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TURNPIKE THEOREMS BY A VALUE FUNCTION APPROACH
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Abstract. Turnpike theorems deal with the optimality of trajectories reaching a singular solution, in
calculus of variations or optimal control problems. For scalar calculus of variations problems in infinite
horizon, linear with respect to the derivative, we use the theory of viscosity solutions of Hamilton-
Jacobi equations to obtain a unique characterization of the value function. With this approach, we
extend for the scalar case the classical result based on Green theorem, when there is uniqueness of the
singular solution. We provide a new necessary and sufficient condition for turnpike optimality, even in
the presence of multiple singular solutions.
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1. Introduction

In this paper we consider a problem of calculus of variations in infinite horizon whose objective J [.] is given by:

J [x(.)] = lim
T→+∞

∫ T

0

e−δtl(x(t), ẋ(t))dt, (1)

where δ is a positive number and l is a real valued function on R × R, linear w.r.t. his second argument. Our
interest is the maximization of J over the paths x(.) with fixed initial condition x(0) = x0, for which the
velocities respect some inequality constraints (that will be made more precise later) and such that the improper
integral (1) converges.

For such a problem, linear with respect to the velocity, the Euler first order optimality condition is no longer
a differential equation but an algebraic one. Moreover as we will assume, the integrand l(., .) doesn’t depend
on the time, so for solutions x of this equation, the stationary paths x(.) defined by:

x(t) = x, ∀t,

are the only C1 candidates for optimality. Particularly, with this approach, we cannot say anything about
hypothetical optimal solutions emanating from initial conditions x0 that are not solutions of the algebraic Euler
equation. On the other hand it is another difficulty to prove the optimality of these candidates, because the
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problem is with infinite horizon. For this case only few results, like standard necessary or sufficient optimality
conditions, are well established [3,4,7]. We can also underline that the approach via the Pontryagin Maximum
principle causes analog difficulties, particularly with the use of the transversality condition [5]. For those reasons
we propose here an approach via the value function and an associated Hamilton-Jacobi equation.

Before we detail our approach, we recall the existing results for this problem, concerning the so called
turnpike property. In the literature, quite a few theoretical results exist. To our knowledge, they only concern
the scalar case, with the Euler equation possessing an unique solution x. More precisely, we consider the case
of constrainted velocities given by:

α ≤ ẋ(t) ≤ β, ∀t,

where α < 0 and β > 0 are two constants. Then for any x0 it is relevant to introduce the Most Rapid Approach
Path (MRAP) from x0 to x, which is the trajectory joining x0 to x̄ as quickly as possible (i.e. using either the
velocity α or the velocity β). When MRAPs are optimal from any initial condition x0 ∈ R, x is then called a
turnpike.
The standard result is a sufficient condition under which x is a turnpike. It can be proved that the condition:

(x̄− x)(A′(x) + δB(x)) ≥ 0, ∀x ∈ R, (2)

in addition to a technical assumption, is sufficient for the optimality of MRAPs. This result is established using
a method introduced by Miele [10], based on Green theorem. Hartl and Feichtinger have proved in [8] that
while the condition (2) alone is sufficient for the optimality in finite horizon, it is not the case for the infinite
one, and gave beside an additional technical assumption which guarantees the optimality of MRAPs.

In this paper we propose a new optimality condition of MRAPs which is necessary and sufficient. Our
approach is based on a characterization of the value function in terms of viscosity solutions [9] of a particular
Hamilton-Jacobi equation. More precisely, we first prove that the value function of an equivalent problem
(reasons for considering another problem will be given later) is the unique viscosity solution of a particular
Hamilton-Jacobi equation. Then, we derive conditions under which the value of the objective along a MRAP,
considered as a function of the initial condition x0, is solution of this Hamilton-Jacobi equation. We finally
deduce the optimality of MRAPs. In this approach, we need to consider a mathematical framework that
guarantees the Hamilton-Jacobi equation to possess an unique solution. But uniqueness of solutions of first order
partial differential equations is known to be difficult, especially when dealing with infinite horizon problems, for
which the value function has to be defined on the whole R, with no boundary condition. And no uniqueness
result is known in the literature for the class of C1 functions. This means that even when the value function
turns out to be C1, we still have to consider a larger class of functions. For this problem, Lipschitz continuous
functions appear to be a well suited class, for which the viscosity solutions machinery provides uniqueness
results. Furthermore, when more than one solution x provides an optimal MRAP, the value function is no
longer differentiable, thus the required use of generalized solutions of the Hamilton-Jacobi equation, such as
viscosity solutions.

The paper is organized as follows. In Section 2 we give assumptions and basic definitions that will be needed
in the paper. In the following section, an equivalent optimal control problem is formulated and justified. Then
we establish that the value function of the latter is the unique viscosity solution of a particular Hamiltonian-
Jacobi equation. In Section 4 we derive from the preceding result a necessary and sufficient condition for MRAPs
to be optimal. In the last section we exhibit an example in which different possible occurrences of turnpikes
(one or several) are given. Our approach provides in particular a criterion for the choice of turnpikes that are in
competition. We also obtain situations in which our approach gives the optimality of a single MRAP, whereas
the Hartl and Feichtinger sufficient conditions result does not.



TURNPIKE THEOREMS BY A VALUE FUNCTION APPROACH 125

2. Statement of the problem, assumptions and definitions

Let us consider the following set:

Admx0 = {x(.) : [0,∞[→ R, AC, x(0) = x0, ẋ(t) ∈ [−1,+1] a.e.}

whose elements are called the admissible paths. We also consider the functional, when it converges, given by:

J [x(.)] =
∫ →∞

0

e−δt[A(x(t)) +B(x(t))ẋ(t)]dt (3)

and we are interested by the following optimal control problem:

max
x(.)∈Adm(x0)

J [x(.)]. (4)

We assume that
(H1) : A(.) is twice differentiable and B(.) is differentiable.
(H2) : There exists two real numbers k > 0 and γ < δ such that for all x

max ( |A(x)| , |A′(x) + δB(x)| , |A′′(x) + δB′(x)| ) ≤ keγ|x|.

These growth assumptions are more general than the usual ones when we one deals with necessary conditions
(Euler condition, Maximum Principle).
The Euler equation, in this setting, is given by the following algebraic equation:

C(x) := A′(x) + δB(x) = 0. (5)

We denote by E the set of the solutions of (5):

E := {x s.t. C(x) = 0}.

When the set E is non empty, we consider the stationary paths x(.) defined by

x(t) = x ∀t ≥ 0

where x ∈ E, which are candidate optimal solutions to the problem (4) (indeed we easily obtain the convergence
of the improper integral associated to J [.]).
Given x ∈ E and any x0 ∈ R, we introduce the most rapid approach path from x0 to x, denoted by MRAP(x0, x̄)
and defined as follows

if x0 ≥ x̄, MRAP (x0, x̄)(t) =
∣∣∣∣x0 − t if t ≤ x0 − x̄
x̄ if t > x0 − x̄

if x0 ≤ x̄, MRAP (x0, x̄)(t) =
∣∣∣∣x0 + t if t ≤ x̄− x0

x̄ if t > x̄− x0.

Such paths are clearly admissible; moreover we can easily establish the convergence of the improper integral J [.].

Our goal is to obtain necessary and sufficient conditions for the optimality of the MRAP (x0, x) with the
help of a value function approach. Therefore, we begin by expressing the value of the objective J [.] along the
path x̂(.) := MRAP (x0, x)(.):
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- when x0 ≥ x̄:

J [x̂(.)]=
A(x0)
δ

+
∫ ∞

0

e−δt[A′(x̂(t)) + δB(x̂(t))] ˙̂x(t)dt

=
A(x0)
δ

− 1
δ

∫ x0−x̄

0

e−δt[A′(x0 − t) + δB(x0 − t)]dt.

With the new variable ξ = x0 − t, it can be rewritten

J [x̂(.)] =
A(x0)
δ

+
1
δ

∫ x̄

x0

e−δ(x0−ξ)[A′(ξ) + δB(ξ)]dξ;

- when x0 ≤ x̄, we then obtain

J [x̂(.)] =
A(x0)
δ

+
1
δ

∫ x̄−x0

0

e−δt[A′(x0 + t) + δB(x0 + t)]dt

and with ξ = x0 + t,

J [x̂(.)] =
A(x0)
δ

+
1
δ

∫ x̄

x0

e−δ(ξ−x0)[A′(ξ) + δB(ξ)]dξ.

So in both case, we can write

J [MRAP (x0, x)(.)] =
A(x0)
δ

+
S(x0, x̄)

δ
(6)

where

S(x0, x̄) =
∫ x̄

x0

(A′(y) + δB(y))e−δ|x0−y|dy =
∫ x̄

x0

e−δ|x0−y|C(y)dy.

We underline that the function S(., .), that will play a fundamental role in the sequel, depends only on the
function C(.), provided by the Euler equation (5).
Now, to make the turnpike property more precise, we introduce the following definition: we call optimality
basin of x̄ ∈ E the set:

B(x̄) := {x0 s.t. MRAP (x0, x̄) is optimal}.
x̄ is then called a turnpike exactly when B(x̄) is not empty.

Finally, we introduce the value function V (.), associated to the problem (4):

V (x0) = sup
x(.)∈Adm(x0)

J [x(.)]. (7)

3. A particular Hamilton-Jacobi equation

As we recall in the introduction, the uniqueness of (generalized) solutions of first order partial differential
equations defined on unbounded sets is known to be a delicate question. It can be obtained only for well chosen
classes of functions (see for instance [1]). For this reason we do not characterize the value function V (.) itself, but
a transformation of it, denoted by Z(.) in the sequel. The function Z(.) is solution of another Hamilton-Jacobi
equation, for which we are able to state a result of unique characterization in the class of BUC (bounded and
uniformly continuous) functions.
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Proposition 3.1. Under Assumptions (H1) and (H2) the function Z defined by

Z(x) = e−η
√
x2+1

(
V (x)− A(x)

δ

)
where η satisfies γ < η < δ, is the unique bounded and uniformly continuous viscosity solution of the following
Hamilton-Jacobi equation:

δZ(x)−
∣∣∣∣∣Z ′(x) + η

x√
x2 + 1

Z(x) +
e−η

√
x2+1

δ
(A′(x) + δB(x))

∣∣∣∣∣ = 0, x ∈ R. (8)

Proof. The proof is splitted into four steps.

Step 1. We derive a new equivalent problem.

Let fix T ≥ 0. By an integration by parts we obtain:

∫ T

0

e−δt[A(x(t)) +B(x(t))ẋ(t)]dt=
[
e−δtA(x(t))

−δ
]t
0

+
1
δ

∫ T

0

e−δt [A′(x(t))ẋ(t) + δB(x(t))ẋ(t)] dt

=
A(x0)
δ

− A(x(T ))e−δT

δ
+

1
δ

∫ T

0

e−δt [A′(x(t)) + δB(x(t))] ẋ(t)dt.

From the assumption (H2), we derive

|A(x(T ))|e−δT ≤ keγ|x(T )|e−δT

and from |ẋ(t)| ≤ 1, we have that for all x(.) ∈ Admx0 ,

|x(t)| ≤ |x0|+ t

therefore
|A(x(T ))|e−δT ≤ keγ|x0|e(γ−δ)T .

Now as we assume that γ − δ < 0, we deduce

A(x(T ))e−δT −→ 0 when T −→ +∞.

Then, the following limits (when they exist)

lim
T→∞

∫ T

0

e−δt [A(x(t)) +B(x(t))ẋ(t)] dt, lim
T→∞

∫ T

0

e−δt [A′(x(t)) + δB(x(t))] ẋ(t)dt

satisfy the equality∫ ∞

0

e−δt [A(x(t)) +B(x(t))ẋ(t)] dt =
A(x0)
δ

+
1
δ

∫ ∞

0

e−δt [A′(x(t)) + δB(x(t))] ẋ(t)dt (9)

(more precisely, if one exists, then the other one also).
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Therefore our problem and the new following problem

max
x(.)∈Adm(x0)

∫ ∞

0

e−δs [A′(x(s)) + δB(x(s))] ẋ(s)ds (10)

possess the same optimal solutions (if they exist). Then, we shall say that the optimization problems (4)
and (10) are equivalent, when both of them admit a solution.
Now we prove that the improper integral in (10) converges always on the set Adm(x0). Therefore the integral
in (3) also converges on Adm(x0) and the two problems are equivalent.
From |ẋ(t)| ≤ 1, we have∣∣∣∣∣

∫ T

0

e−δs [A′(x(s)) + δB(x(s))] ẋ(s)ds

∣∣∣∣∣ ≤
∫ T

0

e−δt |A′(x(t)) + δB(x(t))| dt,

and with the assumption (H2), we can deduce that∫ T

0

e−δs [A′(x(s)) + δB(x(s))] ẋ(s)ds≤k
∫ T

0

e−δteγ|x(t)|dt

≤k
∫ T

0

e−δteγ(|x0|+t)dt = keγ|x0|
∫ T

0

e(γ−δ)t

=keγ|x0|
[
e(γ−δ)t

γ − δ

]T
0

= keγ|x0|
(

e(γ−δ)T

γ − δ
− 1

)
.

We have assumed that γ − δ < 0, and therefore the improper integral of the new problem is an absolutely
convergent integral, then a convergent integral.

Denote W (.) the value function of the new problem (10). We deduce moreover:
i) ∫ ∞

0

∣∣e−δt [A′(x(t)) + δB(x(t))] ẋ(t)
∣∣ dt ≤ keγ|x0|

γ − δ
; (11)

ii) for the particular path x̃(.) such that ˙̃x(.) = 0 which belongs to Adm(x0), we have∫ ∞

0

e−δs [A′(x̃(s)) + δB(x̃(s))] ˙̃x(s)ds = 0

and therefore
W (x0) ≥ 0, ∀x0 ∈ R.

We then have established that:

V (x0)− A(x0)
δ

=
W (x0)
δ

≥ 0, ∀x0.

The function W (.) doesn’t belong to the class of the BUC functions. Therefore we introduce the function Z(.)
defined by

∀x, Z(x) = e−η
√
x2+1W (x)

δ
= e−η

√
x2+1

(
V (x)− A(x)

δ

)
(12)

where η satisfies γ < η < δ.

Step 2. The function Z(.) is BUC (bounded and uniformly continuous).
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In order to simplify notations we posit
ϕ(x) =

√
x2 + 1

and we define the following function Γ given by

Γt(x) = e−ηte−ηϕ(x)C(x+ ψ(t)), ∀(t, x).

From the definition of the value function of problem (10), for each ε > 0 there exists a path xε ∈ Admx0 such
that we have ∫ ∞

0

e−δtC(xε(t))ẋε(t)dt > W (x0)− ε

then we obtain the two following inequalities

−W (x0)
δ

= −
(
V (x0)− A(x0)

δ

)
> −1

δ

∫ ∞

0

e−δtC(xε(t))ẋε(t)dt− ε

δ
,

−Z(x0) = −
(
V (x0)− A(x0)

δ

)
e−ηϕ(x0) > −1

δ

∫ ∞

0

e−δte−ηϕ(x0)C(xε(t))ẋε(t)dt− ε

δ
·

Now, xε(.) being an absolutely continuous function, it satisfies therefore

xε(t) = x0 +
∫ t

0

ẋε(s)ds := x0 + ψ(t)

and the path x̄ε(.) defined by x̄ε(t) = x̄0 + ψ(t) belongs to Admx̄0 . This path is sub-optimal for the problem
(10), and we deduce that

V (x̄0)− A(x̄0)
δ

=
W (x̄0)
δ

≥ 1
δ

∫ ∞

0

e−δtC(x̄ε(t)) ˙̄xε(t)dt

then

Z(x̄0) =
(
V (x̄0)− A(x̄0)

δ

)
e−ηϕ(x̄0) ≥ 1

δ

∫ ∞

0

e−δte−ηϕ(x̄0)C(x̄ε(t)) ˙̄xε(t)dt.

Finally, by using the fact that ˙̄xε(t) = ẋε(t) = ψ̇(t) a.e., we can compute the difference:

Z(x̄0)− Z(x0) ≥ 1
δ

∫ ∞

0

e−δte−ηϕ(x̄0)C(x̄ε(t)) ˙̄xε(t)dt− 1
δ

∫ ∞

0

e−δte−ηϕ(x0)C(xε(t))ẋε(t)dt− ε

δ

=
1
δ

∫ ∞

0

e−δt
[
e−ηϕ(x̄0)C(x̄ε(t)) − e−ηϕ(x0)C(xε(t))

]
ψ̇(t)dt− ε

δ
·

From ψ̇(t) ≥ −1, which is valid for a.e. t, we obtain

Z(x̄0)− Z(x0)≥−1
δ

∫ ∞

0

e−δt
∣∣∣e−ηϕ(x̄0)C(x̄ε(t))− e−ηϕ(x0)C(xε(t))

∣∣∣ dt− ε

δ

=−1
δ

∫ ∞

0

e(η−δ)t
∣∣∣e−ηte−ηϕ(x̄0)C(x̄0 + ψ(t))− e−ηte−ηϕ(x0)C(x0 + ψ(t))

∣∣∣ dt− ε

δ
·

Finally in terms of the function Γ, we have established that

Z(x̄0)− Z(x0) ≥ −1
δ

∫ ∞

0

e(η−δ)t |Γt(x̄0)− Γt(x0)| dt− ε

δ
· (13)
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In order to obtain an estimate for the right hand side of the inequality (13), we evaluate the derivative of Γ
w.r.t. x. First we observe the two following facts:

i) [ϕ(x + ψ(t))]2 = [(x + ψ(t))2 + 1]2 = x2 + 1 + ψ2(t) + 2xψ(t) = ϕ2(x) + ψ2(t) + 2xψ(t).
But we know that |ψ(t)| ≤ t and that |x| ≤ ϕ(x), therefore

[ϕ(x + ψ(t))]2≤ϕ2(x) + ψ2(t) + 2|x|.|ψ(t)|
≤ϕ2(x) + ψ2(t) + 2ϕ(x)t
≤ϕ2(x) + t2 + 2ϕ(x)t = [ϕ(x) + t]2.

We can then deduce
ϕ(x + ψ(t)) ≤ ϕ(x) + t; (14)

ii)
|x+ ψ(t)| ≤ |x|+ |ψ(t)| ≤ ϕ(x) + t. (15)

From these two remarks, we obtain∣∣∣∣dΓt(x)
dx

∣∣∣∣= ∣∣∣eηte−ηϕ(x) [C′(x+ ψ(t)) − ηϕ′(x)C(x + ψ(t))]
∣∣∣

=e−η(t+ψ(x)) |C′(x + ψ(t))− ηϕ′(x)C(x + ψ(t))|
≤ e−η(x+ψ(t)) |C′(x + ψ(t))|+ e−η(x+ψ(t))η|ϕ′(x)|.|C(x + ψ(t))|.

But ϕ′(x) = |x|/√x2 + 1 ≤ 1, and with (H2) we obtain∣∣∣∣dΓt(x)
dx

∣∣∣∣ ≤ e−ηϕ(x+ψ(t))keγ|x+ψ(t)| + ηe−ηϕ(x+ψ(t))keγ|x+ψ(t)|.

Therefore from (14) and (15), we have∣∣∣∣dΓt(x)
dx

∣∣∣∣ ≤ (1 + η)ke(γ−η)(ϕ(x)+t).

Let us recall that by assumption that η > γ, and that ϕ(x) =
√
x2 + 1 ≥ 0, we finally obtain the following

bound ∣∣∣∣dΓt(x)
dx

∣∣∣∣ ≤ K := (1 + η)k.

Hence the derivative of Γ is uniformly bounded for all t and x.

We are now able to prove the main result of this step: the function Z(.) is BUC.

By the use of the mean-value theorem, we deduce that

∃x s. t. |Γt(x̄0)− Γt(x0)| = |x̄0 − x0|.
∣∣∣∣dΓt(x)

dx

∣∣∣∣ ≤ K|x̄0 − x0|

and therefore, using the assumption that η − δ < 0, we obtain that

Z(x̄0)− Z(x0)≥−1
δ

∫ ∞

0

e(η−δ)tK|x̄0 − x0|dt− ε

δ

=−K
δ
|x̄0 − x0|

[
e(η−δ)t

η − δ

]∞
0

− ε

δ
= − K

δ(δ − η)
|x̄0 − x0| − ε

δ
·
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This inequality holds for any ε > 0, and then we have

Z(x̄0)− Z(x0) ≥ − K

δ(δ − η)
|x̄0 − x0|.

Exchanging x̄0 and x0, we finally obtain

|Z(x̄0)− Z(x0)| ≤ K

δ(δ − η)
|x̄0 − x0|.

On the other hand, from (9) and (11), we deduce that for any x(.) ∈ Admx0 .∣∣∣∣∫ ∞

0

e−δt[A(x(t)) + B(x(t))ẋ(t)]dt− A(x0)
δ

∣∣∣∣≤ 1
δ

∫ ∞

0

e−δt |[A′(x(t)) + δB(x(t))]ẋ(t)| dt

≤ k

δ(δ − γ)
eγ|x0|.

Therefore ∣∣∣∣V (x0)− A(x0)
δ

∣∣∣∣ ≤ k

δ(δ − γ)
eγ|x0|,

and

|Z(x)| =
∣∣∣∣e−ηϕ(x)

(
V (x) − A(x)

δ

)∣∣∣∣ ≤ k

δ(δ − γ)
e−ηϕ(x)eγ|x|.

But we have ϕ(x) ≥ |x|, and therefore

|Z(x)| ≤ k

δ(δ − γ)
e(γ−η)|x|.

We then deduce that Z(x) → 0 when |x| → +∞, by the assumption that η > γ. Being Lipschitz, Z(.) is
continuous and it follows that it is bounded.

We then conclude that Z(.), being Lipschitz continuous and bounded, belongs to the class of BUC functions.

Step 3. The function Z(.) as a viscosity solution of (8).

From the dynamic programming equation applied to the value function V (.), we obtain, for all T ≥ 0, that

V (x0)= sup
x(.)∈Admx0

{∫ T

0

e−δt(A(x(t)) +B(x(t)))ẋ(t)dt+ e−δTV (x(T ))

}

= sup
x(.)∈Admx0

{[
e−δt

δ
A(x(t))

]0

T

+
1
δ

∫ T

0

e−δt[A′(x(t)) + δB(x(t))]ẋ(t)dt+ e−δTV (x(T ))

}

=
A(x0)
δ

+ sup
x(.)∈Admx0

{
1
δ

∫ T

0

e−δt[A′(x(t)) + δB(x(t))]ẋ(t)dt+ e−δT
(
V (x(T )) − A(x(T ))

δ

)}
·

From Z(x)eηϕ(x) = V (x)−A(x)/δ, we derive that

Z(x0)eηϕ(x0) = sup
Admx0

{
1
δ

∫ T

0

e−δt[A′(x(t)) + δB(x(t))]ẋ(t)dt+ e−δTZ(x(T ))eηϕ(x(T ))

}
· (16)
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From this last property we derive the main result of this step that establishes that the function Z(.) is a viscosity
solution of the Hamilton-Jacobi equation (8).

Let Φ be a test function, i.e. a C1 function which admits x0 as a (local) maximum. Without any loss of
generality, we can also suppose that Z(x0)− Φ(x0) = 0.
Therefore, at least locally, we have

Φ(x) ≥ Z(x)
and then

eηϕ(x0)Φ(x0)=eηϕ(x0)Z(x0)

= sup
Admx0

{
1
δ

∫ T

0

e−δt[A′(x(t)) + δB(x(t))]ẋ(t)dt+ e−δTZ(x(T ))eηϕ(x(T ))

}

≤ sup
Admx0

{
1
δ

∫ T

0

e−δt[A′(x(t)) + δB(x(t))]ẋ(t)dt+ e−δTΦ(x(T ))eηϕ(x(T ))

}
.

From this inequality, we can derive that

sup
Admx0

{
1
δ

∫ T

0

e−δt[A′(x(t)) + δB(x(t))]ẋ(t)dt+ e−δTΦ(x(T ))eηϕ(x(T ))

}
− eηϕ(x0)Φ(x0) ≥ 0. (17)

Now we remark that

d
dt

[
e−δt+ηϕ(x(t))Φ(x(t))

]
= e−δteηϕ(x(t)) [−δΦ(x(t)) + (ηϕ′(x(t))Φ(x(t)) + Φ′(x(t))) ẋ(t)] ,

and obtain∫ t

0

eηϕ(x(s)) [(ηϕ′(x(s))Φ(x(s)) + Φ′(x(s))) ẋ(s)− δΦ(x(s))] e−δsds = e−δteηϕ(x(t))Φ(x(t)) − eηϕ(x0)Φ(x0).

The inequality (17) becomes now

sup
Adm(x0)

[∫ t

0

{
1
δ
[A′(x(s)) + δB(x(s))]ẋ(s)e−ηϕ(x(s)) + (ηϕ′(x(s))Φ(x(s))

+ Φ′(x(s)) ) ẋ(s)− δΦ(x(s))
}

eηϕ(x(s))e−δs

ds
]
≥ 0

and therefore

sup
Adm(x0)

[
1
t

∫ t

0

{(
1
δ
[A′(x(s)) + δB(x(s))]e−ηϕ(x(s)) + ηϕ′(x(s))Φ(x(s)) + Φ′(x(s)) ) ẋ(s)

− δΦ(x(s))
}

eηϕ(x(s))e−δs

ds
]
≥ 0. (18)

Hence for the paths x(.) ∈ Adm(x0) such that ẋ(.) is continuous at 0, we obtain when t goes to 0:

sup
ẋ0∈[−1,+1]

[{(
1
δ
(A′(x0) + δB(x0))e−ηϕ(x0) + ηϕ′(x0)Φ(x0) + Φ′(x0)

)
ẋ0 − δΦ(x0)

}
eηϕ(x0)

]
≥ 0, (19)
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from which we derive that V is a viscosity sub-solution of (8) at x0, for any x0, i.e.

δΦ(x) −
∣∣∣∣1δ (A′(x) + δB(x))e−ηϕ(x) + ηϕ′(x)Φ(x) + Φ′(x)

∣∣∣∣ ≤ 0.

We now consider test functions Φ(.) such that Z(.)−Φ(.) admits x0 as a local minimum. We can also suppose
that Z(x0)− Φ(x0) = 0 and then, locally

Z(x)− Φ(x) ≥ 0.
From (16), we derive that

Φ(x0)eηϕ(x0) = Z(x0)eηϕ(x0) ≥ 1
δ

∫ t

0

[A′(x(s)) + δB(x(s))]ẋ(s)e−δsds+ e−δtZ(x(t))eηϕ(x(t))

where x(.) stands for any path in Adm(x0). We then deduce that

Φ(x0)eηϕ(x0) ≥ 1
δ

∫ t

0

[A′(x(s)) + δB(x(s))]ẋ(s)e−δsds+ Φ(x(t))eηϕ(x(t))e−δt

and we obtain

1
t

[
Φ(x(t))eηϕ(x(t))e−δt − Φ(x0)eηϕ(x0)

]
≤ −1

t

∫ t

0

1
δ
[A′(x(s)) + δB(x(s))]ẋ(s)e−δsds.

For the paths x(.) such that ẋ(.) is continuous at 0 we have

d
dt

[
Φ(x(t))eηϕ(x(t))−δt

]
t=0

≤ −1
δ
[A′(x0) + δB(x0)]ẋ(0)

which is equivalent to

Φ′(x0)ẋ(0)eηϕ(x0) + Φ(x0) (ηϕ′(x0)ẋ(0)− δ) eηϕ(x0) ≤ −1
δ
[A′(x0) + δB(x0)]ẋ(0)

and therefore [
Φ′(x0) + ηϕ′(x0)Φ(x0) +

1
δ
[A′(x0) + δB(x0)]e−ηϕ(x0)

]
ẋ(0)− δΦ(x0) ≤ 0.

This inequality is satisfied by any ẋ(0) ∈ [−1, 1] and we can then conclude that

δΦ(x) −
∣∣∣∣1δ (A′(x) + δB(x))e−ηϕ(x) + ηϕ′(x)Φ(x) + Φ′(x)

∣∣∣∣ ≥ 0.

We have finally proved that Z(.) is a viscosity solution of (8).

Step 4. Uniqueness of BUC solutions of the Hamilton-Jacobi equation (8).

We prove that uniqueness results for BUC solutions of first order p.d.e. apply (see for instance Th. 2.11
in [1]). Let us denote by H the Hamiltonian defined by

H(x, z, p) = δz −
∣∣∣∣1δ (A′(x) + δB(x))e−ηϕ(x) + ηϕ′(x)z + p

∣∣∣∣ ,
which corresponds to the left member of (8). We prove now that H satisfies the three following properties:
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i) Let z1 ≤ z2, we have

H(x, z2, p)−H(x, z1, p)= δ(z2 − z1) +
∣∣∣∣1δ (A′(x) + δB(x))e−ηϕ(x) + ηϕ′(x)z1 + p

∣∣∣∣
−

∣∣∣∣1δ (A′(x) + δB(x))e−ηϕ(x) + ηϕ′(x)z2 + p

∣∣∣∣
≥− |ηϕ′(x)(z2 − z1)|+ δ(z2 − z1)

= (δ − ηϕ′(x))(z2 − z1) ≥ (δ − η)(z2 − z1)

because δ − η > 0, which is the first assumption in [1];

ii) We also have

|H(x1, z, p)−H(x2, z, p)|=
∣∣∣∣− ∣∣∣∣p+ ηϕ′(x1)z +

1
δ
(A′(x1) + δB(x1))e−ηϕ(x1)

∣∣∣∣− δz

+
∣∣∣∣p+ ηϕ′(x2)z +

1
δ
(A′(x2) + δB(x2))e−ηϕ(x2)

∣∣∣∣ + δz

∣∣∣∣
≤| ηz(ϕ′(x2)− ϕ′(x1)) +

1
δ

[
(A′(x2) + δB(x2))e−ηϕ(x2)

−(A′(x1) + δB(x1))e−ηϕ(x1)
]
|

≤ η |z| |(ϕ′(x2)− ϕ′(x1))|+ 1
δ
| (A′(x2) + δB(x2))e−ηϕ(x2)

−(A′(x1) + δB(x1))e−ηϕ(x1) |
≤ (m1,R +m2,R)(|x1 − x2| (1 + |p|))

for |z| ≤ R, with mi,R(t) → 0, t→ 0, which is the second assumption in [1];

iii) We suppose that z ∈ [−R,R] and p ∈ B̄R (the compact R-disk), then H is uniformly continuous on
R× [−R,R]× R, because x 7→ ϕ′(x) and x 7→ (A′(x) + δB(x))e−ηϕ(x) are.

Therefore we have proved the announced proposition.

4. Turnpike optimality

Given the set E of solutions of the Euler equation (5), assumed to be non empty and finite, we define the
following function S, which is playing an important role in the following:

S(x) := max
x̄∈E

S(x, x̄).

Proposition 4.1. Let us assume (H1)− (H2), and suppose that E is non empty and finite. Then the following
statements are equivalent:

i) For any x0, there exists a turnpike x̄ ∈ E (i.e. there exists x̄ such that x0 ∈ B(x̄));
ii) We have

S(x) ≥ 0, ∀x ∈ R. (20)

Moreover the value function of the problem is given by

V (x) = (A(x) + S(x))/δ.
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Proof. Assume that the set E has a finite cardinality, and that (20) is fulfilled.
Let x0 be an initial condition and x̄ ∈ argmaxξ̄∈E S(x0, ξ̄).
Then using (6), we can write

J [MRAP (x0, x̄)] =
A(x0)
δ

+
S(x0, x̄)

δ
=
A(x0)
δ

+
S(x0)
δ

·

Therefore the MRAP (x0, x̄) are optimal paths for any x0 if and only if the function

x 7→ A(x)
δ

+
S(x)
δ

is the value function that we have characterized in our preceding proposition, that is to say

Z(x) = e−ηφ(x)S(x)
δ

· (21)

The proof of this result is then given in two steps:

Step 1. The function Z(.) is BUC.

Let x ∈ R, we have for a particular x̄ ∈ E:

Z(x) =
1
δ

∫ x̄

x

e−δ|x−ξ|e−ηϕ(x)[A′(ξ) + δB(ξ)]dξ.

From assumption H2, we obtain

|Z(x)| ≤ 1
δ
k

∫ x̄

x

e−δ|x−ξ|e−ηϕ(x)eγ|ξ|dξ =
k

δ

∫ x̄

x

e−δ|x−ξ|e−ηϕ(x)+γ|x|eγ(|ξ|−|x|)dξ.

From
|ξ| − |x| ≤ |ξ − x| and ϕ(x) ≥ |x| ,

we finally have

|Z(x)| ≤ k

δ

∫ x̄

x

e−δ|x−ξ|e(γ−η)|x|eγ|x−ξ|dξ =
k

δ

∫ x̄

x

e(γ−δ)|x−ξ|e(γ−η)|x|dξ.

This expression is bounded by the value at x̄ or at x0 depending on whether x̄ ≤ x0 or x̄ ≥ x0, because γ−δ < 0
and γ − η < 0. Therefore Z(.) is bounded.

Now we study the differentiability w.r.t. x of the new function W defined by

W (x, ξ̄) = e−ηϕ(x)S(x, ξ̄)
δ

·

When x < ξ̄, we have

W (x, ξ̄) =
1
δ

∫ ξ̄

x

eδ(x−ξ)e−ηϕ(x)[A′(ξ) + δB(ξ)]dξ =
eδxe−ηϕ(x)

δ

∫ ξ̄

x

e−δξ[A′(ξ) + δB(ξ)]dξ (22)

which is differentiable and whose derivative is given by:

∂W

∂x
(x, ξ̄) =

δ − ηϕ′(x)
δ

eδx−ηϕ(x)

∫ ξ̄

x

e−δξ[A′(ξ) + δB(ξ)]dξ − eδxe−ηϕ(x)

δ
e−δx[A′(x) + δB(x)]. (23)
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When x > ξ̄, we have

W (x, ξ̄) =
1
δ

∫ ξ̄

x

e−δ(x−ξ)e−ηϕ(x)[A′(ξ) + δB(ξ)]dξ =
e−δxe−ηϕ(x)

δ

∫ ξ̄

x

eδξ[A′(ξ) + δB(ξ)]dξ (24)

which is also differentiable, with:

∂W

∂x
(x, ξ̄) =

−δ − ηϕ′(x)
δ

e−δx−ηϕ(x)

∫ ξ̄

x

eδξ[A′(ξ) + δB(ξ)]dξ − e−δxe−ηϕ(x)

δ
eδx[A′(x) + δB(x)]. (25)

At x = ξ̄, we compute the following limits

lim
x→ξ̄−

∂W

∂x
(x, ξ̄) = lim

x→ξ̄+
∂W

∂x
(x, ξ̄) = −e−ηϕ(ξ̄)

δ
(A′(ξ) + δB(ξ)),

therefore W is also differentiable at ξ̄. Moreover we observe that, for any x,

∂W

∂x
(x, ξ̄) =

−sgn(x − ξ̄)δ − ηϕ′(x)
δ

∫ ξ̄

x

e−δ|x−ξ|e−ηϕ(x)[A′(ξ) + δB(ξ)]dξ − e−ηϕ(x)

δ
(A′(x) + δB(x)), (26)

and we obtain ∣∣∣∣∂W∂x (x, ξ̄)
∣∣∣∣ ≤ δ + η

δ

∫ ξ̄

x

e−δ|x−ξ|e−ηϕ(x)keγ|ξ|dξ +
e−ηϕ(x)

δ
keγ|x|.

This last expression is bounded because γ− η < 0 and γ− δ < 0, the exponential being bounded by their values
at x or at ξ̄ depending on whether x ≤ ξ̄ or x ≥ ξ̄.
Therefore we conclude that W is uniformly continuous with respect to x. But Z is given by

Z(x) = max
ξ̄∈E

W (x, ξ̄), ∀x ∈ R (27)

which establishes that Z is BUC.
Step 2. The function Z(.) is a viscosity solution of the Hamilton-Jacobi equation (8).
From (26) we immediately obtain

∂W

∂x
(x, ξ̄) +

1
δ
e−ηϕ(x)[A′(x) + δB(x)] +ηϕ′(x)W (x, ξ̄) = −sgn(x− ξ̄)δW (x, ξ̄). (28)

We now have to consider two cases:
(1) argmaxξ̄W (x, ξ̄) = {x̄};
(2) argmaxξ̄W (x, ξ̄) not given by a single x̄.

In the first case, at any x such that argmaxξ̄W (x, ξ̄) = {x̄}, the function Z is differentiable and we have

Z ′(x) =
∂W

∂x
(x, x̄).

From (27) and (28), we deduce∣∣∣∣Z ′(x) +
1
δ
e−ηϕ(x)[A′(x) + δB(x)] + ηϕ′(x)Z(x)

∣∣∣∣ = δ |Z(x)|

therefore Z is an classical solution of the Hamilton-Jacobi equation (8) as soon as Z(x) ≥ 0.
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In the second case: Z is no more differentiable, and its sub-differentials are:

D+Z(x)=∅

D−Z(x)=co
{
∂W

∂x
(x, x̄) , x̄ ∈ argmax

ξ̄∈E
W (x, ξ̄)

}
=

{
σδZ(x)− ηϕ′(x)Z(x) − e−ηϕ(x)

δ
[A′(x) + δB(x)] , σ ∈ [−1, 1]

}
.

It then suffices to prove that Z is a viscosity super-solution for the Hamilton-Jacobi equation (8).
For p− ∈ D−Z(x), we have

δZ(x)−
∣∣∣∣p− +

1
δ
e−ηϕ(x)[A′(x) + δB(x)] + ηϕ′(x)Z(x)

∣∣∣∣ = δZ(x)(1 − σ)

which is non negative for all σ ∈ [−1, 1] if and only if Z(x) ≥ 0.
We can now easily deduce from this proposition the well known sufficient condition in the turnpike litera-

ture (2), when the function C has only one change of sign (see point 1 of the corollary below). Furthermore, we
show that the usual sufficient condition, which is required to be fulfilled globally, is also a necessary condition
but only locally (see point 2 of the corollary).

Corollary 4.2. Assume (H1)–(H2),
1. If the function C(.) has exactly one zero x̄ on R and fulfills the property.

C(x)(x̄ − x) ≥ 0 (29)

at any x ∈ R, then the most rapid approach path to x̄ is optimal from any initial condition x0 ∈ R;
2. For any x̄ ∈ E such that B(x̄) is non empty, there exists a neighborhood V of x̄ such that the property

(29) is fulfilled on V.

Proof.
1. When x < x̄, C(x) is positive and thus S(x, x̄) is also positive. For x = x̄, one has S(x̄, x̄) = 0. When

x > x̄, C(x) is negative and thus S(x, x̄) is positive. So, S(x) = S(x, x̄) is always non negative, and we conclude
by Proposition 4.1 that the MRAP (x0, x̄) is optimal for any x0 ∈ R.

2. Assume that B(x̄) is non empty. We first show that x̄ necessarily belongs to it. Take any x0 ∈ B(x̄), then
the MRAP (x0, x̄) is an optimal trajectory that reaches x̄ at a finite time, say at τ . Then, applying Bellman’s
principle, the stationary trajectory x̄(.) is optimal from the initial condition x(τ) = x̄, so x̄ ∈ B(x̄).

Consider the set I := {x < x̄ | Sx(x, x̄) > 0} ∪ {x > x̄ | Sx(x, x̄) < 0}. The expression of Sx(x, x̄):

Sx(x, x̄) =

∣∣∣∣∣−C(x) + δS(x, x̄) if x ≤ x̄

−C(x)− δS(x, x̄) if x ≥ x̄

gives:
I = {x < x̄ | − C(x) + δS(x, x̄) > 0} ∪ {x > x̄ | − C(x) − δS(x, x̄) < 0} .

The functions x 7→ C(x) and x 7→ S(x, x̄) being continuous , we deduce that I is open set. Let us show that x̄
cannot belong to the closure of I. If it does, then
- either there exists x̄− < x̄ such that Sx(., x̄) is positive on ]x̄−, x̄[,
- either there exists x̄+ > x̄ such that Sx(., x̄) is negative on ]x̄, x̄+[.
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Assume for instance that the first case is verified (the treatment of the second case is similar). Recall that
S(x̄, x̄) = 0, then one has S(., x̄) < 0 on ]x̄−, x̄[. Consider then a trajectory x̃(.) ∈ Adm(x̄) which is a
MRAP (x̄, ξ) for ξ ∈]x̄−, x̄[, and write

J [x̃(.)]=
A(x̄)
δ

+
1
δ

∫ ξ

x̄

e−δ(y−x̄)C(y)dy

=
A(x̄)
δ

+ eδ(x̄−ξ)
∫ ξ

x̄

eδ(ξ−y)C(y)dy

=
A(x̄)
δ

− eδ(x̄−ξ)S(ξ, x̄) >
A(x̄)
δ

thus a contradiction with the optimality of the stationary trajectory x̄(.), for which J [x̄(.)] = A(x̄)/δ. So, x̄
does not belong to I, thus the existence of a neighborhood V of x̄ such that

∀x ∈ V ,
x ≤ x̄ ⇒ Sx(x, x̄) ≤ 0 ⇒ S(x, x̄) ≥ 0 ⇒ C(x) = δS(x, x̄)− Sx(x, x̄) ≥ 0

x ≥ x̄ ⇒ Sx(x, x̄) ≥ 0 ⇒ S(x, x̄) ≤ 0 ⇒ C(x) = −δS(x, x̄)− Sx(x, x̄) ≤ 0

which exactly implies that the condition (29) is fulfilled on V .

5. An example

We now give an example for which the Euler equation is singular and admits more than one stationary
solutions, none of them satisfying (2), or (29) everywhere. From the condition (20), we deduce the optimality
of MRAP (x0, x̄) for one or several turnpikes.

Let 0 < a < b and consider the problem:

max
x(.)

∫ →∞

0

e−tx2(t) [2ẋ(t)(a+ b− x(t)) − ab] dt with ẋ(t) ∈ [−1,+1] a.e.

In this example we have

A(x) = −abx2, B(x) = 2x2(a+ b− x) and δ = 1.

Then the Euler equation is:

C(x) = −2x(ab+ (a+ b)x− x2) = −2x(a− x)(b − x),

which admits three solutions: x̄ ∈ {0, a, b} (see Fig. 1).
We observe that x̄ = 0 and x̄ = b satisfies (only locally) the classical condition (29). From Proposition 4.1,

we prove now that depending on the values of a and b:
- MRAP (x0, 0) or MRAP (x0, b) is optimal for any initial condition x0;
- there exists x∗ ∈]0, b[ such that MRAP (x0, 0) (resp. MRAP (x0, b)) is optimal for x0 ≤ x∗ (resp. x0 ≥ x∗).
It is easy to verify the following properties:

x ∈ [0, b] ⇒ S(x, a) ≤ 0
x ≤ a⇒ { S(x, 0) ≥ 0 et S(x, b) ≥ S(0, b) }
x ≥ b⇒ S(x, 0) ≥ S(b, 0)
x ≥ a⇒ S(x, b) ≥ 0.
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A′(x)+δ B(x)

0 a b x

Figure 1. The function x 7→ C(x).

Therefore we can conclude by Proposition 4.1 and Corollary 4.2 that:
1. MRAP (x0, a) is never optimal for any initial condition x0;
2. MRAP (x0, 0) is optimal for all x0 as soon as S(b, 0) ≥ 0;
3. MRAP (x0, b) is optimal for all x0 as soon as S(0, b) ≥ 0;
4. If x→ max{S(x, 0), s(x, b)} is non negative for all x ∈ [0, b], then MRAP (x0, 0) or MRAP (x0, b) is optimal.

For x ∈ [0, b], we compute the following functions

S(x, 0) = e−x
∫ x

0

2y(a− y)(b− y)eydy et S(x, b) = −ex
∫ b

x

2y(a− y)(b− y)e−ydy,

with the help of a symbolic computation software:
S(x, 0) =2

[
x3 − (a+ b+ 3)x2 + (ab + 2(a+ b+ 3)) (x− 1 + e−x)

]
S(x, b) =2

[−x3 + (a+ b− 3)x2 + (−ab+ 2(a+ b− 3))(x+ 1 + ex−b)
+(b2 − 4a+ 2b+ 12)ex−b ] .

(30)

Then for different values of a et b, we obtain the three following possible cases:

1. For a = 2 et b = 3, we have
S(b, 0) = 2(22e−3 − 1) > 0;

and we can conclude that the paths that are going with a most rapid velocity to x̄ = 0 are optimal (see Fig. 2);
2. For a = 1 et b = 4, we obtain

S(0, b) = 64e−4 > 0,
and we can conclude that the paths that are going with a most rapid velocity to x̄ = b are optimal (see Fig. 3);
3. For a = 2 et b = 5, we obtain {

S(b, 0) = 2(30e−5 − 5) < 0

S(0, b) = 2(37e−5 − 2) < 0
but we observe that max{S(x, 0), s(x, b)} is non negative on [0, b]. Let x∗ ∈]0, b[ be such that S(x∗, 0) = S(x∗, b)
(see Fig. 4). Then there is a competition between the two turnpikes x̄ = 0 and x̄ = b: for x0 ≤ x∗ (resp. x0 ≥ x∗),
it is optimal to go as quickly as possible to x̄ = 0 (resp. x̄ = b). Let us underline that in this last case there
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0 b x

S(x,b)

S(x,0)

Figure 2. Functions x 7→ S(x, 0) and x 7→ S(x, b) for a = 2 and b = 3.

0
b x

S(x,0)

S(x,b)

Figure 3. Functions x 7→ S(x, 0) and x 7→ S(x, b) for a = 1 and b = 4.

b0 x

S(x,b)

S(x,0)

x*

Figure 4. Functions x 7→ S(x, 0) and x 7→ S(x, b) for a = 2 and b = 5.

is no longer uniqueness of the turnpike for the initial condition x0 = x∗, which also corresponds to a non-
differentiability point of the value function.

6. Conclusion

For singular scalar problems of calculus of variation in infinite horizon, we have proposed a new necessary
and sufficient condition for the optimality of MRAPs. This condition generalizes the standard one which is only
sufficient and valid only in the case of a unique solution of the singular Euler equation. Our result is established
with the characterization of a transformation of the value function, in terms of viscosity solutions of a particular
Hamilton-Jacobi, which provides global optimality conditions. Our condition also applies when one is dealing
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with singular Euler equations that possess more than one solutions. The lack of differentiability of the value
function is connected to the existence of competition between most rapid approaches towards several singular
arcs.
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