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ABSTRACT VARIATIONAL PROBLEMS WITH VOLUME CONSTRAINTS

Marc Oliver Rieger1

Abstract. Existence results for a class of one-dimensional abstract variational problems with volume
constraints are established. The main assumptions on their energy are additivity, translation invariance
and solvability of a transition problem. These general results yield existence results for nonconvex
problems. A counterexample shows that a naive extension to higher dimensional situations in general
fails.
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1. Introduction

Recently, constrained variational problems of the type




Minimize E(u) :=
∫

Ω

f(u(x),∇u(x)) dx,

u ∈W 1,p(Ω,R), Ω ⊂ R
n,

|{u = 0}| = α, |{u = 1}| = β

(1)

have been studied under different assumptions on the energy density f [1, 3, 5]. This was initially suggested by
Gurtin in 1992, see also [2]. The aim of the present article is to find general conditions on the energy E(u)
which entail the existence of solutions to volume constrained problems of type (1) in the one-dimensional case,
and which generalize the results of Morini and Rieger [3] to energy functionals which are not neccessarily of
integral form.

In Section 2 two existence results for a very general class of admissible energies are presented. Their proofs
turn out to be surprisingly simple. In Section 3 these results are applied to minimization problems of integral
type which are nonconvex in u′. In Section 4 a higher dimensional example illustrates how non-smoothness of
the boundary may lead to non-existence of solutions.
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2. Abstract variational problems

We consider the following one-dimensional variational problem on an open interval I = (a, b):{
Minimize E(u, I), for u ∈ W 1,p(I, [0, 1]),
|{u = 0}| = α, |{u = 1}| = β,

(2)

where α+ β < b− a = |I| and 1 < p ≤ +∞.
The aim of this section is to prove two existence results under certain assumptions on the energy E. We

collect the main assumptions in the following definition:

Definition 2.1 (Admissible energies). Let I = (a, b) be an open interval in R, let 1 < p ≤ +∞, and let I
denote the set of all open intervals in I. Consider a function

E : W 1,p(I, [0, 1])× I → R,

bounded from below, with E(u, T ) = E(v, T ) for T ∈ I whenever u|T = v|T . (Thus we sometimes write E(u, T )
even if u is only defined on T .)

Then E is called an admissible energy if it satisfies the following three conditions:
(i) let T ∈ I be an arbitrary open interval (x0, x1) ⊂ I. Consider the problem


Minimize E(u, T ), for u ∈ W 1,p(T, [0, 1]),
such that there exist ξ0, ξ1 ∈ [x0, x1]
with u(ξ0) = 0, and u(ξ1) = 1.

(3)

This problem admits a solution (u, ξ0, ξ1);
(ii) (Additivity) for x0, x1, x2 ∈ I, x0 < x1 < x2 and u ∈W 1,p(I, [0, 1]) we have:

E(u, (x0, x1)) + E(u, (x1, x2)) = E(u, (x0, x2));

(iii) (Translation invariance) for all x0, x1 ∈ Ī, u ∈W 1,p((x0, x1), [0, 1]) and τ ∈ R such that x0+τ, x1+τ ∈ Ī
we have

E(u, (x0, x1)) = E(u(· − τ), (x0 + τ, x1 + τ)).

It turns out to be useful to extend the notion of admissible energies to functions which are only piecewise
in W 1,p:

Definition 2.2. Let E be an admissible energy on W 1,p(I, [0, 1])× I. Let (xi)i=1,...,n ∈ I with xi+1 > xi, and
u|(xi,xi+1) ∈ W 1,p((xi, xi+1), [0, 1]), then define E(u) :=

∑n
i=1 E(u, (xi, xi+1)).

A special type of admissible energies is given in the following definition:

Definition 2.3. We call an energy E symmetric if for all (x0, x1) ∈ I and all u ∈W 1,p((x0, x1), [0, 1]) we have

E(u(x0 + ·), (0, x1 − x0)) = E(u(x1 − ·), (0, x1 − x0)).

The properties (ii) and (iii) of Definition 2.1 can be easily verified for a given energy E. However, condition (i)
is a little involved. The following remark gives an easy characterization of (i) for symmetric energies:

Remark 2.4. If E is symmetric, and satisfies (ii) and (iii), then E is an admissible energy if and only if for
every T := (x0, x1) ⊂ I the Dirichlet boundary value problem{

Minimize E(u, T ), for u ∈W 1,p(T, [0, 1]),
u(x0) = 0, and u(x1) = 1, (4)

admits a solution.
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Figure 1. The shift operator S cuts out the piece of the function between x1 and x2 (left
picture), glues the remaining parts of the function together and inserts the cut out piece at x0

(right).

Proof. Any solution of (4) obviously solves (3). Hence the condition is sufficient. Necessity can be proved using
the same argument as in Lemma 2.7, see below. �

Before we state existence results for problem (2) we give some useful lemmata:

Lemma 2.5 (Energy conserving shifts). Let E be an admissible energy. Let x0, x1, x2 ∈ I = (a, b) with x2 > x1

and x2 − x1 ≤ b − x0. We define an operation S((x1, x2), x0) on the functions which are piecewise W 1,p on I
in the following way (compare Fig. 1): If x1 ≥ x0 we define

S((x1, x2), x0)u(x) :=




u(x), x < x0,

u(x+ x1 − x0), x0 ≤ x < x0 + x2 − x1,

u(x− (x2 − x1)), x0 + x2 − x1 ≤ x < x2,

u(x), x ≥ x2,

else we define

S((x1, x2), x0)u(x) :=




u(x), x < x1,

u(x+ x2 − x1), x1 ≤ x < x0,

u(x+ x1 − x0), x0 ≤ x < x0 + x2 − x1,

u(x), x ≥ x0 + x2 − x1.

The so defined operator S is energy conserving, i.e. E(S((x1, x2), x0)u, I) = E(u, I).

The shift operator S((x1, x2), x0) can be described as “cutting out” the values of a function on the interval
(x1, x2) and inserting them at the position x0.

Proof. The proof follows immediately from (ii) and (iii) of the definition of admissible energies. �
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Figure 2. Left: the function ũ solves problem (3) on the interval (α, 1−β). Right: construction
of the function u.

The operation defined in this lemma is the basic step in the constructions of the following results.

Lemma 2.6 (Existence for the relaxed problem). Let E be an admissible energy for the open interval I,
continuous with respect to the strong W 1,p-topology on all open sets in I. Then for α, β > 0 with α + β < |I|
the relaxed problem {

Minimize E(u, I), where u ∈W 1,p(I, [0, 1]),
|{u = 0}| ≥ α, |{u = 1}| ≥ β,

(5)

admits a solution u.
Moreover we can construct a solution with the following properties:

{x ∈ I, u(x) = 0} = A0 ∪R0,

{x ∈ I, u(x) = 1} = A1 ∪R1, (6)

where A0, A1 are intervals closed in I and R0, R1 are countable sets.

Proof. For simplicity take I = (0, 1). We will first prove that the following function u (compare Fig. 2) is a
minimizer to the relaxed problem. Let (ũ, ξ0, ξ1) be a minimizer of (3) on (α, 1− β). Without loss of generality
assume ξ0 < ξ1. Define

u(x) :=




ũ(x+ α), x < ξ0 − α,
0, ξ0 − α ≤ x < ξ0,
ũ(x), ξ0 ≤ x ≤ ξ1,
1, ξ1 < x ≤ ξ1 + β,
ũ(x− β), x > ξ1 + β.

Take an arbitrary function w ∈ W 1,p(I, [0, 1]) with E(w, I) ≤ E(u, I), satisfying |{w = 0}| ≥ α and |{w = 1}| ≥
β. The following construction will exclude the case E(w, I) < E(u, I). Moreover it will show that u can be
chosen such that the additional properties as stated in the lemma are satisfied.

We denote T := {x ∈ I, w(x) ∈ (0, 1)}. We refer to T as the “transition set”.
T is an open set, hence there exists a countable set of disjoint open intervals Tj with T = ∪jTj. Consider

one of these intervals Tj = (l, r). Since w is continuous, there are only three possibilities for w(l):
(i) w(l) = 0;
(ii) w(l) = 1;
(iii) w(l) ∈ (0, 1) and l = 0, i.e. the set Tj lies on the left boundary of (0, 1).

Case (iii) can only occur once, call the corresponding set TL = (0, â). (In the case that w(0) ∈ {0, 1}, you may
set TL = ∅ and â = 0.) Using the same reasoning for w(r) we define a set TR = (b̂, 1) where w(r) ∈ (0, 1) and
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Figure 3. Left: illustration of the decomposition of the transition set T into open intervals
TL (left boundary), TR (right boundary), T 00

j and T 11
j (possibly infinitely many), T 01

j and T 10
j

(finitely many). Right: the construction in the proof of Lemma 2.6 collects iteratively the sets
TL, then T 00

j , then T 01
j and T 10

j , then T 11
j and finally TR using energy preserving shifts. The

construction shows that an optimal minimizer of the relaxed problem (5) is given by u (see
text).

get the following decomposition of T :

T =

(⋃
i

T 00
i

)
∪

 i01⋃

i=1

T 01
i


 ∪


 i10⋃

i=1

T 10
i


 ∪

(⋃
i

T 11
i

)
∪ TL ∪ TR,

such that for T yz
i = (l, r) we have u(l) = y, u(r) = z.

Since w ∈ W 1,p(I, [0, 1]), we see that i01 and i10 are finite. (Otherwise
∫ |w′|p = +∞.) By continuity of w,

there are now three possibilities: either i01 = i10 + 1, i01 = i10 − 1, or i01 = i10. We consider here the first
case and assume without loss of generality that w(â) = 0 and w(b̂) = 1. The other cases can be handled in
a similar way. We define a function û with E(û, I) = E(w, I) by an iterative energy conserving construction
using Lemma 2.5 in several steps (see Fig. 3).

Step 1: First define T 00
0 := TL and v0 := w. For T 00

j =: (lj , rj) and s :=
∑j−1

k=0(rk − lk) define iteratively
vj := S(T 00

j , s)vj−1 for j ≥ 1. The limit function limj vj denote by û1. (Since
∑ |T 00

j | is bounded, it is easy
to see that vj converges in W 1,p.) By continuity of E we have E(û1, I) = limj E(vj , I) = E(w, I), and for the
limit point x1 :=

∑
k(rk − lk) we have limx→x1 û1(x) = 0, since w ∈ W 1,p. The result of step 1 is a function û1

with transition set T̂ := {û1(x) ∈ (0, 1)} represented by the disjoint sum

T̂ = T̂0 ∪

 i01⋃

i=1

T̂ 01
i


 ∪


 i10⋃

i=1

T̂ 10
i


 ∪

(⋃
i

T̂ 11
i

)
∪ T̂R,

such that T̂0 = (0, x1) \ R, R countable set, and for all i and y, z ∈ {0, 1} and for T̂ yz
i = (l, r) we have again

û1(l) = y, û1(r) = z and T̂R = (b̂, 1).
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Step 2: Now continue in the same way by shifting the values of û1 on T̂ 01
i and T̂ 10

i for all (finitely many) i in
the order T̂ 01

1 , T̂ 10
1 , T̂ 01

2 , T̂ 10
2 . . . Call the result û2 and define x2 := x1 + ∪i01

i |T̂ 01
i |+ ∪i10

i |T̂ 10
i |. We have now for

Ť := {û2(x) ∈ (0, 1)} the representation

Ť = Ť0 ∪
(⋃

i=1

Ť 11
i

)
∪ ŤR,

where Ť0 = (0, x2) \ R, R countable set, and Ť 11
i and ŤR satisfy the same conditions as T̂ 11

i and T̂R above.
Since we assumed i01 = i10 + 1, we get limx→x2 û2(x) = 1.

Step 3: Finally shift the values of û2 on Ť 11
i following the idea of Step 1. The resulting function û3 has only

finitely many non-trivial intervals on which û3 ∈ {0, 1}. By applying apropriate shifts, we can assume that ũ3

has only two such intervals. Call the closure of these intervals Ã0 = [a0, b0] and Ã1 = [a1, b1].

Step 4: Now define δ := |Ã0| − α and ε := |Ã1| − β. By construction be have δ, ε ≥ 0. If δ > 0 then
choose a xi0 ∈ [0, 1 − β + α] such that ũ3(ξ0) = 0 and define û4 := S((a0, a0 + δ), xi0. Applying the same
idea for the case ε > 0 we obtain a function û5, and we immediately see that the triple (û5|(0,1−(β+α)), x1, x2)
solves (3). Hence E(û5, (0, 1 − (β + α))) = E(ũ, (α, 1 − β)), and E(û5, I) = E(u, I). Finally shift Ã0 and Ã1

in order to get a continuous function with only two non-trivial intervals on which the function is zero resp.
one. Call the resulting function û and these intervals A0 and A1. Taking everything together we deduce that
E(w, I) = E(û, I) = E(u, I). Thus u and û are both minimizers of (5), and by construction û satisfies the
additional properties (6). �

Lemma 2.7 (Boundary conditions). Let E be a symmetric admissible energy on I = (a, b) and there exists a
solution to the relaxed problem (5). Then there exists a solution u to (5) with u(a) = 0 and u(b) = 1.

Proof. For simplicity take I = (0, 1). Let w be a solution to (5) as given by Lemma 2.6. First, we show that
we can construct a solution w̃ to (5) with w̃(0) = 0 or w̃(0) = 1.

If w(0) = 0 or w(0) = 1 we are done. Hence let us assume that L := min{x ∈ I, w(x) ∈ {0, 1}} is positive. In
the following we assume that w(L) = 0 and construct a function w̃ with w̃(0) = 0. In the case where w(L) = 1
the same construction would give us w̃(0) = 1.

We distinguish two cases (see Fig. 4):

Case 1: E(w, (0, L/2)) ≥ E(w, (L/2, L)).
In this case, we define

w̃(x) :=
{
w(L − x), x < L/2,
w(x), x ≥ L/2.

By the symmetry of E, we have E(w̃, I) ≤ E(w, I), moreover w̃(0) = w(L) = 0.

Case 2: E(w, (0, L/2)) ≤ E(w, (L/2, L)).
In this case, the construction of w̃ is nearly as easy: we choose x0 > L such that w(x0) = w(L/2). (By the

intermediate value theorem such an x0 exists.) Then we define

w̃(x) :=




w(x + L), x ≤ x0 − L,
w(x0 − x− L/2), x0 − L < x ≤ x0 − L/2,
w(x − x0 + L/2), x0 − L/2x ≤ x0,
w(x), x > x0.

Again by the symmetry of E we have E(w̃, I) ≤ E(w, I). Moreover w̃(0) = w(L) = 0.
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Figure 4. Starting from a solution w of the relaxed problem, we construct another solution
w̃ with w̃(0) = 0. To this aim, we compare the energy of w on the shaded regions (left).
Depending on which is larger, we perform one of the constructions illustrated on the right.

Applying the same construction at x = 1, we get a function v with v(0), v(1) ∈ {0, 1}. If v(0) = 0 and
v(1) = 1 we just set u := v. If v(0) = 1 and v(1) = 0 we set u := v(1 − ·). For the remaining cases we use the
following construction (performed without loss of generality for the case v(0) = v(1) = 1).

Let L1 := min{x ∈ I, v(x) = 0} and L2 := max{x < L1, v(x) = 1}. Define ṽ := S((0, L2), 1 − L2)v, then ṽ
is continuous since v(0) = v(L2) = v(1) = 1 and E(ṽ, I) = E(v, I). By a final application of the construction
above (see Fig. 4) we can now get a function u with u(0) = 0, u(1) = 1 and E(u, I) = E(w, I). �

Using the lemmata proved above we can prove the following existence result:

Theorem 2.8 (Existence for small γ). Let I = (a, b) be an open interval, 1 < p ≤ +∞, and α, β > 0 with
α+ β < |I|. Let E be a symmetric admissible energy, continuous with respect to the W 1,p-topology on all open
sets in I. Then there exists a constant γ0 > 0, such that the abstract variational problem (2) admits a solution
if γ := |I| − (α+ β) < γ0.

Proof. First, we see that by (ii) and (iii) the solvability of the problem depends only on γ, but not on α and β.
Hence we can speak of a solution for a specific transition width γ instead of α and β. An illustration of our
construction is given in Figure 5.

Now we consider the relaxed problem (5) for |{u = 0}| ≥ α0 and |{u = 1}| ≥ β0, where we assume without
loss of generality that I = (0, 1). By Lemma 2.6 and Lemma 2.7 there exists a solution u to this problem with
(0, α0) ⊂ {u = 0}, (1 − β0, 1) ⊂ {u = 1} and T := u−1((0, 1)) satisfying T̄ ⊂ [α0, 1− β0].
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β
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u
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ε x0 γ0 − γ

Figure 5. Left: a solution u for the relaxed problem (5) also solves the problem (2) for certain
α0 and β0. Middle: the relaxed solution v for α := α0 and β = β0 + (γ0 − γ) > β0 intersects
with u at some point x0. Right: a solution w of the relaxed problem (5) satisfying the first
constraint of (2) can be constructed by combining u and v. An analogous construction for the
second constraint yields a solution for (2).

Now define γ0 := |T |. Since u is continuous we have γ0 > 0. Moreover, u is a solution of the non-
relaxed problem (2) for the transition width γ0. Now take γ ∈ (0, γ0), and let v be a solution of (5) with
the constraints |{v = 0}| = α0 =: α and |{v = 1}| = β0 + (γ0 − γ) =: β. Our goal is to modify v to a
function w such that |{x ∈ (α, 1 − β) : w(x) = 0}| = 0 and |{x ∈ (α, 1 − β) : w(x) = 1}| = 0. We prove
the first statement, the latter one can be asserted in a similar way. By Lemma 2.6 and Lemma 2.7 we can
assume that v|(α,α+ε] = 0, v|[1−β,1] = 1 and v|(α+ε,1−β) > 0 a.e. for some ε ≥ 0. If ε = 0, the function v
already satisfies |{x ∈ (α, 1 − β), v(x) = 0}| = 0, hence we have only to consider the case where ε > 0. Since
u(α+ε) ≥ v(α+ε) = 0 and u(1−β) ≤ v(1−β) = 1, by the intermediate value theorem for continuous functions
there exists a point x0 ∈ [α+ ε, 1− β] such that u(x0) = v(x0). Now define the function

w(x) :=
{
u(x), x < x0,
v(x), x ≥ x0.

Since u is a minimizer of (5) with transition width γ0 we have in particular E(u, (α, 1−β0)) ≤ E(w, (α, 1−β0))
and E(u, (α, x0)) +E(u, (x0, 1− β0)) ≤ E(v, (α, x0)) +E(u, (x0, 1− β0)). Since u|(α,x0) = w|(α,x0), we conclude
that E(w, (α, x0)) = E(u, (α, x0)) ≤ E(v, (α, x0)). Hence E(w, (α, 1 − β0)) ≤ E(v, (α, 1 − β0)) and thus w is a
solution of (5) with |{x ∈ (α, 1 − β) : w(x) = 0}| = 0. �

The continuity condition of Lemma 2.6 and Theorem 2.8 is only used if a minimizer u of the relaxed problem
may have infinitely many transition layers Tj = (l, r) with u(l) = u(r) ∈ {0, 1}. The following corollary catches
a situation where this can be excluded a priori:

Corollary 2.9. Let I = (a, b) be an open interval, 1 < p ≤ +∞, and α, β > 0 with α + β < |I|. Let E be a
symmetric admissible energy such that for all T ∈ I

E(0, T ) = min{E(u, T ), u|∂T = 0},
E(1, T ) = min{E(u, T ), u|∂T = 1}·

Then there exists a constant γ0 > 0, such that the abstract variational problem (2) admits a solution whenever
γ := |I| − (α+ β) < γ0.

Proof. We follow the proof of Lemma 2.6 and Theorem 2.8. The transition layers of the form T 00
j and T 11

j

can be omitted, by the following argument: if e.g. u|(x0,x1) ∈ (0, 1) and u(x0) = u(x1) = 0, we have
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E(u, (x0, x1)) ≥ E(0, (x0, x1)) and we can replace u by 0 on (x0, x1). Hence the proofs work without using
the continuity of E. �

The following theorem gives existence for arbitrarily large transition layers, but only for a special class of
energies:

Theorem 2.10 (Existence for special energies). Let I = (a, b) be an open interval, 1 < p ≤ +∞, and let
α, β > 0 be such that α + β < |I|. Let E be an admissible energy continuous with respect to the strong
W 1,p-topology on all open set in I. Suppose that there exists a constant function λ ∈ (0, 1) such that

E(λ, T ) = min
µ∈[0,1]

E(µ, T ) (7)

for all nontrivial T ∈ I. Then there exists a solution to the abstract variational problem (2).
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Figure 6. Left: assume the solution of the relaxed problem is zero on the interval [x1, x1 + δ].
Middle: shift this interval to the right. Right: insert a constant piece with the optimal value λ
such that the resulting function is continuous.

Proof. The following construction is illustrated in Figure 6. Let v be a solution of the relaxed problem (5)
for I, α and β as given above satisfying for some δ, ε ≥ 0 the constraints |{v = 0}| = α+ δ, |{v = 1}| = α+ ε.
By Lemma 2.6 such a v exists and we can assume that there exists an x1 ∈ I such that v|[x1,x1+δ] = 0. Let
ṽ := S((x1, x1 + δ), 1− δ)v. Let x0 be such that ṽ(x0) = λ. Then define

u(x) :=




ṽ(x), x < x0,
λ, x0 ≤ x ≤ x0 + δ,
ṽ(x− δ), x > x0 + δ.

By applying Lemma 2.5 and Condition (7) we have E(u, I) ≤ E(v, I), moreover |{u = 0}| = |{v = 0}| − δ = α.
In the same way we can take care of the second constraint, and the so defined u solves the original problem (2). �

From Theorem 2.8 we have immediately the following corollary which was proved in Theorem 2.1 (H2) of [3]
using an ODE method:

Corollary 2.11. Let θ be a continuous function with argmin θ ⊂ [0, 1] and min θ = 0, let I be an open interval,
and α, β > 0 with α+ β < |I|. Then there exists a constant γ0 > 0 such that the problem

 Minimize E(u) :=
∫

I

1
2
|u′(x)|2 + θ(u(x)) dx,

|{u = 0}| = α, |{u = 1}| = β,

admits a minimizer in W 1,2(I,R), provided that γ := |I| − (α+ β) < γ0.
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Proof. For T ∈ I take

E(u, T ) :=
∫

T

1
2
|u′(x)|2 + θ(u(x)) dx.

Let u be a minimizer for E(·, ·) obtained by Theorem 2.8. The only condition that has to be checked is that
no function v ∈ W 1,2(I,R) \W 1,2(I, [0, 1]) has a lower energy then u, but this can be excluded by a simple
construction, cutting out the set I0 where v(x) 6∈ [0, 1] and inserting an interval of length |I0| where we define
the function as a constant v0 such that θ(v0) = 0. This gives a new function w with values in [0, 1] and using
the assumption argmin θ ⊂ [0, 1] one easily checks that

E(v) =
∫

I

1
2
|v′(x)|2 + θ(v(x)) dx

=
∫

I\I0

1
2
|v′(x)|2 + θ(v(x)) dx +

∫
I0

1
2
|v′(x)|2 + θ(v(x)) dx

>

∫
I\I0

1
2
|v′(x)|2 + θ(v(x)) dx =

∫
I

1
2
|w′(x)|2 + θ(w(x)) dx

= E(w).

This gives a contradiction to our assumption, and hence such a v cannot exist. �

Similarly, the following result is an immediate consequence of Theorem 2.10 (compare Th. 2.1 (H1) in [3]):

Corollary 2.12. Let 1 < p < +∞, and let f ∈ C1([0, 1]×R,R) satisfy f(a, b) ≥ C|b|p for some constant C > 0.
Furthermore assume that f is convex in the second variable, and that there exists a constant λ ∈ (0, 1) such that
f(λ, 0) = 0. Then the problem


 Minimize E(u) :=

∫
I

f(u(x), u′(x)) dx,

|{u = 0}| = α, |{u = 1}| = β,

admits a minimizer in W 1,p(I).

Admissible energies are not neccessarily of (Lebesgue) integral form. This is illustrated by the following
example (suggested to me by Massimiliano Morini):

Remark 2.13. Let F : [0, 1] → R be a continuous function, then

E(u, (x0, x1)) := F (u(x0))− F (u(x1))

is an admissible energy on W 1,2 which is continuous with respect to the strong W 1,2-norm.

We can even have symmetric admissible energies which are not of integral form:

Remark 2.14. Let F : [0, 1] → R be a continuous function and define v(x) := u′(x) whenever u′(x) exists, and
v(x) := 0 elsewhere, then

E(u, (x0, x1)) := F (v(x0))− F (v(x1))

is a symmetric admissible energy on W 1,p for p > 2.

In the next section we will apply Theorem 2.8 to nonconvex variational problems with volume constraints.
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3. Applications to nonconvex problems

The main result of this section is:

Theorem 3.1 (Existence for nonconvex problems). Let 1 < p < +∞, and let f ∈ C1([0, 1] × R,R) be a
nonnegative function with f(a, b) ≥ C|b|p for a constant C > 0. Moreover, assume that

(a) f(0, 0) = 0;
(b) sgn∂af(a, b1) = sgn∂af(a, b2) for all a ∈ [0, 1] and all b1, b2 ∈ R;
(c) f(a, b) = f(a,−b) for all a ∈ [0, 1] and all b ∈ R.

Then there exists γ0 > 0 such that the abstract variational problem (2) with the energy

E(u, T ) :=
∫

T

f(u(x), u′(x)) dx

admits a W 1,p-solution if γ := |I| − (α+ β) < γ0.

The main purpose of this theorem is to illustrate a concrete application of the abstract theory, hence we are
not attempting to give the most general result possible.

Proof. To apply Theorem 2.8 we have to prove that E is symmetric, continuous and satisfies the conditions (i–
iii). E is obviously continuous and symmetric and satisfies (ii) and (iii), hence it remains to assert (i). Here
we apply Remark 2.4, so we only have to check the existence of a solution to the transition problem. For this
purpose we consider the convexified transition problem (4), where we replace f by f∗∗ (the convexification of
f with respect to the second variable). Due to the convexity of f∗∗ and the coercivity condition that we have
assumed, standard results from the calculus of variation guarantee the existence of a solution u ∈ W 1,p(I). If
f(u(x), u′(x)) = f∗∗(u(x), u′(x)) for a.e. x ∈ I, then the function u also solves the transition problem for f . If
not, let M ⊂ I denote the set of points x such that f(u(x), u′(x)) 6= f∗∗(u(x), u′(x)). M is open and hence a
union of disjoint open intervals. We deduce from the coercivity bound f(a, b) ≥ C|b|p that for all y ∈ R there
exists a minimal |y1| with y1/y ≥ 1 such that f(·, y1) = f∗∗(·, y1) and a maximal |y0| with y0/y ≤ 1 such that
f(·, y0) = f∗∗(·, y0). By this and Condition (b) we can decompose M (up to a set of measure zero) into open
intervals Mi = (mi, ni) such that on each Mi the function sgn∂uf(u, u′) is constant and u′(x) ∈ (y0, y1) for all
x ∈Mi such that

f∗∗(u(x), u′(x)) =
y1 − u′(x)
y1 − y0

f(u(x), y0) +
u′(x) − y0
y1 − y0

f(u(x), y1)

and f(·, u′(yi)) = f∗∗(·, u′(yi)) for i = 0, 1.
Consider now the case that ∂uf(u(x), u′(x)) < 0 on Mi. Then we define the affine interpolation

vi(x) :=




u(x) for x 6∈Mi,
u(mi) + y0(x−mi) for mi < x ≤ ξ,
u(ni)− y1(x− ni) for ξ < x < ni,

where

ξ :=
u(ni)− u(mi)− (ni −mi)y1

y0 − y1
·

Now
∫

Mi
f∗∗(v′i(x), vi(x)) dx ≤ ∫

Mi
f∗∗(u′(x), u(x)) dx, and for every x ∈ Mi we have by construction that

f∗∗(vi(x), v′i(x)) = f(vi(x), v′i(x)). An analogous argument applies to the cases where ∂uf(u(x), u′(x)) ≥ 0.
The constraint vi ∈ [0, 1] is ensured by the Condition (a).

Define v|M̄i
:= vi to get a solution to the nonconvex problem (4). Thus Condition (i) is valid. It remains to

apply Theorem 2.8 to get the existence result. �
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The following corollary is an immediate consequence of Theorem 3.1.

Corollary 3.2. Let 1 < p < +∞, let θ ∈ C1([0, 1],R+) and φ ∈ C1(R,R+). Assume that φ is symmetric and
φ(b) ≥ C|b|p for a constant C > 0, and that φ(0) = 0. Then there exists a γ0 > 0 such that

 Minimize E(u) :=
∫

I

φ(u′) + θ(u) dx,

|{u = 0}| = α, |{u = 1}| = β,

admits a solution if γ := |I| − (α+ β) < γ0.

Without a coercivity condition, existence for the transition problem fails in general. A typical example is
given by f(u, u′) := exp(−|u′|2). However, we have the following result, which can be derived from the proof of
Theorem 3.1:

Corollary 3.3. Let 1 < p ≤ +∞, and let f ∈ C1([0, 1] × R,R) be a nonnegative function, symmetric in the
second variable. Moreover assume that

(a) f(0, 0) = 0;
(b) sgn∂uf(a, b1) = sgn∂uf(a, b2) for all a ∈ [0, 1] and all b1, b2 ∈ R;
(c) the transition problem (4) for f∗∗, the convexification of f with respect to the second variable, admits a

W 1,p-solution;
(d) for all y ∈ R there exists b′ with b′/y ≥ 1 such that φ(b′) = φ∗∗(b′).

Then there exists a γ0 > 0 such that the abstract variational problem (2) with the energy E(u, I0) :=
∫

I0
f(u(x),

u′(x)) dx admits a W 1,p-solution if γ := |I| − (α+ β) < γ0.

As a trivial example of an energy density which satisfies the conditions of Corollary 3.3, but violates the
coercivity condition of Theorem 3.1, take f(a, b) := sin2 b.

4. Higher dimensional problems

It would seem natural to extend the one-dimensional existence results above, and in particular Theorem 2.10,
to higher dimensional problems. However, without specific assumptions, e.g. on the smoothness of the boundary
of the domain Ω ⊂ R

n, an extension of Theorem 2.10 to the higher dimensional case fails. We demonstrate this
with the following counterexample:

Example 4.1. Let p > 2. There exist a bounded domain Ω ⊂ R
2 and a smooth, positive, convex function ψ

with C1|Y |p ≤ ψ(Y ) ≤ C2|Y |p for some C1, C2 > 0 such that there exists no γ0 > 0 with the property that the
volume constraint problem 

 Minimize E(u) :=
∫

Ω

ψ(|∇u(x)|) + |u(x)| dx,
|{u = 0}| = α, |{u = 1}| = β

(8)

admits a W 1,p-solution for all α, β with γ := |Ω| − (α+ β) ≤ γ0.
Outline of the proof: first we define ψ. Let ψ|(−1,1) := 1

2 | · |2, ψ|R\(−2,2) := | · |p and interpolate smoothly, such
that ψ is convex. We consider now an auxiliary problem: We want to find sequences αj , βj with αj + βj < |Ω|
and γj := |Ω| − (αj + βj) → 0, such that the volume constraint problems

 Minimize E(u) :=
∫

Ω

1
2
|∇u(x)|2 + |u(x)| dx,

|{u = 0}| = αj , |{u = 1}| = βj

(9)

do not admit a W 1,p-solution.
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Figure 7. The set Ω and the transition layers Tj.

We use Proposition 2.6 of [3] which asserts that the one-dimensional volume constrained problem (2) with
E(u, I) :=

∫
I

1
2 |u′|2 + |u| dx does not admit a solution for γ >

√
2. Define Ω := R0 ∪ R ⊂ R

2 (see Fig. 7), where

R0 := (−1, 0)× (0, 1/9), R :=
∞⋃

i=1

Ri, Ri := [0,M)× (101−i, 10−i),

and M > 0 will be chosen later. As sequences αj and βj we set

αj :=
1 +M

9
− 1

4
10−jM − 2× 10−j, βj :=

1
4
10−jM,

hence γj = 2× 10−j. We denote the W 1,p-solution of the relaxed problem
 Minimize E(u) :=

∫
Ω

1
2
|∇u(x)|2 + |u(x)| dx,

|{u = 0}| ≥ αj , |{u = 1}| ≥ βj

by uj .
We claim that the transition layer Tj := {x ∈ Ω : uj(x) ∈ (0, 1)} of the minimizer uj has the form Tj =

{(x1, x2) ∈ Rj : 3M/4 − √
2 < x1 < 3M/4}. Since γj > 10−j

√
2 = |Tj |, we conclude that uj cannot be a

solution of problem (9). Since uj can be approximated by functions satisfying the volume constraints with
energy arbitrarily close to the energy of uj , this proves the non-solvability of the auxiliary problem (9).

Since W 1,p(Ω) ⊂ C(Ω), the transition layer is open. The main idea is now to observe that the energy of a
transition layer T can be estimated from below by Cl(T ), where l(T ) is the “length” of the transition layer and
C > 0 is a constant. More precisely we define for every line g in Ω

l(g) := |{x ∈ g : nx ∩ {u = 0} 6= ∅, nx ∩ {u = 1} 6= ∅,
where nx is the line through x orthogonal to g}·

We denote the energy of the solution of the one-dimensional transition problem on (0, t) by φ(t). By Proposition
2.6 in [3] we know that φ(t) ≥ φ(

√
2). Hence we conclude that

E(Tj) :=
∫

Tj

1
2
|∇u|2 + |u| dx ≥

∫ l(g)

0

φ
(√

2
)

= l(g)φ
(√

2
)
.

Now define
l(Tj) := sup

g
l(g).
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If Tj does not connect the upper and lower boundary in some Ri, i ≤ j, then l(Tj) ≥ C0 10−jM , and hence
the energy is bounded from below by E1 := C0φ(

√
2) 10−jM . If Tj connects the upper and lower boundary in

some Ri, i < j, then its energy can be estimated from below by E2 := 10−iφ(
√

2), this can be shown by means
of an argument similar to the one given below.

If Tj is as in our claim and uj(x1, x2) = v(x1−3M/4−2) on Tj, where v is the solution of the one dimensional
transition problem on (0,

√
2), then the energy on the transition layer is 10−jφ(

√
2). This is smaller than E1

and E2 for M sufficiently large.
Now we use the estimate

∫
Tj

1
2
|∇uj|2 + |uj | dx ≥

∫ h

l

∫ M

0

1
2
|∂xuj|2 + |uj | dxdy

with l :=
∑j−1

i=1 10−i, h :=
∑j

i=1 10−i. We can estimate further where we denote x1(y) := inf{x ∈ (0,M) :
(x, y) ∈ Tj}, x2(y) := sup{x ∈ (0,M) : (x, y) ∈ Tj} and get

∫ h

l

∫ M

0

1
2
|∂xuj|2 + |uj | dxdy ≥

∫ h

l

∫ x2(y)

x1(y)

φ(x2(y)− x1(y)) dxdy.

Now, since φ is convex (see [3]), applying Jensen’s inequality we deduce that a straight transition layer

Tj = (3M/4−√
2, 3M/4)× (l, h)

= {(x1, x2) ∈ Rj : 3M/4−
√

2 < x1 < 3M/4}

is optimal. Since |Tj| = 10−j
√

2 < γj , we have non-existence for the auxiliary problem (9).
Now let wj be a solution for the relaxed version of (8) for αj , βj , then since ψ(wj) ≥ 1

2 |w|2 and ψ(uj) = 1
2 |uj|2,

we have E(wj) ≥
∫

1
2 |∇wj |2 + |wj | ≥

∫
1
2 |∇uj |2 + |uj|. And since |∇uj | ≤ 1 (see [3]), we get E(wj) ≥ E(uj),

where equality holds only if uj = wj . Hence we have proved non-existence for the original problem. �

In the last example we made crucial use of the non-smoothness of the boundary of Ω. In fact it seems natural
to propose the following conjecture:

Conjecture 4.2. Let Ω ⊂ R
n be a smoothly bounded domain. Suppose that f : [0, 1] × R → R is positive,

continuous, strictly convex in the second variable and that there exists a constant C > 0 such that f(a, b) ≥ C|b|p
for all a ∈ [0, 1]. Then there exists a γ0 > 0 with the property that the volume constraint problem

{
Minimize E(u) :=

∫
Ω f(u(x), |∇u(x)|) dx,

|{u = 0}| = α, |{u = 1}| = β

admits a W 1,p-solution for all α, β with γ := |Ω| − (α+ β) ≤ γ0.
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