of the method 2.2. For the computation of the
old direction d̄h,l−1 in step 2 at iteration l ≥ 1, we need the vectors uh,k−1, dh,l−1 and wh,l−1 of the
iteration l− 1 on the refined triangulation. This is done by interpolation in the same way that we have
interpolated uh,l on every new node.
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2. The optimal step-size ul in step 5 is computed with only one iteration of a Newton line search. This
is approximation is satisfactory and otherwise it would be too expensive to compute Jh′′uh at some other
points.

3. The use of the scalar product ah(·, ·) in step 1 gives a gradient rh,l which is again a Sobolev gradient.
This acts like a preconditionning on the (nonlinear) conjugate gradient method.

4. The parallel transport in step 2, which corresponds to the Riemannian metric of Ehg induced by the
scalar product ah(·, ·), is easy to compute because it also corresponds to the parallel transport on S2.

4.2. Numerical results

We used the same boundary condition and initial value as in Section 2.3 (a test-case in given by a triplet
n(a)p). We first comment Figures 7 and 8.

1. In Figure 7 we compare the speed of convergence of the Sobolev gradient, Newton, and conjugate
gradient algorithm. For the conjugate gradient we have set lmax = 10 (with N ∼ 1000). It is useless to
have a big lmax.
The Newton algorithm is the fastest, but the test-case is not too hard (degree p = 1), since there is no
refinement: we recall that in general, the Newton algorithm is unstable.
The conjugate gradient converges faster than the Sobolev gradient and with a very good accuracy (the
error is stabilized at ∼10−15 because of the computer precision ∼10−16).
It is interesting to see that the Sobolev gradient shows 2 different rate of convergence: until iteration 40,
the rate is rather high, and after iteration 40 it is slower. At iteration 40 the error is 10−5 which is
good enough for our purposes (a better precision in the computation is meaningless since we already
compute an approximation!).

2. Figure 8 shows the evolution of the discrete energy Eh(uh,k) as a funtion of the iteration k, for the two
algorithms of Sobolev gradient and conjugate gradient (with lmax = 10). Every refinement is represented
by a dashed vertical line.
In both cases the computed energy is higher than the real energy (which can be computed explicitly
because the solution is known). The interpretation is that the discrete energy (with the refining strategy)
stays higher than the degree and not equal because the approximation is not harmonic. This is a global
argument (integration over B2,h).
Each time there is a refinement, the energy increases. The argument this time is local : the energy of a
linear interpolation on a triangle is lower than the energy of the interpolation on the refined triangle.
The refinement stops sooner for the conjugate gradient (less than iteration 400) than for the Sobolev
gradient (more than 2000). This reflects the fact that the conjugate gradient converges faster.

The (preconditionned) conjugate gradient algorithm applied for the computation of harmonic maps has the
usual advantages of this type of algorithm: it is global, stable and fast. This algorithm is really interesting in
the cases where there is many refinements (solutions with strong gradient like the test-case 1(10)1). It works
really well because the energy that is minimized is also the norm of the Hilbert space P 1,h: the metric induced
by the hessian of the energy Eh is close to the Riemannian metric of the submanifold Ehg .

5. Appendix 1: Newton algorithm for manifolds

The Newton algorithm is classically used to find critical points of a functionnal defined on a Banach space.
The aim of this section is to generalize the Newton algorithm to manifolds, possibly of infinite dimension.

The idea is to write the Newton algorithm by using a chart of the manifold. In case of a Riemannian manifold,
the chart can be chosen so that it represents well not only the differential structure, but also the Riemannian
metric: the “exponential map” associated to a Riemannian manifold gives such kind of charts. In that case,
the chart depends on the current point and in order to prove the convergence of the algorithm, we need to take
into account the differences between two charts which are given by the transition mappings.
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As in the classical Newton algorithm, we obtain a local convergence result and in particular, we prove that
the convergence rate under appropriate hypotheses is quadratic.

5.1. Newton algorithm in Banach space

For the convenience of the reader we first recall the Newton algorithm for finding critical points (see [7,24]).

Theorem 5.1. Let Ω be an open set of a Banach space X and J : Ω → R twice continuously differentiable
with J ′′ locally lipschitz where J ′′(x)〈·, ·〉 ∈ L(X,X ′) is the hessian of J .

Let x ∈ Ω be such that J ′(x) = 0 ∈ X ′, J ′′(x) ∈ Isom(X,X ′).
Then there exists r > 0 such that if x0 ∈ B(x, r) the sequence (xk)k≥0 given by xk+1 = xk − J ′′(xk)−1J ′(xk)

is defined for all k ≥ 0, is contained in B(x, r) and converges to x as k tends to +∞. Moreover the convergence
rate is quadratic, i.e. there exists K > 0 such that ||xk+1 − x|| ≤ K||xk − x||2.

5.2. Hessian on a manifold

We want to generalize the Newton algorithm to manifolds (of finite or infinite dimension).
First consider a smooth differentiable manifold M modelled on the Banach space X , i.e. a metric separable

space which is locally homeomorphic to X and for which the transition mappings are smooth diffeomorphisms
(see [17]). Let J : M → R be a C2 function on M and m ∈ M be a critical point of J , i.e. such that TmJ = 0
(where TmJ is the tangent mapping). Since the Newton algorithm is local we can try to find m by using a chart
(U,ϕ) that contains m. Denoting Jϕ := J ◦ ϕ−1 defined on an open subset Ω of X , the Newton algorithm is:

xk+1 = xk − [J ′′ϕ(xk)]−1J ′ϕ(xk) (k ≥ 0). (5.1)
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The sequence (mk)k≥0 with mk := ϕ−1(xk) ∈ M depends on the choice of the chart (U,ϕ). There is indeed
a notion of tangent application TJ independent of the chart and corresponding to J ′ϕ, but there is no such
notion as a hessian of J corresponding to the hessian J ′′ϕ independtly from ϕ. Let (V, ψ) be another chart that
contains m and Jψ := J ◦ ψ−1 defined on an open subset of X . We want to examine the relationship between
the derivatives of Jϕ and Jψ. Denote φ := ψ ◦ ϕ−1 and y = φ(x). Then Jψ(φ(x)) = Jϕ(x) so

J ′ψ(φ(x)) ◦ φ′(x) = J ′ϕ(x) (5.2)

and
J ′′ψ(φ(x))〈φ′(x)·, φ′(x)·〉+ J ′ψ(φ(x)) ◦ φ′′(x)〈·, ·〉 = J ′′ϕ(x)〈·, ·〉, (5.3)

where J ′ψ(y) and J ′ϕ(x) are in the topological dual X ′, J ′′ψ(y)〈·, ·〉 and Jφ(x)〈·, ·〉 are in Lc(X,X ′), φ′(x) is in
Isom(X) and φ′′(x)〈·, ·〉 is in Lc (X,Lc(X)).

Notice that J ′′ψ and J ′′ϕ are the same (up to the change of coordinates φ′(x)) if J ′ϕ(x) = 0 (critical point) or
φ′′(x)〈·, ·〉 = 0 (affine change of coordinates).

In order to state a Newton convergence theorem for manifolds we also need some regularity of the hessian.
The proposition contained in the following definition is obvious by (5.3).

Definition 5.1. Let M be a smooth manifold modelled on a Banach space X and J : M → R a C2 functionnal
on M . We say (with abusive notations) that J ′′ is locally Lipschitz continuous if one of the following
equivalent conditions is satisfied:

1. For all m ∈ M there exists a chart (U,ϕ) with U containing m such that J ′′ϕ is locally Lipschitz
continuous (where Jϕ := J ◦ ϕ−1);

2. For every chart (U,ϕ) of the atlas, J ′′ϕ is locally lipschitz continuous.
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5.3. Newton algorithm for Riemannian manifold

For our application we deal with Riemannian manifolds modelled on a Hilbert space. If we want to define an
algorithm that takes into account the Riemannian structure of M we need to choose a good chart, for instance
the exponential application. Let M be a Riemannian manifold modelled on the (separable) Hilbert space H and
J : M → R a C2 functionnal on M . M is a metric space equipped with the geodesic distance d(·, ·) and every
tangent space TmM for m ∈ M has the hilbertian norm || · ||TmM . Let TM be the tangent bundle considered
with its differential structure and Π: TM →M the canonical projection on M .

Assumptions 5.1. We suppose that for every m ∈ M we have a mapping ϕm : Ωm → M defined on an open
neighbourhood Ωm of 0 in TmM and that satisfies the following properties:

1. ϕm(0) = m and T0ϕm = IdTmM ;
2. Ω(M) := tm∈MΩm is an open subset of the tangent bundle TM and ϕ : v ∈ Ω(M) → ϕΠ(v)(v) ∈ M is

of class C∞.

Remarks.
1. By the inverse mapping theorem, for every m ∈M , ϕ−1

m exists and defines a chart.
2. The exponential mapping defined for a Riemannian manifold satisfies the required properties.
3. The main problem in order to implement the Algorithm 5.1 below is to find a map ϕm easy to compute.

In our examples of harmonic maps with values in S2 this is possible. We actually use a mapping which
is close to the exponential application but easier to compute.

Define for all m ∈ M Jm = J ◦ ϕm. Let m ∈ M be such that TmJ = 0 and J ′′m(0) ∈ Isom(TmM,TmM
′).

The algorithm is given by:

Algorithm 5.1 (Newton for manifolds).
Initial Data. Set k = 0 and choose m0 ∈M .
Step 1. Compute the search direction

vk = −[J ′′mk(0)]−1 · J ′mk(0) ∈ TmkM.

Step 2. Set
mk+1 = ϕmk(vk) ∈M.

Replace k by k + 1, and go to step 1.

Remark. If M = E is a Banach space and ϕm = IdE then this algorithm is the classical Newton algorithm.
We can now state:

Theorem 5.2. Let M be a Riemannian manifold modelled on a (separable) Hilbert space and J : M → R a C2

function on M with J ′′ locally Lipschitz continuous. Let ϕ satisfie assumptions 5.1 and set Jm = J ◦ ϕm.
Let m ∈M be such that TmJ = 0 and J ′′m(0) ∈ Isom(TmM,TmM

′).
Then there exists r > 0 such that if m0 ∈ Bm(r), the sequence (mk)k≥0 constructed by the Newton Algo-

rithm 5.1 is defined for every k ≥ 0, contained in Bm(r) and converges to m as k tends to +∞. Moreover the
convergence rate is quadratic, i.e. there exists K > 0 such that

d(mk+1,m) ≤ Kd(mk,m)2. (5.4)

In this theorem d(·, ·) is the geodesic distance and Bm(r) is the ball of center m and radius r.

5.4. Proof

5.4.1. Version in the tangent space

We start writing the Newton algorithm in TmM using the chart ϕ−1
m and the Hilbert space TmM as model

space.
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Set yk := ϕ−1
m (mk). For m = ϕm(y) close to m (and y ∈ TmM) the transition mapping is φy := ϕ−1

m ◦ ϕm
defined from an open neighbourhood of 0 in TmM into an open neighbourhood of 0 in TmM .

By definition, yk+1 = φyk

(
−[J ′′mk(0)]−1 · J ′mk(0)

)
. Using (5.2), (5.3) and yk = φyk(0) we find

J ′mk(0) = J ′m(φyk(0)) ◦ φ′yk(0) (0 ∈ TmkM),

and
J ′′mk(0)〈·, ·〉 = J ′′m(φyk(0))〈φ′yk (0)·, φ′yk(0)·〉+ J ′m(φky(0)) ◦ φ′′yk(0)〈·, ·〉.

We recall that J ′′mk(0)〈·, ·〉 ∈ Lc(TmkM,TmkM ′), J ′′m(yk) ∈ Lc(TmM,TmM), φ′yk(0) ∈ Lc(TmkM,TmM),
J ′m(yk) ∈ Lc(TmM,R) and φ′′yk(0)〈·, ·〉 ∈ Lc

(
TmkM,Lc(TmkM,TmM)

)
.

So we have

yk+1 = φyk

(
−

[
J ′′m(yk)〈φ′yk(0)·, φ′yk(0)·〉+ J ′m(yk) ◦ φ′′yk(0)〈·, ·〉

]−1

·
(
J ′m(yk) ◦ φ′yk(0)

))
. (5.5)

Proving the theorem for the sequence mk defined by the Newton algorithm is exactly the same as proving a
similar theorem for a sequence ỹk that would be defined by (5.5). In order to do this and see in particular that
every term is well defined we need to use the differential structure of the tangent bundle. Denote (U,ψ) with
ψ := ϕ−1

m our favorite chart. The corresponding chart on TM maps v ∈ TmM to (ψ(m), Tmψ ·v) ∈ TmM×TmM
and is defined on the open subset of TM Ũ := tm∈UTmM . Using this, for m = ϕm(y):

- φy : TmM → TmM becomes φy ◦ Tyϕm : TmM → TmM ;
- φ′y(0) : TmM → TmM becomes φ′y(0) ◦ Tyϕm = IdTmM . Indeed, φ′y(0) = [Tyϕm]−1 ◦ T0ϕm with
T0ϕm = IdTmM ;

- φ′′y(0)〈·, ·〉 ∈ Lc
(
TmM,Lc(TmM,TmM)

)
becomes

φ′′y(0)〈Tyϕm·, Tyϕm·〉 ∈ Lc
(
TmM,Lc(TmM,TmM)

)
.

Hence

yk+1 = (φyk ◦ Tykϕm)(−[J ′′m(yk)〈·, ·〉
+J ′m(yk) ◦ φ′′yk(0)〈Tykϕm·, Tykϕm·〉]−1 · J ′m(yk)). (5.6)

We are therefore led to prove the following lemma:

Lemma 5.1. There exists r > 0 such that if y0 ∈ B(0, r), the sequence (yk)k≥0 given by (5.6) is defined for all
k ≥ 0, contained in B(0, r) and converges to 0 as k tends to ∞. Moreover the convergence rate is quadratic,
i.e. there exists K > 0 such that

||yk+1||TmM ≤ K||yk||2TmM . (5.7)

Suppose indeed that Lemma 5.1 is proved.
If m0 is close enough to m, then y0 := ϕ−1

m (m0) is close enough to 0 and the sequence (yk) is well defined
and converges to 0. Thus the sequence (m′kk) with m′k := ϕm(yk) is well defined and converges to m. By the
computation above, this sequence is exactly the one defined by the Newton Algorithm 5.1. We only need to
prove that the convergence rate is quadratic (in the sense of (5.4) for the sequence (m′k) = (mk).

Suppose first that ϕm = expm. Then by property of the exponential mapping ||y||TmM = d
(
expm(y),m

)
(for all y ∈ TmM small enough), and Theorem 5.2 is proved.
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In the general case, d
(
ϕm(y),m

)
= || exp−1

m ◦ϕm(y)||TmM and since exp−1
m ◦ϕm(y) = y+O(||y||2) by assump-

tions 5.1 on ϕ and property of the exponential mapping, there exists C1 and C2 with 0 < C1 ≤ 1 ≤ C2 such
that

C1||y||TmM ≤ d
(
ϕm(y),m

)
≤ C2||y||TmM .

Set r′ = min
{
C1r,

C1

KC2

}
. Then if mk ∈ Bm(r′), ||yk|| ≤ min

{
r,

1
KC2

}
, and K||yk|| ≤ C1/C2 so by (5.6)

||yk+1|| ≤ r′

C2
and mk+1 ∈ Bm(r′). Therefore if m0 ∈ Bm(r′), Theorem 5.2 is proved with d(mk+1,m) ≤

KC2
C2

1
d(mk,m).

5.4.2. Proof of Lemma 5.1.

Define Gy(v) := φy ◦ Tyϕm · v and

F (y) := −
[
J ′′m(y)〈·, ·〉+ J ′m(y) ◦ φ′′y(0)〈Tyϕm·, Tyϕm·〉

]−1

· J ′m(y) ∈ TmM.

By regularity of ϕ, the mapping K : (y, v) → ϕϕm(y) ◦Tyϕm · v is defined and of class C∞ on B(0, r1)×B(0, r2)
(as an open subset of TmM × TmM) for r1 > 0, r2 > 0 small enough. So,

(y, v) → Gy(v) = ϕ−1
m (K(y, v)) = φy ◦ Tyϕm · v is of class C∞ on B(0, r1)×B(0, r2);

y → ∂G

∂v
(y, 0) = φ′y(0) ◦ Tyϕm· and y → ∂2G

∂v2
(y, 0)〈·, ·〉 = φ′′y(0)〈Tyϕm·, Tyϕm·〉 is defined and of class

C∞ on B(0, r2).

By regularity of Jm there exists r3 > 0 such that Jm is of class C2 on B(0, r3); the mapping H : y → J ′′m(y)〈·, ·〉+
J ′m(y)◦φ′′y(0)〈Tyϕm·, Tyϕm·〉 is therefore continuous on B(0, r4) (with r4 := min{r2, r3}). Recall that J ′m(0) = 0
so H(0) = J ′′m(0) ∈ Isom(TmM,TmM

′) ; by continuity and the resolvant formula (see [4]) there exists r5 ∈]0, r4]
such that H(y) ∈ Isom(TmM,TmM

′) for all y ∈ B(0, r5) and y → [H(y)]−1 is bounded on B(0, r5). Set
M := supy∈B(0,r5) ||H(y)−1||; by continuity there exists 0 < r6 < r3 such that ||J ′m(y)|| ≤ r2/M for all
y ∈ B(0, r6). Set at last r7 := min{r5, r6, r1, r2} ; then for all y ∈ B(0, r7), F (y) is defined with ||F (y)|| ≤ r2
and G(y, F (y)) is defined.

In order to conclude the proof we need two lemmas.

Lemma 5.2. There exists r8 ∈]0, r7] and K > 0 such that ||F (y) + y|| ≤ K||y||2 for all y ∈ B(0, r8).

Lemma 5.3. There exists r9 ∈]0, r8] and K ′ > 0 such that ||G(y, F (y))|| ≤ K ′||y||2 for all y ∈ B(0, r9).

Postponing the proof of Lemmas 5.2 and 5.3, choose α ∈]0, 1[ and set r = min{r9, α/K ′}. Then if yk ∈ B(0, r),
by Lemma 5.3 yk+1 := G(yk, F (yk)) satisfies

||yk+1|| ≤ K ′||yk||2, (5.8)

so

||yk+1|| ≤ α||yk||, (5.9)

and in particular yk+1 ∈ B(0, r). If we choose y0 ∈ B(0, r), by induction the entire sequence is defined and
contained in B(0, r), and by (5.9) converges to 0 ; by (5.8) the convergence rate is quadratic and the proof is
complete.
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Proof of Lemma 5.2. For y ∈ B(0, r7),

F (y) + y = −[H(y)〈·, ·〉]−1 · J ′m(y) + [H(y)〈·, ·〉]−1 ·H(y)〈y, ·〉,
= [H(y)]−1

(
−

∫ 1

0 J
′′
m(sy)〈y, ·〉ds+ J ′′m(y)〈y, ·〉

+J ′m(y) ◦ φ′′y(0) < Tyϕmy, Tyϕm. >
)
ds,

= [H(y)〈·, ·〉]−1
( ∫ 1

0
[J ′′m(y)− J ′′m(sy)]〈y, ·〉ds

+J ′m(y) ◦ φ′′y(0)〈Tyϕmy, Tyϕm·〉
)
.

Using that J ′′m is a locally lipschitz mapping there exists r′7 ∈]0, r7] and K1 > 0 such that

||J ′′m(y)− J ′′m(sy)|| ≤ K1(1− s)||y|| (∀s ∈ [0, 1], ∀y ∈ B(0, r′7)).

Since J ′m is of class C1 with J ′m(0) = 0 and by continuity of φ′′y(0) there exist r8 ∈]0, r′7[, K2 > 0 and M1 > 0
such that ||J ′m(y)|| ≤ K2||y|| and ||φ′′y(0)〈Tyϕm·, Tyϕm·〉|| ≤M1 for all y ∈ B(0, r8); thus for all y ∈ B(0, r8)

||F (y) + y|| ≤M

(
K1

2
+K2M1

)
||y||2,

where M is defined above. Choosing K = M

(
K1

2
+K2M1

)
the proof is complete. �

Proof of Lemma 5.3. First, recalling G(y, v) = ϕ−1
m ◦ϕϕm(y)◦Tyϕm ·v and assumptions on ϕm we easily compute

the derivatives of G:
∂G

∂y
(0, 0) = IdTmM and

∂G

∂v
(0, 0) = IdTmM . (5.10)

Then using G(0, F (0)) = 0 we write:

G(y, F (y)) = [G(y, F (y))−G(0, F (y))− y] + [G(0, F (y))−G(0, F (0)) + y]. (5.11)

Denote S1(y) (S2(y), respectively) the first (second, resp.) term into brackets in (5.11). Then for y ∈ B(0, r7),

S1(y) =
∫ 1

0

[
∂G

∂y
(sy, F (y)) · y − ∂G

∂y
(0, 0) · y

]
ds.

Since ∂G
∂y is C∞ and F (y) is small by Lemma 5.2, there exist r′8 ∈]0, r8] and K2 such that

∣∣∣∣
∣∣∣∣∂G∂y (sy, F (y))− ∂G

∂y
(0, 0)

∣∣∣∣
∣∣∣∣ ≤ K2 (s||y||+ ||F (y)||) (∀s ∈ [0, 1], ∀y ∈ B(0, r′8)).

Using again Lemma 5.2 we find ||F (y)|| ≤ C||y|| for all y ∈ B(0, r8) with C = 1 +Kr8; so

||S1(y)|| ≤ (1 + C)||y||2 (∀y ∈ B(0, r′8)).

In a similar way,

S2(y) =
∫ 1

0

∂G

∂v
(0, sF (y)) · F (y)ds+

∂G

∂v
(0, 0) · y,

=
(∫ 1

0

[
∂G

∂v
(0, sF (y))− ∂G

∂v
(0, 0)

]
· F (y)ds

)
+ (F (y) + y).
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There exist r9 ∈]0, r′8] and K3 such that∣∣∣∣
∣∣∣∣∂G∂v (0, sF (y))− ∂G

∂v
(0, 0)

∣∣∣∣
∣∣∣∣ ≤ K3s||F (y)|| (∀s ∈ [0, 1] ∀y ∈ B(0, r9)),

so using Lemma 5.2,

||S2(y)|| ≤
K3C

2

2
||y||2 +K||y||2 (∀y ∈ B(0, r9)),

where C is defined above.

Choosing K ′ = 1 + C +
K3C

2

2
+K we get ||G(y, F (y))|| ≤ K ′||y||2 for all y ∈ B(0, r9) and the proof is

complete. �

6. Appendix 2: conjugate gradient for Riemannian manifolds

The Newton algorithm converges to critical points of a functional and might not converge globally. Since
we are interested in minima, a global minimisation algorithm would be better: the (nonlinear) conjugate
gradient [7, 9, 24, 29] is such an algorithm, but it is known in Hilbert spaces. In this section, in the same way
as we generalized the Newton algorithm, we generalize the nonlinear conjugate gradient algorithm (NLCG) to
Riemannian manifolds.

The idea is to write the NLCG in a local chart defined by the exponential mapping associated to the
Riemannian manifold. One problem is that the chart depends on the current point mk, and in order to compute
the descent direction dk in the tangent space Tmk at iteration k, we need the descente direction dk−1 from the
previous iteration k − 1. Yet dk−1 belongs to the tangent space Tmk−1 : so we use a parallel transport to move
dk−1 from Tmk−1 to Tmk .

6.1. NLCG in Hilbert space

We first recall the NLCG algorithm [7, 24, 29]:

Algorithm 6.1 (NLCG). Let H be a (separable) Hilbert space of dimension dimH (possibly infinite) with scalar
product 〈·, ·〉 and norm || · ||. Let Ω be an open subset of H and J : Ω → R twice continuously differentiable. Let
x ∈ Ω be a local minimum for J such that J ′′(x) is a continuous coercive symmetric bilinear form on H. The
NLCG for finding x is:
Initial Data.

- Set k = 0 and choose a starting point xk.
- Choose an integer lmax ≤ dimH and set l = 0.

Step 1. Find rl ∈ H such that
< rl, w >= J ′(xk) · w ∀w ∈ H.

Step 2. If l = 0 set dl = rl, else set dl = rl + βFRd
l−1 where βFR =

||rl||2
||rl−1||2 ·

Step 3. If < rl, dl >≤ 0 set l = 0 and dl = rl.
Step 4. Find µl ∈ R such that J(xk + µldl) = infµ∈R J(xk + µdl).
Step 5.

- Set xk+1 = xk + µldl.
- Replace l by l + 1 and k by k + 1.
- If l = lmax set l = 0.
- Go to step 1 (until convergence).

Remarks.
1. The vector rl in step 1 is the gradient of J . The existence of rl is given by the Riesz representation

theorem.
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2. In step 2, βFR is the choice of Fletcher-Reeves [9]. Another usual choice is βPR =
< rl, rl − rl−1 >

||rl−1||2
(Polak-Ribière [24]).

3. There are two counting indices k and l because we reinitialize the direction every lmax step. This is the
meaning of the third point in step 5.

4. If J is a quadratic functional this is the usual CG algorithm, and βFR = βPR. In this case there is no
step 3, there is only one counting indices l = k and the algorithm converges in at most dimH steps.

5. In step 3, we check if dk is a good descent vector. If it is too bad we use the gradient as descent
direction and restart the algorithm.

6. Step 4 is usually solved by a Newton line search.

6.2. Conjugate gradient for Riemannian manifolds

We use the notations of Section 5.1. M is a smooth Riemanian manifold modelled on the separable Hilbert
space H . (ϕm)m∈M is a collection of mappings satisfying Assumption 5.1. J : M → R is a functionnal twice
continuously differentiable on M and m ∈M a local minimum for J .

The idea for finding m is to write the NLCG algorithm using the charts ϕm. Since the chart used changes at
every step of the algorithm, we need to know what the old direction dk−1 used in step 2 looks like in the new
chart. We solve this difficulty by parallel transport of dk−1.

Define for all m ∈ M Jm = J ◦ ϕm. Suppose m is such that J ′′m(0)〈·, ·〉 is a continuous coercive symmetric
bilinear form. Let dimM be the dimension of M (possibly infinite). Recall that for every m ∈ M the tangent
space TmM is equipped with the scalar product 〈·, ·〉m ; we denote || · ||m the norm in TmM .

We obtain the following algorithm:

Algorithm 6.2 (Conjugate gradient for Riemannian manifolds).
Initial Data.

- Set k = 0 and choose a starting point mk ∈M .
- Choose an integer lmax ≤ dimH and set l = 0.

Step 1. Find rl ∈ TmkM such that

〈rl, w〉mk = J ′mk(0) · w ∀w ∈ TmkM.

Step 2. If l ≥ 1 compute d̄l−1 ∈ TmkM by parallel transport of dl−1 from Tmk−1M to TmkM .
Step 3. If k = 0 set dl = rl, else set dl = rl + βFRd̄

l−1 where

β =
||rl||2mk

||rl−1||2
mk−1

·

Step 4. If 〈rl, dl〉mk ≤ 0 set l = 0 and dl = rl.
Step 5. Find µl ∈ R such that Jmk(µldl) = infµ∈R Jmk(µdl).
Step 6.

- Set mk+1 = ϕmk(µldl).
- Replace l by l + 1 and k by k + 1.
- If l = lmax set l = 0.
- Go to step 1 (until convergence).
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