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Abstract. In [30], Kronrod proves that the connected components of isolevel sets of a continuous
function can be endowed with a tree structure. Obviously, the connected components of upper level sets
are an inclusion tree, and the same is true for connected components of lower level sets. We prove that
in the case of semicontinuous functions, those trees can be merged into a single one, which, following
its use in image processing, we call “tree of shapes”. This permits us to solve a classical representation
problem in mathematical morphology: to represent an image in such a way that maxima and minima
can be computationally dealt with simultaneously. We prove the finiteness of the tree when the image
is the result of applying any extrema killer (a classical denoising filter in image processing). The shape
tree also yields an easy mathematical definition of adaptive image quantization.
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1. Introduction and motivation

An image, to be processed, must be represented by an adequate model. For example, its Fourier transform
is often used for denoising or registration, see [56]. Its decomposition on a wavelet or wavelet packet basis can
be used for multiple tasks, the most convincing one being compression, see [31]. These models, totally (in the
Fourier case) or partially (in the wavelet case) based on the frequencies of the image, are however dependent on
the original image contrast. The same thing can be said of image representations based on edges [25]. While
this is not a problem in image compression, it becomes more problematic in image analysis, since we would like
any automatic tool to be insensitive to contrast changes, in as much as our vision is [55].

In the same way, most algorithms trying to segment the image into significant regions, i.e., trying to find
a partition of the image into essentially homogeneous regions, are generally not contrast invariant, see, for
instance [28, 37].

Mathematical morphology is able to deal with contrast invariant objects, the most basic ones being the
(upper) level sets [u ≥ λ] = {x, u(x) ≥ λ}, or the level lines ∂[u ≥ λ] of the image u [32, 40–42, 45, 46]. They
are said to be contrast invariant, since, for any increasing continuous function g, the level sets of g ◦ u are
globally the same as the level sets of u, modulo a change of level. Many tasks can be efficiently addressed
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by means of morphological methods: contrast enhancement [7, 8], filtering [1, 22, 48, 49], compression [18, 43],
segmentation [27,40,53], intersection [4], or registration [34], to give some examples. Mathematical morphology
uses the structure of level sets in a fundamental way: indeed, the upper level sets [u ≥ λ] are nonincreasing
with respect to λ, and any contrast invariant process can be interpreted as a geometric process acting on level
sets, preserving their order. The resulting image is defined so that its level sets are the processed level sets of
the original image (each point gets the level of the smallest processed level set containing it).

As objects of interest can be bright, as well as dark, a frequent requirement of mathematical morphology is
to have self-dual algorithms, i.e., algorithms which act in the same manner on upper and lower level sets. And
here comes a difficulty, self-dual algorithms modify the families of upper and lower level sets. However, each
one of these families yields a complete representation of image, and when we modify one, it is not easy to ensure
consistency with the other one.

Moreover, as most objects consist of a single piece, we prefer to take as basic objects of the image the
connected components of its level sets, and, ask the basic operations to act on this structure. Those operations
are called connected filters since they preserve connectedness [33, 42, 47]. Connected components of upper (or
lower) level sets have a natural tree structure given by the inclusion order. Putting both together creates a self-
dual, but redundant, representation of the image. Does it exist a self-dual, and non redundant, representation
of the image? As this is not possible with both families of connected components of level sets, we shall modify
them. The modification used in this paper consists in filling-in its holes. We shall see that, by doing this, we are
able to create a single tree of basic objects. This tree structure was first used as an algorithm, but not proved,
in [50], and the importance of the role played by holes was not explained.

A very close structure based on level lines, and valid for continuous images, was discovered by Kronrod [30].
However, images have discontinuities, prominently at the edges of objects. The present work can be understood
as an extension of Kronrod’s tree to semicontinuous images. The tree structure can also be compared to the
Morse tree [19, 29], but the regularity required for Morse functions is too stringent for images. An adaptation
to images was recently proposed under the name of Digital Morse Theory [10], but this representation does not
show explicitly the upper or lower level sets. The assumption that images are BV functions, i.e., functions of
bounded variation [2, 11, 17], was introduced to deal with the restoration problem [9, 16, 39, 54]. In this model,
to define basic objects as connected components of level sets and the corresponding extrema killers, an adapted
notion of connectedness, called M -connectedness, is proposed in [3, 5]. Apart from the fact that there are
clues hinting that images are not of bounded variation due to texture oscillations [20], the M -connectedness
will be shown not to yield a tree structure. Thus, we shall restrict ourselves to the case of images as upper-
semicontinuous functions, a model which permits discontinuities and the definition of a self-dual tree structure
for the shapes of the image. Practical applications of the representation we study here, as well as a fast algorithm
to extract it, have been presented in [35, 36]. Let us finally mention that general uses of a tree structure to
design filters are explained in [44].

Let us explain the plan of the paper. Next section is devoted to define the notions of saturation and of holes,
and to study its basic properties. In Section 3 we prove that the shapes of an image, defined as the saturation of
the connected components of its level sets, have a tree structure and we study it. In Section 4 we prove that the
tree is equivalent to the image: the knowledge of the tree is sufficient to reconstruct the image. Section 5 shows
the finiteness of the tree structure under hypotheses that are met for digital images. Last section is devoted to
an application, indeed, we show how to obtain schematic versions of the image by manipulating its associated
tree.

2. Some topological preliminaries

Let Ω be a set homeomorphic to the closed unit ball of RN (N ≥ 2),
{
x ∈ RN , ‖x‖ ≤ 1

}
, and Ω be the interior

of Ω. Note that, in particular, Ω is compact, connected and locally connected. Moreover, Ω is unicoherent.

Definition 2.1 ([23], Sect. 41, X). A topological space Z is said to be unicoherent if it is connected and for
any two closed connected sets A, B in Z such that Z = A ∪B, A ∩B is connected.
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Usually, Ω is a closed rectangle of R2. An image u is a map from Ω to R, supposed to be upper semicontinuous.
The lower and upper level sets of u are the sets

[u < λ] =
{
x ∈ Ω, u(x) < λ

}
[u ≥ λ] =

{
x ∈ Ω, u(x) ≥ λ

} ·
Lower level sets are open, while upper level sets are closed. The asymmetry comes from the assumption that u
is upper semicontinuous, and would be inverted if we assumed u to be lower semicontinuous.

Definition 2.2. Let A ⊆ Ω. We call holes of A in Ω the components of Ω \ A. Let p∞ ∈ Ω \A be a reference
point, and let T be the hole of A in Ω containing p∞. We define the saturation of A with respect to p∞ as
the set Ω \ T and we denote it by Sat(A, p∞). We shall refer to T as the external hole of A and to the other
holes of A as its internal holes. By extension, if p∞ ∈ A, by convention we define Sat(A, p∞) = Ω. Note that
Sat(A, p∞) is the union of A and its internal holes.

The reference point p∞ acts as a point at infinity. In all what follows, we assume that the point p∞ ∈ Ω on
which the saturations are based is fixed, i.e., all saturations will be computed with respect to p∞. To simplify
our notation, we shall write Sat(A) instead of Sat(A, p∞). We shall also speak of holes of A instead of holes
of A in Ω.

First, we prove some basic properties of the saturation.

Lemma 2.3. Let A ⊆ Ω. If A is open (resp. closed) in Ω, then its saturated sets are open (resp. closed) in Ω.

Proof. If A is open in Ω, Ω\Sat(A), being a connected component of a closed set in Ω, is also closed in Ω. Thus
Sat(A) is open in Ω. If A is closed in Ω, Ω \ Sat(A), being a connected component of an open set in Ω, is also
open, as Ω is locally connected. Thus Sat(A) is closed in Ω.

Lemma 2.4. The saturation Sat(.), as an operator acting on subsets of Ω, is
(i) monotone: A ⊆ B ⇒ Sat(A) ⊂ Sat(B);
(ii) idempotent: Sat [Sat(A)] = Sat(A).

Proof. The proofs are immediate and we shall skip them.

Lemma 2.5. Let A ⊆ Ω be a connected set and T be a hole of A. If T is an internal hole, SatT = T ; if T is
the external hole, Sat(T ) = Ω.

Proof. If T is an internal hole, then p∞ 6∈ T , and, therefore, Sat(T ) 6= Ω. Since T is a connected component
of Ω \ A, the set Ω \ T is connected ([38], IV.3, Th. 3.3). Hence Ω \ T is a hole of T containing p∞, and we
conclude that Sat(T ) = T . If T is the external hole, then p∞ ∈ T , and we have that Sat(T ) = Ω.

We now prove three lemmas that will be useful in the sequel:

Lemma 2.6. If A ⊆ Ω is connected, then Sat(A) is also connected.

Proof. If Sat(A) = Ω, there is nothing to prove. Otherwise, Ω \ SatA is a connected component of the comple-
ment of a connected set A, in a connected space Ω. Thanks to [23] (Sect. 41,III,5), its complement, i.e., Sat(A),
is connected.

The notation used will be the usual one in topology. If A is a set in a topological space,
◦
A, A and ∂A

will denote, respectively, the interior, the closure and the boundary of A. If p ∈ A, we denote the connected
component of A containing p by cc(A, p). By cc(A) we shall denote a connected component of A.

Lemma 2.7. Let A ⊆ Ω. If T is a hole of A, then

∂T ⊆ ∂A.

As a consequence,
∂ Sat(A) ⊆ ∂A.
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Proof. T is a connected component of Ω\A, so ∂T ⊆ ∂(Ω\A) (see [23], Sect. 44, III, 3), proving that ∂T ⊆ ∂A.
Let T be the external hole of A. Then

∂ Sat(A) = ∂(Ω \ Sat(A)) = ∂T ⊆ ∂A.

Lemma 2.8. Let A ⊆ Ω be such that Sat(A) 6= Ω. Then Sat(A) ⊆ Sat(∂A), and, if A is closed, we get
Sat(A) = Sat(∂A).

Proof. Suppose first that A is closed. Since ∂A ⊆ A, taking the saturation of each member, we have that
Sat(∂A) ⊆ Sat(A). To prove the other inclusion, let C be a connected component of

◦
A. It is easy to see that C,

as any open connected set, is a hole of ∂C. Since ∂C ⊆ ∂
◦
A and C ∩∂

◦
A= ∅, we have that C is open and closed

in Ω \ ∂
◦
A. Since C is also connected, then C is a hole of ∂

◦
A, and, therefore, C ⊆ Sat(∂

◦
A). Now, using that

∂
◦
A⊆ ∂A, we conclude that C ⊆ Sat(∂A). This proves that

◦
A⊆ Sat(∂A), and, thus,

A =
◦
A ∪∂A ⊆ Sat(∂A).

Finally, taking saturations, we obtain Sat(A) ⊆ Sat(∂A).

For an arbitrary set A, A ⊆ A implies that Sat(A) ⊆ Sat(A). If Sat(A) 6= Ω, the first part of the proof
applies to A and we obtain that Sat(A) ⊆ Sat(A) = Sat(∂A). Finally, from ∂A ⊆ ∂A, we conclude that
Sat(A) ⊆ Sat(∂A).

Now, the remaining case is Sat(A) = Ω. If, in addition, we have that Sat(∂A) = Ω, the result is obvious.
Otherwise, let E = Ω\Sat(∂A) 6= ∅. Then E is a hole of ∂A, hence, it cannot meet both A and Ω\A. If E ⊆ A,
then SatE ⊆ SatA 6= Ω, so that Sat(E) = ∅, a contradiction, since E ⊆ Sat(E). Thus, E is contained in a hole
T of A, T being not an internal hole, since, otherwise, Sat(E) ⊆ Sat(T ) ⊆ Sat(A), which is again impossible.
Therefore, T is the external hole of A, and E ⊆ T amounts to

Ω \ Sat(∂A) ⊆ Ω \ Sat(A),

which proves the expected result.

3. The tree of shapes

Definition 3.1. Given an image u, we call shapes of inferior (resp. superior) type the sets

Sat(cc([u < µ], x)) (resp. Sat(cc([u ≥ λ], x))),

where λ, µ ∈ R, x ∈ Ω. We call shape of u any shape of inferior or superior type. We denote by S(u) the shapes
of u.

Having fixed the point p∞ on which the saturation is based, the shapes of the image depend on p∞. If we
choose p∞ ∈ ∂Ω and we assume that the function u is constant in a neighborhood of ∂Ω, then we may consider
that our notion of shape becomes intrinsic.

We note that, by definition, shapes of superior type are closed, while shapes of inferior type are open. Since
shapes are connected, the only shapes of both types are ∅ and Ω.

The rest of the section is devoted to prove that shapes have a kind of tree structure, and to define common
features of this tree, like branches and leaves.
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3.1. Tree structure of the set of shapes

Lemma 3.2. Let A, B ⊆ Ω be connected sets such that A∩B = ∅. Then Sat(A) and Sat(B) are either disjoint
or nested.

Proof. The result is obvious if one of the saturations coincides with Ω. Thus, we may suppose that A and B
have each an external hole. Then, being connected, A is included in a hole T of B. If T is an internal hole,
we get

Sat(A) ⊆ Sat(T ) = T ⊆ SatB.

If T is the external hole of B, then B is also included in a hole H of A. If H is an internal hole of A, the same
proof above applies and we get Sat(B) ⊆ Sat(A). If H is the external hole of A, no internal hole of A meets B,
and, thus, Sat(A) is in the exterior hole of B. Therefore, no internal hole of B meets Sat(A), implying that
Sat(A) ∩ Sat(B) = ∅.

Theorem 3.3. Any two shapes are either disjoint or nested.

Proof. Let A = Sat(Ã) and B = Sat(B̃), Ã and B̃ being connected components of level sets of u.

If Ã and B̃ are of the same type, then they are either nested or disjoint. In the first case, A and B are nested
because Sat is a monotone operator, while, in the second case, Lemma 3.2 permits to conclude. Thus, we may
assume that Ã, B̃ are of different type and Ã ∩ B̃ 6= ∅. Let x ∈ Ã ∩ B̃. By interchanging names, if necessary,
we may assume that Ã = cc([u ≥ λ]) and B̃ = cc([u < µ]). Observe that λ ≤ u(x) < µ, hence λ < µ.

The set B̃, being a connected component of [u < µ], is open in Ω and closed in [u < µ], hence,

[u < µ] ∩ ∂B̃ = [u < µ] ∩ (B̃ \ B̃) = ∅.

This proves that ∂B̃ ⊆ [u ≥ µ] ⊆ [u ≥ λ] and, according to Lemma 2.7, ∂B ⊆ ∂B̃ ⊆ [u ≥ λ].

Since A is connected, if ∂B ∩A = ∅, we have that either A ⊆ B or A ⊆ Ω \B, the last case being impossible
because A ∩ B 6= ∅. Thus, we may assume that ∂B ∩ A 6= ∅. First, we observe that ∂B is connected. Indeed,
if T is the external hole of B, the connectedness of ∂B follows from the identity

∂B = B ∩ T ,

and the unicoherency of Ω, since B and T are connected, being the closure of connected sets.

From the above, we conclude that ∂B is contained in a connected component C of [u ≥ λ]. If C ∩ Ã = ∅,
then C is in a hole of Ã, but not in the external one as ∂B ∩A 6= ∅. The other case being C = Ã, we conclude
that, in any case, we have that ∂B ⊆ A. Now, using Lemma 2.8, we obtain

B = Sat(B) ⊆ Sat(∂B) ⊆ Sat(A) = A,

concluding the proof.

Theorem 3.3 is the key to prove that the inclusion of subsets induces a tree structure on the set of shapes.
The root of the tree is

Ω = Sat
([

u < 1 + max
Ω

u

])
,

and there is no loop: if A, B1, B2, C are shapes and A ⊆ Bi ⊆ C, i = 1, 2, then B1 ∩ B2 6= ∅, hence the sets
B1 and B2 must be nested.



6 C. BALLESTER, V. CASELLES AND P. MONASSE

3.2. Branches, monotone sections and leaves

Definition 3.4. Let A ⊆ B ⊆ Ω. We define [A, B] as the interval of shapes between A and B, i.e.,

[A, B] = {S : S ∈ S(u), A ⊆ S ⊆ B} ·

We also define
inf[A, B] =

⋂
S∈[A,B]

S and sup[A, B] =
⋃

S∈[A,B]

S.

We say that T is a limit shape if it is the infimum or the supremum of a nonempty interval of shapes.

Observe that, if A ⊆ B ⊆ Ω, then [A, B] = [inf[A, B], sup[A, B]]. Thus, when considering an interval, we
may always assume that its extreme sets are limit shapes.

Definition 3.5. Let B ⊆ Ω. We say that B contains a bifurcation if there exist S, T ∈ S(u) such that S, T ⊆ B
and S ∩ T = ∅. Let A ⊆ B ⊆ Ω. We say that there is a bifurcation between A and B if inf[A, B] 6= ∅ and there
is S ∈ S(u) such that S ⊆ B and S ∩ inf[A, B] = ∅.
Definition 3.6. Let A ⊆ B ⊆ Ω. We say that [A, B] is a branch of the tree of shapes of u if there is no
bifurcation between A and B. We say that [A, B] is a monotone section if [A, B] is a branch with all shapes of
the same type.

We say that a branch [A, B] (resp., a monotone section) contains x ∈ Ω if there is a shape S ∈ [A, B] such
that x ∈ S.

Definition 3.7. Let A ⊆ B ⊆ Ω. We say that [A, B] has a definite type if all its shapes are of the same type.

Definition 3.8. Let x ∈ Ω. We define Sx as the smallest limit shape containing x, i.e.,

Sx = inf[{x}, Ω] =
⋂

S∈S(u),x∈S

S.

The upper branch at x is the set

Bx = {S : S ∈ S(u), x ∈ S, and [Sx, S] is a branch} ·

Definition 3.9. We call leaf of the tree of shapes of u, or simply, a leaf, any limit shape L = inf[A, B] containing
no shape.

These various notions are illustrated in Figure 1.

Proposition 3.10. Any two limit shapes are either nested or disjoint.

Proof. Assume first that T is a shape and S is a limit shape such that T ∩ S 6= ∅. Suppose that S = inf[A, B].
Then T ∩ R 6= ∅ for all R ∈ [A, B]. By Theorem 3.3, for any R ∈ [A, B], either T ⊆ R or R ⊆ T . Then,
either there is R ∈ [A, B] such that R ⊆ T , or T ⊆ R, for all R ∈ [A, B]. In the first case, we have that
S = inf[A, B] ⊆ T . In the second one, T ⊆ inf[A, B] = S.

Suppose that S = sup[A, B]. Since T ∩ S 6= ∅, there is R ∈ [A, B] such that T ∩ R 6= ∅. Observe that
S = sup[R, B] and T ∩Q 6= ∅ for all Q ∈ [R, B]. By Theorem 3.3, for any Q ∈ [R, B], either T ⊆ Q or Q ⊆ T .
Then, either there is Q ∈ [R, B] such that T ⊆ Q, or Q ⊆ T , for all Q ∈ [R, B]. In the first case, we have that
T ⊆ sup[R, B] = S. In the second one, S = sup[A, B] ⊆ T .

Now, we suppose that both S and T are limit shapes. First, assume that S = inf[A, B]. If S ∩ T 6= ∅,
then R ∩ T 6= ∅ for all R ∈ [A, B]. Then, either there is some R ∈ [A, B] such that R ⊆ T , or T ⊆ R for all
R ∈ [A, B]. In the first case, S ⊆ T , in the second, T ⊆ S. Now, assume that S = sup[A, B]. If S ∩ T 6= ∅, then
there is some R ∈ [A, B] such that R ∩ T 6= ∅. Observe that S = sup[R, B] and T ∩Q 6= ∅ for all Q ∈ [R, B].
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Figure 1. Example of tree associated to an image. Left: the sample image. Right: associated
tree. Squares represent shapes of inferior type, while circles represent shapes of superior type.
The maximal monotone sections are indicated by ellipses. Various points x are marked in the
image, and, for each of them, a line points to the smallest limit shape Sx associated to it. A
red border denotes a leaf.

By the first part of the proof, for any Q ∈ [R, B], either T ⊆ Q or Q ⊆ T . Then, either there is Q ∈ [R, B] such
that T ⊆ Q, or Q ⊆ T , for all Q ∈ [R, B]. In the first case, we have that T ⊆ sup[R, B] = S, in the second,
S = sup[A, B] ⊆ T .

Proposition 3.11. Let A1, A2 6= ∅, and [A1, B1], [A2, B2] two branches such that

[A1, B1] ∩ [A2, B2] 6= ∅.

Without loss of generality we may assume that A1, A2, B1, B2 are limit shapes. Then [A1 ∩ A2, B1 ∪ B2] is a
branch.

Proof. Let S ∈ S(u) be such that A1 ⊆ S ⊆ B1 and A2 ⊆ S ⊆ B2. Thus B1 ∩ B2 6= ∅, and, therefore, B1 and
B2 are nested. The limit shapes A1 and A2 are also nested. Indeed, we observe that A2 = inf[A2, S]. For any
R ∈ [A2, S], R ⊆ B1 and since there is no bifurcation in [A1, B1], A1 ∩R 6= ∅. If there is R ∈ [A2, S] such that
R ⊆ A1, then A2 = inf[A2, S] ⊆ A1. If this does not happen, A1 ⊆ R for all R ∈ [A2, S], and we have that
A1 ⊆ inf[A2, S] = A2.

By symmetry, we may assume that either

A1 ⊆ B1 ⊆ A2 ⊆ B2, or (i)

A1 ⊆ A2 ⊆ B1 ⊆ B2, or (ii)

A1 ⊆ A2 ⊆ B2 ⊆ B1. (iii)

If (i) holds, then
A1 ⊆ S ⊆ B1 ⊆ A2 ⊆ S ⊆ B2,
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and B1 = A2 = S. This case can be subsumed under the case (ii). If (iii) holds, then [A1∩A2, B1∪B2] = [A1, B1]
is a branch. Thus, we may assume that (ii) holds. We prove that there is no bifurcation in [A1, B2].

Let R a shape such that R ⊆ B2. Since [A2, B2] is a branch, R ∩ A2 6= ∅. By Proposition 3.10, either
A2 ⊆ R or R ⊆ A2. In the first case, A1 ⊆ R, while, in the second case, R ⊆ B1 and, since [A1, B1] is a branch,
R ∩A1 6= ∅. This holds for any R ⊆ B2, proving that [A1, B2] is a branch.

Proposition 3.12. Let A1, A2 6= ∅, and let [A1, B1], [A2, B2] be two monotone sections of the same type such
that [A1, B1] ∩ [A2, B2] 6= ∅. Without loss of generality we may assume that A1, A2, B1, B2 are limit shapes.
Then [A1 ∩A2, B1 ∪B2] is a monotone section.

Proof. By Proposition 3.11, we know that [A1 ∩A2, B1 ∪B2] is a branch. As in the proof of Proposition 3.11,
we may reduce the study to one of the three cases (i), (ii) or (iii). In case (iii), the conclusion is immediate. As
we observed above, (i) can be subsumed under case (ii). Thus, assume that (ii) holds. Assume that the type of
both intervals is the superior one. Let R ∈ [A1, B2]. Since R ∩A2 6= ∅, then either A2 ⊆ R, or R ⊆ A2. In the
first case, R ∈ [A2, B2], in the second, R ∈ [A1, B1]. In any case, R is a shape of superior type. Thus [A1, B2]
is an interval with all shapes of superior type. The proof is similar if both intervals are of inferior type.

Propositions 3.11 and 3.12 permit us to define the maximal branch and maximal monotone section containing
a given shape S ∈ S(u). Indeed, we define B(S), the maximal branch containing S, as

B(S) = ∪{[A, B] : [A, B] is a branch s.t. S ∈ [A, B]} · (1)

We define M(S), the maximal monotone section containing S, as

M(S) = ∪{[A, B] : [A, B] is a monotone section s.t. S ∈ [A, B]} · (2)

We observe that
B(S) = [inf B(S), supB(S)], and M(S) = [infM(S), supM(S)].

As a consequence of Proposition 3.11 we obtain the following corollary:

Corollary 3.13. Let x ∈ Ω. The upper branch at x, Bx, is a branch.

Proposition 3.14. Any two different leaves in the tree of shapes of u are disjoint.

Proof. Let L1, L2 be two different leaves. Assume that L1 = inf[A1, B1], L2 = inf[A2, B2]. If they are not
disjoint, then either L1 ⊆ L2 or L2 ⊆ L1. By symmetry, we may assume that L1 ⊆ L2. Then, for any
S ∈ [A1, B1] and any T ∈ [A2, B2], we have that S ∩ T ⊆ L1 6= ∅. Thus, S and T are nested. Thus either

∃S ∈ [A1, B1] s.t. ∀T ∈ [A2, B2], S ⊆ T, or (∗)
∀S ∈ [A1, B1], ∃T ∈ [A2, B2] s.t. T ⊆ S. (∗∗)

If (∗) holds, then S ⊆ L2. If S 6= L2, then L2 would not be a leaf. Thus, S = L2. Since L1 = inf[A1, S], if
R ∈ [A1, S], R ⊆ L2. If, for some R ∈ [A1, S], R 6= L2, then L2 would not be a leaf. Thus, for any R ∈ [A1, S],
R = L2. Therefore L1 = L2, a contradiction. If (∗∗) holds, then L2 ⊆ L1. Hence, L1 = L2. This contradiction
proves that L1 and L2 must be disjoint.

4. Reconstruction of the image from its tree

This section explains how an image can be reconstructed from its tree; more precisely, we prove that the
image is perfectly defined by its shapes and the levels at which they are extracted.
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Definition 4.1. We call lower (resp. upper) level shape at level λ at x ∈ Ω a pair (λ, S = Sat(cc([u < λ])))
(resp. (λ, S = Sat(cc([u ≥ λ])))) such that x ∈ S. We denote their family by Gλ,x (resp. Fλ,x). We also denote

LSx = Gλ,x ∪ Fλ,x.

The relation (λ, S) 4 (µ, T ), defined as S ( T or (S = T and λ ≤ µ, if (λ, S) ∈ Gλ,x, (µ, T ) ∈ Gµ,x; resp. λ ≥ µ,
if (λ, S) ∈ Fλ,x, (µ, T ) ∈ Fµ,x), is a total order relation in LSx, provided that S 6= Ω 6= T .

Lemma 4.2. Let x ∈ Ω, A be a connected component of a level set of u, and (λ, Sat(A)) ∈ LSx. If x 6∈ A, then
there exists (λ, Sat(B)) ∈ LSx such that Sat(B) ( Sat(A) and B is of a different type than A.

Proof. Let T be the hole of A containing x. If A = cc([u < λ]), then ∂T ⊆ [u ≥ λ], and, since ∂T is connected,
we have that (λ, Sat(T ) = T ) ∈ Fλ,x, with T ( Sat(A). Thus, we may assume that A = cc([u ≥ λ]).

Let H be the family of connected components of [u < λ] inside T . Since H is a family of open and disjoint
sets, we can enumerate its elements, H1, . . . , Hn . . . Let Dn = T \⋃n

i=1 Sat(Hi). Clearly, Dn is closed. Let us
prove that Dn is connected. Let G 6= ∅ be an open and closed subset of Dn. Now, it is easy to check that

∂Dn = ∂T ∪
n⋃

i=1

∂ Sat(Hi),

and we observe that each term of this union is connected. Hence, if G meets one of ∂ Sat(Hi), it contains it.
Let G′ be the union of G and the sets Sat(Hi) whose boundary is contained in G. Obviously G′ is open in T .
We observe that, if the boundary of Sat(Hi) is contained in G, then G∪Sat(Hi) = G∪Sat(Hi), and, therefore,
G′ is also closed in T . Due to the connectedness of T , G′ = T and, therefore, G = Dn. This proves that Dn is
connected.

If the number of Hi is finite, this proves that T \ ⋃
i Sat(Hi) is connected. If they are infinite, the sets Dn

form a decreasing sequence of continua, thus, their intersection is a continuum, thanks to Zoretti’s theorem.

Since ∂T ⊆ A and is connected, we have that T \ ⋃
i Sat(Hi) ⊆ A. Now, since x 6∈ A, it follows that

x ∈ ⋃
i Sat(Hi), which implies the conclusion of the lemma.

4.1. Direct reconstruction

Theorem 4.3. Let x ∈ Ω. If Sx 6= Ω, then

u(x) = lim
LSx3(λ,S)↘

λ. (3)

If Sx = Ω, then

u(x) = inf
(λ,Ω)∈Gλ,x

λ = max
(λ,Ω)∈Fλ,x

λ. (4)

Equation (3) deserves some explanation. It must be interpreted as

∀ε > 0, ∃(λ, S) ∈ LSx, ∀(µ, T ) 4 (λ, S), |u(x)− µ| ≤ ε.

Loosely speaking, u(x) is the level of the smallest shape containing x. But this “smallest shape” does not
necessarily exist, and, moreover, the relation 4 takes into account that the same shape can sometimes be
extracted at several levels.
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Proof. Suppose first that Sx = Ω. Let λ ≤ u(x) and C1 = cc([u ≥ λ], x). Then SatC1 = Ω. Now, if
C2 = cc([u < λ]), is such that C2∩C1 = ∅, we have that Sat(C2) 6= Ω, and, therefore, SatC2 does not contain x.
This proves that

u(x) ≤ inf
(λ,Ω)∈Gλ,x

λ.

Now, if λn = u(x) + 1/n, it is clear that (λn, Ω) ∈ Gλ,x, thus,

inf
(λ,Ω)∈Gλ,x

λ ≤ λn

which gives the equality with u(x) as n tends to infinity. The second equality follows by using the same
argument, the maximum being reached this time since (u(x), Ω) ∈ Fλ,x.

We assume now that Sx ( Ω. There is some shape S∗  Ω, containing Sx, and let λ∗ be its associated level.
Let us consider the shape S0 = Sat(cc([u ≥ u(x)], x)). It is clear that (u(x), S0) ∈ LSx. Let (λ, S) ∈ LSx be
such that (λ, S) 4 (u(x), S0) if S0  Ω, or S  Ω if S0 = Ω. We claim that λ ≥ u(x), this inequality being
strict if S0 = Ω.

If S is a lower shape, we have that S  S0. Since S = Sat(cc([u < λ])), if we have that λ ≤ u(x), we deduce
that this cc([u < λ]) does not contain x, and, thus, that x is in one of its internal holes, as it is cc([u ≥ u(x)], x)
and, therefore, also its saturation, which is impossible. Thus, we must have that λ > u(x).

If S is an upper shape, we write S = Sat(cc([u ≥ λ])). If x ∈ cc[u ≥ λ], we have that u(x) ≥ λ, in which
case cc([u ≥ λ]) ⊇ cc([u ≥ u(x)], x). It follows that S0 6= Ω and cc([u ≥ λ] = cc([u ≥ u(x)], x). Then the order
relation yields that λ ≥ u(x), and, thus, we have the equality. Thus, we may assume that x is in an internal
hole of cc([u ≥ λ]). Since cc([u ≥ u(x), x) is not included in this hole, it must intersect cc([u ≥ λ]), and, hence,
it contains it (strictly). This implies that λ > u(x).

For ε > 0, let us consider the shape Sε = Sat(cc([u < u(x)+ε], x)) and assume that Sε 6= Ω. Let (λ, S) ∈ LSx

be such that (λ, S) 4 (u(x) + ε, Sε).
Suppose that S is an upper shape, S = cc([u ≥ λ]) 6= Ω. If λ ≥ u(x) + ε, then x 6∈ cc([u ≥ λ]) and there is

an internal hole H of this set containing x. This implies that cc([u < u(x) + ε], x) is also contained in H , and
since, by assumption, S 6= Ω, we have that Sat(H) = H . It follows that Sε ⊆ H  S, which is contrary to the
assumption that S ⊆ Sε. Thus, λ < u(x) + ε.

If S = Sat(cc([u < λ])) is a lower shape, and S = Sε, we must have that λ ≤ u(x) + ε. In case S  Sε, we
have either x ∈ cc([u < λ]), in which case λ < u(x) + ε, or x is in an internal hole H of cc([u < λ]). In the
second case, since cc([u < u(x) + ε], x) 6⊆ H , we get cc([u < u(x) + ε], x) ∩ cc([u < λ]) 6= ∅, which, in turn,
implies that cc([u < λ] ⊆ cc([u < u(x) + ε], x) and, thus, λ ≤ u(x) + ε. The above results allow to conclude in
the two possible configurations: S0 = Ω or S0  Ω.

If S0 = Ω, we have that S∗  Ω, implying (see above) that λ∗ > u(x) and we easily derive

(λ∗, Sλ∗−u(x)) 4 (λ∗, S∗).

Let ε > 0, and let ε′ = min(ε, λ∗−u(x)). Since Sε′  Ω, if (λ, S) 4 (u(x)+ ε′, Sε′), the above results prove that
λ ≤ u(x) + ε′, and, since S  Ω, we have that λ > u(x). Therefore |λ− u(x)| ≤ ε′ ≤ ε, proving equation (3).

Now, we assume that S0  Ω. If, for some ε > 0, we have that Sε  Ω, we conclude in the same manner
as in the previous case. Otherwise, let (λ, S) 4 (u(x), S0). Observe that λ ≥ u(x). If S = Sat(cc([u < λ])) is
of lower type, necessarily λ = u(x) and x is in a hole H of cc([u < λ]). Therefore cc([u ≥ u(x)], x) ⊆ H  S,
which contradicts (λ, S) 4 (u(x), S0). Then S = Sat(C) is of upper type. If λ > u(x), then x is in a hole H
of C, and, thanks to Lemma 4.2, there is some lower shape S′ at level λ contained in H and containing x. This
easily implies that Sλ−u(x) ⊆ S′  Ω, contradicting our previous assumption. In conclusion, (λ, S) 4 (u(x), S0)
implies that λ = u(x) (and S = S0), proving equation (3), the infimum being actually reached at (u(x), S0).
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4.2. Indirect reconstruction

The formulae for reconstruction we have discussed above are complex in the sense that they involve a limit.
We provide here a simpler, algebraic reconstruction, in two steps: first, the level sets are deduced from the tree,
then the reconstruction of the image is straightforward, given by

u(x) = sup{λ, x ∈ [u ≥ λ]} = inf{λ, x ∈ [u < λ]}·

The reconstruction will derive from the following lemma:

Lemma 4.4. Let x ∈ Ω and λ ∈ R be such that LSλ,x 6= ∅. Then

⋂
A∈LSλ,x

A ∈ LSλ,x .

Proof. If there exists G ∈ Gλ,x such that G ⊆ A for all A ∈ Fλ,x, then G =
⋂

A∈LSλ,x
A. Indeed, obviously, we

have that G ⊆ ⋂
A∈Fλ,x

A. Thus, it will be sufficient to prove that G ⊆ ⋂
A∈Gλ,x

A. For that, assume, on the
contrary, that there is some G1 ∈ Gλ,x such that G is not contained in G1. Since both shapes intersect (at x),
we must have that G1  G, hence x cannot be in the connected component of [u < λ] defining G. Then, by
Lemma 4.2, we find F ∈ Fλ,x such that F  G, a contradiction to our assumption. Thus, we may assume that

∀G ∈ Gλ,x, ∃F ∈ Fλ,x, F ⊆ G. (∗)

Note that (∗) implies that ⋂
A∈LSλ,x

A =
⋂

F∈Fλ,x

F.

Since elements of Fλ,x are closed, by Lindelöf’s theorem, their intersection can be written as the intersection of
a sequence of these sets, and, since they are continua, their common part K is a continuum, thanks to Zoretti’s
theorem. Then Ω \K can be written as

Ω \K =
⋃

F∈Fλ,x

(
Ω \ F

)
.

For such an F , Ω \ F is connected. Hence Ω \ K is a union of connected sets meeting a connected set Ω \ F0

(F0 being an arbitrary element of Fλ,x), thus, it is connected. Due to unicoherency, ∂K is thus connected.

Next, we observe that ∂K ⊆ [u ≥ λ]. Indeed, let y ∈ ∂K and U be a connected neighborhood of y. There
is some z ∈ U \K, and, therefore, there is an F ∈ Fλ,x such that z 6∈ F . Moreover U ∩ F 6= ∅ and, since U is
connected, U ∩ ∂F 6= ∅. Hence U ∩ [u ≥ λ] 6= ∅. Since this is valid for any connected neighborhood of y, we get

y ∈ [u ≥ λ] = [u ≥ λ].

Therefore ∂K is contained in a connected component of [u ≥ λ] and, since K = Sat(K) = Sat(∂K), we get

K ⊆ Sat(cc([u ≥ λ])).

The opposite inclusion is then evident.
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Theorem 4.5. We have the following representation formulas

[u ≥ λ] ∩ {x, Sx 6= Ω} =


x ∈ Ω,

⋂
A∈LSλ,x

A ∈ Fλ,x


 =

⋃
x,Sx 6=Ω

⋃
F∈Fλ,x


F \

⋃
G∈Gλ,x,G⊆F

G


 , and

[u < λ] ∩ {x, Sx 6= Ω} =


x ∈ Ω,

⋂
A∈LSλ,x

A ∈ Gλ,x


 =

⋃
x,Sx 6=Ω

⋃
G∈Gλ,x


G \

⋃
F∈Fλ,x,F⊆G

F


 ·

Proof. Let x be such that u(x) ≥ λ, and F = Sat(cc([u ≥ λ], x)). We prove that F =
⋂

A∈LSλ,x
A. Indeed,

if G = Sat(cc([u < λ])) ∈ Gλ,x, then x is in an internal hole of cc([u < λ]), and so it is cc([u ≥ λ], x). Thus
F ⊆ G. Similarly, if F ′ ∈ Fλ,x is such that F ′ ( F , thanks to Lemma 4.2, there is some G ∈ Gλ,x such that
F ′ ( G ( F , which was shown to be impossible.

Conversely, let x ∈ Ω be such that F =
⋂

A∈LSλ,x
A ∈ Fλ,x. We write F = Sat(cc([u ≥ λ])). If x were

in an internal hole of cc([u ≥ λ]), thanks to Lemma 4.2, there would be some G ∈ Gλ,x such that G ( F ,
contradicting the minimality of F . Thus x ∈ cc([u ≥ λ]).

We have proved the first equality in the first representation formula. The other equalities are direct conse-
quences of this one.

5. Finiteness of the tree for images with grains of minimal positive size

Definition 5.1. We say that an image u has grains of minimal positive size if there exists some δ > 0 such
that for any connected component K of an upper or lower level set of u, |K| ≥ δ.

After application of an area opening and an area closing filters of area δ (see [51,52]), any image verifies this
property (see [6]). Provided such an image, we will show that the tree, whereas it can have an infinite number
of nodes, actually has a finite structure. In this whole section, we will suppose that u is an image of
minimal positive size δ.

Lemma 5.2. For each λ ∈ R there is a finite number of connected components of [u ≥ λ] and each component
has a finite number of holes.

Proof. Let λ ∈ R. Since each connected component of [u ≥ λ] has area ≥ δ, there must be a finite number
of them. Let Y be a component of [u ≥ λ] and let H be a hole of Y . Since H is open, H cannot be covered
by components of [u ≥ λ]. Hence H ∩ [u < λ] 6= ∅. We conclude that each hole of Y contains a component
of [u < λ]. Hence there may be only a finite number of them.

Lemma 5.3. (i) Let T be any shape. Then |T | ≥ δ.
(ii) Let S ⊆ T be two shapes of different type. Then |T \ S| ≥ δ.

Proof. (i) Since any shape T contains a connected component of an upper or lower level set, then |T | ≥ δ.
(ii) Suppose that S = Sat(X), T = Sat(Y ), where X and Y are connected components of level sets of u. If
X ∩ Y = ∅, then Y ⊆ T \ S, thus, |T \ S| ≥ |Y | ≥ δ. Therefore, we may assume that X ∩ Y 6= ∅.

Suppose first that X = cc([u ≥ λ]) and Y = cc([u < µ]), λ, µ ∈ R. As X ∩ Y 6= ∅, λ < µ. Assume that
Y \ S ⊆ [u ≥ λ]. In this case, we could write

Y = (Y ∩ S) ∪ (Y ∩ ([u ≥ λ] \ S)) .

Now, S being closed, Y ∩ S is a closed set of Y , and [u ≥ λ] \ S, being a finite union of connected components
of [u ≥ λ], is also closed. Hence, we have a partition of the set Y into two closed subsets, contradicting its
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connectedness. Therefore, Y ∩ ([u < λ] \S) 6= ∅ In particular, Y \S contains a connected component of [u < λ],
hence, we have that

|T \ S| ≥ |Y \ S| ≥ δ. (∗)

In the same way, if X = cc([u < λ]) and Y = cc([u ≥ µ]), we have that µ < λ, and, since Y is connected and
meets both S and Ω \ S, we also have that Y ∩ ∂S 6= ∅. Since ∂S ⊆ ∂X ⊆ [u ≥ λ] and S ∩ ∂S = ∅, we have
that (Y \ S) ∩ [u ≥ λ] 6= ∅, and, therefore, Y \ S contains a connected component of [u ≥ λ], yielding (∗).

Proposition 5.4. There is a finite number of leaves in the tree of shapes of u.

Proof. Since any leaf T is an intersection of a nested family of shapes, which, by Lemma 5.3(ii), are all of
measure ≥ δ, then |T | ≥ δ. Since, by Proposition 3.14, any two different leaves are disjoint, we conclude that
there must be a finite number of them.

Theorem 5.5. There is a finite number of maximal monotone sections in the tree of shapes of u.

Proof. Suppose that there is an infinite number of maximal monotone sections [S∗n, T ∗n ] in the tree of shapes
of u. Without loss of generality, we may assume that all are of the same type. Then [S∗i , T ∗i ] ∩ [S∗j , T ∗j ] = ∅, for
all i 6= j. Let us consider Si shapes such that Si ∈ [S∗i , T ∗i ] for all i ≥ 1. If there is an infinite set of indices
I ⊆ N such that Si ∩ Sj = ∅ for all i, j ∈ I, then by Lemma 5.3(i), Ω would be of infinite measure. Thus there
is only a finite number of indices i ∈ N such that the Si are two by two disjoint. Thus there is i1 such that Si1

contains an infinity of Si. Without loss of generality, we may assume that i1 = 1 and all Si ⊆ S1 for i ≥ 2. By
the same reasons there are at most a finite number of indices i ≥ 2 such that Si are two by two disjoint. Thus,
there is an index i2, which we may assume to be i2 = 2, such that S2 ⊆ S1 and S2 contains an infinity of Si. In
this way, we construct a family of sets Sn such that Sn+1 ⊆ Sn for all n ≥ 1.

Let us consider the interval [Sn+1, Sn]. We claim that |Sn \ Sn+1| ≥ δ. If there is a shape S such that
S ⊆ Sn and S ∩ Sn+1 = ∅, then S ⊆ Sn \ Sn+1, and, by Lemma 5.3(i), |Sn \ Sn+1| ≥ δ. Thus, we may assume
that there is no bifurcation in [Sn+1, Sn]. Suppose that all shapes in [Sn+1, Sn] are of the same type. Thus,
[Sn+1, Sn] is a monotone section with all shapes of the same type. In this case, by Proposition 3.12, [Sn+1, Sn]
would be a monotone section intersecting both [S∗n+1, T

∗
n+1] and [S∗n, T ∗n ], and there would exist a maximal

monotone section containing both of them. This contradiction proves that there is a shape Qn ∈ [Sn+1, Sn]
of different type as the ones of the maximal monotone sections that we are considering. By Lemma 5.3(ii),
we have that |Sn \ Qn| ≥ δ. Thus, also |Sn \ Sn+1| ≥ δ. Thus, |Sn \ Sn+1| ≥ δ for all n ≥ 1. Now, since
(Sn−1 \ Sn) ∩ (Sn \ Sn+1) = ∅ for all n ≥ 1, this implies that Ω must have infinite measure. This contradiction
implies the statement of the theorem.

Corollary 5.6. There is a finite number of maximal branches in the tree of shapes of u.

Proof. Each maximal branch containing a maximal monotone section, their number cannot exceed the number
of the maximal monotone sections, thus, it is finite.

6. Application to the discrete case

We switch now to the case of digital images, as they are used in computer science. Specifically, a digital
image is an array of pixel values, ui,j ∈ R, i = 1, . . . , W , j = 1, . . . , H. To apply a theory valid for images
to digital images is scarcely straightforward, and supposes some approximation. For example, in the digital
case we have two notions of connectedness, 4-connectedness and 8-connectedness. In our case, we are able to
interpret the discrete data in a continuous framework, so that previous results directly apply to the digital case.
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Figure 2. The usage of M -connectedness, or equivalently, the usage of 4-connectedness for
upper and lower level sets contradicts Theorem 3.3. Left: the image uc. Center: a connected
component of the upper level set [uc ≥ 1] with no internal hole. Right: idem for the connected
component of the lower level set [uc < 1 + ε]. These two shapes intersect and are not nested,
even in the density sense (the measure of their symmetric difference is positive).

6.1. Discrete tree

For a set of real coordinates (x, y) ∈ [
1
2 , W + 1

2

]× [
1
2 , H + 1

2

]
, we define ♦(x, y) as the set of pairs of integral

coordinates closest to (x, y):

♦(x, y) = {(i, j) : ∀(i′, j′), ‖(x− i, y − j)‖ ≤ ‖(x− i′, y − j′)‖} ·

We can see that ♦(x, y) has cardinal 1, 2 or 4. We define the image uc in the continuous framework associated
to the digital image ud by

∀p ∈ Ω =
[
1
2
, W +

1
2

]
×

[
1
2
, H +

1
2

]
, uc(p) = max

(i,j)∈♦p
ui,j . (5)

The involved maximum makes uc an upper semicontinuous function and the image is constant at least on each
unit open square centered at integral coordinates, which implies that uc has a minimal grain of size 1. The
above framework is therefore valid for uc, and the tree of shapes of uc has a finite structure.

The consequence of (5) on discrete connectedness is the following: we must consider 8-connectedness for
upper level sets of uc, and 4-connectedness for lower level sets. In particular, we cannot adopt 4-connectedness
for both, which is what M -connectedness, as defined in [3, 5], assumes; a counterexample is given in Figure 2.

6.2. Adaptive quantization

The tree of shapes can be used to give schematic versions of an image. This can be done in two steps:
first, remove small shapes of the tree, then select among the remaining maximal monotone sections only the
most significant shapes. The filtered image is obtained by reconstruction of the resulting tree. The first step
corresponds to the grain filter, as studied in the BV framework in [3], and is a generalization of the area opening
and area closing, as introduced in [51, 52]. The grain filter removes shapes of area smaller than a parameter
a, whereas area opening (resp. closing) removes connected components of upper (resp. lower) level sets of
area ≤ a. The grain filter has the advantage over these filters to act simultaneously on upper and lower level
sets. Moreover, it is selfdual on continuous functions as it was proved in [6] or in [26] for smooth functions of
class CN , N being the dimension of the space. Thus this filter permits to simplify the topographic map of the
image while keeping the geometric information of the image, given in terms of its “level lines” or its shapes, and
do it in a symmetric way with respect to the upper and lower level sets, at least when the image is a continuous
function. This prefiltering step is crucial in many image processing tasks, like morphological compression or
registration, to mention two of them. The tree of shapes is well adapted to compute the action of the grain
filter on an image in a simple and efficient way.
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Figure 3. The removal of the shape S should be prevented: the reconstructed image’s tree
structure is not the modified tree.

The second step works on maximal monotone sections: in each such section, we remove all shapes except
the most significant one. The meaningfulness of a shape is chosen as the ratio A/L2, where L is the length of
the boundary and A the area. Thus the most round shapes remain. However, any other criterion that seems
appropriate can be used, as for example the minimum gradient norm along the boundary. The remaining shape
gets the mean gray level of the section, so as not to change the local contrast.

The idea behind this is twofold: small shapes represent only details of the image, or are mainly due to
noise; the maximal monotone sections represent visual “objects” present multiple times in the image due to
the gradation at their border, which comes from the smoothing during the acquisition process. Moreover, the
removal of small shapes can eliminate some bifurcations, yielding longer maximal monotone sections.

However, we must be careful because some shapes cannot be removed without affecting the reconstruction.
It can happen that the reconstructed image’s tree of shapes is not the one on which the reconstruction was
based. This is illustrated in Figure 3. To avoid this unfortunate result, it is sufficient to prevent the removal of
the minimal shape of each maximal monotone section if one of its children is of a different type.

Figure 4 shows some results obtained by this adaptive quantization.

6.3. Applications

We review in this section some applications of the tree of shapes in digital image processing. In these
applications the authors use the fast algorithm extracting the tree of shapes as presented in [35].

Desolneux et al. [12] use the tree of shapes to extract the level lines of the image with high contrast, in other
words, the edges. Level lines having a minimal contrast above some threshold, which is based on statistical
considerations, are considered meaningful. However, frequently, it happens that when a meaningful level line is
detected, also are many other level lines inside the same monotone section. To get rid of this redundancy, they
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Figure 4. Effect of the adaptive quantization on an image of size 500 × 500. From left to
right, top to bottom: a = 1 (8, 834 sections), a = 20 (1, 938), a = 400 (155) and a = 8, 000 (18).

keep only the most meaningful level lines in a monotone section. This simplification of the tree is very close to
the adaptive quantization presented above, with the addition of a parameter measuring the meaningfulness.

Gousseau [21] uses the shapes to reproduce textures. Many shapes inside a texture are extracted and put in
random locations in a blank image to synthesize the texture.

Dibos and Koepfler [13, 14] use the tree of shapes to construct a denoising filter which does not coincide
with the grain filter [6]. Indeed, to decrease the total variation of an image by alteration of its level lines there



THE TREE OF SHAPES OF AN IMAGE 17

are essentially two possibilities: either make them shorter, usually by evolution of a PDE, or to decrease their
contrast. The latter solution is adopted in [13].

Shapes can also be used for registration purposes [15, 34]: some invariant characteristics of shapes are ex-
tracted in different images and compared to get correspondences. Voting procedures can then be used to recover
global displacement parameters. A more complex but more accurate method to extract the correspondences is
proposed in [24], where pieces of level lines are compared.
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