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GEOMETRIC CONSTRAINTS ON THE DOMAIN
FOR A CLASS OF MINIMUM PROBLEMS ∗
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Abstract. We consider minimization problems of the form

min
u∈ϕ+W

1,1
0 (Ω)

Z
Ω

[f(Du(x))− u(x)] dx

where Ω ⊆ R
N is a bounded convex open set, and the Borel function f : RN → [0, +∞] is assumed to

be neither convex nor coercive. Under suitable assumptions involving the geometry of Ω and the zero
level set of f , we prove that the viscosity solution of a related Hamilton–Jacobi equation provides a
minimizer for the integral functional.
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Introduction

Let Ω be a bounded convex open subset of R
N , N ≥ 1, and let J be the integral functional

J(u) .=
∫

Ω

[f(Du(x)) − u(x)] dx ,

acting on the functions u : Ω → R belonging to the class ϕ + W 1,1
0 (Ω), ϕ ∈ C1(Ω).

If the function f : R
N → [0, +∞] is assumed to be convex and superlinear, then, by the direct method of

Calculus of Variations, it can be shown that there exists at least one minimizer for J . On the other hand, in
several problems of optimal shape design the Lagrangians do not obey these requirements (see, for example [3,15]
and [16]). For this reason, a branch of the recent developments in the theory of Calculus of Variations is devoted
to the study of such “nonstandard problems”. Among others, we mention [8, 14, 18] and the references therein
(see also [9–13] for radially symmetric problems).
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The result presented in this paper fits into the framework introduced by Cellina in [8], and developed
in [6, 7, 20, 21]. More precisely, we consider the problem

min
u∈ϕ+W 1,1

0 (Ω)
J(u) , (1)

where f is a nonnegative Borel function, and ϕ is a concave function belonging to C1(Ω). We emphasize that
neither convexity nor superlinearity are required on f . Setting

Zf
.=

{
ξ ∈ R

N | f(ξ) = 0
}

, (2)

we shall assume that its convex hull K is a compact subset of R
N with nonempty interior, and that Dϕ(x)

belongs to the interior of K for every x ∈ Ω.
In the papers mentioned above it is always assumed that the boundary of K is entirely contained in Zf , and

it is proved that, if the inradius of Ω is sufficiently small (see condition (H6) below), then there exists a solution
to problem (1). In particular, the result proved in [7] (which subsumes those obtained in [8,20,21]) states that,
if ρ0 is the Minkowski functional of the polar set of K, then the function

u0(x) .= inf
y∈∂Ω

{
ϕ(y) + ρ0(x− y)

}
is a solution to (1).

It can be shown that, if Zf ∩ ∂K is a closed set strictly contained in ∂K, then the minimum problem (1)
may have no solution (see Ex. 2.7 at the end of the paper). Anyhow, in [4] it is proved that, if F : R

N → R

is a continuous function whose zero level set coincides with Zf ∩ ∂K, then u0 is a W 1,∞(Ω) viscosity solution
(in the sense defined in [1, 2] and [17]) of the Hamilton–Jacobi equation{

F (Du) = 0 in Ω ,

u = ϕ on ∂Ω ,
(3)

provided that Ω satisfies suitable geometric constraints depending on Zf and ϕ. We stress the fact that,
if ∂K ⊆ Zf , then no restrictions, other than convexity, are imposed on the geometry of Ω.

The key observation here is that, under the same geometric constraints, u0 provides a solution to (1), even
if Zf does not contains ∂K. This result generalizes the one given in [7] when the datum ϕ is smooth and Dϕ(x)
belongs to the interior of the set K for every x ∈ Ω.

1. Preliminaries

In what follows 〈·, ·〉 and | · | will denote respectively the standard scalar product and the Euclidean norm
in R

N , N ≥ 1.
We shall denote by A, intA and coA respectively the closure, the interior and the convex hull of a set A.

The distance between a point ξ ∈ R
N and a set A ⊆ R

N will be denoted by d(ξ, A). Finally, extC will be the
set of the extremal points of the convex set C.

Let K ⊂ R
N be a compact convex set with 0 ∈ intK. The Minkowski functional (or gauge) of K is defined by

ρ(ξ) .= inf {λ > 0 | ξ ∈ λK} ·

Notice that, if K is the unit ball centered at the origin, then ρ(ξ) = |ξ|. In general, when 0 ∈ intK, ρ is a
continuous positively 1-homogeneous convex function such that ρ(ξ) ≤ 1 if and only if ξ ∈ K, and ρ(ξ) = 1 if
and only if ξ ∈ ∂K. By K0 we denote the polar set of K, that is

K0 .=
{
ξ∗ ∈ R

N | 〈ξ, ξ∗〉 ≤ 1 ∀ξ ∈ K
} ·
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We shall consider the minimization problem

min
u∈ϕ+W 1,1

0 (Ω)
J(u) .= min

u∈ϕ+W 1,1
0 (Ω)

∫
Ω

[f(Du(x)) − u(x)] dx , (4)

where Ω is a bounded convex open subset of R
N .

Let us define the set

N .= {y ∈ ∂Ω | ∃ ν(y) inward normal} · (5)

Since Ω is a convex set, then N differs from ∂Ω for a set of (N −1)-dimensional Hausdorff measure zero. Let Zf

be the zero level set of f defined in (2).
We start by listing the assumptions on the functions f and ϕ.

(H1) f : R
N → [0, +∞] is a Borel function;

(H2) K
.= co Zf is a compact subset of R

N and Zf ∩ ∂K is closed;
(H3) 0 ∈ intK;
(H4) ϕ ∈ C1(Ω) is a concave function, and Dϕ(x) ∈ intK for every x ∈ Ω;
(H5) for every y ∈ N there exists a unique λ0(y) > 0 such that

Dϕ(y) + λ0(y)ν(y) ∈ Zf ∩ ∂K .

Hypothesis (H5) is the compatibility condition between the geometry of Ω and the zero level set of f introduced
in [4], which imposes the geometrical constraints on Ω (see Ex. 1.7).

Let ρ and ρ0 be respectively the Minkowski functionals of the set K defined in (H2) and of its polar set K0.
Fixed ϕ satisfying (H4) and (H5), let us consider the function u0 defined by

u0(x) .= inf
y∈∂Ω

{
ϕ(y) + ρ0(x− y)

} · (6)

Notice that for every x ∈ Ω the infimum in the definition of u0(x) is achieved, and u0 ∈ W 1,∞(Ω).
The last requirement needed in our existence result is a link between the oscillation of u0 and the slope of

the integrand f , defined by

ΛK(f) .= sup
{
λ ≥ 0 | f(ξ) ≥ λ(ρ(ξ) − 1) ∀ξ ∈ R

N
} · (7)

More precisely, we require that
(H6) maxΩ u0 −minΩ u0 ≤ ΛK(f).
We stress that (H6) is a growth condition on f in an external neighborhood of K. This assertion will be clarified
in Example 1.5 below.

Remark 1.1. Notice that, under our assumptions, the set Zf ∩ ∂K is not empty. Namely extK 6= ∅ because
of the compactness of K, and extK ⊆ Zf ∩ ∂K (see [19], Cor. 18.3.1).

Remark 1.2. If f is a lower semicontinuous function, then Zf is a closed set, so that, in this case, in (H2) the
only requirement is the compactness of K.

Remark 1.3. The hypothesis (H3) can be replaced by

intK 6= ∅ , (8)

which is more natural in view of the requirement (H4) on the boundary datum. Namely, if 0 6∈ intK 6= ∅,
then, fixing ξ0 ∈ intK, we can consider the function f̃(ξ) .= f(ξ + ξ0), so that Zf̃ = Zf − ξ0 and K̃ = K − ξ0,
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0 ∈ int K̃. For every u ∈ ϕ + W 1,1
0 (Ω) we consider the function

v(x) .= u(x)− 〈ξ0, x〉 ∈ ϕ− 〈ξ0, ·〉+ W 1,1
0 (Ω) .

Then we have

J(u) =
∫

Ω

[f̃(Dv(x)) − v(x)] dx +
〈

ξ0,

∫
Ω

xdx

〉
= J̃(v) + c .

Hence problem (4) is equivalent to the problem

min
v∈ϕ−〈ξ0,·〉+W 1,1

0 (Ω)
J̃(v) ,

where f̃ and the boundary datum ϕ− 〈ξ0, ·〉 satisfy (H1–H5). Even if (8) is more general than (H3), we prefer
to deal with (H3) for sake of simplicity.

Remark 1.4. The hypothesis that Zf ∩∂K is a closed set, together with (H5), can be replaced by the following
assumption: for every y ∈ N there exists a unique λ0(y) > 0 such that

Dϕ(y) + λ0(y)ν(y) ∈ Z ,

where Z is a closed set satisfying ext K ⊆ Z ⊆ Zf ∩ ∂K (see the proof of Th. 2.1 for details).

Example 1.5. Let us consider the radial case f(ξ) = g(|ξ|), where g : [0, +∞[→ [0, +∞] is a Borel function
satisfying g(R) = 0 for some R > 0, and g(s) ≥ µ(s − R) for some µ > 0 and every s ≥ 0. It is clear that
∂BR(0) ⊂ Zf ⊂ BR(0), hence K = BR(0), so that (H1, H2) and (H3) are fulfilled. Moreover, Zf∩∂K = ∂BR(0),
which implies that (H5) is satisfied for every boundary datum ϕ. The Minkowski functionals of K and its
polar set K0 = B1/R(0) are respectively ρ(ξ) = |ξ|/R and ρ0(ξ∗) = R|ξ∗|. The constant ΛK(f) is given by
sup{λ > 0 | g(s) ≥ λ(s/R− 1), ∀s ≥ 0}. In terms of the bipolar function g∗∗ of t 7→ g(|t|) we have that ΛK(f)
is the right derivative (g∗∗)′+(R) (see Fig. 1).

R

g (s/R-1)

s

L K
(f )

g**

Figure 1.

In the homogeneous case ϕ = 0, the assumption (H6) now becomes R max{d(x, ∂Ω); x ∈ Ω} ≤ ΛK(f), which
is a condition for the existence of a solution introduced in [8]. In [6] it is proved that, if this condition is violated
then, in general, problem (4) has not a solution.
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Remark 1.6. It is clear that (H6) prevents f from being smooth even in the convex case. As a consequence, the
Euler–Lagrange conditions associated to (4) can be only written in terms of differential inclusions: a solution u
of the minimum problem is an integral solution of the system

p(x) ∈ ∂f(Du(x)), div p(x) = −1. (9)

For example, in the settings of Example 1.5 with the piecewise affine function g(s) = max{0, Λ(s− 1)}, the first
inclusion in (9) can be rewritten as p(x) = α(x)Du(x)/|Du(x)|, with α(x) = 0 if |Du(x)| < 1, α(x) ∈ [0, Λ]
if |Du(x)| = 1, and α(x) = Λ if |Du(x)| > 1. These information do not seem sufficient in order to obtain the
explicit solution u0 even in this simple case.

Example 1.7. Let us clarify the meaning of the compatibility condition (H5) with the following example in
two dimensions. Let Z be the set composed by the four points (−1,−1), (−1, 1), (1,−1), (1, 1), and let us
consider the function f(ξ) = d(ξ, Z). It is clear that Zf = Z and K = [−1, 1]2 (see Fig. 2).

(1,1)

(-1,-1) (1,-1)

(-1,1)

Figure 2. The sets Zf , K, K0.

For ϕ = 0, the convex domains satisfying (H5) are only the rectangles with sides orthogonal to the directions
of Zf . For example, the first domain in Figure 3 satisfies (H5), whereas the second one has the horizontal side
whose normal is not parallel to the directions of Zf .

W W

Figure 3.

We shall show in Example 2.7 that, if (H5) is not satisfied, then the functional J may have no minimizers.
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2. The result

In this section we shall prove the following existence result:

Theorem 2.1. Under the assumptions (H1–H6), the function u0 defined in (6) provides a solution to prob-
lem (4).

The proof of Theorem 2.1 relies on the following result proved in [4].

Theorem 2.2. Let F : R
N → R be a continuous function such that the set

ZF
.=

{
ξ ∈ R

N | F (ξ) = 0
}

is bounded and contained in ∂(coZF ). Let Ω ⊆ R
N be a bounded convex open set, let N ⊆ ∂Ω be the set defined

in (5), and let ϕ ∈ C1(Ω) satisfy Dϕ(x) ∈ int(co ZF ) for every x ∈ Ω. Assume that, for every y ∈ N , there
exists a unique λ0(y) > 0 such that

Dϕ(y) + λ0(y)ν(y) ∈ ZF .

Then the function u0 defined in (6) is a W 1,∞(Ω) viscosity solution to the Hamilton–Jacoby equation (3).

The definition of viscosity solution can be found in [1, 2] and [17]. To our aim, it is enough to recall that
a W 1,∞(Ω) viscosity solution of (3) satisfies

Du0(x) ∈ ZF a.e. x ∈ Ω . (10)

The key point in the proof of Theorem 2.1 is to relate this result about viscosity solutions with the following
existence result for minima of integral functionals proved in [7].

Theorem 2.3. Assume that f satisfies (H1–H3), and, in addition, that

∂K ⊆ Zf . (11)

Let ϕ : Ω → R be a Lipschitz continuous concave function such that Dϕ(x) ∈ K for a.e. x ∈ Ω. Then, if (H6)
holds, the function u0 defined in (6) provides a solution to the minimum problem (4).

Notice that Theorem 2.1 generalizes Theorem 2.3 in the following sense. In order to apply Theorem 2.2,
we need stronger regularity assumptions on the boundary datum ϕ, but, on the other hand, we relax the
condition (11). Indeed, if (H2–H4) and (11) are fulfilled, then (H5) holds for every convex domain Ω. Namely,
for every y ∈ N , since Dϕ(y) ∈ intK, there exists a unique λ0(y) > 0 such that Dϕ(y) + λ0(y)ν(y) ∈ ∂K.

As a corollary of Theorem 2.2, we obtain the following result:

Proposition 2.4. Let Z ⊆ R
N be a compact set such that Z ⊆ ∂(coZ) and int(co Z) 6= ∅. Let Ω ⊆ R

N be a
bounded convex open set, and let ϕ ∈ C1(Ω) satisfy

(i) Dϕ(x) ∈ int(co Z), for every x ∈ Ω;
(ii) for every y ∈ N there exists a unique λ0(y) > 0 such that

Dϕ(y) + λ0(y)ν(y) ∈ Z .

Then the function u0 defined in (6) satisfies

Du0(x) ∈ Z , a.e. x ∈ Ω . (12)
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Proof. Let F (ξ) .= d(ξ, Z), ξ ∈ R
N . Since ZF = Z = Z, by Theorem 2.2, u0 provides a W 1,∞(Ω) viscosity

solution to (3), so that (12) holds. �
Proof of Theorem 2.1. Let g : R

N → [0, +∞] be the function defined by

g(ξ) .=

{
ΛK(f)(ρ(ξ)− 1) ξ 6∈ K ,

0 ξ ∈ K ,

where ΛK(f) ∈]0, +∞] is the constant defined in (7) (notice that, by (H6), ΛK(f) > 0). We have that Zg = K,
g satisfies (H1–H3), and ΛK(g) = ΛK(f), so that (H6) holds. Then we can apply Theorem 2.3, obtaining that
u0 is a minimizer of the functional

G(u) .=
∫

Ω

[g(Du(x))− u(x)] dx ,

in the class ϕ + W 1,1
0 (Ω).

By the very definition of ΛK(f), and since f is nonnegative, we deduce that f ≥ g in R
N . Moreover,

co(Zf ∩ ∂K) = K. Namely, by the compactness of K, we have that K = co(extK) (see [19], Cor. 18.5.1), and,
since extK ⊆ Zf ∩ ∂K, one gets K ⊆ co(Zf ∩ ∂K). The other inclusion is trivial.

Then we can apply Proposition 2.4 with Z = Zf ∩ ∂K, obtaining

Du0(x) ∈ Zf ∩ ∂K , a.e. x ∈ Ω .

Hence f(Du0(x)) = g(Du0(x)) = 0 for almost every x ∈ Ω, so that, for every u ∈ ϕ + W 1,1
0 (Ω), one has

J(u0) = G(u0) ≤ G(u) ≤ J(u) ,

which concludes the proof. �
Remark 2.5. The existence result stated in Theorem 2.1 holds for more general minimum problems of the
form

min
u∈ϕ+W 1,1

0 (Ω)

∫
Ω

[f(Du(x)) + h(x, u(x))] dx , (13)

where f and ϕ satisfy (H1–H5), while the function h : Ω × R → R is measurable with respect to x for every
fixed u ∈ R, non increasing with respect to u for a.e. fixed x ∈ Ω, h(·, 0) ∈ L1(Ω), and there exists a constant
L > 0 such that

|h(x, u)− h(x, v)| ≤ L|u− v| , a.e. x ∈ Ω , ∀u, v ∈ R .

Finally, the condition (H6) must be replaced by

L

(
max

Ω
u0 −min

Ω
u0

)
≤ ΛK(f).

Under these assumptions, in [5] it is proved that the function u0 provides a solution to (13), and the proof of
Theorem 2.1 can be carried out in the very same way.

When ϕ = 0, the solution u0 to (4) turns out to be the distance function from ∂Ω associated to the convex
set K0. More precisely, for every non empty subset A of R

N , we introduce the distance function from A with
respect to ρ0

dK0(x, A) .= inf
y∈A

ρ0(x− y) . (14)
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If ϕ = 0, the function u0 defined in (6) coincides with the distance function dK0(x, ∂Ω), and Theorem 2.1 can
be rewritten as follows:

Corollary 2.6. Assume that (H1, H2), and (H3) hold. Suppose that

max
x∈Ω

dK0(x, ∂Ω) ≤ ΛK(f) (15)

and that

ν(y)
ρ(ν(y))

∈ Zf ∀y ∈ N . (16)

Then the function u0(x) .= dK0(x, ∂Ω) is a solution of problem (4).

The compatibility condition (H5) is a necessary condition for the existence of a minimizer of J , in the sense
explained below.

Example 2.7. Let us assume that ϕ = 0, and let Z ⊆ R
N be a compact set such that 0 ∈ int(co Z) and

∂(coZ) \ Z 6= ∅ . (17)

We are going to show that there exist a convex set Ω and a function f , with Zf = Z, satisfying all the
assumptions of Corollary 2.6 but (16), and such that problem (4) has no solution. Let ζ ∈ ∂(coZ) \ Z, and
let Ω be a cube with one face C having ζ

|ζ| as inward normal, so that (16) is trivially not satisfied.
Define the function f by

f(ξ) .=

{
0 , ξ ∈ Z ,

+∞ , ξ 6∈ Z .

As Λco Z(f) = +∞, the assumption (15) is satisfied.
We claim that, in this case,

inf
u∈W 1,1

0 (Ω)
J(u) = −

∫
Ω

u0(x) dx ,

where u0 is the function considered in Corollary 2.6, but the infimum is not achieved. Let f∗∗ be the bipolar
function of f , given by

f∗∗(ξ) =

{
0 , ξ ∈ coZ ,

+∞ , ξ 6∈ coZ ,

and let us consider the relaxed functional

J(u) .=
∫

Ω

[f∗∗(Du(x)) − u(x)] dx , u ∈ W 1,1
0 (Ω) .

Since Zf∗∗ = coZ, all the assumptions of Corollary 2.6 are satisfied, hence u0 is a minimizer of J in W 1,1
0 (Ω).

Actually u0 is the unique minimizer of J . Namely, let v ∈ W 1,1
0 (Ω) be another minimizer of J , and define

w− .= min {u0, v} , w+ .= max {u0, v} ·
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Clearly, w− ≤ w+ and w− = w+ if and only if u0 = v. From the fact that

J(w−) + J(w+) = J(u0) + J(v),

we deduce that also w− and w+ are minimizers of J . Henceforth J(w−) = J(w+) < +∞, so that∫
Ω

w−(x) dx =
∫

Ω

w+(x) dx ,

which implies that u0 = v.
Since inf J = min J , the claim is proved if we show that J(u0) > J(u0). By Lemma 2.9 in [4], for every x ∈ Ω

with d(x, C) small enough, we have that Du0(x) = ζ, hence J(u0) = +∞.
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