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ON THE LOWER SEMICONTINUITY OF SUPREMAL FUNCTIONALS

Michele Gori1 and Francesco Maggi2

Abstract. In this paper we study the lower semicontinuity problem for a supremal functional of the
form F (u, Ω) = ess sup

x∈Ω
f(x, u(x),Du(x)) with respect to the strong convergence in L∞(Ω), furnishing

a comparison with the analogous theory developed by Serrin for integrals. A sort of Mazur’s lemma
for gradients of uniformly converging sequences is proved.
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Introduction

Let Ω be an open set in R
n and let f = f(x, s, ξ) : Ω × R

m × R
mn → R ∪ {∞} be a Ln(Ω) ⊗ Bm ⊗ Bmn

measurable function, where Ln(Ω) denotes the Lebesgue measurable subsets of Ω and Bm denotes the Borel
subsets of R

m. If f(x, ·, ·) is lower semicontinuous for almost every fixed x in Ω and if u ∈ W 1,∞(Ω)m, then the
composition f(x, u(x), Du(x)) is a measurable map, so that we can consider the functional

F (u, Ω) = ess sup
x∈Ω

f(x, u(x), Du(x)).

F is called supremal, while f is referred to as the supremand generating F. The dependence of F on Ω sometimes
is dropped.

In order to apply the direct methods of the Calculus of Variations, the study of lower semicontinuity properties
of F (·, Ω) with respect to a given convergence τ on W 1,∞(Ω)m is of interest, i.e., we want to find out conditions
on f sufficient in order to have that uh, u ∈ W 1,∞(Ω)m, uh → u in τ , implies

lim inf
h→∞

F (uh, Ω) ≥ F (u, Ω). (1)

To understand the real nature of the problem, let us define for every t ∈ R and every (x, s) ∈ Ω × R
m the

sublevel sets

Et(x, s) := {ξ ∈ R
mn : f(x, s, ξ) ≤ t}·
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Then we can note that (1) holds if and only if for every uh, u ∈ W 1,∞(Ω)m, with uh → u in τ , and for every
t > lim infh→∞ F (uh, Ω) we have that

Duh(x) ∈ Et(x, uh(x)), for a.e. x ∈ Ω,

and for infinitely many h ∈ N, implies

Du(x) ∈ Et(x, u(x)), for a.e. x ∈ Ω.

This formulation clearly suggest the need to assume the convexity of the sets Et(x, s). This property is, by
definition, the level convexity of f(x, s, ·). In fact (see Barron and Liu [8]) level convexity turns out to be
necessary to lower semicontinuity only in the scalar case (m = 1), while in the vectorial case more general
conditions should be considered (see [7]).

As Barron et al. showed in [7], the lower semicontinuity problem for a supremal can always be reduced to a
lower semicontinuity problem for an integral functional. With this strategy they proved the following theorem:

Theorem 0.1 (Barron et al. [7]). Let us consider a Ln(Ω)⊗Bm⊗Bmn measurable function f : Ω×R
m×R

mn

→ [0,∞], such that, for a.e. x ∈ Ω, f(x, ·, ·) is lower semicontinuous, and, for a.e. x ∈ Ω and for every s ∈ R,
f(x, s, ·) is level convex. Then the lower semicontinuity inequality (1) holds on every sequence such that{

uh, u ∈ W 1,∞(Ω)m,
uh ⇀ u w∗ −W 1,∞(Ω)mn.

(2)

Here we want to study the lower semicontinuity problem with respect to the strong convergence in L∞, i.e., on
sequences such that {

uh, u ∈ W 1,∞(Ω)m,
uh → u in L∞(Ω)m.

(3)

The analogous problem for integral functionals was originated by the famous counterexample to lower semi-
continuity by Aronszajn [20] and from the classical paper by Serrin [21], producing since then a great deal of
works (see for example Ambrosio [2], Dal Maso [11], De Giorgi et al. [13], Fonseca and Leoni [15] and [16], Gori
and Marcellini [18], Gori et al. [17], and their bibliographies). Let us recall with some details the terms of the
problem. A reasonable set of hypotheses to put on an integrand g : Ω× R

m × R
mn → [0,∞) in order to have

the lower semicontinuity of the functional

G(u, Ω) =
∫

Ω

g(x, u(x), Du(x))dx,

with respect to the convergence {
uh, u ∈ W 1,1(Ω)m,
uh → u in L1(Ω)m,

(4)

is, at least when m = 1, {
g(x, s, ξ) continuous,
g(x, s, ·) convex.

(5)

Aronszajn gave in [20] a g satisfying (5) for which the lower semicontinuity of G with respect to the convergence
in (4) does not hold. Then one has to add some additional hypotheses to (5) in order to prove lower semiconti-
nuity. Serrin’s theorem and its extensions and variations cited above provide such analysis, mainly in the case
m = 1.
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In the present paper we prove that, as a consequence of our main result (Th. 1.4 below), in the case of
supremals an example analogous to Aronszajn’s one cannot be done. Indeed Corollary 1.5 states the continuity
of the supremand f and level convexity in the gradient variable are sufficient to lower semicontinuity with
respect to (3).

We come back to the presentation of our work. In the study of the lower semicontinuity properties of F with
respect to convergence (3), the “integral reduction” approach by Barron et al. cited above, does not seem to
be adequate. Indeed, the theory of lower semicontinuity for integrals with respect to this kind of convergence
requires the integrand to be regular enough in the lower order variables and to be finite (see [21] and the other
references we have quoted): but usually these assumptions are not satisfied by the integrands generated from
generic supremals.

To overcome such difficulties we give in this paper a direct approach to the study of lower semicontinuity with
respect to convergence (3), based on an appropriate weak version of Mazur’s lemma for gradients of uniformly
converging sequences, valid only for scalar valued functions (see Lem. 1.7).

In the scalar case m = 1, Theorem 1.4 is the main result of this approach. Corollary 1.5 is a less general,
but more elegant version of this theorem. Furthermore we prove that surprisingly level convexity is not needed
when we are dealing with C1 sequences (see Th. 1.1). These results are stated and proved in Section 2.

In Section 3 we show two counterexamples to lower semicontinuity. Example 2.1 proves that Theorems 1.1
and 1.4 are false in the vectorial case. Example 2.2 shows that, when giving up the weak convergence of the
gradients, lower semicontinuity cannot be expected to hold true with only measurability assumptions in the
position variable x. These two examples reveal to be meaningful even in the context of the lower semicontinuity
theory of convex integrals, as explained in Remark 2.3.

1. Lower semicontinuity theorems

As said above, level convexity in the ξ variable when m = 1 is necessary to lower semicontinuity. Then it is
quite surprising to discover that in the scalar case we still have lower semicontinuity with respect to (3) on C1

sequences uh, even if level convexity is dropped.

Theorem 1.1. Let f : Ω×R×R
n → R∪{∞} be a lower semicontinuous function. Then the lower semicontinuity

inequality (1) holds with respect to the convergence (3), provided that the uh are of class C1(Ω).

The key step in the proof of Theorem 1.1 is the following convergence lemma. Note that we can prove it only
in the scalar case.

Lemma 1.2. Let us consider u, uh : Ω → R, with uh converging uniformly to u and uh differentiable in Ω.
Then for every point x0 of differentiability of u there exists xh → x0 such that Duh(xh) → Du(x0).

Proof. By subtracting the affine function w(x) := u(x0) + 〈Du(x0), x − x0〉 to the functions u and uh, we can
reduce ourselves to consider the case u(x0) = 0, Du(x0) = 0. By a simple diagonal argument, we achieve the
thesis if we prove that, for every ε > 0, it is possible to find xh such that |xh − x0| < ε and |Duh(xh)| < 6ε,
for h large enough.

Let us fix ε > 0. By the differentiability of u at x0 there exists 0 < δ < ε such that Bδ(x0) ⊂ Ω and, for
every x ∈ Bδ(x0), |u(x)| < ε|x− x0|. Let us define v : Bδ(x0) → R as

v(x) := u(x) +
2ε√
2− 1

√
δ2 + |x− x0|2.

It results that, for every x ∈ ∂Bδ(x0),

v(x) ≥
(

2
√

2ε√
2− 1

− ε

)
δ >

2ε√
2− 1

δ = v(x0).
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Then v attains its minimum in the interior of Bδ(x0).
The uniform convergence of uh to u implies the existence of h(ε) such that, for every h ≥ h(ε), the functions

vh(x) := uh(x) +
2ε√
2− 1

√
δ2 + |x− x0|2,

attain their minima in the interior of Bδ(x0) too. For this reason, if xh is one of the minimum point of vh, then
|xh − x0| < δ < ε, and

0 = Dvh(xh) = Duh(xh) +
2ε√
2− 1

· xh − x0√
δ2 + |xh − x0|2

·

Thus we conclude the proof since

|Duh(xh)| ≤ 2ε√
2− 1

· |xh − x0|√
δ2 + |xh − x0|2

≤ 2ε√
2− 1

≤ 6ε.

We thank the referee for suggesting us this proof, that is simpler than the one we were first able to provide.

Proof of Theorem 1.1. Let us take t > lim infh→∞ F (uh). By the continuity of uh and Duh, the function
f(x, uh(x), Duh(x)) of the x variable is lower semicontinuous, and hence the essential supremum is a point-
wise supremum:

F (uh) = sup
x∈Ω

f(x, uh(x), Duh(x)). (6)

Then, for every x ∈ Ω,

f(x, uh(x), Duh(x)) ≤ t. (7)

Applying Lemma 1.2, the thesis follows, since by Rademacher’s theorem Du(x0) exists for a.e. x0 ∈ Ω, and by
the uniform convergence of uh to u, we have always uh(xh) → u(x0). Hence, by the lower semicontinuity of f,
it results that, for a.e. x0 ∈ Ω,

f(x0, u(x0), Du(x0)) ≤ lim inf
h→∞

f(xh, uh(xh), Duh(xh)) ≤ t,

as desired.

By the usual strategy of Direct Methods, as a consequence of Theorem 1.1, an existence result of minima for
non level convex supremands can be established.

Corollary 1.3. Let f : Ω × R × R
n → [0,∞] be a lower semicontinuous function such that there exists θ :

[0,∞) → [0,∞), with θ (r) →∞ when r →∞ and

f(x, s, ξ) ≥ θ (|ξ|) ,

for every (x, s, ξ) ∈ Ω×R×R
n. Then for every u0 ∈ C1(Ω) there exists at least an ū ∈ u0 +W 1,∞

0 (Ω) such that

F (ū) ≤ F (v), ∀v ∈ u0 + C1
0 (Ω).

To prove a general lower semicontinuity theorem we have necessarily to assume the level convexity of f in
the gradient variable. Moreover (maybe only for technical reasons), we need some kind of continuity of f in
the lower order variables (x, s). The precise form in which we have to do this, stated in hypothesis (8) of
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Theorem 1.4 below, could appear a little tricky: for this reason we give an immediate corollary to our theorem,
that loses something in generality but gains a lot in simplicity. We note however that there is a concrete reason
to consider (8) rather than some simplified version of it, since it allows us to assume only lower semicontinuity
in the gradient variable, a property that is more natural than continuity when combined with level convexity.

Theorem 1.4. Let us consider a lower semicontinuous function f : Ω × R × R
n → R, such that, for every

(x, s) ∈ Ω × R, f(x, s, ·) is level convex. Moreover, we ask that, for every K ⊂⊂ Ω × R × R
n, there exists a

modulus of continuity ωK such that

|f(x, s, ξ)− f(x̄, s̄, ξ)| ≤ ωK (|x− x̄|+ |s− s̄|) , (8)

whenever (x, s, ξ), (x̄, s̄, ξ) ∈ K. Then the lower semicontinuity inequality (1) holds with respect to the conver-
gence (3).

As a consequence, an “Aronszajn’s counterexample” cannot exist in the theory of supremals.

Corollary 1.5. Let us consider a continuous f : Ω×R×R
n → R, such that for every (x, s) ∈ Ω×R, f(x, s, ·)

is level convex. Then the lower semicontinuity inequality (1) holds with respect to the convergence (3).

In proving Theorem 1.4 we shall need two lemmas:

Lemma 1.6. Let (X, µ) be a probability space and V : X → R
N a µ-summable function. Then for every µ

measurable Y ⊂ X with µ(Y ) = 1 it is ∫
X

V dµ ∈ co {V (y) : y ∈ Y } · (9)

Combining Lemmas 1.2, 1.6 and Carathédory’s theorem, we find a sort of Mazur’s lemma for gradients.

Lemma 1.7. Let uh, u ∈ W 1,∞(Ω) and uh → u in L∞(Ω). Let Ω0 be a subset of full measure in Ω and suppose
that Du(x) and Duh(x) exist for every x ∈ Ω0. Then for every ρh ↘ 0+ and for every x0 ∈ Ω0, there exist
xh → x0, (λi

h)n+1
i=1 ⊂ [0, 1] with

∑n+1
i=1 λi

h = 1, and (yi
h)n+1

i=1 ⊂ Bρh
(xh) ∩ Ω0, such that

lim
h→∞

n+1∑
i=1

λi
hDuh(yi

h) = Du(x0). (10)

Remark 1.8. This lemma is false if we pretend to have x0 in the place of xh. Equivalently, we cannot prescribe
the rate of convergence of the xh to x0. An example is provided considering Ω = (0, 1), x0 = 1/2 and defining

uh(x) =




−γh, x ∈
(

0,
1
2
− γh

)
,

x− 1
2 , x ∈

(
1
2
− γh,

1
2

+ γh

)
,

γh, x ∈
(

1
2

+ γh, 1
)

,

where γh ↘ 0+ with γh ≤ 1/2. Clearly uh converges uniformly to u(x) ≡ 0. Then if we put Ω\Ω0 =
{ 1

2 − γh, 1
2 + γh : h ∈ N}, and consider any ρh < γh we find that


0 ≤ µh ≤ 1, y1

h, y2
h ∈ Ω0 ∩Bρh

(
1
2

)
,

with µhy1
h + (1 − µh)y2

h =
1
2
,
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=⇒ µhu′h(y1
h) + (1 − µh)u′h(y2

h) = 1, ∀h ∈ N,

while u′(1
2 ) = 0.

Proof of Lemma 1.7. Let us fix x0 ∈ Ω0, and take ρ0 such that B2ρ0 (x0) ⊂⊂ Ω. Possibly discarding a finite
number of h we can suppose that Bρh

(x) ⊂ B2ρ0(x0) whenever x ∈ Bρ0(x0). Let us define

wh(x) =
∫

Bρh
(x)

uh(y)αρh
(x− y)dy, x ∈ Bρ0(x0),

where α ∈ C∞c (B1(0)), α ≥ 0,
∫

α(x)dx = 1, and αρ(x) := ρ−nα(x/ρ). It can be proved that wh ∈ C∞(Bρ0 (x0))
and that wh → u uniformly in Bρ0(x0). By Lemma 1.2, we can find xh → x0, xh ∈ Bρ0(x0), such that
Dwh(xh) → Du(x0). Clearly

Dwh(xh) =
∫

Bρh
(xh)

Duh(y)αρh
(xh − y)dy,

and hence, since |Ω\Ω0| = 0, by Lemma 1.6 we have, for every h ∈ N,

Dwh(xh) ∈ co {Duh(y) : y ∈ Bρh
(xh) ∩ Ω0} ·

Then by Carathéodory’s theorem there exists a sequence ξh,j → Dwh(xh) of the form

ξh,j =
n+1∑
i=1

λi
h,jDuh(yi

h,j),

with λi
h,j ∈ [0, 1],

∑n+1
i=1 λi

h,j = 1 and, this is the key point of this argument, yi
h,j ∈ Bρh

(xh) ∩ Ω0. Then
extracting a suitable j(h) →∞ we conclude the proof.

Proof of Theorem 1.4. We fix t > lim infh→∞ F (uh), and we want to prove that for a.e. x ∈ Ω it results
f(x, u(x), Du(x)) ≤ t. By Rademacher’s theorem and the definition of essential supremum, the set

Ω0 = {x ∈ Ω : ∃Du(x), Duh(x), f(x, uh(x), Duh(x)) ≤ t},

is of full measure in Ω. Let us fix x0 ∈ Ω0. We only need to show that f(x0, u(x0), Du(x0)) ≤ t, and hence,
since |Ω\Ω0| = 0, the thesis will follow.

We start fixing ρ0 > 0 such that B2ρ0(x0) ⊂⊂ Ω. In correspondence of the compact set

Kh = B2ρ0(x0)×B||uh||L∞(B2ρ0 (x0))
(0)×B||Duh||L∞(B2ρ0 (x0))

(0)

we find, according to hypothesis (8), a modulus of continuity ωKh
= ωh such that

|f(x, s, ξ)− f(x̄, s̄, ξ)| ≤ ωh (|x− x̄|+ |s− s̄|) (11)

whenever (x, s, ξ), (x̄, s̄, ξ) ∈ Kh. In particular it must be ωh(σ) → 0+ whenever σ → 0+, and hence we can
choose a sequence σh → 0+, such that

ωh(σh) ≤ 1
h
·
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Then there exists ρh → 0+ such that(
1 + ||Duh||L∞(B2ρ0 (x0))

)
ρh ≤ σh, ρh ≤ ρ0.

We apply Lemma 1.7 to uh, u, Ω0 and ρh. Then by the global lower semicontinuity of f , for (10), we have

f(x0, u(x0), Du(x0)) ≤ lim inf
h→∞

f

(
xh, uh(xh),

n+1∑
i=1

λi
hDuh(yi

h)

)
,

where yi
h ∈ Bρh

(xh) ∩ Ω0, λi
h ∈ [0, 1] and

∑n+1
i=1 λi

h = 1. By our choice of the constants it results


(xh, uh(xh), Duh(yi
h)), (yi

h, uh(yi
h), Duh(yi

h)) ∈ Kh,

∣∣yi
h − xh

∣∣+ ∣∣uh(yi
h)− uh(xh)

∣∣ ≤ (1 + ||Duh||L∞(B2ρ0 (x0))

)
ρh ≤ σh,

so that the level convexity of f in the gradient variable and (11) imply

f(x0, u(x0), Du(x0)) ≤ lim inf
h→∞

max
1≤i≤n+1

f(xh, uh(xh), Duh(yi
h))

≤ lim inf
h→∞

{
ωh(σh) + max

1≤i≤n+1

(
f(yi

h, uh(yi
h), Duh(yi

h))
)} ≤ t,

since we have selected the yi
h in Ω0 and σh in a way that ωh(σh) ≤ 1/h.

2. Counterexamples to lower semicontinuity

In this section we show two counterexamples related to the previous results. This two examples are significant
for the lower semicontinuity theory of integral functionals too: see Remark 2.3 below.

The first one shows that Theorems 1.1 and 1.4 do not hold in the vectorial case m > 1. In particular, for
what concerns the comparison with Theorem 1.1, it should be noted that the supremand is even convex. Note
also that the function f we show is of class C∞.

Example 2.1. Let us define

f(s1, s2, ξ1, ξ2) = (ξ1s2 − ξ2s1 − 1)2 ,

where (s1, s2, ξ1, ξ2) = (s, ξ) ∈ R
2 × R

2, and consider the sequence

uh ∈ C∞(0, 1)2, uh(x) =
(

1
2πh

sin(2πh2x),
1

2πh
cos(2πh2x)

)
.

An easy computation gives uh → 0 in L∞(0, 1)2 while

F (0) = 1, F (uh) = 0, ∀h ∈ N.

Note that f(uh(x), Duh(x)) = 0 for every x ∈ (0, 1).

An important remark about Theorem 0.1 is that it holds true even with respect to the more general conver-
gence given by {

uh, u ∈ W 1,1
loc (Ω)m,

uh ⇀ u w −W 1,1
loc (Ω)m.

(12)
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In the following Example 2.2 we show a nonnegative function f = f(x, ξ) upper semicontinuous in the x
variable, convex in the ξ variable, for which lower semicontinuity inequality (1) does not hold on a sequence
of C1 functions converging uniformly and with L1-bounded derivatives. This means that if in Theorem 0.1 we
want to consider weaker convergences than (12), such as the weak convergence in BV and in particular the
convergence in (3), we have to strengthen the measurability assumption on f(·, s, ξ). Moreover, this example
shows that in Theorem 1.1 the lower semicontinuity of f in the x variable cannot be dropped.

Example 2.2. We shall construct a closed set K ⊂ [0, 1] of positive measure and a sequence of C∞([0, 1])
functions uh uniformly converging to 0, with derivatives bounded in the L1 norm, such that

0 < c < u′h(x) < d, ∀x ∈ K, ∀h ∈ N. (13)

Then, if χK is the characteristic function of the set K and g(ξ) = (ξ − (d− c)/2)2, defining f(x, ξ) = χK(x)g(ξ),
we have the desired example.

Let us fix t > 3. For all 0 < a < b < 1 with b− a > t−h we define

Th ([a, b]) =
[
a,

b− a

2
− 1

2th

]
∪
[b− a

2
+

1
2th

, b
]
.

Then we put

E1 = T1 ([0, 1]) =
{
I1
i

}2

i=1
, Eh =

{
Th

(
Ih−1
i

)}2h−1

i=1
=
{
Ih
i

}2h

i=1
,

where the intervals Ih
i are enumerated in such a way that sup Ih

i < inf Ih
i+1. Let us define

Kh =
2h⋃
i=1

Ih
i , K =

∞⋂
h=1

Kh.

K is a closed set, and since

diam
(
Ih
i

)
=

1
2h

{
1− 1

t

h−1∑
k=0

(
2
t

)k
}

,

we have meas(K) = (t−3)/(t−2) (K is simply one of the standard variants of the Cantor’s Set). Now we define
the sequence uh in the following way. On every interval Ih

i , uh is the affine function that takes the value 0 in
the left extreme of Ih

i and the value 2−h−1 in the right extreme. Then we extend uh on all [0, 1] in a C∞ way,
under the constraint that, for every i, on the interval between Ih

i and Ih
i+1, the total variation of uh is controlled

by 3 × 2−h−1. It results |uh| ≤ 3 × 2−h−1 everywhere, so that the sequence uh converges uniformly to 0. The
total variation can be estimated looking carefully at the construction:

∫ 1

0

|u′h(x)| dx ≤ (2h + (2h − 1)
) 3

2h+1
,

so that the derivatives are bounded in L1. Finally, on Kh it is

u′h(x) =
1

2h+1
× 1

diam
(
Ih
i

) =
1

2×
{

1− 1
t

∑h−1
k=0

(
2
t

)k} ·



ON THE LOWER SEMICONTINUITY OF SUPREMAL FUNCTIONALS 143

In particular, since we have

lim
h→∞

{
1− 1

t

h−1∑
k=0

(
2
t

)k
}

=
t− 3
t− 2

∈ (0, 1),

we can choose c and d in such a way that (13) holds, and then conclude the construction.

Remark 2.3. We remark that the construction in Example 2.1 furnishes an analogous counterexample to the
one given by Eisen in [14], and in fact refines it in the sense that our sequence converges uniformly to 0, while
Eisen’s one does it only in the strong norm topology of L1. Note also that we gain something in simplicity.
Example 2.2 says also that the De Giorgi–Ioffe Lower Semicontinuity theorem (see [12, 19]) does not hold with
respect to weak BV convergence, at least with measurability in the position variable x. This fact is classically
shown with a counterexample by Carbone and Sbordone [10] (see also [9]). However we did not see how to
adapt their argument to supremals, and so we have constructed a direct counterexample.

The autors wish to thank Prof. G. Buttazzo who proposed them this research during a SMI summer course on Calculus
of Variations held in Cortona, August 2001, and who supported them with stimulating discussions.
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