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ENTROPY AND COMPLEXITY OF A PATH
IN SUB-RIEMANNIAN GEOMETRY

Frédéric Jean1

Abstract. We characterize the geometry of a path in a sub-Riemannian manifold using two metric
invariants, the entropy and the complexity. The entropy of a subset A of a metric space is the minimum
number of balls of a given radius ε needed to cover A. It allows one to compute the Hausdorff dimension
in some cases and to bound it from above in general. We define the complexity of a path in a sub-
Riemannian manifold as the infimum of the lengths of all trajectories contained in an ε-neighborhood
of the path, having the same extremities as the path. The concept of complexity for paths was
first developed to model the algorithmic complexity of the nonholonomic motion planning problem in
robotics. In this paper, our aim is to estimate the entropy, Hausdorff dimension and complexity for a
path in a general sub-Riemannian manifold. We construct first a norm ‖ · ‖ε on the tangent space that
depends on a parameter ε > 0. Our main result states then that the entropy of a path is equivalent to
the integral of this ε-norm along the path. As a corollary we obtain upper and lower bounds for the
Hausdorff dimension of a path. Our second main result is that complexity and entropy are equivalent
for generic paths. We give also a computable sufficient condition on the path for this equivalence to
happen.
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1. Introduction

In a sub-Riemannian geometry, submanifolds may have a Hausdorff dimension greater than their topological
dimension. What values can the Hausdorff dimension have? More generally, what are the metric properties of
sub-Riemannian submanifolds? In this paper we will answer these questions for one-dimensional submanifolds,
or paths, using two geometric invariants, the entropy and the complexity.

The entropy of a subset A of a metric space is the minimum number of balls of a given radius ε needed
to cover A. This value indicates how well one can approximate A by a finite set. The use of entropy in sub-
Riemannian geometry was suggested by Gromov [7] (p. 277). It allows one to compute the Hausdorff dimension
in some cases and to bound it from above in general.

We define the complexity of a path in a sub-Riemannian manifold as the infimum of the lengths of all
trajectories contained in an ε-neighborhood of the path, having the same extremities as the path. Trajectories
here refer to the control system associated with the sub-Riemannian manifold. The concept of complexity for
paths was first developed for the nonholonomic motion planning problem in robotics (see Belläıche et al. [2]), to

Keywords and phrases. Complexity, Hausdorff dimension, metric entropy, non-linear control, nonholonomic systems, sub-
Riemannian geometry.
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model the algorithmic complexity of the problem. This application is described in [10], which uses the results of
this paper. Gromov also introduced a concept equivalent to the complexity in [7] (p. 278). As with the entropy,
this concept is based on an approximation by finite sets, there called ε-chains.

The Hausdorff dimension of paths, and more generally of submanifolds, is known for the case where the sub-
Riemannian manifold is equiregular (Gromov [7]). However neither the entropy nore the Hausdorff dimension
have been estimated for the general case.

In this paper, our aim is to estimate the entropy, Hausdorff dimension and complexity for the general case.
On a sub-Riemannian manifold, we construct a norm ‖ · ‖ε on the tangent space that depends on a parameter
ε > 0 (see Sect. 3.1). Our first main result, Theorem 3.10, is an estimate of the entropy in terms of this ε-norm.

Theorem. The entropy e
(
q(·), ε) of a path q(t), t ∈ [0, T ], satisfies

e
(
q(·), ε) � ∫ T

0

‖q̇(t)‖εdt,

where � denotes the equivalence up to multiplicative constants (uniform with respect to ε, for ε small enough).

As a corollary we obtain upper and lower bounds for the Hausdorff dimension of a path. Our second main
result links complexity to entropy.

Theorem. For a generic path q(t), t ∈ [0, T ], the complexity σ
(
q(·), ε) satisfies

σ
(
q(·), ε) � e

(
q(·), ε) � ∫ T

0

‖q̇(t)‖εdt.

We give also a computable sufficient condition on the path for this equivalence to happen. This condition
precises the meaning of generic here.

The organization of this paper is the following. In Section 2, we give some recalls of sub-Riemannian geometry
and we define the entropy and the complexity of a path. We show there how the complexity of paths allows to
compute the algorithmic complexity of nonholonomic motion planning. Section 3 contains the definition of the
ε-norm and our main theorems which are illustrated by several examples. The proofs are postponed in Section 4
for a particular case and in Section 5 for the general case.

2. Paths in sub-Riemannian geometry

2.1. Sub-Riemannian manifolds

We recall here some definitions and basic results of sub-Riemannian geometry. More general presentations
can be found in Belläıche [1] (the main reference for this section) or in Kupka [13].

Let M be a real analytic manifold and X1, . . . , Xm analytic vector fields on M . We denote by (Σ) the
associated control system

q̇ =
m∑

i=1

uiXi(q), q ∈M, (Σ)

where the control function u(t) = (u1(t), . . . , um(t)) takes values in R
m. The choice of a measurable function

u(t), t ∈ [0, τ ], and of an initial point p ∈M defines a trajectory γ of (Σ). The length of γ is

length(γ) =
∫ τ

0

‖γ̇(t)‖γ(t)dt,
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where for q ∈M and v ∈ TqM , we set

‖v‖q = inf

{√
u2

1 + · · ·+ u2
m |

m∑
i=1

uiXi(q) = v

}
· (1)

The sub-Riemannian distance is defined by d(p, q) = inf length(γ), where the infimum is taken on all the
trajectories of (Σ) joining p to q. The manifold M endowed with the distance d, denoted (M,d), is called the
sub-Riemannian manifold attached to X1, . . . , Xm.

Let L1(X1, . . . , Xm) be the set of linear combinations, with real coefficients, of the vector fields X1, . . . , Xm.
We define recursively Ls = Ls(X1, . . . , Xm) by setting Ls = Ls−1 + [Ls−1,L1], for s = 2, 3, . . . Due to Jacobi
identity Ls is the set of linear combinations of all commutators of X1, . . . , Xm with a length ≤ s. The union L
of all Ls is a Lie sub-algebra of the Lie algebra of vector fields on M . It is generated by the commutators
[[Xi1 , Xi2 ], . . . , Xik

]. Such a commutator is denoted [XI ], where I is the multi-index I = (i1, . . . , ik) and its
length is |I| = k.

For p ∈M , let Ls(p) be the subspace of TpM which consists of the values X(p) taken, at the point p, by the
vector fields X belonging to Ls. The following condition on X1, . . . , Xm:

⋃
s≥1

Ls(p) = TpM at every point p ∈M,

is called the rank condition. When this condition is satisfied, at each point p ∈ M there is a smallest integer
r = r(p) such that Lr(p)(p) = TpM . This integer is called the degree of nonholonomy at p. For each point
p ∈M , there is an increasing sequence of dimensions, called the growth vector ,

1 ≤ dimL1(p) ≤ · · · ≤ dimLs(p) ≤ · · · ≤ dimLr(p)(p) = n.

We say that p is a regular point for (M,d) if the growth vector remains constant in some neighborhood of p.
Otherwise we say that p is a singular point for (M,d).

Finally, one says that the system (Σ) is controllable if the sub-Riemannian distance between any two points
of M is finite.

Chow’s theorem (Chow [5]). If M is connected and if X1, . . . , Xm satisfy the rank condition, then the sys-
tem (Σ) is controllable.

Notice that the conditions are also necessary here, since X1, . . . , Xm are analytic vector fields (Nagano [17],
Sussmann [19]).

In the sequel we always assume that the rank condition is satisfied. The sub-Riemannian distance d is then
continuous and the topology defined by d is the original topology of M .

2.2. Entropy and Hausdorff dimension

Let (X, d) be a metric space and A ⊂ X a bounded subset.

Definition 2.1. The metric entropy of A is the function ε 7→ e(A, ε), defined for ε > 0, where e(A, ε) is the
minimal number of closed balls of radius ε in X needed to cover A.

Notice that originally, as conceived by Kolmogorov [12], the ε-entropy is defined as the logarithm log2 e(A, ε).
It represents the amount of information we need to describe a point in A with the accuracy ε or to digitally
memorize A with this accuracy.
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Definition 2.2. The entropy dimension of A, denoted dimeA, is the greatest lower bound of β for which
e(A, ε) ≤ (1/ε)β for ε small enough, that is

dimeA = lim
ε→0

log e(A, ε)
log(1

ε )
·

The entropy dimension characterizes the asymptotic behavior of e(A, ε) as ε tends to 0 and reflects the geometry
of A in X .

A maybe more usual characterization of the geometry of a space uses the Hausdorff dimension (and measure),
introduced by Hurewicz and Wallman [8].

For β ≥ 0, the β-dimensional Hausdorff measure, denoted mβ(A), is defined as limε→0mβ(A, ε), where

mβ(A, ε) = inf

{ ∞∑
i=1

rβ
i , ri ≤ ε radius of balls Bi, and A ⊂

∞⋃
i=1

Bi

}
·

For a given A, mβ(A) is a decreasing function of β, infinite when β is less than a certain value, and zero when
β is greater than this value.

Definition 2.3. The Hausdorff dimension of A is the real number:

dimHA = sup{β | mβ(A) = ∞} = inf{β | mβ(A) = 0}·

Entropy and Hausdorff dimension are related by the following properties (Comte and Yomdin [6]).

Proposition 2.4. (i) For all β ≥ 0, mβ(A) ≤ limε→0 ε
βe(A, ε), which implies

dimHA ≤ dimeA.

(ii) If e(A, ε) ∼ ε−β0 , then dimHA = dimeA = β0.

In the case where the metric space is a sub-Riemannian manifold (M,d), some results already exist for the
Hausdorff dimension and the entropy of a submanifold of M .

When (M,d) is equiregular (every point in M is regular), the Hausdorff dimension of the manifold is given by

dimHM =
∑
s≥1

s
(
dimLs(p)− dimLs−1(p)

)

for any point p ∈ M (see Mitchell [16] and Vershik and Gershkovich [20]). Gromov [7] (p. 104) extends this
result to Hausdorff dimension of a submanifold N , again in an equiregular manifold:

dimHN = max
q∈N


∑

s≥1

s
(
dimLs

N (q)− dimLs−1
N (q)

) , (2)

where Ls
N(q) is the linear subspace Ls(q) ∩ TqN .

On the other hand, Belläıche [1] computes the entropy and the Hausdorff dimension of a non equiregular
sub-Riemannian manifold, the Grušin plane. This last example is interesting because it does not fit in the
case (ii) of Proposition 2.4. It follows that the asymptotic behavior of entropy cannot be deduced only from
the entropy (or Hausdorff) dimension.
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2.3. Complexity

Let (M,d) be the sub-Riemannian manifold attached to a system (Σ). We call path a one-dimensional
analytic submanifold of M which is diffeomorphic to a closed interval in R. A parameterization of a path C is
an analytic diffeomorphism q : [0, T ]→ C, t 7→ q(t).

Submanifold means here embedded submanifold. This implies in particular the following property:

Proposition 2.5. Let C be a path and q(t) a parameterization of C. There exist constants ρ and ν > 0 such
that, if d(q(t), q(t′)) < ρ, then

d(q(t), q(t′)) ≥ ν|t− t′|.
Proof. The assertion is clear when we replace d by a Riemannian distance on M . And there exists a Riemannian
distance on M which is everywhere smaller than the sub-Riemannian distance (Gromov [7], p. 98). �

Given a path C in M and ε > 0, we introduce the tubular neighborhood of C

Tube(C, ε) =
⋃
q∈C

B(q, ε),

where B(q, ε) is the sub-Riemannian ball centered at q of radius ε. We denote also by a and b the extremities
of C.

Definition 2.6. We call complexity of C the function ε 7→ σ(C, ε), defined for ε > 0, with

σ(C, ε) = inf


 length(γ)

ε

∣∣∣ γ trajectory of (Σ)
γ joins a to b
γ ⊂ Tube(C, ε)


 · (3)

We are interested here in the asymptotic behavior of the complexity. In particular we want to compare this
behavior to the one of the entropy. With this aim in view, we introduce some notations. We write f(ε) � g(ε) if
there exists κ and ν > 0 such that, for ε small enough, f(ε) ≤ κg(νε). We say that f(ε) and g(ε) are equivalent,
and we write f(ε) � g(ε), when f(ε) � g(ε) and g(ε) � f(ε).

Remark 2.7.
• In [9], following ideas of Gromov [7] (p. 278), we propose a different definition of complexity: it is the

minimum number of points in an ε-chain in C, where an ε-chain in C is a sequence of points v0 = a, v1,
. . . , vk = b in C with d(vi, vi+1) ≤ ε for i = 0, . . . , k − 1. Both definitions are however equivalent: the
minimum number of points in an ε-chain is greater than σ(C, ε) but smaller than σ(C, 3ε).

• As suggested by Gromov [7] (p. 278), the entropy and the complexity allow to define ε-lengths of a path,
generalizing the notion of length for the trajectories:

lengthe
ε(C) = ε× e(C, ε) and lengthσ

ε (C) = ε× σ(C, ε).

A natural question is to ask if these ε-lengths are equivalent. The answer will follow directly from the
comparison between entropy and complexity.

Proposition 2.8. Let C be a path in the sub-Riemannian manifold (M,d). Then

σ(C, ε) � e(C, ε).

Proof. Let C ⊂M be a path with extremities a and b, and B1, . . . , BN be balls of radius ε covering C.
Any two points in the same ball can be linked by a trajectory of length ≤ 2ε included in the ball. Consider

now two balls Bi, Bj with a non empty intersection. Any couple of points in Bi ∪ Bj can be linked by a
trajectory of length ≤ 4ε included in Bi ∪Bj .
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By induction we show then that a and b can be linked by a trajectory of length ≤ 2Nε included in
⋃
Bi.

The result follows from the definitions of σ and M . �

Unfortunately the reverse inequality e(C, ε) � σ(C, ε) does not always hold. The obstruction to this inequality
is the presence in the path of points with particular metric properties.

Definition 2.9. A point q in a path C is called a metric cusp if, for every positive constants k and ρ, there
exist two points q1 and q2 in C different from q and such that:

• q lies between q1 and q2;
• d(q1, q2) ≤ ρ;
• d(q1, q) ≥ kd(q1, q2).

The sentence “q ∈ C between q1 and q2” is well defined since C is diffeomorphic to an interval of R. Notice also
that the extremities of the path are never metric cusps.

In Euclidean geometry (a special case of sub-Riemannian geometry), metric cusps coincide with the usual
algebraic cusps (take y =

√|x| in R
2 for instance). Of course a curve containing an algebraic cusp can not be a

path (it is not a submanifold). In sub-Riemannian geometry however, paths may have metric cusps, as we will
see in Section 3.6.

2.4. Application to nonholonomic motion planning

The complexity of paths is related to the algorithmic complexity of a Control Theory problem: nonholonomic
motion planning in the presence of obstacles.

We consider a nonholonomic control system, that is a system (Σ). We assume it is controllable. Obstacles
are closed subsets F of the configuration space M . The open set M − F is called the free space. The motion
planning problem is: given a and b in M −F , find a trajectory of (Σ) contained in the free space, and joining a
to b.

This problem has a solution if and only if a and b are in the same connected component of M − F (Chow’s
theorem). Since M − F is an open set, connectivity is equivalent to arc connectivity. Then a and b belong to
the same connected component if there is an arc in M − F linking a to b.

This argument suggests a general method to solve the complete problem. This method, called “Approximation
of a collision-free holonomic path” (see Laumond et al. [15]), has two steps:

• find a curve C in the free space linking a to b (C is the “collision-free holonomic path”);
• approximate C by a trajectory of (Σ), close enough to be contained in the free space.

What is the algorithmic complexity of this method? The complexity of the first step (motion planning problem
for holonomic systems) is well modeled and understood. It depends on the geometric complexity of the obstacles
and the robot in the real world (see Canny [4] or Schwartz and Sharir [18]).

We are interested here in the second step which is due to the nonholonomy. Let us precise first what is a
trajectory approximating a given curve. Let C be a curve and Tube(C, ε) the tube of radius ε centered at C. We
denote by ρ the biggest radius ε for which Tube(C, ε) is contained in the free space. We say that a trajectory
of (Σ) approximates C if it is contained in Tube(C, ρ) and if it has the same extremities as C.

Now, recall that the complexity of an algorithm is the minimal number of elementary steps needed to get the
result. Since the parameter ρ represents the size of the free space around C, we consider that the elementary
step of our method is “to build a trajectory of length ρ”. The number of elementary steps in a trajectory is

σ(γ) =
length(γ)

ρ
·

We define the algorithmic complexity σm(C) of the second step as the greatest lower bound of σ(γ) for all
trajectories γ approximating C (other kind of complexities can be defined, see Belläıche et al. [3] and Jean [10]).
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When C is a path, this algorithmic complexity can be deduced from the values of the complexity of the path C.
Indeed, σm(C) is equal to σ(C, ε) taken at ε = ρ.

3. Entropy and complexity of a path

Let (M,d) be the sub-Riemannian manifold attached to a system X1, . . . , Xm. We assume that M is an
orientable manifold and we denote by det the determinant n-form.

3.1. Shape of sub-Riemannian balls

We fix a path C ⊂M and we denote by r the maximum of the degree of nonholonomy on C.
We consider the families of vector fields ([XI1 ], . . . , [XIn ]) such that each bracket [XIj ] is of length |Ij | ≤ r

and we denote by Ir the (finite) set of these families.

Definition 3.1. Let p ∈ C and ε > 0. We say that the family I = ([XI1 ], . . . , [XIn ]) ∈ Ir is associated with
(p, ε) on C if it achieves the maximum on Ir of the function∣∣∣det

(
[XI1 ]ε

|I1|, . . . , [XIn ]ε|In|
)
(p)
∣∣∣.

In particular the value at p of a family associated with (p, ε) forms a basis of TpM .

Example 3.2 (A nilpotent system in R
3). Fix an integer r ≥ 2 and consider the system defined in R

3 by the
vector fields

X1 = ∂x, X2 = ∂y +
xr−1

(r − 1)!
∂z.

The Lie algebra L(X1, X2) is nilpotent of order r (for r = 2, it is the Lie algebra associated with the Heisenberg
group and for r = 3, X1, X2 generate the Martinet distribution). The only non zero commutators are

[XIi ] = (−1)i−2 xr−i

(r − i)!
∂z, i = 2, . . . , r, where Ii =


1, 2, 1, . . . , 1︸ ︷︷ ︸

(i−2)


 .

The set of singular points is the plane {x = 0}. The degree of nonholonomy is 2 at regular points and r at
singular ones. The families of vector fields with non identically zero determinant are Ii = (X1, X2, [XIi ]) and

∣∣det
(
εX1, εX2, ε

i[XIi ]
)
(x, y, z)

∣∣ =
|x|r−i

(r − i)!
ε2+i.

Choose any path C in R
3 crossing the singular locus. The families associated with

(
(x, y, z), ε

)
on C are:

I2 if |x| ≥ (r − 2)ε, Ii if |x| ∈ [(r − i)ε, (r − i+ 1)ε
]
, i = 3, . . . , r.

Notice that, when |x| = (r − i)ε, both families Ii and Ii+1 are associated on C.

The notion of associated basis allows to describe the shape of the sub-Riemannian balls.

Theorem 3.3. There exist a constant δ0 > 0 and functions κ(δ), K(δ), 0 < κ(δ) < K(δ), with limδ→0K(δ) = 0,
such that:

for every p ∈ C, ε < 1, δ < δ0 and every family I associated with (p, ε) on C,
BI

(
p, κ(δ)ε

) ⊂ B(p, δε) ⊂ BI

(
p,K(δ)ε

)
, (4)

where BI(p, ε) =
{
p exp(un[XIn ]) · · · exp(u1[XI1 ]), |ui| < ε|Ii|, 1 ≤ i ≤ n

}
.

This theorem is proved in [11].
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Remark 3.4.
• We note on the right the action of diffeomorphisms: p exp(tX) results of the action of exp(tX) on point
p. This notation is consistent with the notation for Lie group: diffeomorphisms which come from flows
of left-invariant vector fields are defined by right multiplication.

• Theorem 3.3 gives a uniform estimate of sub-Riemannian balls which extends the classical Ball–Box
theorem (Belläıche [1], Gromov [7]). Indeed, p being fixed (and δ = δ0), for ε smaller than some ε(p),
the estimate (4) is equivalent to the one of Ball–Box theorem. However ε(p) can be infinitely small for
p close to a singular point, though (4) holds for ε < 1.

Let p ∈ M and v ∈ TpM . For a family I which values at p form a basis of the tangent space TpM , we denote
by vI

1 , . . . , v
I
n the coordinates of v in this basis, that is

v =
n∑

i=1

v
I
i [XIi ](p).

Definition 3.5. The ε-norm of v ∈ TpM is defined as

‖v‖p,ε = max
{∣∣∣vI

i

∣∣∣ ε−|Ii|, 1 ≤ i ≤ n, I associated with (p, ε) on C
}
·

When v is the tangent q̇(t) to the path, the dependence with respect to q(t) is implicit and we write the ε-norm
as ‖q̇(t)‖ε. It becomes then a function of t, which is piecewise continuous and so integrable on [0, T ].

Example 3.6. Let us carry on the previous example. We choose for C the path {x = zp, y = 0, 0 ≤ z ≤ 1},
p ≥ 1 being an integer. The tangent is q̇(z) = pzp−1∂x + ∂z, that is, for i = 2, . . . , r,

q̇(z) = pzp−1X1 +
(r − i)!
zp(r−i)

[XIi ].

When the family associated with
(
q(z), ε

)
is Ii, i.e. when z ∈ [((r − i)ε

)1/p
,
(
(r − i+ 1)ε

)1/p] for i = 3, . . . , r

and z ≥ ((r − 2)ε
)1/p for i = 2, the ε-norm is

‖q̇(z)‖ε = max

(
pzp−1

ε
,

(r − i)!
zp(r−i)εi

)
=

(r − i)!
zp(r−i)εi

for ε small enough.
In the same way, if we consider now the path {y = 0, z = xp, 0 ≤ x ≤ 1}, the ε-norm is

‖q̇(x)‖ε =
p(r − i)!
xr−i−p+1εi

if x ∈ [(r − i)ε, (r − i+ 1)ε
]
, i ≥ 3,

‖q̇(x)‖ε =
p(r − 2)!
xr−1−pε2

if x ≥ (r − 2)ε.

3.2. (H)-generic and regular points for a path

Let C ⊂M be a path.

Definition 3.7. A point q ∈ C is said to be regular for C if the growth vector is constant on C near q. Otherwise
q is said to be singular for C.

Regular points for C form an open dense set in C and singular points are isolated in C. Notice that a regular
point for C can be singular for M .
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Let us consider the following property for a point q in the interior of C:
(H) if TqC belongs to Ls(q), then there exist commutators [XI1 ], . . . , [XIl

] in Ls whose values taken at q
form a basis of Ls(q) and such that, for all q′ ∈ C near q, Tq′C belongs to span{[XI1 ](q′), . . . , [XIl

](q′)}.
For q a regular point for C, this property simply reads as: if TqC belongs to Ls(q), then Tq′C belongs to Ls(q′)
for all q′ ∈ C near q.

Definition 3.8. We say that a point is (H)-generic either if it satisfies (H) or if it is an extremity of the path.

The (H)-generic points form an open dense set in C. A consequence of this property is the following lemma,
proved in Section 5.

Lemma 3.9. The metric cusps are not (H)-generic and so are isolated points in C.
Finally we have two finite sets of points in C: singular and non (H)-generic points. We say that C is generic at

singular points when these two sets have an empty intersection, that is if each singular point for C is (H)-generic.
It is a generic property on the paths space.

3.3. Estimate of entropy and complexity

Recall from Section 2.3 that we use the notations �, � to denote the corresponding inequalities up to
multiplicative constants (uniform with respect to ε, for ε small enough). Our first main result gives an equivalent
for the entropy.

Theorem 3.10. For a path C with a parameterization q(t), t ∈ [0, T ],

e(C, ε) �
∫ T

0

‖q̇(t)‖εdt.

The proof is given in Section 5.1.

Remark 3.11. When ε tends to zero the ε-norm ‖v‖p,ε is equivalent to ‖v‖p/ε (‖v‖p is defined in (1)). If C is
a trajectory of the system, the integral of the ε-norm – and so the entropy – is then equivalent to length(C)/ε.
Thus the ε-length lengthe

ε(C) defined in Section 2.3 seems to be a good generalization of the notion of length.

This estimate allows to compute the entropy dimension. It gives also upper and lower bounds for the
Hausdorff dimension.

Corollary 3.12. The Hausdorff dimension of a path C belongs to the interval [βreg, r], where

• βreg is the smallest integer β such that TqC ∈ Lβ(q) for all point q regular for C;
• r is the maximum of the degree of nonholonomy on C.

Moreover, for a path containing no singular points, the Hausdorff dimension is the smallest integer β such that
TqC ∈ Lβ(q) for all q in C.

The proof is given in Section 5.1.
Notice that the Hausdorff dimension can take not only the integer values belonging to the interval [βreg, r],

but also rational ones.

Remark 3.13. In an equiregular manifold, the Hausdorff dimension of a path results from formula (2) of
Gromov: dimH C equals the smallest integer β such that TqC ∈ Lβ(q) for all q in C. Corollary 3.12 appears then
as a generalization of Gromov’s formula. However, when the path contains singular points, we may have both
TqC ∈ Lβ(q) for all q in C and dimH C > β (see example (d) in Sect. 3.5 below). Thus, in general, the Hausdorff
dimension of C is not characterized only by the dimension of the spaces Ls

C(q) = Ls(q) ∩ TqC.

Our second main result links the complexity to the integral of the ε-norm.



494 F. JEAN

Theorem 3.14. Let C be a path, with a parameterization q(t), t ∈ [0, T ], and t1 < · · · < ts be the parameters
of the points which are both metric cusps and singular for C (0 < t1 and ts < T ). The complexity of C satisfies

∫ T

0

‖q̇(t)‖εdt−
s∑

i=1

∫ ti+ε

ti−ε

‖q̇(t)‖εdt � σ(C, ε) �
∫ T

0

‖q̇(t)‖εdt.

The proof is given in Section 5.2.
This result does not always allow to estimate the complexity and to compare it with the entropy. Anyway

complexity and entropy may be non equivalent, as shown by the example in Section 3.6. Moreover it is in
general difficult to decide if a point is a metric cusp or not.

However Theorem 3.14 provides sufficient conditions for complexity and entropy to be equivalent. These
conditions, expressed in the corollary below, are interesting for applications since they are generically satisfied
and computable.

Corollary 3.15. Let C be a path, with a parameterization q(t), t ∈ [0, T ]. If one of the following conditions
holds:

• C is generic at singular points;
• denoting t′1 < · · · < t′N the parameters of the points which are both non (H)-generic and singular for C,
t′0 = 0 and t′N+1 = T , we have, for i = 1, . . . , N + 1,

∫ t′i

t′i−1

‖q̇(t)‖εdt �
∫ t′i−ε

t′i−1+ε

‖q̇(t)‖εdt;

then σ(C, ε) � e(C, ε).
3.4. Example 1: The car control system

A classical example of nonholonomic control system is the car (see Laumond [14]). It is represented as two
driving wheels connected by an axle. A state of the system is parameterized by the coordinates (x, y) of the
center of the axle and by the orientation angle θ of the car. In the manifold M = R

2×S1, the control system is

q̇ = u1X1 + u2X2, with X1 = cos θ∂x + sin θ∂y, X2 = ∂θ.

The associated sub-Riemannian manifold has no singular point: the values of the family I = {X1, X2, [X1, X2]}
form a basis everywhere. It is the only possible associated family.

Let C be a path in M and q(t) a parameterization of C. We define ϕ(t) as the angle between q̇(t) and the
plane generated by X1(q(t)) and X2(q(t)). The coordinate of q̇(t) on [X1, X2](q(t)) is sinϕ(t). According to
Theorem 3.14 we have

σ(C, ε) � 1
ε2

∫ T

0

max(ε, | sinϕ(t)|)dt.
If the path is a trajectory, then ϕ ≡ 0, and the complexity equals length(C)/ε. On the other hand if the path
is always perpendicular to the direction of the car, the complexity is equivalent to 1/ε2. So we show that to
reverse into a parking place needs more maneuvers than going in a straight line!

This application of the complexity is developed in a more complete way in [10], including the case of the car
pulling trailers.

3.5. Example 2: A nilpotent system in R
3

As in the examples of Section 3.1, we consider the system of vector fields in R
3

X1 = ∂x, X2 = ∂y +
xr−1

(r − 1)!
∂z.
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We are interested in paths with singular points. We consider for instance the paths {x = zp, y = 0, 0 ≤ x, z ≤ 1}
where either p or 1/p is an integer and

− if p ≥ 1, then p is the multiplicity of the intersection between C and the singular locus {x = 0}; p = ∞
means that C is included in the singular locus;

− if 1/p ≥ 1, then 1/p is the multiplicity of the intersection between C and the plane {z = 0} (that is the
plane {X1(0), X2(0)}); 1/p = ∞ (or p = 0) means that C is a trajectory of the system.

For these paths, the only singular point is an extremity, the origin. They are then generic at singular points and
so the complexity is always equivalent to the entropy. The ε-norm has already been computed in the examples
of Section 3.1. Integrating it along the path yields the following entropy estimates.

(a) If p = 0 (C is a trajectory of the system):

e(C, ε) � 1
ε

and dimH C = 1.

It is the only case where the Hausdorff dimension equals the topological one.
(b) If 0 < p < 1/(r − 2) (C is tangent to the distribution at 0):

e(C, ε) � 1
ε2

and dimH C = 2.

The path is tangent to the distribution {X1, X2} at the singular point 0, but not at regular points.
The leading term in e(C, ε) is the entropy of a path contained in the regular locus (but which is not
a trajectory). Notice that when there is no singular points, that is when r = 2, only this case or the
previous one can occur.

(c) If p = 1/(r − 2) (C is transverse to the singular locus at 0 and, if r ≥ 4, tangent to the distribution at
0):

e(C, ε) � 1
ε2

log(
1
ε
) and dimH C = 2.

In this case, the entropy dimension is dime C = 2 although e(C, ε)ε2 tends to infinity. For the Hausdorff
dimension we have dimH C ≤ dime C = 2 and the equality dimH C = 2 results from Corollary 3.12.

(d) If 1/(r − 2) < p <∞ (C may be either transverse or tangent to the singular locus):

e(C, ε) � 1
εr−1/p

and dimH C = r − 1/p.

The Hausdorff dimension is greater than 2, the Hausdorff dimension of a path included in the regular
set, but less than r, the one of a path included in the singular locus (see next case). It may not be an
integer when p is greater than one (in this case r − 1 ≤ dimH C < r).
Moreover we may have both TqC ∈ Lβ(q) for all q in C and dimH C > β. Take for instance p = 1/2 and
r ≥ 5: the path is tangent everywhere to L2(q) and dimH C = r − 2 ≥ 3.

(e) If p = ∞ (the path is included in the singular locus):

e(C, ε) � 1
εr

and dimH C = r.

In this case every point in the path is regular for C.

3.6. Complexity and entropy may be non equivalent

Let us consider the system of vector fields in R
3

X1 = ∂x, X2 = ∂y + (x9 − xz2)∂z .



496 F. JEAN

The singular locus is the set {9x8 = z2}. The degree of nonholonomy equals 10 on the subset {x = z = 0}, 3
on the remainder of the singular locus, and 2 elsewhere.

We choose a path tangent to {x = z = 0} at 0 but which does not go through the singular locus, say
C = {(0, y, y2), y ∈ [−1, 1]}. The origin is a singular point for C and is not (H)-generic. Thus C is not generic at
singular points.

A short calculation gives the ε-norm

‖q̇(y)‖ε =


max

(
ε−1,

2
9!
yε−10

)
if |y| ≤ (9!)1/4ε2,

2y−3ε−2 if (9!)1/4ε2 ≤ |y| ≤ 1.

On the other hand we have d(q(ε), q(−ε)) = 2ε. It is then easy to show that σ(C, ε) � σ(q([−1,−ε]), ε) +
σ(q([ε, 1]), ε). By applying Theorems 3.10 and 3.14, we obtain

σ(C, ε) �
∫ 1

ε

‖q̇(y)‖εdy and e(C, ε) �
∫ 1

0

‖q̇(y)‖εdy.

Using the expression of the ε-norm, this yields to

e(C, ε) � ε−6 and σ(C, ε) � ε−4.

Thus entropy and complexity are not equivalent. It results also from Theorem 3.14 that 0 is a metric cusp.

4. Paths with only (H)-generic points

In this section we study paths containing only (H)-generic points (see Sect. 3.2 for the definition). In this
case Theorems 3.10 and 3.14 take the following form, proved in Section 4.2 below.

Lemma 4.1. Let C be a path containing only (H)-generic points and q(t) a parameterization of C. Then

σ(C, ε) � e(C, ε) �
∫ T

0

‖q̇(t)‖εdt.

4.1. The ε-norm along a path

Lemma 4.2. Let C be a path containing only (H)-generic points and q(t) a parameterization of C. Then

(a) the following metric property (MP) is verified:
there exist k and ρ0 > 0 such that, for q(t0) and q(t1) ∈ C,

d(q(t0), q(t1)) < ρ0 ⇒ d(q(t0), q(t)) ≤ kd(q(t0), q(t1)) ∀t ∈ [t0, t1];

(b) there exist constants ν, k1 and k2 > 0 such that, if t0 ∈ [0, T ] and ε ≤ ρ0, then d(q(t0), q(t1)) = ε implies

k1 ≤
∫ t1

t0

‖q̇(t)‖νεdt ≤ k2. (5)

Remark 4.3. The property (MP) implies obviously that no points of C is a metric cusp.

Lemma 4.2 results from Propositions 4.6, 4.7 and 4.8 below.
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4.1.1. Notations

For a family I of n brackets ([XI1 ], . . . , [XIn ]), we denote by D(I) = |I1|+ · · ·+ |In| the total length and by
detI(q) = det([XI1 ], . . . , [XIn ])(q) the determinant.

Given p ∈M , the application φI from an open neighborhood of 0 ∈ R
n to M is defined by

φI(u) = p exp(un[XIn ]) · · · exp(u1[XI1 ]).

For ε > 0, Box(ε) denotes the set {|ui| < ε|Ii|, 1 ≤ i ≤ n} in R
n and its image is BI(p, ε) = φI

(
Box(ε)

)
.

Consider a path C with a parameterization q(t), t ∈ [0, T ]. Given a family I of vector fields and i = 1, . . . , n,
we set

detI
i (t) = det

(
[XI1 ]

(
q(t)

)
, . . . , q̇(t)︸︷︷︸

i−th

, . . . , [XIn ]
(
q(t)

))
,

q̇
I
i (t) =

detI
i (t)

detI

(
q(t)

) if detI

(
q(t)

) 6= 0.

This is consistent with notations of Section 3.1: when defined, the q̇I
i (t)’s are the coordinates of q̇(t) in the basis(

[XI1 ](q(t)), . . . , [XIn ](q(t))
)
, that is

q̇(t) =
n∑

i=1

q̇
I
i (t) [XIi ]

(
q(t)

)
. (6)

Let F be the set of analytic functions detI

(
q(t)

)
and detI

i (t), for i ∈ {1, . . . , n} and I such that each |Ik| ≤ r,
where r is the maximum of the degree of nonholonomy on C. Zeroes of functions in this set define on [0, T ] a
finite number of real numbers 0 = T0 < T1 < · · · < TN = T such that, on ]Tj , Tj+1[, a function in F is either
identically zero or everywhere non zero. In particular a function non identically zero on ]Tj , Tj+1[ has a constant
sign on this interval.

There is also a constant ∆t0, 0 < ∆t0 < 1
2 maxj(Tj+1 − Tj), such that:

for all j ∈ {0, . . . , N} , t ∈ [Tj −∆t0, Tj + ∆t0], and f and g ∈ F ,

if f(Tj) 6= 0 and g(Tj) = 0, then |f(t)| > |g(t)|. (7)

Set
dmax = max

{∣∣∣detI
i (t)

∣∣∣ s.t. t ∈ [0, T ], i = 1, . . . , n, each |Ik| ≤ r
}

dmin = min
{∣∣∣detI

i (Tj)
∣∣∣ 6= 0 s.t. j = 1, . . . , N, i = 1, . . . , n, each |Ik| ≤ r

}
·

Both dmax and dmin are positive and finite. It follows from (7) that, if detI
i (Tj) 6= 0 for some i, j and I, then

|detI
i (t)| > dmin/2 for every t ∈ [Tj −∆t0, Tj + ∆t0].

Now, set η0 = dmin/(2dmax) > 0. For any i, l = 1, . . . , n, any j ∈ {0, . . . , N} and any families I, J of brackets
of length ≤ r, if detI

i (Tj) 6= 0, then for every t ∈ [Tj −∆t0, Tj + ∆t0]

|detI
i (t)|

|detJ
l (t)|

> η0. (8)

4.1.2. Preliminary results

Fix a path C containing only (H)-generic points and a parameterization q(t) of C. Let δ0 and K(·) be
respectively the constant and the function given by Theorem 3.3. We will use the following lemma, which
results from [11] (Lem. 7).
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Lemma 4.4. There exist a constant C > 0 and a function δ : ]0, 1[ → ]0, δ0] such that, if p ∈ C, ε < 1 and if I
is a family associated with (p, ε) on C, then the following properties are satisfied.

(i) For every q ∈ BI

(
p,K(δ0)ε

)
,

1
2

∣∣detI(p)
∣∣ ≤ ∣∣detI(q)

∣∣ ≤ 2
∣∣detI(p)

∣∣
∣∣detI(q)

∣∣εD(I) ≥ 1
C

max
{∣∣detK(q)

∣∣εD(K), K s.t. each |Ki| ≤ r
}·

(ii) φI is a local diffeomorphism in a neighborhood of every point of Box
(
K(δ0)ε

)
.

(iii) Denoting by (ψ1, . . . , ψn) the local inverse application of φI , we have, for every q ∈ BI

(
p,K(δ0)ε

)
,

1
2
≤ ∣∣[XIi ] · ψi(q)

∣∣ ≤ 2.

Moreover, given τ > 0, if q ∈ BI

(
p,K

(
δ(τ)

)
ε
)
, then,∣∣[XIj ] · ψi(q)
∣∣ ≤ τε|Ii|−|Ij | for j 6= i.

Let [t0, t1] ⊂ [0, T ]. We assume that q([t0, t1]) is included in BI

(
q(t0),K(δ0)η

)
for some η < 1 and a family I

associated with (q(t0), η) on C.
The application φI is a local diffeomorphism on Box

(
K(δ0)η

)
. So there is a unique absolutely continuous

application θ : [t0, t1] → R
n such that θ(t) ∈ Box

(
K(δ0)η

)
and φI(θ(t)) = q(t), for all t ∈ [t0, t1].

Now, q(t) and θ are one-to-one on [t0, t1] and φI is a local diffeomorphism on Box
(
K(δ0)η

)
. Therefore φI is

a global diffeomorphism on a neighborhood of θ([t0, t1]) and its inverse application φ−1
I = (ψ1, . . . , ψn) is well

defined on this neighborhood.
To shorten we denote by

(
ψ1(t), . . . , ψn(t)

)
the application φ−1

I

(
q(t)

)
= θ(t) for t ∈ [t0, t1].

Proposition 4.5. Consider t0 ∈ [0, T [, t1 ∈ [t0, t0 +∆t0], η < η0 and a family I associated with (q(t0), η) on C.
Let p be an integer such that ∫ t1

t0

∣∣q̇I
p(s)

∣∣ η−|Ip|ds = max
1≤i≤n

∫ t1

t0

∣∣∣q̇I
i (s)

∣∣∣ η−|Ii|ds.

If q([t0, t1]) is included in BI

(
q(t0),K(δ0)η

)
, then

|ψp(t1)| ≥ 1
4

∫ t1

t0

∣∣q̇I
p(s)

∣∣ ds, (9)

|ψi(t)| ≤ 3η|Ii|
∫ t1

t0

∣∣q̇I
p(s)

∣∣η−|Ip|ds, ∀t ∈ [t0, t1], i = 1, . . . , n. (10)

As a consequence we have
|ψi(t)| ≤ 12η|Ii|−|Ip||ψp(t1)|.

Proof. In the proof of this proposition – and below in those of Propositions 4.6 and 4.7 – the family I is fixed.
We then write q̇i and deti instead of q̇I

i and detI
i .

Let t ∈ [t0, t1] and i ∈ {1, . . . , n}. The application φ−1
I is defined at every point q(s) with s ∈ [t0, t]. We can

write

ψi(t) =
∫ t

t0

dψi

dt
(s)ds.
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Due to (6) the derivative of ψi(s) is

dψi

dt
(s) =

n∑
l=1

q̇l(s)[XIl
] · ψi(s).

We integrate from t0 to t and obtain

ψi(t) =
n∑

l=1

∫ t

t0

q̇l(s)[XIl
] · ψi(s)ds.

According to Lemma 4.4(iii), reducing eventually δ0 (in such a way that δ0 ≤ δ(1/4n)), we have,

∣∣∣ ∫ t

t0

q̇i(s)[XIi ] · ψi(s)ds
∣∣∣ ≤ 2

∫ t

t0

∣∣q̇i(s)∣∣ds,
∣∣∣ ∫ t

t0

q̇l(s)[XIl
] · ψi(s)ds

∣∣∣ ≤ 1
4n
η|Ii|−|Il|

∫ t

t0

∣∣q̇l(s)∣∣ds, for l 6= i. (11)

This implies that

∣∣ψi(t)
∣∣ ≤ 2

∫ t

t0

∣∣q̇i(s)∣∣ds+
∑
l 6=i

1
4n
η|Ii|−|Il|

∫ t

t0

∣∣q̇l(s)∣∣ds
≤ 2η|Ii|

∫ t1

t0

∣∣q̇p(s)∣∣η−|Ip|ds+
1
4n

∑
l 6=i

η|Ii|
∫ t1

t0

∣∣q̇p(s)∣∣η−|Ip|ds,

by definition of p. It proves (10).

On the other hand we have

|ψp(t1)| ≥
∣∣∣∣
∫ t1

t0

q̇p(s)[XIp ] · ψp(s)ds
∣∣∣∣−∑

l 6=p

∣∣∣∣
∫ t1

t0

q̇l(s)[XIl
] · ψp(s)ds

∣∣∣∣ .
Claim. The function q̇p(s) has a constant sign on [t0, t1].

The function [XIp ] ·ψp(s) has also a constant sign since |[XIp ] ·ψp(s)| ≥ 1/2 (Lem. 4.4(iii)). This observation
and (11) applied to i = p yield to

∣∣ψp(t1)
∣∣ ≥ 1

2

∫ t1

t0

∣∣q̇p(s)∣∣ds−∑
l 6=p

1
4n
η|Ip|

∫ t1

t0

∣∣q̇p(s)∣∣η−|Ip|ds,

which implies (9).

It remains to prove the claim. Observe first that the parameter t0 belongs to some interval [Ti, Ti+1[, say
[T0, T1[. As ∆t0 < T2 − T1, we have [t0, t1] ⊂ [T0, T2]. We distinguish two cases according to the position of t1
with respect to T1.

− If t1 ≤ T1: each q̇i – and then q̇p – has a constant sign on [t0, t1].

− If t1 > T1, then q(T1) belongs to BI

(
q(t0),K(δ0)η

)
. It follows from Lemma 4.4(i) that detI

(
q(T1)

) 6= 0,
and so that the sign of detI(q(t)) is constant on [t0, t1]. Since q̇p(t) = detp(t)/detI(q(t)), its sign is
constant if the one of detp(t) does.
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On the other hand, since q(T1) is (H)-generic, there exists l such that

detl(T1) 6= 0 and, if |Ii| > |Il|, deti ≡ 0 on [T0, T1].

Now, we can make two observations.
− If |Ii| < |Il|, for t ∈ [t0, t1], (8) is satisfied, that is

η0 <
|detl(t)|
|deti(t)| =

|q̇l(t)|
|q̇i(t)| ·

(Notice that both fractions might have an infinite value.) Thus, for η < η0, we have |q̇i(t)|η−|Ii| <
|q̇l(t)|η−|Il|.

− If |Ii| = |Il| and deti(T1) = 0, from definition (7) of ∆t0, we have |q̇i(t)| < |q̇l(t)| for t ∈ [t0, t1].
The only possibility for p is then |Ip| = |Il| and detp(T1) 6= 0. Thus detp(t), and so q̇p(t), has a constant sign
on [t0, t1]. This ends the proof of the claim. �

4.1.3. First property of Lemma 4.2

Proposition 4.6. Let C be a path containing only (H)-generic points and q(t) a parameterization of C. Then
the following property holds:
(MP) there exist k and ρ0 > 0 such that, for q(t0) and q(t1) in C,

d
(
q(t0), q(t1)

)
< ρ0 ⇒ d

(
q(t0), q(t)

) ≤ kd
(
q(t0), q(t1)

) ∀t ∈ [t0, t1].

Proof. For t ∈ [0, T ] and ∆t ≤ ∆t0, we set

η(t,∆t) = sup
{
d
(
q(t), q(t′)

)
, t′ ∈ [t, t+ ∆t]

}·
Since the parameterization is analytic, we can choose ∆t such that η(t,∆t) is not greater than a given constant
for all t. Here we fix ∆t in such a way that η(t,∆t) < δ0η0 (recall that η0 and ∆t0 are defined at the end of
Sect. 4.1.1 and that δ0 is given in Th. 3.3).

Let us consider now t0 ∈ [0, T ] and t1 ≥ t0 such that t1−t0 ≤ ∆t. We set η1 = sup
{
d
(
q(t0), q(t)

)
, t ∈ [t0, t1]

}
.

In particular we have η1 ≤ η(t0,∆t).
For each t ∈ [t0, t1], q(t) belongs to B

(
q(t0), η1

)
and there exists t2 ∈ [t0, t1] such that q(t2) does not belong

to B
(
q(t0), 1

2η1
)
. With our choice of ∆t, η1 is smaller than δ0η0 (which is of course smaller than δ0). We can

then use Theorem 3.3:

∀t ∈ [t0, t1], q(t) ∈ BI(q(t0), δ+η) and q(t2) 6∈ BI(q(t0), δ−η),

with η = η1/δ0, δ+ = K(δ0), δ− = κ(δ0/2) and I is a family associated with (q(t0), η) on C.

Since η < η0, we can apply Proposition 4.5 to t2: for i = 1, . . . , n,

|ψi(t2)| ≤ 12η|Ii|−|Ip||ψp(t1)|.

Moreover there exists one specific i such that |ψi(t2)| ≥ (δ−η)|Ii|. We obtain then an inequality for the p-th
coordinate of q(t1):

|ψp(t1)| ≥ 1
12

(δ−)|Ii|η|Ip| ≥
(

1
12

(δ−)rη

)|Ip|
.

Thus q(t1) does not belong to BI

(
q(t0), δ1η

)
, where δ1 = (δ−)r/12. Notice that δ1 < δ0 and that there exists

δ2 < δ0 such that K(δ2) = δ1 (or at least K(δ2) ≤ δ1).
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Applying again Theorem 3.3, we obtain that q(t1) does not belong to B
(
q(t0), δ2η

)
, that is d

(
q(t0), q(t1)

) ≥
η1/k where k = δ0/δ2 (this constant k depends only on δ0, κ(·), K(·) and r and not on t0).

From the definition of η1 we have d
(
q(t0), q(t)

) ≤ η1 for t ∈ [t0, t1]. So we have shown d
(
q(t0), q(t)

) ≤
kd
(
q(t0), q(t1)

)
.

We just proved the required property when t1 − t0 ≤ ∆t. On the other hand, we can apply Proposition 2.5:
there exists a positive constant ρ0(= ∆t/ν) such that d

(
q(t0), q(t1)

)
< ρ0 implies t1 − t0 ≤ ∆t. This completes

the proof. �

4.1.4. Estimate of ‖q̇(t)‖ε

Proposition 4.7. Let C be a path containing only (H)-generic points and q(t), t ∈ [0, T ], a parameterization
of C. There exists positive constants ν, k1 and k2 such that, if t0 ∈ [0, T ] and ε ≤ ρ0, then d(q(t0), q(t1)) = ε
implies

k1 ≤
∫ t1

t0

∣∣q̇I
p(s)

∣∣ η−|Ip|ds ≤ k2 (12)

where η = νε, I is a family associated with (q(t0), η) on C, and p is an integer such that

∫ t1

t0

∣∣q̇I
p(s)

∣∣ η−|Ip|ds = max
1≤i≤n

∫ t1

t0

∣∣∣q̇I
i (s)

∣∣∣ η−|Ii|ds.

Proof. For d
(
q(t0), q(t1)

)
= ε ≤ ρ0, it results from Proposition 4.6 that

∀t ∈ [t0, t1], q(t) ∈ B(q(t0), kε) and q(t1) 6∈ B
(
q(t0),

1
2
ε

)
.

We use the same reasoning (and the same notations) as in the proof of Proposition 4.6.
We apply first Theorem 3.3 and obtain positive constants ν and δ− (depending only on k, κ(·), K(·) and δ0)

such that, setting η = νε,

∀t ∈ [t0, t1], q(t) ∈ BI

(
q(t0), δ+η

)
and q(t1) 6∈ BI

(
q(t0), δ−η

)
. (13)

Recall that the choice of ρ0 allows to apply Proposition 4.5. Furthermore, we have |ψp(t1)| ≤ (δ+η)|Ip| and, for
some i, |ψi(t1)| ≥ (δ−η)|Ii|. This yields to

∫ t1

t0

∣∣q̇p(s)∣∣ds ≤ 4(δ+η)|Ip| and (δ−η)|Ii| ≤ 3η|Ii|
∫ t1

t0

∣∣q̇p(s)∣∣η−|Ip|ds

and then to the required inequality

δ−
3
≤
∫ t1

t0

∣∣q̇p(s)∣∣η−|Ip|ds ≤ 4(δ+)|Ip|. �

In order to complete the proof of Lemma 4.2, it remains to show that the inequality of Proposition 4.7 implies (5).

Proposition 4.8. There exists constants c1, c2 > 0 such that, with the conditions of Proposition 4.7, we have

c1

∫ t1

t0

‖q̇(s)‖ηds ≤ max
1≤i≤n

∫ t1

t0

∣∣∣q̇I
i (s)

∣∣∣ η−|Ii|ds ≤ c2

∫ t1

t0

‖q̇(s)‖ηds.
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Proof. Recall the definition of ‖q̇(t)‖η (Sect. 3.1):

‖q̇(t)‖η = max
{∣∣∣q̇J(t)

i (t)
∣∣∣ η−|Ji(t)|, 1 ≤ i ≤ n, J(t) associated with (q(t), η) on C

}
·

The proof is based on the following relation. Fix t ∈ [t0, t1] and let J , K be two families of brackets of length
≤ r and such that detJ

(
q(t)

)
and detK

(
q(t)

) 6= 0. If there is a constant C such that

C
∣∣detJ

(
q(t)

)∣∣ηD(J) ≥ max
{∣∣detK

(
q(t)

)∣∣ηD(K′), K ′ s.t. each |K ′
j | ≤ r

}
, (14)

then, for all j ∈ {1, . . . , n}, ∣∣∣q̇J
j (t)

∣∣∣ η−|Jj| ≤ C

n∑
k=1

∣∣∣q̇K
k (t)

∣∣∣ η−|Kk|. (15)

This inequality arises from the basis change formulas

q̇
J
j (t) =

n∑
k=1

q̇
K
k (t)

det
(
[XJ1 ], . . . , [XJj−1 ], [XKk

], . . . , [XJn ]
)(
q(t)

)
detJ

(
q(t)

)
and from bounds on determinants provided by (14).

Fix t ∈ [t0, t1]. According to (13), q(t) belongs to BI

(
q(t0),K(δ0)η

)
. We consider a family I associated with

(q(t0), η) and a family J(t) associated with (q(t), η) on C. Condition (14) is fulfilled by J(t) with C = 1 (owing
to the definition of an associated basis) and by I (owing to Lem. 4.4(i)).

We apply (15) both to the pair I, J(t) and to the pair J(t), I:

∣∣∣q̇I
i (t)

∣∣∣ η−|Ii| ≤ C
n∑

j=1

∣∣∣q̇J(t)
j (t)

∣∣∣ η−|Jj(t)|, 1 ≤ i ≤ n,

∣∣∣q̇J(t)
j (t)

∣∣∣ η−|Jj(t)| ≤
n∑

i=1

∣∣∣q̇I
i (t)

∣∣∣ η−|Ii|, 1 ≤ j ≤ n.

We take the maximum on i, j and J(t) in each inequality, then integrate it between t0 and t1, and we obtain
Proposition 4.8. �

4.2. Proof of Lemma 4.1

Let us first carry on the discussion of Section 2.3.

Proposition 4.9. Let C be a path satisfying (MP), that is,
there exist k and ρ > 0 such that, for q1 and q2 ∈ C,

d(q1, q2) < ρ ⇒ d(q1, q) ≤ kd(q1, q2) for all q ∈ C between q1 and q2.

Then
e(C, ε) � σ(C, ε).

Proof. Let γ be a trajectory of (Σ), contained in Tube(C, ε) and connecting the extremities of C. We consider
a piece of γ of length ε connecting some balls B(q1, ε) and B(q2, ε).

The distance between q1 and q2 is smaller than 3ε. If 3ε < ρ, it follows from property (MP) that every q ∈ C
between q1 and q2 belongs to B(q1, 3kε). Iterating this argument from q1 = a until q2 = b, we cover C with N
balls of radius 3kε, where N is not greater than length(γ)/ε. It implies that e(C, 3kε) ≤ σ(C, ε), which proves
the proposition. �
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We are now in a position to show Lemma 4.1.

Proof of Lemma 4.1. Let C be a path containing only (H)-generic points and q(t) a parameterization of C.
According to Lemma 4.2–1, property (MP) holds. It follows from Propositions 2.8 and 4.9 that in this case
σ(C, ε) � e(C, ε). It remains to prove that e(C, ε) is equivalent to the integral of the ε-norm.

Since q(t) is continuous, there is an integer M and parameters t0 = 0 < · · · < tM < tM+1 = T such that
d
(
q(tj), q(tj+1)

)
= ε/k for j = 0, . . . ,M − 1 and d

(
q(tM ), q(tM+1)

)
< ε/k (where k is the constant given by

property (MP)).
From Lemma 4.2–2, we have, for j = 0, . . . ,M − 1,

k1 ≤
∫ tj+1

tj

‖q̇(t)‖η1dt

where η1 = νε/k. Summing up on j, we obtain

M ≤ 1
k1

∫ tM

0

‖q̇(t)‖η1dt. (16)

On the other hand, Lemma 4.2–1 implies that, for every t ∈ [tj , tj+1], d
(
q(tj), q(t)

) ≤ ε. Thus the M + 1 balls
B
(
q(tj), ε

)
covers the whole path C, i.e. e(C, ε) ≤M + 1. Using (16), we obtain

e(C, ε) ≤ 1 +
1
k1

∫ tM

0

‖q̇(t)‖η1dt �
∫ T

0

‖q̇(t)‖εdt.

Conversely, consider an integer M ′ and parameters t0 = 0 < · · · < tM ′ < tM ′+1 = T such that, for j =
0, . . . ,M ′ − 1, d

(
q(tj), q(tj+1)

)
= 3kε and d

(
q(tM ′), q(tM ′+1)

)
< 3kε. Lemma 4.2–2 implies that, setting

η2 = 3kνε,
1
k2

∫ tM′

0

‖q̇(t)‖η2dt ≤M ′. (17)

Now, there exists a covering ∪lB(ql, ε) of C with less than 2e(C, ε) balls. Notice that two points q(ti) and
q(tj), 0 ≤ i < j ≤ M ′, can not belong to the same ball of the covering. Indeed, if it is the case, then
d
(
q(ti), q(tj)

) ≤ 2ε. Since ti+1 ∈ [ti, tj ], Lemma 4.2–1 implies d
(
q(ti), q(ti+1)

) ≤ 2kε. This contradicts the
definition of the parameter ti.

Hence the number of balls in the covering is greater than M ′. Inequality (17) implies then

1
k2

∫ tM′

0

‖q̇(t)‖η2dt ≤ 2e(C, ε).

It results from Lemma 4.2–2 that the integral of ‖q̇(t)‖η2 between tM ′ and T is not greater than k2. Hence we
have ∫ T

0

‖q̇(t)‖εdt � e(C, ε).
Finally we have the equivalence between the entropy and the integral of the ε-norm, which concludes the
proof. �

5. General case

Consider a path C with a parameterization q(t), t ∈ [0, T ]. Let t̄1 < · · · < t̄N̄ be the parameters of the non
(H)-generic points and set t̄0 = 0 and t̄N̄+1 = T . Since the extremities are (H)-generic, we have t̄0 < t̄1 and
t̄N̄ < t̄N̄+1.
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Each pieces Ci = q
(
[t̄i, t̄i+1]

)
, i = 0, . . . , N̄ , is a path and contains only (H)-generic points. It results from

Lemma 4.2–1 that Ci satisfies the property (MP) and so that it has no metric cusp. Thus C has no metric cusp
between q(t̄i) and q(t̄i+1). This shows Lemma 3.9 of Section 3.2:

Lemma 3.9. The metric cusps are non (H)-generic points.

5.1. Proof of Theorem 3.10

Proposition 5.1. Let C be a path and q0 a point in the interior of C. Denote by C1 (resp. C2) the part of C
lying between a and q0 (resp. q0 and b). Then

e(C, ε) � e(C1, ε) + e(C2, ε).

Proof. It is clear that e(C, ε) ≤ e(C1, ε) + e(C2, ε). On the other hand, a covering of C by ε-balls must contain
a covering of C1 and one of C2. Thus e(C, ε) is greater than e(C1, ε) and e(C2, ε), which implies

e(C, ε) ≥ 1
2
(e(C1, ε) + e(C2, ε)). �

With this result, we are now in a position to establish the estimate of the entropy.

Proof of Theorem 3.10. Proposition 5.1 implies that e(C, ε) � ∑N̄
i=0 e(Ci, ε). Since each Ci contains only

(H)-generic points, it follows from Lemma 4.1 that

e(Ci, ε) �
∫ t̄i+1

t̄i

‖q̇(t)‖εdt,

which concludes the proof. �

It remains to prove the results on the Hausdorff dimension.

Proof of Corollary 3.12. We are first going to prove the second assertion of the corollary: for a path C containing
no singular points, dimH C is the smallest integer β such that TqC ∈ Lβ(q) for all q in C.

Let C be a path containing no singular points and q(t), t ∈ [0, T ] a parameterization of C. To begin with, let
us describe the set of associated families near a point of C.

Fix a point q ∈ C. For ε small enough, any family I associated with (q, ε) on C satisfies

D(I) = min
{
D(K), each |Kj| ≤ r, detK(q) 6= 0

}
,∣∣detI(q)

∣∣ = max
{∣∣detK(q)

∣∣, each |Kj | ≤ r, D(K) = D(I)
}·

We say that such a family is minimal at q and we denote by Mq the set of minimal families at q.
Consider now a point q(t1) in C, t1 > 0. It is a regular point for C, so the function min

{
D(K), detK

(
q(t)

) 6=
0
}

is constant for t near t1. It implies two properties:
• there exists t0 ∈ [0, t1[ such that Mq(t) is independent of t on the interval [t0, t1[ ;
• there exists ε1 such that, for t ∈ [t0, t1] and ε ≤ ε1, a family is associated with (q(t), ε) on C if and only

if it is minimal at q(t).

Thus, for all t ∈ [t0, t1[ and ε ≤ ε1, the set of the families associated with (q(t), ε) on C is equal to Mq(t0).
Now, let β be the smallest integer such that TqC ∈ Lβ(q) for all q in C. There exists an interval [t0, t1] ⊂ [0, T ]

such that q̇(t) belongs to Lβ(q(t))/Lβ−1(q(t)) for all t ∈ [t0, t1]. Reducing if needed the size of the interval, we
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can assume that, for all t ∈ [t0, t1[ and ε ≤ ε1, the set of the families associated with (q(t), ε) is equal to Mq(t0).
The ε-norm is then equal to:

‖q̇(t)‖ε = ε−β max
{∣∣∣q̇I

k(t)
∣∣∣ , I ∈ Mq(t0), |Ik| = β

}
·

Due to Theorem 3.10, the entropy of the path C0 = q([t0, t1]) is equivalent to ε−β, which implies dimH C0 = β
by Proposition 2.4(ii). Since C0 is included in C, we have dimH C ≥ β.

The same kind of reasoning and Proposition 2.4(i) allows to show the reverse inequality. Thus we obtain
dimH C = β.

The other assertion of the corollary is that the Hausdorff dimension of a path C belongs to [βreg, r], where r
is the maximum of the degree of nonholonomy on C and βreg is the smallest integer β such that TqC ∈ Lβ(q)
for all point q regular for C.

The lower bound is a consequence of the previous result: C contains a path C0 with no singular point
and such that TqC0 belongs to Lβreg (q)/Lβreg−1(q) everywhere. The Hausdorff dimension of C0 is βreg and
dimH C ≥ dimH C0.

The upper bound results directly from the estimate of the entropy. Indeed, the ε-norm has a uniform upper
bound ‖q̇(t)‖ε ≤ const × ε−r on C. By Theorem 3.10, we have e(C, ε) � ε−r and dime(C) ≤ r. The conclusion
follows from Proposition 2.4(i). �

5.2. Proof of Theorem 3.14

Proposition 5.2. Consider a path C, a point q0 in the interior of C and define C1 (resp. C2) as the part of C
lying between a and q0 (resp. q0 and b). Let qε

1 be the first q ∈ C1 such that d(q, C2) ≤ 3ε and qε
2 be the last

q ∈ C2 such that d(q, C1) ≤ 3ε. Denote by Cε
1 (resp. Cε

2) the part of C lying between a and qε
1 (resp. qε

2 and b).
Assume C1 and C2 contain only (H)-generic points.

If q0 is not a metric cusp, then
σ(C, ε) � σ(C1, ε) + σ(C2, ε),

otherwise
σ(Cε

1 , ε) + σ(Cε
2 , ε) � σ(C, ε) ≤ σ(C1, ε) + σ(C2, ε).

Proof. Recall from Lemma 4.2–1 that C1 and C2 satisfy property (MP): there exist k and ρ > 0 such that, for
q1 and q2 ∈ Ci,

d(q1, q2) < ρ ⇒ d(q1, q) ≤ kd(q1, q2) for all q ∈ Ci between q1 and q2.

If q0 is not a metric cusp, then the whole path C satisfies (MP). It follows then from Propositions 2.8 and 4.9
that in this case σ(C, ε) � e(C, ε). Applying also this result to C1 and C2 and using Proposition 5.1, we obtain
the conclusion.

Assume now that q0 is a metric cusp. The inequality σ(C, ε) ≤ σ(C1, ε) + σ(C2, ε) is straightforward. Let us
prove the other inequality.

We consider a trajectory γ of (Σ), contained in Tube(C, ε) and connecting the extremities a and b of C. The
length of γ is greater than εσ(C, ε).

The intersection of γ with the closure of Tube(Cε
1 , ε) contains a trajectory γ1 starting from a. The end-

point p1 of γ1 is such that d(p1, q−) = ε for one point q− ∈ C between a and qε
1 and d(p1, q+) ≤ 2ε for one

point q+ ∈ C between qε
1 and b.

What is the distance from p1 to qε
1? Notice first that d(q−, q+) ≤ 3ε. Now, if q+ lies in C2, the definition of qε

1

implies q− = qε
1. Otherwise, if q+ lies between qε

1 and q0, it follows from property (MP) that d(q−, qε
1) ≤ 3kε.

In both cases we have then d(p1, q
ε
1) ≤ 3kε.

Finally we can construct a trajectory going from a to qε
1, staying in Tube(Cε

1 , 3kε) and of length smaller than
length(γ1) + 3kε. This last quantity is then greater than 3kεσ(Cε

1 , 3kε).
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The same reasoning applies to a part γ2 of the trajectory in Tube(Cε
2 , ε). Since the length of γ is greater than

the sum of the lengths of γ1 and γ2, we obtain finally

σ(C, ε) + 6k ≥ 3kσ(Cε
1 , 3kε) + 3kσ(Cε

2 , 3kε),

and so the conclusion. �

Corollary 5.3. Let C be a path with a parameterization q(t), t ∈ [0, T ], and t1 < · · · < tN be the pa-
rameters of the metric cusps. Set t0 = tε0,+ = 0, tN+1 = tεN+1,− = T and, for i = 1, . . . , N , define
tεi,− = min

{
t s.t. d

(
q(t), q([ti, T ])

) ≤ 3ε
}

and tεi,+ = max
{
t s.t. d

(
q(t), q([0, ti])

) ≤ 3ε
}
. Then

N∑
i=0

∫ tε
i+1,−

tε
i,+

‖q̇(t)‖εdt � σ(C, ε).

Proof. Remark first that, as a consequence of Lemma 3.9, t1, . . . , tN is a sub-sequence of t̄1, . . . , t̄N̄ (the param-
eters of the non (H)-generic points).

Reasoning as in the proof of Proposition 5.2, we obtain

N∑
i=0

σ
(
q([tεi,+, t

ε
i+1,−]), ε

) � σ(C, ε).

Moreover each path q([tεi,+, t
ε
i+1,−]) satisfies (MP): it results then from Propositions 2.8 and 4.9 that the com-

plexity of that path is equivalent to its entropy, that is, to the integral of the ε-norm by Theorem 3.10. �

Let us estimate now the parameters tεi,− and tεi,+.

Proposition 5.4. Fix i ∈ {1, . . . , N} and let T1 and T2 be parameters in [0, T ] such that T1 < tεi,− and T2 > tεi,+
(with the notations of Cor. 5.3). Then,

∫ ti−ε

T1

‖q̇(t)‖εdt �
∫ tε

i,−

T1

‖q̇(t)‖εdt (18)∫ T2

ti+ε

‖q̇(t)‖εdt �
∫ T2

tε
i,+

‖q̇(t)‖εdt. (19)

Moreover, if q(ti) is a regular point for C, then

∫ tε
i,−

T1

‖q̇(t)‖εdt �
∫ ti

T1

‖q̇(t)‖εdt and
∫ T2

tε
i,+

‖q̇(t)‖εdt �
∫ T2

ti

‖q̇(t)‖εdt.

Proof. Let us use Proposition 2.5: there exists a constant ν > 0 such that, if d
(
q(t), q(t′)

)
is small enough, then

d
(
q(t), q(t′)

) ≥ ν|t− t′|. (20)

Since d
(
q(tεi,−), q(t)

)
= 3ε for one t ≥ ti, we have ti − tεi,− ≤ 3νε. This implies inequality (18). The other

inequality (19) is obtained in the same way.

Assume now that q(ti) is a regular point for C.
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Claim. If q(ti) is regular for C, then for ε small enough,




∫ ti

ti−ε

‖q̇(t)‖εdt ≤ 2
∫ ti−ε

ti−2ε

‖q̇(t)‖εdt,∫ ti+ε

ti

‖q̇(t)‖εdt ≤ 2
∫ ti+2ε

ti+ε

‖q̇(t)‖εdt.

This result implies that the integral of the ε-norm between T1 and ti − ε is equivalent to the one between T1

and ti and that the integral between ti + ε and T2 is equivalent to the one between ti and T2. This ends the
proof of Proposition 5.4.

It remains to prove the claim. We use a result shown in the proof of Corollary 3.12 in the preceding section.
If q(ti) is a regular point for C, then there exists δ and ε1 > 0 such that: for all t ∈ [ti − δ, ti[ and ε ≤ ε1, the
set of the families associated with (q(t), ε) is equal to Mq(t0), with t0 = ti − δ.

Recall also the definition of the ε-norm (Sect. 3.1):

‖q̇(t)‖ε = max
{∣∣∣q̇I

k(t)
∣∣∣ ε−|Ik|, 1 ≤ k ≤ n, I associated with

(
q(t), ε

)
on C

}
· (21)

Now, reducing eventually δ, each function
∣∣q̇I

k(t)
∣∣ (k ∈ {1, . . . , n}, I ∈ Mq(t0)) satisfies: if ε ≤ δ/2 and

t ∈ ]ti − ε, ti[, then
∣∣q̇I

k(t)
∣∣ ≤ 2

∣∣q̇I
k(t− ε)

∣∣ (it results from the analyticity of |q̇I
k(t)| on ]t0, ti[).

For ε ≤ min{δ/2, ε1} and t ∈ ]ti− ε, ti[, any family associated with (q(t), ε) on C belongs to Mq(t0). So there
exist J ∈Mq(t0) and j ∈ {1, . . . , n} such that ‖q̇(t)‖ε = |q̇J

j (t)|ε−|Jj |. The ε-norm at t satisfies then

‖q̇(t)‖ε ≤ 2
∣∣q̇J

j (t− ε)
∣∣ε−|Jj | ≤ 2‖q̇(t− ε)‖ε.

The second inequality above holds because J ∈ Mq(t0) is also a family associated with
(
q(t− ε), ε

)
on C.

This proves the first inequality of the claim (remind that ‖q̇(t)‖ε is piecewise continuous). The second
inequality is proved in the same way. �

Remark 5.5. When q(ti) is a singular point for C, it is not possible to find a set of associated families
independent of t and ε. In this case, indeed, a family associated with (q(t), ε) on C is minimal at q(t) if
ε ≤ O(|t − ti|) (take for instance the nilpotent system in R

3 of Sect. 3.1 with C equals to the x-axis).

We are now in a position to prove the estimate for complexity.

Proof of Theorem 3.14. Consider a path C with a parameterization q(t), t ∈ [0, T ]. By Proposition 2.8 and
Theorem 3.10, we obtain a first inequality:

σ(C, ε) �
∫ T

0

‖q̇(t)‖εdt.

Let t1 < · · · < tN be the parameters of the metric cusps. Corollary 5.3 and the first part of Proposition 5.4
imply ∫ T

0

‖q̇(t)‖εdt−
N∑

i=1

∫ ti+ε

ti−ε

‖q̇(t)‖εdt � σ(C, ε).

It follows from the second part of Proposition 5.4 that, if q(ti) is regular for C, then the integral of the ε-norm
between ti − ε and ti + ε can be neglected. Hence, denoting t′1, . . . , t′s the parameters (among t1, . . . , tN ) of the
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points which are both metric cusps and singular for C, we obtain:

∫ T

0

‖q̇(t)‖εdt−
s∑

i=1

∫ t′i+ε

t′i−ε

‖q̇(t)‖εdt � σ(C, ε),

which ends the proof. �

I thank Jean-Jacques Risler for the advice and support he provided throughout the composition of this article.
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