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ORLICZ CAPACITIES AND APPLICATIONS TO SOME EXISTENCE
QUESTIONS FOR ELLIPTIC PDES HAVING MEASURE DATA
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Abstract. We study the sequence un, which is solution of −div(a(x,∇un)) + Φ′′(|un|) un = fn + gn

in Ω an open bounded set of RN and un = 0 on ∂Ω, when fn tends to a measure concentrated on a
set of null Orlicz-capacity. We consider the relation between this capacity and the N-function Φ, and
prove a non-existence result.
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1. Introduction

Let Ω be a bounded open subset of RN , N > 2, we study the non-existence of a solution for the following
nonlinear elliptic problem (that is our model problem){−∆u+ |u|q−1 u = µ in Ω,

u = 0 on ∂Ω, (1.1)

in the following sense: let fn be a sequence of smooth functions that tends to a measure µ in a sense that we
will precise. Let un be the sequence of solutions of{−∆un + |un|q−1 un = fn in Ω,

un = 0 on ∂Ω, (1.2)

we will consider the case, with respect to the measure µ and the value of q, where un converges to a function u
that does not satisfy (1.1).

The first result was due to Brezis (see [9]). Let Ω be a bounded open subset of RN , N > 2, with 0 ∈ Ω, let f
be a function in L1(Ω), and let fn be a sequence of L∞(Ω) functions such that

lim
n→+∞

∫
Ω\Bρ(0)

|fn − f | dx = 0, ∀ρ > 0. (1.3)
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Let un be the sequence of solutions of (1.2) with q ≥ N
N−2 . Then un converges to the unique solution u of the

equation −∆u+ |u|q−1 u = f .
If f = 0, an example of functions fn satisfying condition (1.3) is that of a sequence of nonnegative functions

in L∞(Ω) converging in the weak∗ topology of measures to δ0, the Dirac mass concentrated at the origin. In
this case, un converges to zero. The result of [9] is strongly connected with a theorem by Bénilan and Brezis
(see [9]), which states that the problem −∆u+ |u|q−1 u = δ0 has no distributional solution if q ≥ N

N−2 . On the
other hand (see [7] and [9]), if q < N

N−2 , then there exists a unique solution of

{−∆u+ |u|q−1 u = δ0 in Ω,
u = 0 on ∂Ω. (1.4)

Thus the preceding theorem can be seen as a nonexistence result for this problem, in the sense that if one looks
for solutions obtained by approximation of (1.4), then one does not find a “reasonable” solution (that is stable
with respect to the right-hand side).

The “dividing range” N
N−2 basically depends on two facts: the linearity of the laplacian operator (i.e., the

dependence of order 1 with respect to the gradient of u), and the fact that the Dirac δ0 is a measure which
is concentrated on a point: a set of zero N -capacity (see definition below). In the case q ≥ N

N−2 , which is
equivalent to 2q′ ≤ N , δ0 is not “absolutely continuous” with respect to the N -capacity and hence also to the
2q′-capacity and there is no solution of (1.4). If q < N

N−2 , which is equivalent to 2q′ > N , δ0 is “absolutely
continuous” with respect to the 2q′-capacity and there is a solution of (1.4).

This fact is strictly related to the result of [14], where a necessary and sufficient condition for the existence
of a solution is given. More precisely, the equation{−∆u+ |u|q−1 u = µ in Ω,

u = 0 on ∂Ω, (1.5)

has a solution if and only if µ belongs to L1(Ω) +W−2,q(Ω). If µ is a measure that is “absolutely continuous”
with respect to the (2, q′)-capacity, which is defined in Definition 2.5, then µ belongs to L1(Ω) + W−2,q(Ω)
and (1.5) has a solution. Moreover in [5], the singularities for (1.5) are removable (which is a notion that can
be seen closed to the result of non existence) if and only if µ is “absolutely continuous” with respect to the
(2, q′)-capacity.

In order to point out the relations between these results and capacities, we recall that we have (according to
the Gagliardo–Nirenberg inequalities)

cap2,q′(E) = 0 =⇒ cap1,2q′(E) = 0,

and that, by [1] (Th. 5.5.1), we have, for every set E,

cap1,2q′+ε(E) = 0 =⇒ cap2,q′(E) = 0, ∀ε > 0.

The result of [9] has been extended to nonlinear operators of Leray–Lions type (see definition below) and
measures concentrated on sets of null r-capacities in [23]:

Theorem 1.1. Let 1 < p < r ≤ N , a satisfying (2.7–2.9) and let λ = λ+ − λ− be a bounded Radon measure
concentrated on a set E of zero r-capacity. Let fn = f⊕n − f	n (with f⊕n and f	n nonnegative functions) be a
sequence of L∞(Ω) functions that converges to λ in the sense

lim
n→+∞

∫
Ω

f⊕n ϕdx =
∫

Ω

ϕdλ+, lim
n→+∞

∫
Ω

f	n ϕdx =
∫

Ω

ϕdλ−,
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for every function ϕ which is continuous and bounded on Ω. Let g be a function in L1(Ω), and let gn be a
sequence of L∞(Ω) functions which converges to g weakly in L1(Ω). Let

q >
r(p− 1)
r − p

,

and let un be the solution in W 1,p
0 (Ω) of the problem

{−div(a(x,∇un)) + |un|q−1 un = fn + gn in Ω,
un = 0 on ∂Ω.

Then, as n tends to infinity, |∇un|p−1 converges strongly to |∇u|p−1 in Lσ(Ω), for every σ < pq
(q+1)(p−1) ,

where u is the unique entropy solution of

{−div(a(x,∇u)) + |u|q−1 u = g in Ω,
u = 0 on ∂Ω. (1.6)

Moreover,

lim
n→+∞

∫
Ω

|un|q−1 un ϕdx =
∫

Ω

|u|q−1 uϕdx+
∫

Ω

ϕdλ, ∀ϕ ∈ C0
c (Ω).

Remark 1.2. Since this theorem deals with rather general operators and measures, the concept of solution in
the sense of distributions of problems like (1.6) may not be convenient in order to have uniqueness of solutions.
Hence the notion of entropy solutions (see Def. 2.9) has been used.

In order to avoid the loss between q ≥ N
N−2 (see [9]) and q > N

N−2 (see Th. 1.1 with p = 2 and r = N)
and between the 2q′-capacity and the (2, q′)-capacity, we will extend the result of [23] to low order terms more
general that |u|q−1u in the context of Orlicz spaces. The best approach for this new context will involve also
the notion of Orlicz capacity. Such a notion has been already introduced in literature (see [4]). In spite of this,
we will adopt a new equivalent definition (see Def. 2.6), which is closer to the classical one used in the context
of the Sobolev spaces.

2. The main results

2.1. Definitions

First let us give the definitions useful to understand the results.

Definition 2.1. An N -function is a function Φ continuous on [0,∞[, increasing, convex, and such that
limx→0 Φ(x)/x = 0, limx→∞Φ(x)/x = +∞. For our purposes we will assume also that Φ ∈ C1([0,∞[),
Φ′ increasing, and

c1 min(sq1−1, sq2−1)Φ′(t) ≤ Φ′(st) ≤ c2 max(sq1−1, sq2−1)Φ′(t) (2.1)

for some q1, q2 > 1.
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Remark 2.2. Condition (2.1) means that the growth of Φ “lies between” that one of the powers tq1 , tq2 . Indeed
it implies all the following inequalities:

c1 min(sq1 , sq2)Φ(t) ≤ Φ(st) ≤ c2 max(sq1 , sq2)Φ(t) (2.2)

c1 min(s
q1

q1−1 , s
q2

q2−1 )Φ̃(t) ≤ Φ̃(st) ≤ c2 max(s
q1

q1−1 , s
q2

q2−1 )Φ̃(t) (2.3)

c1 min(s
1

q1 , s
1

q2 )Φ−1(t) ≤ Φ−1(st) ≤ c2 max(s
1

q1 , s
1

q2 )Φ−1(t) (2.4)

c1 min(s
q1−1

q1 , s
q2−1

q2 )Φ̃−1(t) ≤ Φ̃−1(st) ≤ c2 max(s
q1−1

q1 , s
q2−1

q2 )Φ̃−1(t) (2.5)

c1 min(s
1

q1−1 , s
1

q2−1 )Φ̃′(t) ≤ Φ̃′(st) ≤ c2 max(s
1

q1−1 , s
1

q2−1 )Φ̃′(t) (2.6)

for all s, t > 0. The constants c1, c2 need not to be the same in each line. We remark that the inequalities stated
above are not equivalent; however, with the help of the arguments given in [24], it can be proved that (2.1)
implies them all. Remark that (2.2) implies that Φ ∈ ∆2.

Definition 2.3. The N -function Φ belongs to ∆2 if there exist c > 0 and t0 ≥ 0 such that

Φ(2t) ≤ cΦ(t) ∀t ≥ t0.

Definition 2.4. The complementary function of Φ, denoted by Φ̃, is defined by

Φ̃(s) = sup
t≥0

[st− Φ(t)] ∀s ≥ 0.

It can be proved that if Φ is an N -function, also Φ̃ is an N -function. If Φ′ is strictly increasing, (Φ̃)′(t) =
(Φ′)−1(t)∀t ≥ 0.

In the following Ω denotes an open bounded set of RN . For Φ satisfying the Definition 2.1, the Orlicz
class LΦ(Ω) is defined by

LΦ(Ω) =
{
f ∈ L1

loc(Ω) :
∫

Ω

Φ(|f |)dx < +∞
}
·

The Orlicz class LΦ(Ω), equipped with the norm

‖f‖
Φ

= inf
{
k > 0 :

∫
Ω

Φ
( |f |
k

)
dx ≤ 1

}

becomes the so-called Orlicz space, which is a reflexive Banach space whose dual is LΦ̃(Ω). In the following we
will assume that the reader is familiar with the Orlicz space theory, deeply studied (for instance) in [17,19,25].

One can also define the Orlicz–Marcinkiewicz spaces by

MΦ(Ω) =
{
f ∈ L1

loc(Ω) : t 7→ meas {f > t}Φ(t) is bounded
} ·

Definition 2.5. Let 0 < α < N and let r be a real number, with r > 1. Let K be a compact subset of Ω.
The (α, r)-capacity of K with respect to Ω is defined as

capα,r(K) = capα,r(K,Ω) = inf
{
‖u‖r

W α,r
0 (Ω)

: u ∈ C∞c (Ω), u ≥ χK

}
,
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where χK is the characteristic function of K; we will use the convention that inf ∅ = +∞. The (α, r)-capacity
of any open subset U of Ω is then defined by

capα,r(U) = capα,r(U,Ω) = sup
{
capα,r(K), K compact, K ⊂ U

}
,

and the (α, r)-capacity of any set E ⊂ Ω by

capα,r(E) = capα,r(E,Ω) = inf
{
capα,r(U), U open, E ⊂ U

} ·
We introduce now the following definition, which represents a generalization of the previous one. We will see
in Section 4 that this formulation is equivalent to that one appearing in [4].

Definition 2.6. Let K be a compact subset of Ω. Let A satisfying Definition 2.1. The A-capacity of K with
respect to Ω is defined as:

cap1,A(K) = inf
{
A(‖∇u‖

A
) : u ∈ C∞c (Ω), u ≥ χK

}
,

where χK is the characteristic function of K; we will use the convention that inf ∅ = +∞. The A-capacity of
any open subset U of Ω is then defined by:

cap1,A(U) = sup
{
cap1,A(K), K compact, K ⊂ U

}
,

and the A-capacity of any set E ⊂ Ω by

cap1,A(B) = inf
{
cap1,A(U), U open, E ⊂ U

} ·
Let p be a real number, with 1 < p < N , and let p′ be its conjugate Hölder exponent (i.e., 1/p+ 1/p′ = 1). Let
a : Ω×RN → RN be a Carathéodory function (i.e., a(·, ξ) is measurable on Ω for every ξ in RN , and a(x, ·) is
continuous on RN for almost every x in Ω), such that the following holds:

a(x, ξ) · ξ ≥ α |ξ|p, (2.7)

|a(x, ξ)| ≤ β [b(x) + |ξ|p−1], (2.8)

[a(x, ξ) − a(x, η)] · (ξ − η) > 0, (2.9)

for almost every x in Ω, for every ξ, η in RN , with ξ 6= η, where α and β are two positive constants, and b is a
nonnegative function in Lp′(Ω).

Under assumptions (2.7, 2.8) and (2.9), u 7→ −div(a(x,∇u)) is a uniformly elliptic, coercive and pseudomono-
tone operator acting from W 1,p

0 (Ω) to its dual W−1,p′(Ω), and so it is surjective (see [18]).
Let us denote C(Ω) the space of the real valued continuous functions on Ω, equipped with the topology of

uniform convergence on compact subsets of Ω. If K is compact, C(K) is usually normed with the supremum
norm ‖ · ‖

L∞(K)
. Cc(Ω) is the subset of C(Ω) consisting of functions with compact support contained in Ω. The

dual of the space Cc(Ω) is denoted by M(Ω), the bounded measures on Ω. The set of positive measures on Ω,
is denoted by M+(Ω). For K compact, the symbol M+(K) has analogous meaning; such space will be used
mainly in some intermediate auxiliary statements in Section 4.

Let λ be a bounded measure on Ω. We say that λ is concentrated on a set E if λ(B) = λ(B ∩ E) for every
Borelian subset B of Ω. Thanks to the Hahn decomposition theorem, given a signed Radon measure λ on Ω,
we can decompose it as the difference of two nonnegative, mutually singular, measures:

λ = λ+ − λ−.
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If λ is concentrated on a set E, as a consequence of the fact that λ+ and λ− are mutually singular, we have
that λ+ is concentrated on a set E+, λ− is concentrated on a set E−, and E+ ∩ E− = ∅.
Definition 2.7. Let λ be a measure, decomposed as λ+ − λ−, and let be approximations fn of λ made in the
following way: fn = f⊕n − f	n , where {f⊕n } and {f	n } are sequences of nonnegative L∞(Ω) functions such that

lim
n→+∞

∫
Ω

f⊕n ϕdx =
∫

Ω

ϕdλ+, lim
n→+∞

∫
Ω

f	n ϕdx =
∫

Ω

ϕdλ−, (2.10)

for every function ϕ which is continuous and bounded on Ω.

We explicitly remark that f⊕n and f	n may not be the positive and negative parts of fn (that is to say, their
supports may not be disjoint). Observe that choosing ϕ ≡ 1 in (2.10) we obtain

‖f⊕n ‖L1(Ω)
≤ c, ‖f	n ‖L1(Ω)

≤ c. (2.11)

Since we will deal with right hand side which are some measures, the solution may not be in L1
loc(Ω), thus there

distributional gradient may not be defined. Thus we will use the following definition of “gradient”.
Before this, we define, for k > 0,

Tk(s) = max(−k,min(k, s)), ∀s ∈ R,

the truncature at levels ±k.
Definition 2.8. Let u be a measurable function on Ω such that Tk(u) belongs to W 1,p

0 (Ω) for every k > 0.
Then (see [6], Lem. 2.1) there exists a unique measurable function v : Ω → RN such that

∇Tk(u) = v χ{|u|≤k}, almost everywhere in Ω, for every k > 0.

We will define the gradient of u as the function v, and we will denote it by v = ∇u. If u belongs to W 1,1
0 (Ω),

then this gradient coincides with the usual gradient in distributional sense.

For nonlinear elliptic equations with right hand sides measures or L1(Ω) functions, there is no uniqueness of
distributional solutions, thus we will use the following notion of entropy solution (see [6]).

Definition 2.9. Let a satisfy the assumptions above, let g be a function in L1(Ω) and let Φ ∈ C2([0,∞[) be
a convex function. A measurable function u such that Tk(u) belongs to W 1,p

0 (Ω) for every k > 0 is an entropy
solution of the equation {−div(a(x,∇u)) + Φ′′(|u|)u = g in Ω,

u = 0 on ∂Ω, (2.12)

if Φ′′(|u|)|u| belongs to L1(Ω), and∫
Ω

a(x,∇u) · ∇Tk(u− ϕ) dx+
∫

Ω

Φ′′(|u|)u Tk(u − ϕ) dx ≤
∫

Ω

g Tk(u− ϕ) dx,

for every ϕ in W 1,p
0 (Ω) ∩ L∞(Ω), and for every k > 0.

We recall the following result (see [6], Th. 6.1, Th. 5.1 and Cor. 4.3).

Theorem 2.10. There exists a unique entropy solution of (2.12). Moreover this solution is also a solution
of (2.12) in the sense of distributions.
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2.2. Nonlinear problem

The first main result (proved in Sect. 3) of the paper is the following:

Theorem 2.11. Let a satisfy the assumptions above, A be an N -function satisfying the assumptions of
Definition 2.1, with q1 = p, q2 = N , and let λ be a bounded measure concentrated on a set E of null A-
capacity. Let fn be a sequence of functions converging to λ in the sense of Definition 2.7. Let g be a function in
L1(Ω), and let gn be a sequence of L∞(Ω) functions which converges to g weakly in L1(Ω). Let Φ ∈ C2([0,∞[)
be an N -function such that

Φ′(t) ≤ tΦ′′(t) ∀t ≥ 0 (2.13)∫ +∞ (Ã)′(t)Φ−1(tp
′
)

tp′
dt < +∞, (2.14)

and let un be the solution in W 1,p
0 (Ω) of the problem{−div(a(x,∇un)) + Φ′′(|un|)un = fn + gn in Ω,

un = 0 on ∂Ω. (2.15)

Then, as n tends to infinity, |∇un|p−1 converges strongly to |∇u|p−1 in LΘ(Ω), for every N -function Θ ∈ ∆2

such that ∫ +∞ Θ′(t)Φ−1(tp
′
)

tp′
dt < +∞, (2.16)

where u is the unique entropy solution of{−div(a(x,∇u)) + Φ′′(|u|)u = g in Ω,
u = 0 on ∂Ω. (2.17)

Moreover,

lim
n→+∞

∫
Ω

Φ′′(un)un ϕdx =
∫

Ω

Φ′′(u)uϕdx+
∫

Ω

ϕdλ, ∀ϕ ∈ C0
c (Ω). (2.18)

Remark 2.12. According to Theorem 2.10, Theorem 2.11 is also true with solutions in the distributional sense
(but there is no uniqueness result).

Remark 2.13. Assumption (2.13) implies that the growth of the lower order term of the equation is linear or
superlinear (observe that Φ′(t)/t is non-decreasing because of (2.13)).

Remark 2.14. Let us now consider the Theorem 2.11 in the case Φ(t) = tq+1. The condition (2.14) can be
reformulated as follows: ∫ +∞ (Ã)′(s)

s
p′q
q+1

ds < +∞. (2.19)

Remark 2.15. Set Φ(t) = tq+1 and A(t) = tr (thus (Ã)′(t) = c t1/(r−1)), then (2.14) (or (2.19)) becomes:∫ +∞
t

1
r−1 + p′

q+1−p′dt < +∞.

This condition can be true only if r > p. In this case, this condition is equivalent to

q >
r(p− 1)
r − p

(2.20)
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and the problem studied in Theorem 2.11 is{−div(a(x,∇u)) + |u|q−1 u = µ in Ω,
u = 0 on ∂Ω (2.21)

i.e. the same condition found in [23], therefore our Theorem 2.11 is a generalization of Theorem 1.6 of [23].

Remark 2.16. Set Φ(t) = tq+1 and A(t) = tr logr−1+ε(e+ t) for some ε > 0. There exist some constants c1,. . .,
c′3, such that one has

c1 t
r−1 logr−1+ε(e+ t) ≤ A′(t) ≤ c2 t

r−1 logr−1+ε(e+ t), ∀t > c3

and therefore (see Def. 2.4)

c′1 t
1

r−1 log−
r−1+ε

r−1 (e+ t) ≤ (Ã)′(t) ≤ c′2 t
1

r−1 log−
r−1+ε

r−1 (e+ t), ∀t > c′3

thus (2.14) (or (2.19)) becomes ∫ +∞
t

1
r−1+ p′

q+1−p′ log−
r−1+ε

r−1 (e+ t)dt < +∞.

If r > p, this is equivalent to

q ≥ r(p− 1)
r − p

·

Remark 2.17. Let p < r ≤ N , and A(t) = tr. Then (2.15) has not solutions (in the sense of Th. 2.11) for
any Φ such that ∫ +∞ Φ−1(tp

′
)

tp′−r′+1
dt < +∞. (2.22)

We give here some examples of functions Φ for which (2.14) or (2.22) apply:

Φ1(t) = tq+1 ∀q > r(p− 1)
r − p

;

Φ2(t) = t
r(p−1)

r−p +1[log(e+ t)]k+1 ∀k > r(p − 1)
r − p

;

Φ3(t) = t
r(p−1)

r−p +1[log(e+ t)]
r(p−1)

r−p +1[log(e+ log(e+ t))]k+1 ∀k > r(p− 1)
r − p

;

Φ4(t) = et − t− 1;

Φ5(t) = eet−1 − t− 1.

Remark 2.18. If A(t) = tr with r ≤ p then (2.14) has no solution in Φ (recall that Φ−1 is increasing).
Moreover, in this case we have existence for (2.21), see Remark 1.10 of [23]. This motivates the bound q1 = p
in Theorem 2.11. Notice also that q2 cannot be bigger than N because there is not set of r-capacity null for
r > N .

2.3. Linear problem

Let now study the linear case (where p = 2) with Φ(t) = tq+1:{−∆u+ |u|q−1 u = µ in Ω,
u = 0 on ∂Ω. (2.23)
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If A(t) = tr, according to Remark 2.15, equation (2.14) becomes q > r
r−2 (or r > 2q′). When r = N , one

can see that Theorem 2.11 is thus weaker than the one of [9], where the condition is q ≥ N
N−2 . However if

we set Ar(t) = tr logr−1+ε(e + t), according to Remark 2.16, equation (2.14) becomes q ≥ r
r−2 . Therefore the

capacities cap1,Ar
give us the possibility to allow also the case q = r

r−2 in Theorem 2.11:

Proposition 2.19. Let µ be a bounded measure concentrated on a set of null (1, tr logr−1+ε(e + t))-capacity
(for some ε > 0) and absolutely continuous with respect to the (1, ts)-capacity for all s > r. If q ≥ r

r−2 ,
then (2.23) has no solution in the sense of Theorem 2.11 and µ is not absolutely continuous with respect to
the (2, q′)-capacity. If q < r/(r − 2), then there exist solutions of (2.23) and µ is absolutely continuous with
respect to the (2, q′)-capacity.

Remark 2.20. Let us observe that this does not cover the case of [9]: the measure was concentrated on {0},
which is a set such that capN ({0}) = cap2,N/2({0}) = 0, cap1,tN logN−1+ε(e+t)({0}) > 0 and caps({0}) > 0
for s > N . That is the Dirac mass is absolutely continuous with respect to the (1, tN logN−1+ε(e + t)) and
(1, s)-capacity for s > N but not absolutely continuous with respect to the (1, N) and (2, N/2)-capacity.

Before proving the Proposition 2.19, we have to study the relations between the different capacities. This
will be made by proving the following result, obtained by extending in the Orlicz setting the nonlinear potential
techniques of [1] (see the proof in Sect. 4):

Theorem 2.21. Let s > 1, 0 < βs < N , β ∈ N. If

∫ 1

0

(Ã)′(t1−βs) dt <∞ (2.24)

then

cap1,A(E) = 0 ⇒ capβ,s(E) = 0.

Remark 2.22. In order to prove Theorem 2.21, we will use a well-known result by Frostman (see (4.5) and (4.6)),
which has been extended in Maz’ja and Havin [22]. We refer also to [20,21] for estimates close to ours, obtained
by a completely different approach.

Setting β = 2 and s = q′ (with 2q′ < N) in Theorem 2.21, we get the following: if

∫
0

(Ã)′(t1−2q′)dt <∞ (2.25)

then

cap1,A(E) = 0 ⇒ cap2,q′(E) = 0.
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Therefore, as a consequence of the previous theorem, taking particular cases of the parameters involved, we get
the following (already known) remark (see [23]):

Remark 2.23. Set A(t) = tr. If q > r
r−2 (or equivalently r > 2q′, (2.14, 2.19) or (2.25)) in the Theorem 2.21,

then we have
cap1,r(E) = 0 ⇒ cap2,q′(E) = 0.

Moreover if λ is a measure concentrated on a set E of null (1, r)-capacity then λ is not absolutely continuous
with respect to the (2, q′)-capacity.

Let us go further studying the relation between these capacities:

Lemma 2.24. Let A(t) = tr logr−1+ε(e+ t) for some ε > 0 and q such that 2q′ < N (i.e. q > N
N−2). If q ≥ r

r−2

that is (2.14) or (2.25), one has according to Theorem 2.21,

cap1,tr logr−1+ε(e+t)(E) = 0 ⇒ cap2,q′(E) = 0. (2.26)

If q < r
r−2 one has

cap2,q′(E) = 0 ⇒ cap1,2q′(E) = 0 ⇒ cap1,tr logr−1+ε(e+t)(E) = 0. (2.27)
Proof. If q ≥ r

r−2 , using Theorem 2.21 with β = 2 and s = q′, and A(t) = tr logr−1+ε(e + t), one gets (2.26).
If q < r

r−2 , then r < 2q′, from which A(t) ≤ t2q′ near infinity. Thus

A−1(cap1,tr logr−1+ε(e+t)(E)) ≤ c [cap1,2q′(E)]1/2q′ ,

and according to Adams–Hedberg [1] (Th. 5.5.1, p. 148), one has

cap1,tr logr−1+ε(e+t)(E) ≤ cA
([

cap1,2q′(E)
]1/2q′

)
≤ cA

([
cap2,q′(E)

]1/2q′
)
. �

We are now able to prove the Proposition 2.19.

Proof of Proposition 2.19. In the case q ≥ r
r−2 , equation (2.14) is true, and µ is concentrated on a set of

null (1, tr logr−1+ε(e + t))-capacity, then (2.23) has no solution in the sense of Theorem 2.11 (using it with
A(t) = tr logr−1+ε(e + t)). Moreover using the first part of Lemma 2.24, one has that µ is concentrated on a
set of null (2, q′)-capacity and thus µ is not absolutely continuous with respect to this capacity.

In the case q < r/(r − 2), 2q′ > r then µ is absolutely continuous with respect to the (1, 2q′)-capacity (since
2q′ > r) and thus also to the (2, q′)-capacity (according to Lem. 2.24), then there exist solutions of (2.23) (see
Gallouët and Morel [14]). �

3. Proof of the nonexistence result

Before giving the proof of Theorem 2.11, we need to construct, as in [11], a sequence of suitable cut-off
functions, built after λ and E (the proof of [23] works also for Sobolev–Orlicz spaces).

Lemma 3.1. Let λ = λ+−λ− be a Radon measure concentrated on a set E of zero r-capacity, with 1 < r ≤ N .
Then for every δ > 0 there exist two C∞c (Ω) function ψ+

δ and ψ−δ such that

0 ≤ ψ+
δ ≤ 1, 0 ≤ ψ−δ ≤ 1, ‖∇ψ+

δ ‖A ≤ δ, ‖∇ψ−δ ‖A ≤ δ, (3.1)

0 ≤
∫

Ω

(1− ψ+
δ ) dλ+ ≤ δ, 0 ≤

∫
Ω

(1− ψ−δ ) dλ− ≤ δ, (3.2)

0 ≤
∫

Ω

ψ−δ dλ+ ≤ δ, 0 ≤
∫

Ω

ψ+
δ dλ− ≤ δ. (3.3)
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Lemma 3.2. Let ρ > 0, and let {vn} be a sequence of functions bounded in MΦ′(Ω). Suppose that, for every
k > 0, we have ∫

Ω

|∇Tk(vn)|p dx ≤ c k,

for some positive constant c. Then {|∇vn|p−1} is bounded in MΨ(Ω), with

Ψ(s) =
sp′

Φ−1(sp′)
·

Proof. We follow the lines of the proof of [6] (Lem. 4.2). Let σ be a fixed positive real number. We have, for
every k > 0,

meas {|∇vn| > σ}= meas
{ |∇vn| > σ

|vn| ≤ k

}
+ meas

{ |∇vn| > σ

|vn| > k

}
≤meas

{ |∇vn| > σ

|vn| ≤ k

}
+ meas {|vn| > k}·

(3.4)

Moreover,

meas
{ |∇vn| > σ

|vn| ≤ k

}
≤ 1
σp

∫
Ω

|∇Tk(vn)|p dx ≤ c
k

σp
·

Since by the assumptions on vn there exists a positive constant c such that

meas {|vn| > k} ≤ c

Φ′(k)
,

equation (3.4) then implies

meas {|∇vn| > σ} ≤ c
k

σp
+

c

Φ′(k)
,

and this latter inequality holds for every k > 0. Minimizing on k, we get c kΦ′(k) = σp (recall that kΦ′(k)
≥ Φ(k) and Φ−1(ck) ≤ cΦ−1(k), for all c > 1, thanks to the convexity of Φ)

meas {|∇vn| > σ} ≤ cΦ−1(σp)
σp

,

thus

meas {|∇vn|p−1 > σ} ≤ cΦ−1(σp′ )
σp′ ,

which is the desired result. �

Lemma 3.3. Let Ψ and Θ be N -functions. If moreover∫ +∞ Θ′(t)
Ψ(t)

dt < +∞

then one has
MΨ(Ω) ⊂ LΘ(Ω)

and for any s > 0 the following inequality hold:∫
Ω

Θ(|v|) dx ≤ meas (Ω)Θ(s) +
(

sup
t>0

Ψ(t)meas {|v| > t}
)∫ +∞

s

Θ′(t)
Ψ(t)

dt.
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Proof. Let v be a function in MΨ(Ω). One has, for all s > 0,∫
Ω

Θ(|v|) dx =
∫ +∞

0

Θ′(t)meas {|v| > t}dt

≤ meas (Ω)Θ(s) +
∫ +∞

s

Θ′(t)
Ψ(t)

Ψ(t)meas {|v| > t}dt

from which the assertion follows. �
Lemma 3.4. Let {vn} be a sequence of W 1,p

0 (Ω) functions such that∫
Ω

|∇Tk(vn)|p dx ≤ c k,

for some positive constant c. Then there exists a subsequence, still denoted by vn, and a measurable function v,
such that vn converges to v almost everywhere in Ω.

Proof. See [6], proof of Theorem 6.1, Step 2. �
Proof of Theorem 2.11. We will follow [23] which has used some of the ideas contained in [11] when dealing
with nonlinear elliptic equations with measure data.

Then, since the operator is monotone, there exists a unique solution u in W 1,p
0 (Ω) of the following nonlinear

elliptic problem (this result is well known and is a consequence of [18]; it is, for example, proved in Th. 2.10){−div(a(x,∇u)) + Φ′′(|u|)u = f in Ω,
u = 0 on ∂Ω, (3.5)

in the sense that ∫
Ω

a(x,∇u) · ∇ϕdx +
∫

Ω

Φ′′(|u|)uϕdx =
∫

Ω

f ϕdx, (3.6)

for every ϕ in W 1,p
0 (Ω) ∩ L∞(Ω) and for ϕ = u, so that Φ(|u|) (and Φ′′(|u|)u2) belongs to L1(Ω).

We define ω(n,m, δ) any quantity (depending on n, m and δ) such that

lim
δ→0+

lim
m→+∞ lim

n→+∞ |ω(n,m, δ)| = 0.

Similarly, if the quantity we are considering does not depend one or more of the three parameters n, m and δ,
we will omit the dependence from it in ω. For example, ω(n, δ) is any quantity such that

lim
δ→0+

lim
n→+∞ |ω(n, δ)| = 0.

Step 1: A priori estimates.

Since Tk(un) is in W 1,p
0 (Ω)∩L∞(Ω), we can choose it as test function in the weak formulation of (2.15). We

get, using (2.7, 2.11), and the boundedness of {gn} in L1(Ω),

α

∫
Ω

|∇Tk(un)|p dx+
∫

Ω

Φ′′(|un|)|un| |Tk(un)| dx ≤ c k, (3.7)

for some positive constant c. Dropping the first, nonnegative term of the left hand side of the preceding
inequality, we have

k

∫
{|un|≥k}

Φ′′(|un|)|un| dx ≤
∫

Ω

Φ′′(|un|)|un| |Tk(un)| dx ≤ c k,
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so that ∫
{|un|≥k}

Φ′′(|un|)|un| dx ≤ c. (3.8)

By (2.13) this implies
Φ′(k)meas {|un| ≥ k} ≤ kΦ′′(k)meas {|un| ≥ k} ≤ c,

and so {un} is bounded in MΦ′(Ω). Furthermore,∫
{|un|<k}

Φ′′(|un|)|un| dx ≤ kΦ′′(k)meas (Ω),

and so, using (3.8),
Φ′′(|un|)un is bounded in L1(Ω). (3.9)

The boundedness of un in MΦ′(Ω), and Lemma 3.2, which can be applied since (3.7) also implies that∫
Ω

|∇Tk(un)|p dx ≤ c k, (3.10)

yields

{|∇un|p−1} is bounded inMΨ(Ω), with Ψ(s) =
sp′

Φ−1(sp′)
· (3.11)

Now let Θ1 ∈ ∆2 be an N -function verifying the assumption (2.16), and let Θ ∈ ∆2 be any N -function “well
dominated” by Θ1. We formalize this domination writing

Θ1(t) = ϕ(Θ(t)) ∀t ≥ 0

for some ϕ increasing, continuous, such that limt→∞ ϕ(t)/t = +∞. By (3.11) and Lemma 3.3 the set
{ϕ(Θ(|∇un|p−1))} is bounded in L1(Ω), therefore the sequence

Θ(|∇un|p−1) is equiintegrable. (3.12)

On the other hand, using again (3.10), by Lemma 3.4, and up to some subsequence still denoted by un, un

converges almost everywhere to a measurable function u, and so Tk(un) converges almost everywhere to Tk(u).
Using (3.9) and Fatou lemma, one has Φ′′(|u|)u ∈ L1(Ω).

Moreover, equation (3.10) implies that {Tk(un)} is bounded in W 1,p
0 (Ω), so that, by the weak lower semicon-

tinuity of the norm, Tk(u) belongs to W 1,p
0 (Ω) for every k > 0, and thus u has a gradient ∇u in the sense of

Definition 2.8.
As for the gradients of un, we remark that un is the solution of the equation −div(a(x,∇un)) = f⊕n − f	n

+gn − Φ′′(|un|)un, and that the right hand side is bounded in L1(Ω) by (2.11) and (3.9). By a result in [8],
this implies that, up to subsequences,

∇un converges almost everywhere to ∇u. (3.13)

From now on, we will suppose to have already extracted from un a subsequence (which we still denote by un),
with the properties we have proved before. By (3.13) we have also

Θ(|∇un|p−1) converges almost everywhere to Θ(|∇u|p−1). (3.14)

By (3.12) and (3.14), we can apply Vitali’s theorem, and we get |∇un|p−1 ∈ LΘ(Ω) and∫
Ω

Θ(|∇un|p−1) dx→
∫

Ω

Θ(|∇u|p−1) dx. (3.15)
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By (3.13) and (3.15), applying the Fatou lemma to the sequence of nonnegative functions cΘ(Θ(|∇u|p−1)
+Θ(|∇un|p−1)) − Θ(||∇u|p−1 − |∇un|p−1|), where cΘ is the constant appearing in the ∆2 condition for Θ, we
get

∫
Ω

Θ(||∇u|p−1 − |∇un|p−1|) dx→ 0 (3.16)

from which, since Θ ∈ ∆2, we get (see e.g. Th. 1.3, p. 8 of [19])

|∇un|p−1 → |∇u|p−1 strongly in LΘ(Ω). (3.17)

Notice that we obtained (3.17) for all Θ ∈ ∆2 well dominated by some Θ1 such that (2.16) holds. Such
functions Θ ∈ ∆2 verify condition (2.16), and, on the other hand, arguing as in [17] (see Chap. II, Sect. 8,
No. 1, p. 60), it is easy to show that any ∆2 N -function satisfying the condition (2.16) is well dominated by
an N -function of the same type. The conclusion is that we have (3.17) for all Θ verifying (2.16).

Observe that, by the assumption (2.8) on a, the argument above shows also that

a(x,∇un) → a(x,∇u) strongly in (LΘ(Ω))N , (3.18)

for every function Θ ∈ ∆2 such that
∫ +∞ Θ′(t)

Ψ(t) dt < ∞. In particular, one can choose Θ = Ã thanks to (2.14).
Thus the last convergence is also in L1(Ω).

Step 2: Energy estimates.

Let Ψδ = ψ+
δ + ψ−δ , where ψ+

δ and ψ−δ are as in Lemma 3.1. Then

∫
{un>2m}

Φ′′(un)un (1−Ψδ) dx = ω(n,m, δ), (3.19)

and ∫
{un<−2m}

Φ′′(|un|)|un| (1− Ψδ) dx = ω(n,m, δ). (3.20)

We will only prove (3.19), since the proof of (3.20) is identical. We choose βm(un) (1 −Ψδ) as test function in
the weak formulation of (2.15), where βm(s) is defined as

βm(s) =


0 if s ≤ m,

s

m
− 1 if m < s ≤ 2m,

1 if s > 2m.
(3.21)
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We obtain, using the fact that the derivative of βm(s) is different from zero only where m < s < 2m,

1
m

∫
{m<un<2m}

a(x,∇un) · ∇un (1−Ψδ) dx (A)

−
∫

Ω

a(x,∇un) · ∇Ψδ βm(un) dx (B)

+
∫

Ω

Φ′′(|un|)un βm(un) (1 −Ψδ) dx (C)

=
∫

Ω

f⊕n βm(un) (1−Ψδ) dx (D)

−
∫

Ω

f	n βm(un) (1 −Ψδ) dx (E)

+
∫

Ω

gn βm(un) (1−Ψδ) dx. (F)

We have, by (3.18), by Egorov theorem, and since βm(un) converges to βm(u) almost everywhere in Ω and in
the weak∗ topology of L∞(Ω),

−(B) =
∫

Ω

a(x,∇u) · ∇Ψδ βm(u) dx+ ω(n) = ω(n,m),

and the last passage is due to the fact that βm(u) converges to zero in the weak∗ topology of L∞(Ω) as m tends
to infinity. For the same reason, we have

(F ) = ω(n,m).

Finally, by (3.2) and (3.3),

(D)≤
∫

Ω

f⊕n (1−Ψδ) dx =
∫

Ω

f⊕n (1− ψ+
δ ) dx+

∫
Ω

f⊕n ψ−δ dx

=
∫

Ω

(1− ψ+
δ ) dλ+ +

∫
Ω

ψ−δ dλ+ + ω(n)

= ω(n, δ).

Since (A) and −(E) are nonnegative, and since

(C) ≥
∫
{un>2m}

Φ′′(un)un (1−Ψδ) dx,

we get (3.19).

Step 3: Passing to the limit.

We are now ready to conclude the proof of Theorem 2.11, showing that u is the entropy solution of (2.17)
with datum g.
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Let ϕ be a function in W 1,p
0 (Ω) ∩ L∞(Ω), let M = ‖ϕ‖

L∞(Ω)
, let k > 0, and choose Tk(un − ϕ)(1 − Ψδ) as

test function in the weak formulation of (2.15). We get∫
Ω

a(x,∇Tk(un)) · ∇Tk(un − ϕ) (1 −Ψδ) dx (A)

−
∫

Ω

a(x,∇un) · ∇Ψδ Tk(un − ϕ) dx (B)

+
∫

Ω

Φ′′(|un|)un Tk(un − ϕ) (1−Ψδ) dx (C)

=
∫

Ω

f⊕n Tk(un − ϕ) (1−Ψδ) dx (D)

−
∫

Ω

f	n Tk(un − ϕ) (1−Ψδ) dx (E)

+
∫

Ω

gn Tk(un − ϕ) (1−Ψδ) dx . (F)

Using (3.18, 2.14), Lemma 3.3, one has the convergence of a(x,∇un) to a(x,∇u) in LÃ(Ω). Thus using (3.1),
we get

−(B) =
∫

Ω

a(x,∇u) · ∇Ψδ Tk(u− ϕ) dx+ ω(n) = ω(n, δ).

Using (3.2) and (3.3), we obtain

|(D)|+ |(E)| ≤ k

∫
Ω

(f⊕n + f	n ) (1 −Ψδ) dx = ω(n, δ).

It is then easy to see that

(F ) =
∫

Ω

g Tk(u− ϕ) dx+ ω(n, δ),

so that we only have to deal with (A) and (B). Let m > k +M be fixed. We then have

(C) =
∫
{−2m≤un≤2m}

Φ′′(|un|)un Tk(un − ϕ) (1 −Ψδ) dx (G)

+
∫
{un>2m}

Φ′′(un)un k (1−Ψδ) dx (H)

+
∫
{un<−2m}

Φ′′(|un|) |un| k (1−Ψδ) dx. (I)

It is easily seen that (recall that Φ′′(|u|)u ∈ L1(Ω))

(G) =
∫
{−2m≤u≤2m}

Φ′′(|u|)u Tk(u− ϕ) (1 −Ψδ) dx+ ω(n)

=
∫

Ω

Φ′′(|u|)u Tk(u− ϕ) (1−Ψδ) dx+ ω(n,m)

=
∫

Ω

Φ′′(|u|)u Tk(u− ϕ) dx+ ω(n,m, δ).

We then have, by (3.19),

(H) = k

∫
{un>2m}

Φ′′(un)un (1 −Ψδ) dx = ω(n,m, δ),
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and, by (3.20),

(I) = k

∫
{un<−2m}

Φ′′(|un|) |un| (1−Ψδ) dx = ω(n,m, δ),

so that
(C) =

∫
Ω

Φ′′(|u|)u Tk(u− ϕ) dx+ ω(n, δ).

Finally, we have

(A) =
∫

Ω

[a(x,∇un)− a(x,∇ϕ)] · ∇Tk(un − ϕ) (1 −Ψδ) dx (J)

+
∫

Ω

a(x,∇ϕ) · ∇Tk(un − ϕ) (1−Ψδ) dx. (K)

Since the integrand function in (J) is nonnegative, and converges almost everywhere in Ω to [a(x,∇u)−a(x,∇ϕ)]·
∇Tk(u − ϕ), as n tends to infinity and then δ tends to zero, Fatou lemma implies∫

Ω

[a(x,∇u)− a(x,∇ϕ)] · ∇Tk(u− ϕ) dx ≤ lim inf
δ→0+

lim inf
n→+∞ (J).

Moreover, since a(x,∇ϕ) belongs to (Lp′(Ω))N , we have

(K) =
∫

Ω

a(x,∇ϕ) · ∇Tk(u− ϕ) dx+ ω(n, δ),

so that, putting together the results for (J) and (K), we have∫
Ω

a(x,∇u) · ∇Tk(u− ϕ) dx ≤ lim inf
δ→0+

lim inf
n→+∞ (A).

Summing up the results we have obtained so far, we have∫
Ω

a(x,∇u) · ∇Tk(u− ϕ) dx+
∫

Ω

Φ′′(|u|)u Tk(u − ϕ) dx ≤
∫

Ω

g Tk(u− ϕ) dx,

and so u is the entropy solution of (2.17). Observe that, thanks to the uniqueness of entropy solution, the
solution u does not depend on the subsequences we have extracted, then the whole sequence un converges to u.

To conclude the proof of the theorem, it only remains to prove (2.18). In order to do this, we choose a test
function ϕ ∈ C∞c (Ω) in the weak formulation of (2.15). We get∫

Ω

a(x,∇un) · ∇ϕdx +
∫

Ω

Φ′′(|un|)un ϕdx =
∫

Ω

(fn + gn)ϕdx.

Thanks to (3.18), and to the assumptions on fn and gn, we have∫
Ω

Φ′′(|un|)un ϕdx = −
∫

Ω

a(x,∇u) · ∇ϕdx+
∫

Ω

g ϕdx+
∫

Ω

ϕdλ+ ω(n).

Since the entropy solution of (2.17) is also a distributional solution of the same problem, we have for the same ϕ,∫
Ω

a(x,∇u) · ∇ϕdx+
∫

Ω

Φ′′(|u|)uϕdx =
∫

Ω

g ϕdx,

and so we have proved that (2.18) holds for every ϕ in C∞c (Ω). Since Φ′′(|un|)un is bounded in L1(Ω),
equation (2.18) can then be extended by density to the functions in C0

c (Ω). �
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4. Proof of the comparison result

The proof of Theorem 2.21 is quite long, thus we will need first several intermediate results.

We give now some basic definitions, and fix some notation, borrowed mainly from the book by Adams
and Hedberg [1]. The Fourier transform of a function f will be denoted Ff(ξ). If f ∈ L1(RN ), Ff(ξ) =∫
RN f(x)e−ixξdx. The Bessel kernel is defined by

Gα = F−1
(
(1 + |ξ|2)α

2
)

(α ∈ R).

It can be shown that the following integral formula holds:

Gα(x) =
1

(4π)α/2Γ(α/2)

∫ ∞

0

t(α−N)/2e−π|x|2/t−t/(4π) dt
t

(α > 0).

Moreover, Gα is positive and integrable over RN . The Hardy–Littlewood fractional maximal function of a
measure µ for 0 ≤ α < N , δ > 0, is defined by

Mα,δµ(x) = sup
0<r≤δ

µ(B(x, r))
|B(x, r)|(N−α)/N

·

In the sequel we will use the following inequality, trivial in the context of Lebesgue spaces (this inequality can
be related to the inequality for Jensen means proved in [13]):

Lemma 4.1. The following inequality holds:

A
(
‖f‖

A

)
≤ ΨA

(∫
Ω

A(|f |)dx
)

(4.1)

where

ΨA(s) = sup
t>0

A

 t

A−1
(

A(t)
s

)
 ·

Moreover, the following bounds for ΨA hold:

c1 min
(
A
(
s1/q1

)
, A
(
s1/q2

))
≤ ΨA(s) ≤ c2 max

(
A
(
s1/q1

)
, A
(
s1/q2

))
. (4.2)

Proof. By definition of ΨA we have

A

 t

A−1
(

A(t)
s

)
 ≤ ΨA(s) ∀s, t > 0

or, equivalently,

t

A−1
(

A(t)
s

) ≤ A−1(ΨA(s)) ∀s, t > 0

t

A−1(ΨA(s))
≤ A−1

(
A(t)
s

)
∀s, t > 0

A

(
t

A−1(ΨA(s))

)
≤ A(t)

s
∀s, t > 0
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and therefore, replacing t by |f(x)| and s by
∫
Ω
A(|f(x)|)dx and integrating over Ω

∫
Ω

A

(
|f(x)|

A−1
(
ΨA

(∫
Ω
A(|f(x)|)dx))

)
dx ≤ 1.

By definition of Orlicz norm we deduce

‖f‖A ≤ A−1

(
ΨA

(∫
Ω

A(|f(x)|)dx
))

from which the first part of the assertion follows. The two bounds for ΨA can be proved in the same way, we
will show only the upper one. By (2.2) we have

σt ≤ c2A
−1(max(σq1 , σq2)A(t)) ∀σ, t > 0.

Setting
max (σq1 , σq2) = 1/s⇔ σ = min

(
s−1/q1 , s−1/q2

)
we have

min
(
s−1/q1 , s−1/q2

)
t ≤ c2A

−1
(

A(t)
s

)
∀s, t > 0

t

A−1
(

A(t)
s

) ≤ c2 max
(
s1/q1 , s1/q2

)
∀s, t > 0

thus, using (2.2),

A

 t

A−1
(

A(t)
s

)
 ≤ c̃2 max

(
A
(
s1/q1

)
, A
(
s1/q2

))
∀s, t > 0

from which the assertion follows. �
Remark 4.2. Note that ΨA in (4.1) is an increasing function, such that Ψ(0+) = 0. In the following we will
use its natural extension in 0, by setting Ψ(0) = 0.

Let us now denote by Bn(x), n ∈ Z, the open ball with radius 2−n centered at x, and by Bn the ball Bn(0).
We will call η the characteristic function for B0: η = χB0 so that Supp η = B0, η is nonnegative, bounded,
lower semicontinuous and η(rx) is a decreasing function of r > 0 for any x ∈ RN . We define ηn, n ∈ Z, by
setting ηn(x) = 2nNη(2nx) so that Supp ηn = Bn,

∫
ηn dx =

∫
η dx.

The main tool that will be used in the following is the generalization of the so-called Wolff’s inequality
(see [1], Th. 4.5.2, p. 109) in the framework of Orlicz spaces. Even if in fact the proof is a generalization of
that one given in [1], we show extensively the argument, because we think that in this case the refinement of
the estimations is not completely standard.

Theorem 4.3. Let 0 < α < N and µ ∈M+(K). The following inequality holds:

A
(
‖Gα ∗ µ‖

A

)
≤ cΨA

(∫
RN

Wµ

α,Ã
(x) dµ

)
(4.3)

where

Wµ

α,Ã
(x) =

∫ 4

0

tαA′
(
µ(B(x, t))
tN−α

)
dt
t

for some constant c depending on A, α, N but independent of µ.
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Proof. According to Theorem 1 of [3], there exists a positive constant c such that

‖Gα ∗ µ‖
A
≤ c ‖Mα,δµ‖

A
∀µ ∈ M+(K) (4.4)

thus
A
(
‖Gα ∗ µ‖

A

)
≤ cA

(
‖Mα,1µ‖

A

)
and therefore, by (4.1),

A
(
‖Gα ∗ µ‖

A

)
≤ cΨA

(∫
RN

A (|Mα,1µ|) dx
)
.

Moreover

Mα,1µ(x) = sup
0<r≤1

µ(B(x, r))
|B(x, r)|(N−α)/N

= sup
n≥0

sup
2−n−1≤r≤2−n

µ(B(x, r))
|B(x, r)|(N−α)/N

≤ sup
n≥0

µ(B(x, 2−n))
|B(x, 2−n−1)|(N−α)/N

= sup
n≥0

µ(Bn(x))
[cN (2−n−1)N ](N−α)/N

= c sup
n≥0

2n(N−α)µ(Bn(x)) = c sup
n≥0

(
2−nαηn ∗ µ(x)

)
.

Thus we get

A
(
‖Gα ∗ µ‖

A

)
≤ cΨA

(∫
RN

A

(∣∣∣∣sup
n≥0

(2−nα(ηn ∗ µ)(x))
∣∣∣∣)dx

)
from which

Ψ−1
A

(
c−1A

(
‖Gα ∗ µ‖

A

))
≤
∫
RN

A

(∣∣∣∣sup
n≥0

(2−nα(ηn ∗ µ)(x))
∣∣∣∣) dx

≤
∫
RN

∞∑
n=0

A(2−nα(ηn ∗ µ)(x)) dx

≤ c

∫
RN

∞∑
n=0

A′(2−nα(ηn ∗ µ)(x))2−nα(ηn ∗ µ)(x) dx.

Since ηn is even and by classical properties of convolution, we get

Ψ−1
A

(
c−1A

(
‖Gα ∗ µ‖

A

))
≤ c

∫
RN

∞∑
n=0

2−nαA′(2−nα(ηn ∗ µ)) ∗ ηn dµ

and since

ηn ∗ µ(x) =
∫
RN

ηn(x − y)dµ(y) =
∫
RN

2nNη(2n(x− y))dµ(y)

=
∫

Bn(x)

2nNη(2n(x− y))dµ(y) = 2nN

∫
Bn(x)

dµ(y)

= 2nNµ(Bn(x)),

one gets

ηn ∗A′(2−nα(ηn ∗ µ))(x) =
∫
RN

ηn(x − y)A′
(
2−nα 2nNµ(Bn(y))

)
dy.
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Since the last integral is in fact over Bn(x) and Bn(y) ⊂ Bn−1(x) for all y ∈ Bn(x), we get

ηn ∗A′
(
2−nαηn ∗ µ

)
(x) ≤ A′

(
2−nα 2nNµ(Bn−1(x))

) ∫
RN

ηn(x− y) dy.

= A′
(
2−nα 2nNµ(Bn−1(x))

)
.

Thus

Ψ−1
A

(
c−1A

(
‖Gα ∗ µ‖

A

))
≤ c

∫
RN

∞∑
n=0

2−nαA′
(
2n(N−α)µ(Bn−1(x))

)
dµ.

On the other hand, setting

Wµ

α,Ã
(x) =

∫ 4

0

tαA′
(
µ(B(x, t))
tN−α

)
dt
t

we have

Wµ

α,Ã
(x) =

∞∑
n=0

∫ 2−n+2

2−n+1
tαA′

(
µ(B(x, t))
tN−α

)
dt
t

≥
∞∑

n=0

∫ 2−n+2

2−n+1
2−nα+αA′

(
µ(B(x, 2−(n−1)))
2−n(N−α)+2(N−α)

)
dt

2−n+2

=
1
2

∞∑
n=0

∫ 2−n+2

2−n+1
2α · 2−nαA′

(
2−2(N−α) · 2n(N−α)µ(Bn−1(x))

) dt
2−n+1

= 2α−1
∞∑

n=0

2−nαA′
(
2−2(N−α) · 2n(N−α)µ(Bn−1(x))

)
≥ 2α−1cA′,N,α

∞∑
n=0

2−nαA′
(
2n(N−α)µ(Bn−1(x))

)
.

From the relations obtained, the assertion follows. �
In order to fix some more notation, let us recall the definition of Hausdorff measure. Let h(r) be an increasing

function, defined (≤ +∞) for r ≥ 0, and satisfying h(0) = 0. Let E ⊂ RN , and consider coverings of E by
countable unions of (open or closed) balls {B(xi, ri)}∞i=1 with radii {ri}∞i=1. Then for any ρ, 0 < ρ ≤ ∞, a set
function Λ(ρ)

h is defined by

Λ(ρ)
h (E) = inf

∞∑
i=1

h(ri)

where the infimum is taken over all such coverings with supi=1 ri ≤ ρ. Clearly Λ(ρ)
h (E) is a decreasing function

of ρ, so limρ→0 Λ(ρ)
h (E) exists (≤ +∞), and we can define

Λh(E) = lim
ρ→0

Λ(ρ)
h (E).

This is the Hausdorff measure of E with respect to the function h. If h(r) = rα, we write Λα for Λrα . The set
function Λ(∞)

h is called the Hausdorff capacity.
Following [4], let us now give the following definition:

Definition 4.4. Let E be any subset of RN . We set

C′α,A(E) = inf
{
‖f‖

A
: f ∈ LA

(
RN

)
, Gα ∗ f ≥ χE

}
·
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We have now all the background in order to prove the following:

Theorem 4.5. Let 0 < α < N , h be an increasing function on [0,∞[ such that h(0) = 0,∫ 4

0

tα−1(Ã)′
(
h(t)
tN−α

)
dt = H <∞

and let E ⊂ RN be a set satisfying Λ(∞)
h (E) > 0.

Then there exists a constant cA > 0, independent of h and E, such that

Λ(∞)
h (E) ≤ Θ (cAC′α,A(E))

where Θ(t) is an increasing function such that Θ(0+) = 0. In particular,

C′α,A(E) = 0 ⇒ Λh(E) = 0.

Proof. Let K be compact with Λ(∞)
h (K) > 0, and let µ ∈ M+(K) be given by a theorem of Frostman (see [1]),

such that there is a constant c > 0 depending only on N ,

µ(B(x, t)) ≤ h(t) for all balls B(x, t) (4.5)

and
c−1Λ(∞)

h (K) ≤ µ(K) ≤ Λ(∞)
h (K). (4.6)

By Wolff’s inequality (Th. 4.3)

Ã
(
‖Gα ∗ µ‖

Ã

)
≤ cΨÃ

(∫
RN

Wµ
α,A(x)dµ

)
= cΨÃ

(∫
RN

(∫ 4

0

tα−1(Ã)′
(
µ(B(x, t))
tN−α

)
dt
)

dµ
)

and therefore, by (4.5),

Ã
(
‖Gα ∗ µ‖

Ã

)
≤ cΨÃ

(∫
RN

(∫ 4

0

tα−1(Ã)′
(
h(t)
tN−α

)
dt
)

dµ
)

= cΨÃ

(∫
RN

Hdµ
)

= cΨÃ(Hµ(K))

thus
‖Gα ∗ µ‖

Ã
≤ Ã−1

(
cΨÃ(Hµ(K))

)
. (4.7)

According to Theorem 11 (Part 2) of [4] (see also [2]) one has C′α,A(K) = sup{µ(K) : µ ∈ M+(K), µ concen-
trated on K, ‖Gα ∗ µ‖

Ã
≤ 1}. As a consequence, we have

C′α,A(K) ≥ µ(K)
‖Gα ∗ µ‖

Ã
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and therefore, by (4.7),

C′α,A(K) ≥ µ(K)

Ã−1
(
cΨÃ(Hµ(K))

)
and by (4.6) and Remark 4.2,

C′α,A(K) ≥ cÃ−1

Λ(∞)
h (K)

Ã−1
(
ΨÃ(HΛ(∞)

h (K))
) = cÃ−1Θ−1

(
Λ(∞)

h (K)
)

from which the assertion follows. The property Θ(0+) = 0 is true because Θ−1(t) = t/Ã−1(ΨÃ(Ht)) and
therefore, from (4.2), we get (for t small)

t

(Ht)1/q2
≤ Θ−1(t) ≤ t

(Ht)1/q1

from which
H1/(q1−1)tq1/(q1−1) ≤ Θ(t) ≤ H1/(q2−1)tq2/(q2−1).

The last part follows from the fact that for a general set E, Λ(∞)
h (E) = 0 if and only if Λh(E) = 0 (see [1]). Let

us now extend the results to a general set E, not necessarily compact. There exists E′ countable intersection
of open sets such that E ⊂ E′ and Λ(∞)

h (E) = Λ(∞)
h (E′) and C′α,A(E) = C′α,A(E′) (C′α,A is an outer capacity

according to [4], and Λ(∞)
h is an outer measure according to [26]). Using the fact that Λ(∞)

h satisfies the
assumptions of Choquet’s theorem (see [26], Chap. 2.7), one has

Λ(∞)
h (E′) = sup

{
Λ(∞)

h (K), K compact, K ⊂ E′
}
·

Moreover, using Theorem 9 of [4], one has also

C′α,A(E′) = sup {C′α,A(K), K compact, K ⊂ E′} ·

Hence the results obtained for compact sets can be extended to general sets. �

Remark 4.6. The proof of Theorem 4.5 follows the ideas used to prove the Theorem 5.1.13 of [1] (p. 137). We
remark that, with respect to the original proof, our constant is rougher, but simpler, and the proof is slightly
shorther. In our context this (small) simplification is possible because we do not need finer constants.

Let us now consider some relations between Definition 2.5, Definition 2.6 and the Definition 4.4. Let us first
consider the case A(t) = tr, r > 1: Definition 4.4 reduces to

C′α,r(E) = inf
{
‖f‖

r
: f ∈ Lr(RN ), Gα ∗ f ≥ χE

}
·

Denoting by Lα,r(RN ) the Bessel potential spaces

Lα,r
(
RN

)
=
{
h : h = Gα ∗ f, f ∈ Lr

(
RN

)}
,

whose norm is given by ‖h‖
α,r

= ‖f‖
r
, we can write also

C′α,r(E) = inf
{
‖h‖

α,r
: h ∈ Lα,r

(
RN

)
, h ≥ χE

}
·
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At this point we use the result of Calderon: for α ∈ N, Wα,r(RN ) = Lα,r(RN ), 1 < r < ∞, with equivalence
of norms, i.e. there is a constant c such that for all f

c−1‖f‖
α,r

≤ ‖f‖
W α,r

≤ c‖f‖
α,r
. (4.8)

Hence it is clear that C′α,r is equivalent to

cap1/r
α,r

(
E,RN

)
= inf

{
‖h‖

W α,r
: h ∈ C∞c

(
RN

)
, h ≥ χE

}
·

Similarly, one can prove that the capacity C′1,A defined in Definition 4.4 is equivalent to A−1(cap1,A(E,RN ))
where

cap1,A

(
E,RN

)
= inf

{
A(‖∇h‖

A
+ ‖h‖

A
) : h ∈ C∞c

(
RN

)
, h ≥ χE

}
·

This extension is possible because the proof of Calderon’s theorem can be obtained in the context of Orlicz
spaces by straightforward generalization of that one given in [27] (see Chap.V, Sect. 3, Th. 3). All the properties
of Orlicz spaces needed in the proof are heredited from those ones true for Lebesgue spaces. We briefly list
them and give references for their proofs. For separability properties (density of C∞0 (RN ) in LA(RN ) and in
W 1,A(RN )) we refer to Section 2 of [12]. For properties obtained by interpolation, we refer to the paper [15].
Finally, for the boundedness of the Riesz transforms Rj in Orlicz spaces we refer to the book by Kokilashvili
and Krbec [16] (Th. 3.1.1, p. 97).

Proof of Theorem 2.21. Let E be such that cap1,A(E) = 0. Let us consider K a compact set, let ϕn ∈
C∞c (Ω) such that ϕn ≥ χK and A(‖∇ϕn‖A) ≤ cap1,A(K) + 1

n . Using Poincaré inequality on Ω, we have
A(‖∇ϕn‖A + ‖ϕn‖A) ≤ c (cap1,A(K) + 1

n ). Moreover such ϕn can be used in the definition of cap1,A(K,RN),
thus cap1,A(K,RN ) ≤ c (cap1,A(K) + 1

n ) that is cap1,A(K,RN ) ≤ c cap1,A(K). And, thanks to the equivalence
of capacities written above, we have A(C′1,A(K)) ≤ c cap1,A(K). Using now Theorem 2 and Theorem 9 of [4],
one has for all open sets U

C′1,A(U) = sup
{
C′1,A(K), K compact, K ⊂ U

}
,

and for all set B
C′1,A(B) = inf

{
C′1,A(U), U open, B ⊂ U

} ·
Hence A(C′1,A(B)) ≤ c cap1,A(B), for all Borelian B, thus C′1,A(E) = 0.

According to (2.24), h(t) = tN−βs satisfies the hypotheses of Theorem 4.5 with α = 1, thus Λh(E) = 0.
Using now Theorem 5.1.9 (p. 134 in [1]), we get capβ,s(E,RN ) = 0. It remains now to prove that capβ,s(E) =
capβ,s(E,Ω) = 0.

Since capβ,s(E,RN ) = 0, there exists a sequence Un of open sets in RN such that E ⊂ Un and
capβ,s(Un,RN ) ≤ 1

n . Since the capacity is nondecreasing, we can suppose that Un ⊂ Ω (by replacing Un

with Un ∩Ω, recall that E ⊂ Ω). Hence there exists hn ∈ C∞c (RN ) such that h ≥ χUn and ‖hn‖s
W β,s(RN ) ≤ 2

n .

Let now be K̃ a compact set in Ω, and Ũ an open set such that K̃ ⊂ Ũ ⊂⊂ Ω. There exists ξ ∈ C∞c (Ω) such
that ξ ≥ χŨ . Hence ξhn ∈ C∞c (Ω), ξhn ≥ χŨ∩Un

and ‖ξhn‖s
W β,s ≤ c ‖hn‖s

W β,s ≤ c
n . Thus for all K ⊂ Ũ ∩ Un,

capβ,s(K,Ω) ≤ c
n , hence capβ,s(Ũ∩Un,Ω) ≤ c

n . Finally, since E∩K̃ ⊂ Ũ∩Un, capβ,s(E∩K̃,Ω) ≤ c
n for all n ∈ N

so capβ,s(E ∩ K̃) = 0. Since Ω is the union of increasing compact sets, one has capβ,s(E) = capβ,s(E,Ω) = 0.
�

This paper has been written while the first author was visiting the Laboratoire d’Analyse Numérique, Université Paris VI,
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