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OPTIMAL DESIGN OF TURBINES WITH AN ATTACHED MASS ∗
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Abstract. We minimize, with respect to shape, the moment of inertia of a turbine having the given
lowest eigenfrequency of the torsional oscillations. The necessary conditions of optimality in conjunction
with certain physical parameters admit a unique optimal design.
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Introduction

Following the model developed by Collatz [2], we consider the torsional oscillations of a disk r ∈ [a, b],
0 < a < b < ∞ of variable cross-section attached to a finite cylinder at its middle, see Figure 1. The cylinder

Figure 1. Disk of cross-section s(r) attached to a cylinder.

is fixed at its end points. A mass is attached to the perimeter of the disk. This mechanical system imitates a
turbine with a blade and is derived in detail in the Appendix. Our goal is to construct the optimal design of
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the disk. Let ϕ : [a, b]× [0,∞) → R be the angle of rotation and s : [a, b] → R be the cross-sectional area of
the disk. The angle of rotation is the solution of the following initial boundary value problem

G(r3s(r)ϕr)r = ρr3s(r)ϕtt, r ∈ (a, b), t ≥ 0, (1)
s(a)ϕr(a, t)− C1ϕ(a, t) = 0, (2)
s(b)ϕr(b, t) + C2ϕtt(b, t) = 0, (3)

with the standard initial conditions. Here s(r) is the cross-sectional area of the disk at r, where a is the radius of
the cylinder and b is the radius of the disk and cylinder combined. The constants G and ρ are the shear modulus
and the density of the material, respectively. The constant C1 characterizes the rigidity of the attachment of
the disk to the cylinder, while the constant C2 is proportional to the mass attached to the perimeter of the disk.

We consider harmonic oscillations with the frequency ω so that ϕ(r, t) = u(r)eiωt. Introducing the no-
tation p(r) = r3s(r), λ = ω2ρ/G, c1 = a3C1 and c2 = b3C2G/ρ, the function u(r) satisfies the following
Sturm–Liouville problem

− (pu′)′ = λpu, a < r < b, (4)
p(a)u′(a) = c1u(a), (5)
p(b)u′(b) = c2λu(b). (6)

In the presence of a mass attached to the end of the disk, both c1 and c2 are positive, and the Sturm–Liouville
problem has eigenparameter dependent boundary conditions. A Sturm–Liouville problem of this form is said
to be regular provided that p(r) > 0 for r ∈ [a, b]. If p(a) = 0 or p(b) = 0, then it is said to be singular ([1],
Sect. 1.6) Physically, the natural restriction on the cross-sectional area s(r) is that s(r) > 0 for r ∈ [a, b]. Since
p(r) = r3s(r) the Sturm–Liouville problem is regular at a and b.

We shall refer to the Sturm–Liouville problem (4–6) as the Turbine Problem and denote by λ1(p) its least
eigenvalue. In our optimal design problem, we shall maximize the first frequency of oscillation subject to the
disk being of a fixed moment of inertia, J. Since λ = ω2G/ρ, maximizing the first frequency ω1 is equivalent to
maximizing the least eigenvalue λ1(p).

Design Problem. We seek

sup
p∈ad

λ1(p) (7)

where the admissible set of functions p(r) is given by

ad =

{
p : 0 < p(r) < ∞, r ∈ [a, b],

∫ b

a

p(r) dr = J

}
·

Note that these problems are equivalent to the minimization of the moment of inertia of the turbine subject to
the constraint of a fixed first frequency or eigenvalue.

The usual approach to the problems of optimal structural design is based on the methods of Calculus of
Variations. We mention only few results in this area, in particular those whose methods or applications are
similar to those of this paper. The shape of the column having a given mass and length and the maximum
buckling load was found in [13,14]. The shape of an oscillating bar having a given least eigenfrequency and the
minimum mass was found in [12,15]. The complementary problem (design of a bar having maximum of the least
eigenfrequency with the given mass) was also solved there. If we discretize an elastic structure, we reduce the
problem of the optimal design to the problem of optimization for a function of several variables with constraints.
This numerical approach was developed, e.g., in [15]. Note, it is more general than the analytic methods. The
consideration of the shape of the tallest column was started in [8] and completed in [4]. It appeared that the
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structure of the spectrum of a certain Sturm–Liouville problem associated with the physical model is important
for the applicability of the classical approach developed in [12–15]. For the more detailed review of the results
in the area see, e.g. [4, 5] and the references there. Our construction follows the scheme developed in [12–15].
An interesting phenomenon that did not occur in previous results is that the optimal form of the disk becomes
significantly different when the parameters of the disk belong to different sets which we describe precisely.

The paper is organized as follows. In Section 1 we give some variational characterizations of the least
eigenvalue of the Sturm–Liouville problem (4–6). In Section 2 we use the rearrangement techniques to prove
that the least eigenvalue may be increased via decreasing rearrangements. In Section 3 we prove the existence
of the optimal design. We give the necessary conditions for optimality in Section 4. We also analyze the
optimality conditions and we prove that for any given set of parameters of the model the optimal design exists
and is unique. We give an explicit form of the optimal design for different sets of parameters.

1. The spectrum and some variational characterizations

For p ∈ ad, the Sturm–Liouville problem is regular. Thus the spectrum of (4–6) consists of a discrete
set of real simple eigenvalues ([1], Sect. 1.6). This implies that λ1(p), the least eigenvalue for the Turbine
Problem (4–6) associated with p, is isolated. Three characterizations of λ1(p) will be established. The first
characterization and the fact that λ1(p) is isolated will lead to our optimality conditions, while the second and
third characterizations lead to our existence result.

1.1. Characterization I of λ1(p)

The first characterization of λ1(p) is based on the standard Rayleigh quotient

λ1(p) = inf
u∈H1(a,b)

∫ b

a p(x) (u′(x))2 dx + c1u
2(a)∫ b

a
p(x) (u(x))2 dx + c2u2(b)

· (8)

This characterization is used in the derivation of the optimality conditions for the design problem. Since c1, c2

and p are all positive, the least eigenvalue is positive.

1.2. Characterization II of λ1(p)

Using variation of parameters, as in [6, 7], we find that if u is a solution of (4–6) corresponding to p then
v(x) =

√
p(x)u(x) satisfies

v(x) = λ [φp(x) + (Gpv) (x)] (9)

for a < x < b, where

φp(x) =

√
p(x)c2u(b)

c1

(
c1

∫ x

a

dx

p(x)
+ 1
)

, (10)

(Gpv) (x) =
∫ b

a

gp(x, t)v(t)dt, (11)

gp(x, t) =
√

p(t)
√

p(x)
(

1
c1

+
∫ x∧t

a

dy

p(y)

)
(12)

and x ∧ t = min {x, t}. If 〈u, v〉 denotes the L2(a, b) inner product and ‖·‖ denotes its associated norm, then
this can be written as

‖v‖2 = λ [〈φp, v〉+ 〈Gpv, v〉] · (13)
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This immediately leads to a variational characterization similar to that of Porter and Stirling ([10], Lem. 5.1)

1
λ1(p)

= max
‖v‖=1

[〈φp, v〉+ 〈Gpv, v〉] · (14)

The maximum is attained at v1(x) =
√

p(x)u1(x) where u1 is the first eigenfunction of the Turbine Problem (4–6)
associated with p. This characterization will be used later in conjunction with the Dominated Convergence
theorem to establish existence of an optimal design.

1.3. Characterization III of λ1(p)

Using v(x) =
√

p(x)u(x) we find that

〈φp, v〉+ 〈Gpv, v〉 =
∫ b

a

c2u(b)
(∫ x

a

dy

p(y)
+

1
c1

)
p(x)u(x)dx

+
∫ b

a

[∫ b

a

(
1
c1

+
∫ x∧t

a

dy

p(y)

)
p(t)u(t)dt

]
p(x)u(x)dx

for a < x < b.
Making the substitution

U(t) =
∫ t

a

dy

p(y)
and V (t) = −

∫ b

t

p(y)u(y)dy,

we have

〈φp, v〉+ 〈Gpv, v〉 = −c2u(b)
c1

V (a) +
1
c1

V 2(a) + c2u(b)
∫ b

a

U(x)V ′(x)dx +
∫ b

a

[∫ b

a

(U(x ∧ t)) V ′(t)dt

]
V ′(x)dx.

Using integration by parts, it follows that

〈φp, v〉+ 〈Gpv, v〉 = −c2u(b)
c1

V (a) +
1
c1

V 2(a) + c2u(b)
∫ b

a

U(x)V ′(x)dx

+
∫ b

a

[∫ x

a

U(t)V ′(t)dt− U(x)V (x)
]

V ′(x)dx

= −c2u(b)
c1

V (a) +
1
c1

V 2(a) + c2u(b)
∫ b

a

U(x)V ′(x)dx

−
∫ b

a

[∫ x

a

V (t)U ′(t)dt

]
V ′(x)dx

= −c2u(b)
c1

V (a) +
1
c1

V 2(a)− c2u(b)
∫ b

a

V (x)U ′(x)dx

+
∫ b

a

V 2(x)U ′(x)dx.
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From the second characterization (14) and the definitions of U and V, we find our third characterization

1
λ1(p)

= max
‖u‖p=1


c2u(b)

c1

∫ b

a

p(y)u(y)dy +
1
c1

(∫ b

a

p(y)u(y)dy

)2

+ c2u(b)
∫ b

a

(∫ b

x

p(y)u(y)dy

)
dx

p(x)
+
∫ b

a

(∫ b

x

p(y)u(y)dy

)2
dx

p(x)


 (15)

where ‖ · ‖p denotes the norm associated with the L2(a, b; p(x)) inner product. The maximum is attained
at u1, the first eigenfunction of the Turbine Problem (4–6) associated with p for which

∫ b

a u2
1p(x) dx = 1. This

eigenfunction has no zeros and we assume without loss of generality that u1 > 0.
This characterization will be used later in conjunction with the properties of rearrangements to establish the

fact that the decreasing rearrangement of a design yields a first eigenvalue that is at least as large as the one
corresponding to the original design.

2. Application of rearrangements

In this section, we prove that the frequency of the disk can be increased via decreasing rearrangements. We
begin by recalling a number of definitions and results from the theory of rearrangements.

Definition 2.1. The decreasing rearrangement of a nonnegative function, f , on (a, b) is simply

f∗(x) ≡ sup{t > 0 : µf (t) > x},

where µf is the distribution function of f ,

µf (t) = |{x ∈ (a, b) : f(x) > t}| t ≥ 0.

The increasing rearrangement of f is f∗(x) ≡ f∗(b− x).

Remark 2.2. If g and h are nonnegative functions on (a, b), with g increasing and h decreasing, then

∫ b

a

f dx =
∫ b

a

f∗ dx =
∫ b

a

f∗ dx, (16)

∫ b

a

f∗g dx ≤
∫ b

a

fg dx,

∫ b

a

f∗h dx ≤
∫ b

a

fh dx. (17)

This is a special case of those established in [9] (p. 153).

By (17), if we replace a particular design p ∈ ad by either its increasing or decreasing rearrangements p∗
or p∗ then the new design will still be in ad.

Remark 2.3. If f is decreasing on the range of g then the composition (f ◦ g)∗ = f ◦ g∗. This is a special case
of [3] (Th. 1).

Theorem 2.4. For p ∈ ad

λ1(p) ≤ λ1(p∗).
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Proof. Let u1 be the first positive eigenfunction of the Turbine Problem (4–6) associated with p∗. By the third
characterization of λ1(p) given by (15)

1
λ1(p)

≥ c2u1(b)
c1

∫ b

a

p(y)u1(y)dy +
1
c1

(∫ b

a

p(y)u1(y)dy

)2

+c2u1(b)
∫ b

a

(∫ b

x

p(y)u1(y)dy

)
dx

p(x)
+
∫ b

a

(∫ b

x

p(y)u1(y)dy

)2
dx

p(x)
·

Integrating (4) with u1 and p∗ between x and b, and using the boundary condition (6) yields

u′1(x) =
λ

p∗(x)

[∫ b

x

p∗u1 dr + c2u1(b)

]
.

Since λ, b, c2, u1(x), p(x) > 0, this implies that u1 is increasing. It follows from Remark 2.2 that
∫ b

x
pu1dy

≥ ∫ b

x p∗u1dy and so

1
λ1(p)

≥ c2u1(b)
c1

∫ b

a

p∗(y)u1(y)dy +
1
c1

(∫ b

a

p∗(y)u1(y)dy

)2

+c2u1(b)
∫ b

a

(∫ b

x

p∗(y)u1(y)dy

)
dx

p(x)
+
∫ b

a

(∫ b

x

p∗(y)u1(y)dy

)2
dx

p(x)
·

Clearly, the functions
(∫ b

x
p∗u1dy

)
and

(∫ b

x
p∗u1dy

)2

are nonnegative decreasing function of x. Another appli-
cation of Remark 2.2 yields

1
λ1(p)

≥ c2u1(b)
c1

∫ b

a

p∗(y)u1(y)dy +
1
c1

(∫ b

a

p∗(y)u1(y)dy

)2

+ c2u1(b)
∫ b

a

(∫ b

x

p∗(y)u1(y)dy

)(
1

p(x)

)
∗
dx

+
∫ b

a

(∫ b

x

p∗(y)u1(y)dy

)2(
1

p(x)

)
∗
dx.

Remark 2.3 with f = 1/x, g = p implies that

1
λ1(p)

≥ c2u1(b)
c1

∫ b

a

p∗(y)u1(y)dy +
1
c1

(∫ b

a

p∗(y)u1(y)dy

)2

+ c2u1(b)
∫ b

a

(∫ b

x

p∗(y)u1(y)dy

)
dx

p∗(x)

+
∫ b

a

(∫ b

x

p∗(y)u1(y)dy

)2
dx

p∗(x)
=

1
λ1(p∗)

·

3. Existence of an optimal design

In order to establish existence of an optimal design for the turbine design problem, we will use the rearrange-
ment result of Theorem 2.4 and Helly’s selection theorem ([11], p. 167), which is restated here for convenience.
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Theorem 3.1 (Helly’s selection theorem). If {fn}∞n=1 is a sequence of nonnegative nonincreasing functions on
[a, b], then there exists a subsequence {fnk

}∞k=1 and a function f such that

f(x) = lim
k→∞

fnk
(x)

for every x in [a, b].

Theorem 3.2. The functional p 7→ λ1(p) attains its maximum on

ad =

{
p : 0 < p(r) < ∞, r ∈ [a, b],

∫ b

a

p(r) dr = J

}
·

Proof. Recall the first characterization (8)

λ1(p) = inf
u∈H1(a,b)

∫ b

a p(x) (u′(x))2 dx + c1u
2(a)∫ b

a
p(x) (u(x))2 dx + c2u2(b)

· (18)

Since u ≡ 1 is in H1(a, b),
λ1(p) ≤ c1∫ b

a
p(x) dx + c2

=
c1

J + c2
·

Hence, λ1(p) is bounded above on ad.
Letting

λ̂ = sup
p∈ad

λ1(p)

we see that there exists a maximizing sequence {pn} ⊂ ad and for which λ1(pn) → λ̂. By Remark 2.2 and
Theorem 2.4, we may assume that each pn is nonincreasing and hence, by Helly’s selection theorem, there exists
a p̂ and a subsequence (that we will not relabel) such that pn → p̂ pointwise.

It follows by the dominated convergence theorem that∫ x

a

dx

pn(x)
→
∫ x

a

dx

p̂(x)
and

∫ x∧t

a

dx

pn(x)
→
∫ x∧t

a

dx

p̂(x)

for each x and t. Hence, using (10) and (12),

φpn(x) → φp̂(x) and gpn(x, t) → gp̂(x, t)

for each x and t. Further application of the dominated convergence theorem yields gpn → gp̂ in L2((a, b)×(a, b)).
An argument identical to [4] (Prop. 3.3) implies that∣∣∣∣ 1

λ1(p)
− 1

λ1(q)

∣∣∣∣ ≤ ‖gp(x, t) − gq(x, t)‖L2

and so λ1(pn) → λ1(p̂).
However, by construction, λ1(pn) → λ̂, and so we must have λ1(p̂) = λ̂.

4. Necessary conditions for optimality

The first eigenvalue of the Turbine Problem (4–6) is given by the infimum of the Rayleigh quotient

λ1(p) = inf
u∈H1(a,b)

∫ b

a p(x) (u′(x))2 dx + c1u
2(a)∫ b

a
p(x) (u(x))2 dx + c2u2(b)

·
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When p ∈ ad, the first eigenvalue λ1(p) exists, is real and isolated because we have a discrete set of eigenvalues.
Having already established existence of an optimal design over this class, we seek necessary conditions of
optimality. We may now use standard Calculus of Variations techniques to derive an optimality condition in
the form of a differential equation. The complete analysis of that differential equation along with the boundary
conditions and the constraint appears to be much more complex than in [13, 15]. We will show that the design
parameter space may be split into subspaces and that a unique optimal design exists on each of them.

Consider the functional

F (p) = λ1(p) + µ

[∫ b

a

p(x) dx− J

]
(19)

where µ is a Lagrange multiplier.
At the optimum

∂F

∂p
=

[∫ b

a pu2 dx + c2u
2(b)

] ∫ b

a (u′)2 dx−
[∫ b

a p(u′)2 dx + c1u
2(a)

] ∫ b

a u2 dx[∫ b

a
pu2 dx + c2u2(b)

]2 + µ

∫ b

a

dx

=

∫ b

a
(u′)2 dx− λ1(p)

∫ b

a
u2 dx∫ b

a pu2 dx + c2u2(b)
+ µ

∫ b

a

dx = 0

which yields the optimality condition

(u′)2 − λ1(p)u2∫ b

a pu2 dx + c2u2(b)
+ µ = 0. (20)

By continuity, and use of the boundary condition (5), the Lagrange multiplier is

µ =
λ1(p)u2(a)− (c1u(a)/p(a))2∫ b

a
pu2 dx + c2u2(b)

=

(
λ1(p)p2(a)− c2

1

)
u2(a)

p2(a)
[∫ b

a
pu2 dx + c2u2(b)

] ·

Hence, the optimality condition (20) can be expressed as

(u′)2 − λ1(p)u2 +

(
λ1(p)p2(a)− c2

1

)
u2(a)

p2(a)
= 0. (21)

4.1. Analysis of the optimality conditions

Let Q =
(
λ1(p)p2(a)− c2

1

)
u2(a)/p2(a). The optimal design p satisfies the boundary value problem

− (pu′)′ = λpu, a < r < b, (22)
p(a)u′(a) = c1u(a), (23)
p(b)u′(b) = c2λu(b), (24)

the optimality condition

(u′)2 − λ1u
2 + Q = 0 (25)
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and the constraint ∫ b

a

p(r)dr = J. (26)

Although the explicit form of the design p(r) depends on the sign of Q, equation (25) can be solved (for any Q)
for u(r), and then p(r) can be determined explicitly from (22) and (24). Further, constraints on the physical
parameters J, c1, c2 and b − a may be found using (23) and (26), yielding the aforementioned subspaces of the
design parameter space. It is convenient to consider three possible cases Q = 0, Q > 0, and Q < 0 separately
and then find the conditions on the physical parameters under which those cases occur.

4.1.1. Q = 0

In this case

u(r) = e
√

λ1r, p(r) = c2

√
λ1e2

√
λ1(b−r) (27)

and (23) and (26) imply that λ1 must satisfy

c2λ1e2
√

λ1(b−a) = c1 (28)

J =
c2

2

(
e2
√

λ1(b−a) − 1
)

. (29)

λ1 can be determined uniquely from these equations

λ1 =
c1

2J + c2

giving a unique optimal design. We note that, by (29), this case occurs when the physical parameters J, c1, c2,
b − a are in the subspace described by

2J + c2

c2
= e2

q
c1

2J+c2
(b−a)

. (30)

4.1.2. Q > 0

In this case

u(r) =
√

Q

λ1
cosh(

√
λ1r + ξ), p(r) =

c2

√
λ1 sinh 2(

√
λ1b + ξ)

2 sinh2(
√

λ1r + ξ)
(31)

and (23) and (26) imply that the parameters λ1, ξ must satisfy

c2 sinh 2β

(
β − α

b− a

)2

= c1 sinh 2α (32)

J =
c2 sinh 2β

2 tanhα
− c2 cosh2 β (33)

where β = (
√

λ1b + ξ) and α = (
√

λ1a + ξ). If (32, 33) can be solved uniquely for α and β (and hence λ1 and
ξ) then the design given by (31) is unique.

Solve (33) for tanhα. The use of identities implies that

tanhα =
c2 tanhβ

(J + c2)− J tanh2 β
· (34)
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By definition β = tanh−1(tanhβ) = 1
2 ln

(
1+tanh β
1−tanh β

)
with a similar expression for α. Hence

β − α =
1
2

ln
(

1 + tanhβ

1− tanhβ
· 1− tanhα

1 + tanhα

)
·

Using (34) gives

β − α =
1
2

ln
(

c2 + J(1 + tanhβ)
c2 + J(1− tanhβ)

)
· (35)

Use of (34) in the identities

sinh 2α =
2 tanhα

1− tanh2 α
, sinh 2β =

2 tanhβ

1− tanh2 β

yields

sinh 2α

sinh 2β
=

c2((J + c2)− J tanh2 β)
((J + c2)− J tanh2 β)2 − c2

2 tanh2 β
· (1 − tanh2 β).

Expand the denominator of the right hand side and re-factor

sinh 2α

sinh 2β
=

c2(J + c2 − J tanh2 β)
(J + c2)2 − J2 tanh2 β

·

Using this in (32) yields (
β − α

b− a

)2

=
c1 sinh 2α

c2 sinh 2β
=

c1(J + c2 − J tanh2 β)
(J + c2)2 − J2 tanh2 β

from which it follows that

β − α = (b− a)

√
c1(J + c2 − J tanh2 β)
(J + c2)2 − J2 tanh2 β

· (36)

Using (35) and (36), we see that the system given by (32, 33) has a unique solution if the function

f(β) =
1
2

ln
(

c2 + J(1 + tanhβ)
c2 + J(1− tanhβ)

)
− (b− a)

√
c1(J + c2 − J tanh2 β)
(J + c2)2 − J2 tanh2 β

has a unique zero.
We shall now show that the case Q > 0 occurs when the physical parameters J, c1, c2, b−a lie in the subspace

given by

2J + c2

c2
> e2

q
c1

2J+c2
(b−a)

. (37)

Substituting u from (31) into (23) yields

tanhα =
c1

p(a)
√

λ1

·
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Since Q > 0 implies that λ1p
2(a) − c2

1 > 0, and the quantities λ1, c1, p(a) are all positive we must have
0 < tanhα < 1. Thus α > 0. Since α < β it follows that β > 0. The system (32, 33) has a unique solution if f
has a unique zero on (0,∞). Clearly

f(0) = −(b− a)
√

c1

J + c2
< 0

and

lim
β→∞

f(β) =
1
2

ln
(

c2 + 2J

c2

)
− (b− a)

√
c1

c2 + 2J
· (38)

Since β > 0 we know that 0 < tanhβ < 1, which implies that

c2 + 2J

c2
>

c2 + J(1 + tanhβ)
c2 + J(1− tanhβ)

·

Use of this in (35) yields
1
2

ln
(

c2 + 2J

c2

)
> β − α.

Further use of the fact that 0 < tanhβ < 1 implies

c1

2J + c2
<

c1

(J + c2) + J tanhβ
=

c1(J + c2 − J tanhβ)
(J + c2)2 − J2 tanh2 β

<
c1(J + c2 − J tanh2 β)
(J + c2)2 − J2 tanh2 β

·

Use of this in (36) yields

(b− a)
√

c1

2J + c2
< β − α.

It follows that

lim
β→∞

f(β) > 0. (39)

Comparing (38) and (39), the case Q > 0 occurs when the physical parameters J, c1, c2, b− a lie in the subspace
given by

2J + c2

c2
> e2

q
c1

2J+c2
(b−a)

. (40)

It can be shown that f ′(β) > 0 on (0,∞). Application of the Mean Value theorem implies that f(β) has a
unique zero on (0,∞). Thus a unique solution of (32, 33) exists when Q > 0.

4.1.3. Q < 0

In this case

u(r) =
√−Q

λ1
sinh

(√
λ1r + ξ

)
, p(r) =

c2

√
λ1 sinh 2(

√
λ1b + ξ)

2 cosh2(
√

λ1r + ξ)
(41)

and (23) and (26) imply that the parameters λ1, ξ must satisfy

c2 sinh 2β

(
β − α

b− a

)2

= c1 sinh 2α (42)

J =
c2 sinh 2β

2
(tanhβ − tanhα) (43)
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where β = (
√

λ1b + ξ) and α = (
√

λ1a + ξ). If (42, 43) can be solved uniquely for α and β (and hence λ1 and
ξ) then the design given by (41) is unique. Note that this is identical to the designs obtained by Taylor [12]
and Turner [15] for slightly different problems. An analysis similar to the one above shows that the case Q < 0
occurs when the physical parameters J, c1, c2, b− a satisfy

2J + c2

c2
< e2

q
c1

2J+c2
(b−a)

. (44)

4.1.4. Design parameters

If we consider the parameter space for (c2, J, c1) then the choice of optimal design depends on whether the
parameters are above, below, or on the surface

2J + c2

c2
− e2

q
c1

2J+c2
(b−a) = 0

or equivalently

c1 =
(

1
2(b− a)

ln
(

2J + c2

c2

))2

(2J + c2).

Thus, the choice of optimal design depends on the sign of the quantity

2J + c2

c2
− e2

q
c1

2J+c2
(b−a)

.

In particular, the sign of this quantity is the same as the sign of Q if this is zero, then Q = 0 and the design
choice is given by (27). If this is positive, then Q > 0 and the design choice is given by (31). If this is negative,
then Q < 0 and the design choice is given by (41). Figure 2 shows the parameter space for b− a = 10.
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Figure 2. Design parameter space.

Appendix

A cylinder with an attached disk imitates different real world constructions such as a turbine with a blade.
In the absence of the mass, the model also makes sense; we mention a propeller of a helicopter. The model
under consideration is discussed in [2]. We give here a brief derivation of the governing equations because
of the lack of an appropriate reference in English. Introduce cylindrical coordinates {r, θ z} where the z-axis
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coincides with the axis of the cylinder. Following [2], we consider the small (linear) torsional oscillations of a
disk {r ∈ [a, b], θ ∈ [0, 2π)} attached to a finite cylinder {r ∈ [0, a], θ ∈ [0, 2π), z ∈ [−c, c]} at its middle, see
Figure 1. Here 0 < a < b < ∞, 0 < c < ∞, the cylinder is supposed to be fixed at its end points z = ±c, and
have a constant density ρ. Let z = s(r) : [a, b] → R+ be the variable width of the disk. A mass is attached to
the perimeter of the disk and distributed uniformly along that perimeter.

We first describe a qualitative engineering analysis of the problem. The frequency of rotation in a real
construction is varying in time. As a result, both torsional oscillations and oscillations in the plane of the
disk appear. Generally speaking, these two types of oscillations are connected. Nevertheless we assume that
connection to be small and neglect it because the forces of inertia that stipulate the oscillations sufficiently
exceed the influence of two types of oscillations on each other. Hence we may ignore the radial dilatations.
During the torsional oscillations of the disk its concentric circles are shifted with respect to each other. If we
consider a radial line on the original surface of the disk, it becomes a curve that is characterized by the angle
of twisting ϕ = ϕ(r, t) : [a, b] × [0,∞) → R. According to the (linear) Elasticity Theory, the shear τ(r, t) is
proportional to the relative shift γ(r, t) (that characterizes the variation of the original right angle between the
radial lines and concentric circles). We find

γ(r, t) = rϕr(r, t) and τ(r, t) = Gγ(r, t) = Grϕr(r, t) (A.1)

where G is the shear modulus and the lower index denotes the partial derivative with respect to r. Consider an
infinitely narrow ring between the limits r and r + dr in the disk and derive an equation of motion for it. The
shears create the moments with respect to the axis of the cylinder, and they are different on the boundaries. Let
the moment on the interior circle be M and on the exterior M + dM ; the difference dM stipulates acceleration
of the rotation of the ring. The shear M acts on the interior surface of 2πrs(r), and hence the moment on it is
M(r, t) = 2πrs(r)rτ(r, t) = 2πr2s(r)τ(r, t). We find

dM = 2π
(
r2s(r)τ(r, t)

)
r
dr = 2πG

(
r3s(r, t)ϕr(r, t)

)
r
dr (A.2)

where we used the expression (A.1) for the shear. Further, the infinitely narrow ring under consideration has
the moment of inertia

dJ = 2πrs(r)r2ρdr = 2πr3s(r)ρdr (A.3)

where ρ is the (constant) density of the disk. We now are in the position to write down the equation of the
motion for a ring

dJ · ϕtt = dM (A.4)

or after obvious simplifications

G
(
r3s(r)ϕr(r, t)

)
r

= ρr3s(r)ϕtt(r, t). (A.5)

The equation (A.5) should be accompanied by the initial and boundary conditions. Below, we consider harmonic
oscillations. Hence no initial conditions are required and only boundary conditions are to be formulated. We
assume that the condition at r = a has the form similar to Hooke’s law

s(a)ϕr(a, t) = C1ϕ(a, t) (A.6)

where the constant C1 characterizes the rigidity of the joining of the disk to the cylinder. Obviously C1 ∈ (0,∞).
The boundary condition at r = b actually represents the equation of the motion of the attached mass. The
angular acceleration of that mass is stipulated by the moment at r = b. Proceeding as above yields

0− s(b)τ(b, t) = c2ϕtt(b, t)
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where the constant c2 is proportional to the attached mass. Using (A.1) finally yields

−s(b)ϕr(b, t) = C2ϕtt (A.7)

where C2 is a constant. Obviously C2 ∈ (0,∞).
The partial differential equation (A.5) subject to the boundary conditions (A.6) and (A.7) is the subject of

our further consideration.

The authors wish to acknowledge the kindness of Jon Ernstberger, Murray State University, who created the first figure.
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