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A STABILITY RESULT IN THE LOCALIZATION OF CAVITIES
IN A THERMIC CONDUCTING MEDIUM

B. CaNuTo!, EpI ROSSET? AND S. VESSELLA®

Abstract. We prove a logarithmic stability estimate for a parabolic inverse problem concerning the
localization of unknown cavities in a thermic conducting medium €2 in R™, n > 2, from a single pair of
boundary measurements of temperature and thermal flux.
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1. INTRODUCTION AND THE MAIN RESULT

In the present paper we are concerned with the study of a problem in thermal imaging. This is a technique
used to determine some physical and geometrical proprieties of a thermic conducting medium wvia boundary
measurements of temperature and thermal flux. More precisely we denote by € a thermic conducting medium,
i.e. a sufficiently smooth, bounded domain in R™, n > 2, and by D a cavity in Q (i.e. D is a domain compactly
contained in ), of which neither the form nor the position is known. On the other hand we can measure
the temperature f and the thermal fluz g on the boundary of the medium 0€2. The goal is then to identify
the cavity D wvia the boundary data f, g. This problem can occur in nondestructive tests of materials, for
example in detecting the corrosion parts of an aircraft which are inaccessible to direct inspections (see Bryan
and Caudill [5-7], and their references).

We denote by u(t, z) the temperature at the time ¢ and at the point z € Q\D, ug the initial temperature in
O\D, f the temperature on (0,7) x 9, and k() the anisotropic thermal diffusion coefficient, that is k is an
n X n symmetric matrix-valued function in Q satisfying the following conditions:

(i) there exists a constant A\ > 1, such that for all x € Q, and for all ¢ € R™,

ATHEP? < E(z)E-€ < NEP (ellipticity), (1.1)
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(ii) there exists a constant A > 0, such that for all z, y € Q,

|k(x) — k(y)| < A% (Lipschitz continuity), (1.2)
0

where Ry is a positive constant related to the size of 0 (see Th. 1.1 and Sect. 2 below for a precise
definition).

For Q. D, k, ug, f assigned, suppose that u solves the following parabolic problem, which we call the direct
problem:

ug — div(k(z)Vu) = 0 in (0,T7) x Q\D,
u(0) = uo in Q\D,
u=0 on (0,T) x 0D,
u(t,o) = f(t,0) on (0,T) x OfN.

(1.3)

It is well-known that, under reasonable assumptions on the data, problem (1.3) has a unique solution, and that
the thermal flux

k(o)Vu(t,o) -n(o)

is well-defined for (¢,0) € (0,T) x 09Q2. (Here and in the sequel n(o) denotes the exterior unit normal at o € 0€2.)
In the present paper we are interested in the following two problems:

(a) uniqueness result: for any uo, f assigned in (1.3), does the thermal flux kVu - njg 1y on (0,7) x T' of
the corresponding solution u determine uniquely the domain D in Q7

(b) stability result: for any uo and f assigned in (1.3), does D depend continuously on the thermal flux
kVu - n‘(07T)X1—*?

Here and in the sequel I' denotes a relatively open piece of 92.

We begin by observing that, following a counterexample of Bryan and Caudill [6], uniqueness result (a)
can fail without additional hypotheses on the data ug, f. In fact let D1, Dy be the following two rectangles
in R?: D; = (0,7) x (0,27), Dy := (0,7) x (0,7), and let  be a bounded domain in R? containing D;.
For wu(t,z1,x2) := e~ 2t sinx; sinxy, let us define the functions wui, us as follows: wu; := Uy o, 1)<\ Dy U2 =
Uj(0,7)x 2\ D3 It is clear that uy, ug are solutions of (1.3), respectively when D := D;, i = 1,2, k(x) := Iy (I3 is
the 2 x 2 identity matrix). Moreover & u; = Zus on (0,7T) x 9Q. So in this case uniqueness fails.

On the other hand if we assume that in (1.3) the initial temperature ug is constant (but a priori unknown),
then it is not difficult to prove uniqueness result (a) for any datum f € C*([0,T], Hz(d9)), f # 0. In fact
suppose that there exist two domains Dy, Do (here and in the sequel Q\D; is supposed connected) and two
constants c¢;, ¢z such that the corresponding solutions u; € C((0,T), HY(Q\D;)) NC*([0, T], L2(Q\D;)) of (1.3),
when D := D;, and the initial temperature u;o = ¢;, have the same thermal flux on (0,7) x I, that is

kVuyi(t) -np = kVuy(t) -nr in H*%(I‘) for all t € (0,7).
We denote by G the connected component of Q\(D; U Ds) such that 9Q C dG. Let us define

u:=u; —uz in (0,7) x G.
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Then u solves
up — div(k(z)Vu) = 01in (0,7T) x G,
u=0on (0,T) x 09,
kEVu-n=0on (0,7) xT.
By the unique continuation principle (see Lin [15]) it follows that v = 0 in [0,7T) x G, that is
up =ug in[0,7T) x G. (1.4)
This in particular implies that ¢; = co. Next let us denote by
v; i==uy  in [0,T) x Q\D;.
Let assume, for instance, that Da\Dy # (). We have that (2\D1)\G # 0, and v; solves
v — div(k(z)Vour) = 0 in (0,T) x Q\Dx,
v1(0) = 0 in Q\ Dy,
v1 =0 on (0,T) x 0Dy,
vy = fron (0,T) x 0Q.

(1.5)

Let to € (0,T] be fixed. Multiplying the equation in (1.5) by v1, and integrating by parts over (0, tg) x (2\D1)\G,
we obtain

% / v (150)|2 dr = f/ / k(z)Voi(t) - Vo (t)dadt +/ / kVv1(t) - nuy (t)dodt

(O\D1)\G 0 (Q\D1)\G 0 9((Q\D1)\G)
to

< / / Vi (£) - s (£)dordt. (1.6)

0 a((N\D1)\G)

Since v; = 0 on (0,7) x 0D;, from (1.4) and (1.6) we derive

vy (to)|>dz = 0 for all to € [0,T].
(2\D1)\G

Hence the unique continuation principle implies v1 = 0 in [0,7) x Q\ Dy, that is u; = ¢ in [0,T) x Q\ Dy, where
¢:=c1 = co. Again, since u; =0 on (0,7) x 9D, we derive that ¢ = 0, that is u; =0 in [0,7) x Q\D;. This
implies that f =0 on (0,7) x 91, which yields a contradiction. The uniqueness result (a) is then proved.

Concerning the stability result (b), we recall that Vessella [18] proved a continuous dependence of logarithmic
type of D from %umo,tl)xp (here the interval (to,t1) C [0,7T]), in the case where in (1.3) n =3, k = I3 (I3 is
the 3 x 3 identity matrix), and the temperature f on (0,7") x 92 is monotone with respect to the time variable ¢.
In [8] Canuto et al. have considered the analogous of problem (1.3), but for Neumann boundary conditions
(that is the Dirichlet boundary conditions u = 0 on (0,7) x 0D, u = f on (0,T) x 9 appearing in (1.3) are
replaced by kVu-n=0on (0,7) x 9D, kVu-n=0on (0,T) x D, kVu-n = g on (0,T) x 0N respectively).
They proved a continuous dependence of logarithmic type of D from u, r)xr-

The corresponding problem for the elliptic case has been studied too, in a previous paper by Alessandrini
et al. [4] who proved a logarithmic stability estimate. Let us point out that, to fix ideas, we have considered in
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the present paper the problem of determination of cavities. More generally, we can prove logarithmic stability
estimates also when unknown portions of 92 are to be determined (see [4, 8] for analogous results). Finally we
stress that, in the elliptic case, counterexamples by Alessandrini and Rondi [3] show that logarithmic stability
is best possible. This suggests that also in the parabolic case stability estimates better than logarithmic cannot
be expected.

We give now a list of our a priori assumptions on the domains 2, D, and on the boundary datum f in (1.3),
under which we shall prove Theorem 1.1.

We assume that ) is a bounded domain in R™ of class

CY!  with constants Ro, E, (1.7)
and that D is a bounded domain in R"™ of class
C'®, 0<a <1, with constants Ry, E, (1.8)

such that D C Q, dist(0D,0Q) > Ro, and Q\D is connected. For a precise definition of (1.7, 1.8) see
Definition 2.1 below. Given M > 0, we assume:

Q| < MR?. (1.9)

Here and in the sequel || denotes the Lebesgue measure of 2. We observe that (1.7) and (1.8) imply a lower
bound on the diameter of 2 and D respectively. Moreover, by combining (1.7) with (1.9), an upper bound on
the diameter of 2 can also be obtained.

We shall assume the following on the Dirichlet datum f:

e HYN(0,1), H'*(09)), f#0,
and, for a given constant £ > 0,

s, o)

1l 20,y xo0) —

where in order to simplify the notations, here and below || f|l; / ; o denotes the norm || f[| /40,7y, mr1/2(50))-
We now state the main result of the present paper.

Theorem 1.1. Let Q be a bounded and connected domain in R™ of class CY', with constants Ry, E, and
let T be a relatively open piece of OS). Let k(x) be a n x n symmetric matriz-valued function in Q satisfying
assumptions (1.1, 1.2). Let D;, i = {1,2}, be two domains of class C1*, 0 < a < 1, with constants Ry, E,
such that D; C Q, dist(0D;, Q) > Ry, and Q\D; is connected. Let f € H3/*((0,T), H'/?(0Q)) satisfy (1.10)
such that u; € H((0,T), H*(Q\D;)) is solution of (1.3) when D := D;, and the initial temperature u;y = 0 in
O\D,. If

Ro [kVu1 -0 = kVuz 1l 2.1y ) < T2RG e, (1.11)

T3 pe-D/2 \ |~
In Le
W1 /4,12

2
where the constants C, k depend on E, a, A, A, %, M, F only.

then

, (1.12)
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We recall that the Hausdorff distance dz (D1, D2) between bounded sets Dy and Dy of R™ is the number

dn (D1, D2) = max{ sup dist(x, Ds), sup dist(Dl,a:)} .
z€D; z€D>

The proof of Theorem 1.1 has the same structure of that in [4] (Ths. 2.1, 2.2) and in [8] (Th. 4.1). As a first step
we prove a Inln-type estimate of the Hausdorff distance between the domains 1, s (where 2, := Q\D;), by
using as main tools the so-called three spheres and three cylinders inequality for solutions of parabolic equations
given in Section 4 (see Ths. 4.1, 4.3, and Cor. 4.2). As a second step, employing in a more refined way the above
mentioned inequalities and a geometric lemma (Prop. 5.5), which has been proved in [4], we obtain a logarithmic
stability estimate of the Hausdorff distance between 21, 2, which implies, by a simple reasoning, the desired
result, i.e. estimate (1.12). The main difference between the stability result established in [8] (Th. 4.1), and
our result, i.e. Theorem 1.1, lies in the hypothesis of regularity of the unknown (a part of the boundary I
in [8], and a cavity D in our result), which is of class C*! in [8], and is of class C1'®, 0 < a < 1, in our result.
This difference on the regularity is a consequence of the strong unique continuation principle at the boundary
for elliptic operators established by Adolfsson and Escauriaza [1], which need, for the Neumann case, that the
boundary of the domain is of class C*!, while, for the Dirichlet case, it is sufficient that the boundary is of class
Che 0<a<l.

The remainder of the paper is organized as follows: in Section 2 we give some notations and definitions;
in Section 3 we introduce the so-called technique of elliptic continuation for solutions of parabolic equations
which allow us to define, starting from a solution of a parabolic problem, a solution for a related corresponding
elliptic problem. In Section 3 we establish also a Cauchy estimate for the solution of such an elliptic problem.
This estimate will be crucial in Section 4 to prove a three cylinders inequality at the boundary for a parabolic
equation. In Section 5 we prove some auxiliary propositions which we shall use in Section 6 to prove Theorem 1.1.
Finally, the appendix (Sect. 7) contains the proof of Lemma 3.3 and some interpolation and traces inequalities,
which we use throughout the paper.

2. NOTATIONS AND DEFINITIONS

We shall fix the space dimension n > 2 throughout the paper. Therefore we shall omit the dependence of
the various quantities on n.

We shall use the letter ¢ to denote absolute constants, and the letters C, C' to denote constants depending
on some a priori data. The value of the constants may change from line to line, but we have specified their
dependence everywhere they appear.

We shall identify R? and C.

As usual we shall denote by © = (21, ,2,) a point in R™ and by 2’ = (21, -+ ,zp—1) the first (n — 1)-
components of z. X = (y,x) is a point in R"*! for x € R", whereas X’ = (y,2’) are the first n-components
of X.

By B.(a) (A,(a), Al (a), D,(a) respectively) we shall denote the open ball in R**! (R, R"~1, C respectively)
centered at a, of radius r. Sometimes we shall write for brevity B,, A,, Al D, instead of B,(0), A,(0), A’(0),
D,(0), respectively. We shall denote by Bf = {X € B, s.t. y >0}, Af = {z € A, s.t. z, > 0}.

When dealing with n + 1 variables (y,z), we shall denote V = V,, div = div,, D? = D2. Sometimes we

shall write 8510 instead of ng?j, wy instead of é,’d—l; and wy, instead of ?;TZ,”. Similarly, for brevity, we shall write,

for example, [|w(y)| 12 (q) instead of [[w(y, )|l 12(qy, and [ lw(y)|® dz instead of [ |w(y, z)|* da.
Q Q
When representing locally a boundary as a graph, it will be convenient to use the following notation:

Definition 2.1. Let € be a bounded open set in R™. We shall say that a portion I' of 92 is of Lipshitz class
(resp. of class OV, 0 < a < 1) with constants Ry, E > 0, if, for any P € T, there exists a rigid transformation
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of coordinates under which we have P = 0 and
QN AR, ={z € A, st x, > @(a')},
where ¢ is a C%! function (resp. ¢ is a C1® function) on Ay C R~ satisfying
(0) =0 (and resp. (0) = [Vip(0)] = 0)
and
H‘/’HC‘“(A’RO) < ER; (resp. H‘PHCL@(A’RO) < ERy). O

Remark 2.2. We have chosen to normalize all norms in such a way that their terms are dimensionally homo-
geneous, and coincide with the standard definition when Ry = 1 and T' = 1. For instance, the norm appearing
above is meant as follows

lelleraan,) = Ielle@ar, ) + RollVell o a, )+Rl+a [Veélanr

Ro

where

)

[Vélaa,, = suw Ve(z) = Vo)l

= y|*
m,yEAIRO x y
Y

and || is the Euclidean norm. Similarly we shall set

[ullcorqo,r)x) = llullLe(o,m)x2) + Ro [uly 0.1)x0
where
(1] — sup lu(t, ) — u(s,y)|
BODXE T () peorixa [(t2) = (s,9)]
(t.2)#(s,u)
T
2 2
Il oy = [ [ (Gl + 72l + RVl dad,
0O
and so on for boundary and trace norms such as ||| 2o 7)xq): | l51/40.7),21/2(50)) -

3. ELLIPTIC CONTINUATION FOR SOLUTIONS OF PARABOLIC EQUATIONS

In this section we introduce the so-called technique of elliptic continuation for solutions of parabolic equations
(see Landis and Oleinik [14] or Lin [15]), which can be traced back to the pioneering work by Ito and Yamabe [12],
who introduced this technique in 1959 to prove unique continuation properties for solutions of

Ou —div(k(z)Vu) =0 in (0,7) x Q. (3.1)

Roughly speaking this technique consists in the following idea: fixing ¢ty € (0,T"), a solution of the parabolic
equation (3.1) can be continued to a function w(to;y,x) (for values of y in an appropriate interval) which
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satisfies an elliptic equation in y, x (see Prop. 3.1 below). In this way many properties of the solutions of elliptic
equations can be transferred to solutions of parabolic equations.

Here and below we assume that ' is a bounded domain in R™, n > 2, of class C%®, 0 < o < 1, with constant
Ry, E, 29 € 0, R € (0,Ry/2], and tg € (0,T). Moreover we suppose that k is a n x n symmetric matrix-valued
function in ) satisfying assumptions (1.1, 1.2) (with Q replaced by Q'), and u € H'((0,T), H* (' N Azr(70)))
is a nonidentically zero solution of

{ut —div(k(z)Vu) = 0 in (0,T) x (' N Agr(wo)), (3.2)

u=0on (0,T) x () N Agr(xo)).
The main result in this section is the following:

Proposition 3.1. Let A := min {\/55, tO‘/aR}, where § := %, aR := WlRQ, and cp is the Poincaré constant.
There exists a function w € C¥((—A, A), H'(Q' N Ag/a(x0))) solution of the following problem

Wyy + div(k(z)Vw) =0 in (A, A) x (N Agj2(z0)),
’LU(O) = u(to) m N AR/Q(IO), (33)
wy(O) =0 mn Q/QAR/Q(IL'()),
w=0 on (—A,A) x ((0Y) N Agrja(x0)).
Moreover, for
3A
< — 4
"= 32emn (34)
and
8 ~
p = g\/iew)\r, P = 2v2p,
the following inequality holds:
B 1-8
1
/ jw*dX < Cr / lu(to))” da - / lw|* dX : (3.5)
(RxQ)NB,-(Xo) "NA, 4(z0) (RxQ)NB7(Xo)

where Xo € R™ is the point (0, x0), the constant C > 1 depends on \ only, and (3 := ﬁ—i, B € (0,1) depending
on A only.

(We observe that the choice of r in (3.4) implies that p < A.) We recall that C¥(R, Z) denotes the space of
real analytic variable functions with values in a Banach space Z, and dX (resp. dz) is the (n 4 1)-dimensional
(resp. n-dimensional) volume Lebesgue measure.

We precede the proof of Proposition 3.1 by some preliminary lemmas.

Lemma 3.2. Under the assumptions of Proposition 3.1, let n € C?[0,+00) be a cut-off function satisfying:

, and |1 < .
0 fort € [T,+00) d T —1

n(® :{1 for t € [0, o] c
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There exists a unique solution u; € C((0,T), HL(Q' N Aar(z0)))NCH([0,T), L2(Q N Asr(z0))) of the problem:

ue — div(k(x)Vui) =0 in (0,400) x (' N Agr(zo)),
ul(O) =0 m Q n AQR(.Z‘()), (36)
up =g on (0,400) x (' N Agg(xo)),

where g :=n(t)u. Moreover, for allt > 0, we have

a1 (0 d (o < e mTTHCLH, (3.7)
where (t —T)4 = max(0, (t — 1)),
c T (erts 4 6 3.8
= —to
! T \" " TT-4)) (38)
and
i = OISHtaSXT Hu(t)HHl(Q/ﬁAQR(xo)) :

(7’ denotes the derivative of 7, and ap is as in Prop. 3.1.)

Proof of Lemma 3.2. The proof follows step by step, up to the obvious changes, from the proof of Lemma 3.1.2
in [8]. O

Let us still denote by u; the extension by 0 of u; to R x (' N Agg(xo)), and let uy(p, ) be the Fourier
transform of uq(t,2) with respect to the time variable ¢, that is

+oo
1

uy(p, ) = 7 /e*i“tul(t,x)dt. (3.9)

—0o0
The following result holds:

Lemma 3.3. Under the assumptions of Proposition 3.1, let ui(u,x) be as above. Then u; € C*(R, H(Y N
Aspr(x0))) solves

{i,uﬂf —div(k(z)Vu1) =0 in R x (@ NAr(xo)),
u; =0 on Rx ((89’) N AQR(:L'())).

Moreover

()l (@ o (o)) < €CLHET Iuld (T+ ) : (3.10)

AR/4

(Here the constants ¢, C7, H are as in Lem. 3.2, and § := RA is as in Prop. 3.1.)

8em

Proof of Lemma 3.3. See the appendix, Section 7. g
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Lemma 3.4. Under the assumptions of Proposition 3.1, let ¢ > 0, and let p € (0, R). For f € HY(QY'NAs,(z0)),
assume that w € C¥((—2¢,20), H1 (' N Ay, (z0)) solves
0 in (=20,20) x (N Agy(x0)),
w(0) =f in Q' NAy(zo),
( 0 in Q' NAy(zo),
0 (

wy(0) =
w = on  (—20,20) x ((0Y) N Agp(z0)).
Then, for

1 1\ /2 -1

p1 = (ﬂ'e)\ (? + 6_2) ) , (3.11)

p2 = min {pl,i}, (3.12)
4V

ps = %(p —VAp2), (3.13)

and for every y € (,%pl’ %pl), the following inequality holds:

B
[ ()l + 1Ve)R) do <€ (197 B s, o)

Q/ﬂAps (zo)

1-8
1 2 21-8
* (@”w'w(2z,24>x<9’m2p<zo>>> HIVIann, uwy ) 0 (319

where the constant C depends on X and £p~! only, and 3 is as in Proposition 3.1.

Proof of Lemma 3.4. We divide the proof into three steps.

Step 1: In this step we prove that the power series

+o00 , Zj
> 8{110(0)? (3.15)
j=0 )

converges in C1 (' N A, (z0)) N HZ (N As ,(x0)) for every complex number z such that |z| < pi. Let us
denote Qo := (—2¢,20) x (' NA2,(z0)), Q1 := (=, 0) x (¥ NA,(x0)). By a slight modification of the arguments

used to prove Lemma 3.3, we obtain

H@in%g(Ql) < (C’ng)ijH%g(Qo) for every j > 1, (3.16)
where
1 1
02 = 7T2A2 <? + 6_2) . (317)

Let us fix j > 1 and let us denote

Uy, z) = w(y,x) in  (—£,0)x (2 NA(x0)). (3.18)
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We have that U € C¥((—¢,£), H' (Y N A,(x0))) solves

92U +div(k(z)VU) =0 in (=€) x (' NA,(x0)), (3.19)
U=0 on (=£,0)x((8)NA,(x0)). '
By standard C1'® estimates (see Gilbarg and Trudinger [10]) we have
C
HUHCLQ((—ﬁ,ﬁ)X(Q/ﬂA%(zo)) < P2 U L2 ,0) % (2 0 (o)) * (3.20)

where the constant C' depends on E, o, A, A, Ro/p. From (3.16, 3.18, 3.20) we obtain, for every y € (fﬁ, ﬁ),
and for every j > 1,

. C i
||8éw(y)}|cly@(Q’ﬂA§(3:-0)) < pn2+1 357 ||w||L2(Q0) ) (3.21)

So (3.21) yields the convergence in C1:%(€' N A1, (x0)) of the power series (3.15) in the disk D, , where py is
given by (3.11).
For any ¢ € L*(' N A,(x0)), let

F(y) :== / w(y)pde.
Q/ﬁAp(Qfo)

By (3.16) and by the interpolation inequality (7.10) (see the Appendix) we obtain, for every j > 1,

, c . .
O < 2O + 120 w3 g 112 0 ooy (3.22)

1

for every y € (—¢,¢), where C' depends on A and ¢p~" only. Therefore, for every j > 1,

. c . .
/ |0gw(y)|*da < 720+ 120 w][32 ) (3.23)
Q/F‘IAP(QL'())
for every y € (—¢,¢). Let us fix j > 1 and y € (—¢,¢), and let us denote

gly) = 8§+2w(y) in Q' NA,(x), (3.24)
Uly) = 8§w(y) in Q' NA,(x). (3.25)

We have that U(y) € HY(' N A,(z0)) solves

{div(kVU(y)) =—g(y) in Q' NA(zo), (3.26)

Uly) =0 on (09)NA,(xo).

From Caccioppoli inequality we have

1
2 2 2 2
||VU(y)HL2(Q'r‘]A%p(IO)) <C <p Hg(y)”LQ(Q’mAp(g;O)) + F”U(y)”LQ(Q/ﬁAP(mO))> ) (3-27)
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where C' depends on A only. Now let T € ' N As (z0) and let 7 be such that
AL(T) C QN A%p(:vo).

Choosing as test functions V(y) = (n?Us, (y))z,, @ = 1, ..., n, where 7 is a cut off function, we obtain, by standard
H2 _ estimates [10], and by (3.27)

loc

1 A? 1
||D2 ( )||L2(A () — <cC (’I“_Q + R_8> <p2|g(y)”2L2(Q’ﬁAp(xo)) + F”U( )||L2(Q NnA (3:0))> (328>

where C' depends on A only. By (3.23-3.25, 3.27, 3.28) we have, for every j > 1,

, C ,
[ 1990 e < 550G + 379 ul . (3.29
Az (T)
: C (1 A
[ Dol < 5 (5 + 2 ) CAG+ 3wl (3:30

Ar (T)

[l

where the constant C' in (3.29, 3.30) depends on A and £p~! only. Finally (3.29, 3.30) yield the convergence in
HZ (9N As,(x0)) of the power series (3.15) in the disk D,,, where p; is given by (3.11).

Let us denote, for z € Q"N A1 (z0),

. J
_ Za;w(o,x)%, for € D,,,
v(€.x): = Wiig,2), for [¢] < pr.

Step 2: In this step we prove that for every & € (—pa, p2) (p2 as in (3.12)) we have

/ (e () + kV0(€) - To(€))dz < / V£ d, (3.31)

N4 &) (z0) 'NAp (z0)
where
p(&) = £ = VAlgl. (3.32)
First, let us observe that v is real and solves the following hyperbolic initial boundary value problem:

vee (§) — div(kVo(€)) = 0 in - (=p1,p1) x (' N A2 (20)),
) (

v(0,2) = f(z) In Q' NAe(x),
, : (3.33)
ve(0,2) =0 in  Q'NAs(z0),
v=0  on (—pupm)x ((O2) N A (z)).

We shall derive estimate (3.31) from an energy estimate for the problem (3.33). To this aim, let us denote

E(¢) = / (e ()2 + kVo(€) - Vo(€))da. (3.34)

N4y ¢) (@0)
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Since £ — v(£) is an analytic function from (—p1, p1) to CH¥(Y' N A1, (z0)) we have that c’)g’u(f) e oY n
O0A ¢y (o)) for every € € (—p2, p2) and for every j > 1, where ps is given by (3.12). For every & € (—p2, p2), by
the coarea formula we have the following equality

p(&)

/ an / ([oe ()2 + EV(E) - Vo(€))do, (3.35)
0

Q' NOA, (z0)

N | =

E(¢) =

where do is the (n — 1)-dimensional surface Lebesgue measure. The derivative of E(§) is equal to

p(€)
/ dn / (0e(€)vee (€) + KV (€) - Ve (€))do

E'(€)

Q' NOA, (x0)

/ (e () + kV0(€) - Vo(€))do

QlﬁaAp(g)(l'o)

[ e©ve@) + kVole) - Tee()is

QlﬁAp(g)(CEo)

VA
2

0
VA
2

(Jve (€)1 + EV(€) - Vo(€))do. (3.36)

Q/ﬁaAp(g)(Io)
Moreover, since v(§) € HZ (' N As ,(x0)), a simple calculation gives
EVo(§) - Ve (&) = —div(kVu(§))ve + div(kveVo(€))  in Q' N A, (zo). (3.37)

So by Green’s formula and the fact that v =0 on (—p1, p1) x ((0Y') N Ae (20)), from (3.36, 3.37) we obtain

pO= [ @5 [ (u©F +kvee) - Tee)o

QlﬂaAp(Q(xo) QlﬁaAp(g)(l'o)

where n denotes the outer unit normal to Q' N A ;) (w0). We have

EVo(€) - nwe(€)] < (BVo(€) - Vo(€))'/? (kn - n)'/2|ve (&)

VA
< S (e +kVo(E) - u(€).
Therefore E’'(£) < 0, hence the function F is decreasing, so that E(£) < F(0) and (3.31) follows.

Step 3: In this step we prove the assertion of Lemma 3.4. For every z € D, let us set

Glz) = / (W.(2)? + kYW (2) - VWV (2))da (3.38)

Q/ ﬁAp3 (3:'0)
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(where p3 is defined in (3.13)), and let

e = / kVf-Vfde. (3.39)

QIQA/A% (930)

Let p} € (0,p1). By (3.23) and (3.27) we obtain

C

G € 57—
(1= phpr')®

[wll72(g,),  for every z € Dy, (3.40)

where C' depends on X and ¢p~! only. On the other side (3.31) gives
|G(i€)| < €%, for every & € (—pa, p2). (3.41)

From (3.40, 3.41) and the analytic continuation estimate (see Isakov [11]) we obtain

w(0,y)
- [ (w“”2+kvw@”'vw@”dm§ET_Z%ZSE | iV
Q' NAL, (z0) Q’mAg (zo)
1-w(0,y)
C 2
Tl + [ wr v , (3.42)

leA% (CEQ)

where w(¢,y) is the harmonic measure of {i¢ s.t. £ € [—£2, £2]} with respect to {y+i € Cs.t. y? +&2 = (p})?}
and C depends on A and £p~! only. Now, let us choose pj = %pl, so that & < py; < p1. We have that
w(0,y) > B > 0 for every y € (—%pl, %pl), where 5 depends on A and A only. Therefore estimate (3.14) follows
by (3.42).
The proof of Lemma 3.4 is complete. g
We are now in a position to prove Proposition 3.1.

Proof of Proposition 3.1. Let us define

'
wnlya) = 5= [ e ) cosh(/ )

— 00

where u7 has been introduced in (3.9). By (3.10) it follows that w1 (y) € H (X' NAR/2(0)), for y € (—v/26, v/26).
Moreover w; € C((—v/26,v26), H' (' N Ag/2(x0))) and solves

Wiyy + div(k(z)Vwr) =0 in (—v26,v26) x (' N Agyz(z0)),
w1(0) = u1(to) in  Q'NAg(zo),
wly(O) =0 in Q/ n AR/Q(IQ),

wy; =0 on  (—v/28,v28) x ((09) N Agja(z0)).
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By the classical theory of semigroups (see for example Pazy [17]) we know that there exists a unique uy €
C(0,T), HY(Q' N Azr(z0))) NCH[0,T), L2(2' N Asr(xp))) solution of the problem
uge — div(k(x)Vug) = 0 in  (0,4+00) x (' NAsgr(x)),
u2(0) = w(0) in Q' NAgg(xo),
ug =0 on (0,400) x (Y N Agr(xo)).
We have that u(to) = w1 (to) + uz2(to).
Next let (,uj);ff, (%)jﬁ be respectively the (negatives) eigenvalues (in nonincreasing order) and the corre-
sponding eigenfunctions of the problem
div(ngoj) = pjp; in QN AQR(.Z‘()),
p; = 0 on 8(9’ n AQR(:L'())),
|<,0j|2 dz = 1.

Q’ﬁAgR(Qfo)

Since (wj)jjf is an Hilbertian basis in L2(Q' N Agr(x0)), we have

+o00
us(t) = Zaje‘”tgoj in L% N Agr(x0)), (3.43)
j=1
where a; := / u(0)p;dx. Let us define
QIQAQR(CEQ)
o0
walya) = Yooy oycosh (ly). (3.44)
j=1

Since, for all j > 1,
e |pjl < HSDJ'”?{l(Q’mAm(IO)) < e |uyl,
where the constants ¢y, co depend on A only,
i ~ Cjn as j — 4oo,
where the constant C' depends on A, A, || (see for example Courant and Hilbert [9]), and ar < |u;| for all

j € N, we have that for y € (—tg\/ag,to\/ar) the series in (3.44) converges to wa(y) in H(Q' N Azgr(z0)).
Therefore wy € C¥((—to\/ar, toy/ar), H (' N Asr(zp))), and solves

Wayy + div(k(x)Vws) = 0 in  (—tov/ar,toy/agr) x (' N Asgr(zg)),
’wg(O) = UQ(tQ) in QnN AQR(.Z‘()),
U)2y(0> =0 in QN AQR(QC()),

wo =0 on (—to\/@, to\/@) X ((8(2’) n AQR(IQ)).
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Defining w := wy + wz, we have that w € C¥((—A, A), H (' N Ag/2(x0))) (where A := min{\/ﬁé, to\/ar}),
and solves (3.3).
Let us choose

p=1~0= gx/ﬁew)\r

in estimate (3.14). This choice gives py = &7, p; as in (3.13). Moreover we have

(R x QYN B, (Xo) C <§p1, gpl) X (Y NA,(x0)), (3.45)
and
(—20,20) x (' N Agp(z0)) € (R x QYN B3(Xo). (3.46)

Integrating both the sides of inequality (3.14) on (0,7) for f := u(tp), we obtain, by the inclusions (3.45, 3.46),
Vul2dX < Cr (= w2
Vel dX < Cr | Sl @xe)ns,ox0)
(Rx Q)N B (Xo)
2 s 20
IVt e, uwoy) IV rna, oy B47)
where C only depends on \. By standard C1* elliptic estimates [10], we get

1 2
pite |Vw|a’(RXQ/)me/3(XO) < FHU}HL?((RXW)HBP(X@)’ for every a € (0, 1],

where C' depends on «, A\, A only, and by (7.11) we obtain

0 / Vu(to)[2dz < C / lu(to)|? da
QlﬂAp/4(CEo) ,ﬂAp/4(CEo)
1
2
x / [t A S oy |0 (348)
"NA, 4(z0)

where C depends on «, A, A only. By (7.12) and by Caccioppoli inequality we have

/ lu(to)|? dr < % / (jwf + plvwp) ax | < % / wdX,  (3.49)
Q'NA, 4(z0) (RXQ')HB%p(XO) (RxQ)NB,(Xo)
where C' depends on A only. By (3.48, 3.49) we have
ﬁ _1
¢ [ wawparse| [ el | CleBeanmy) o 650

QlﬂAp/4(I0) ,ﬂAp/4(I0)
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where C' depends on «, A\, A only. By (3.49, 3.50) we have

C
2 / [Vato) P < 0l g yom, (o) (3.51)
QlﬂAp/4(CEo)

where C' depends on «, A, A only. By (3.47, 3.50) and (3.51), we obtain

B

1 ) 1 1-6
|Vw|?dX < Cr = / |u(to)|” dx (T—3||w|%2((RXQ/)ﬂB§(XO))) , (3.52)
(RxQ)NB(Xo) Q'NA, (o)

where C depends on a, A, A only, and § = ﬁ%‘a By (7.13, 3.52, 3.49) we have

/ lw*dX <c|r / lu(to)|? da + 12 / |Vw|?dX

(RxQ')NB,(Xo) Q'NA,(z0) (RxQ')NB,(Xo)
B —
1 s
2 2
=or / futto) " de (F”ML?((Rm’mB,;(xo))) ’
/ﬁAp/4(CEQ)

where C depends on «, A, A only.
The proof of Proposition 3.1 is complete. g

4. A THREE CYLINDERS INEQUALITY AT THE BOUNDARY FOR A PARABOLIC EQUATION

The main result in the present section is the following three spheres inequality and three cylinders inequality
at the boundary:

Theorem 4.1 (Three spheres inequality and three cylinders inequality at the boundary). Let Q' be a bounded
domain in R™, of class C®, 0 < o < 1, with constants Ry, E, and let k be a n x n symmetric matriz-valued
function in ' satisfying assumptions (1.1, 1.2) (with Q replaced by V). Let xg € O, and let R € (0, Ry/2].
Assume that uw € HY((0,T), H (') is a nonidentically zero solution of the following problem

(4.1)
u=0 on (0,7)x ((0)NAzr(zo))-

{ut —div(k(z)Vu) =0 n (0,T) x &,
Let tg € (0,T), and let A := min {\/55, tO‘/aR}, where &, ar are as in Proposition 3.1. There exist constants
0* € (0,1], Cy > %, with 6%/ Ry, Cy depending on E and o only, such that for any three numbers r1, o, 13
verifying
3

0<r <rog< ——0,
ST 60
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where r3 < min{0*A, ¢}, the following three spheres inequality holds:

~

n+2 l—r 2 2 1=y
2 ~ (T3 2 1204)\7“27“3 < T ) 2
u(t de <C|—= / u(t dx _ " 1+— | H
[ tafar<e (™) ulto) (m@Ma—mf T
QIQA-,Q (CEQ) ,ﬂA-,vl (CEQ)
(4.2)
Here the constant C > 1 depends on E, o, A\, A, T%to, TRTgtO, only, and H := maxo<;<T ||u(t)|\H1(Q/ﬂA2R(xO)).
Moreover v € (0,1), v := B7, where 3 := lojr—ﬁa, B € (0,1) depending on X only, and
(675} 1 r3 Cmiﬁ)a T2
e ==+ —2 =e" R In (1204022 ), 43
T Ozo—l—ﬁo’ @o n<2 + 1204/\7“2) ’ ﬁO ¢ ’ n ( 4 7“1) ( )

where 11 1= Gfe%, and C depends on E, a, A\, A only.

Let to € (sT,(1 — s)T), for some fized s € (0,%), and let Ay := min {v/26,sT\/ar}. There exist constants
0*, Cy such that for any three numbers 1, ra, r3, rs < min{0*A,0} (0*, C4, 71, ro as above), the following
three cylinders inequality holds:

(1—s)T (1—s)T v

n+2
/ u|? dzdt < C (T—?’) / / uf? dzdt
T2

sT QIQATQ(QS()) sT Q/ﬂArl(xO)
1-7 1—y
1204\ T2\ >
" CyArars _ T (1+_4) 2 7 (4.4)
(604)\7"2 — 7"3) R

where the constant C > 1 depends on E, a, X\, A, %, %Zl, only, and C, H, v are as above (with obviously A
replaced by Ay in (4.3)).

If we suppose moreover that in (4.1) ©(0) = 0 in £, then the following result holds:

Corollary 4.2 (Three spheres inequality and three cylinders inequality at the boundary when u(0) = 0). Under
the assumptions of Theorem 4.1 assume that u € H*((0,T), H(Q')) is a nonidentically zero solution of the fol-
lowing problem

u — div(k(x)Vu) =0 in  (0,7) x &,
u(@0)=0 in (4.5)
u=0 on (0,T)x ()N Azxr(xo)).

There exist constants 6%, Cy such that for any three numbers r1, ro, r3, r3 < 0*0 (0%, C4, r1, 72 as in Th. 4.1),
the following three spheres inequality holds:

v

. 1-7 o\ 2 1=y
) ~ (13 2 12C4Arars ( T) 2
to)Pde < C =2 / to)I"d (60 N — )2 P
[ mtwPa<c(2) '“Ma’<mmmrﬁ> ( i

Q/F‘IATQ(QS()) /ﬂArl (320)
(4.6)

uniformly in tog € (0, %), where C > 1 depends on E, a, A\, A, RTS only, and C, H, v, are as in Theorem 4.1
(with A replaced by /25 in (4.3)).



538 B. CANUTO, E. ROSSET AND S. VESSELLA

For any three numbers ry, ro, r3 as above, the following three cylinders inequality holds:

v

/ / Jul® dadt < C(“”) / / luf? ddt

Q' ﬂATZ(Qfo) Q' ﬁA71(330)
1=y

1—7
2\ 2
(604)\7“2 — 7“3) R

where the constants 6’, C, H, v, are as above.

We recall also the following three spheres and three cylinders inequality at the interior when w(0) = 0
established in [8].

Theorem 4.3 (Three spheres inequality and three cylinders inequality at the interior). Let ) be a bounded and
connected domain in R™, and let k be a nxn symmetric matriz-valued function satisfying assumptions (1.1, 1.2)
(with 2 replaced by V). Let xog € ', and let R > 0 be such that Asg(zg) C Q. Assume that u €
HY((0,T), HL (2)) is a nonidentically zero solution of the problem:

ug — div(k(z)Vu) =0 in (0,T) x &, (18)
w(0) =0 in Q. '
There exists 0* € (0,1] depending on X and A, such that for any three numbers r1, ra, 3 verifying
r
0<r <79 < 6_§\’
r3 < 0*9, the following three spheres inequality holds:
-
T3 “ 2 T2 2 =
< —= 1+—= | H 4.
[ wwfar < (2| [ awper | (14 ) ) (49

Ay (20) Ary (To)

uniformly in ty € (0, %), where C > 1 depends on X, A, &;1 only, H := maxo<i<r Hu(t)HHl(A?R(xO)), v € (0,1),
v := 7, B as in Proposition 3.1, and

(o7 1 r3 2
= =1 =Cln|6A= ),
T P ap n( +6/\ ), 5o n( 7“1)

where 1 1= Gfe%, and C > 0 depends on X\ and A only.
For any three numbers ry, ro, r3 as above, the following three cylinders inequality holds:

T/2 v ) 1—vy

T2 9
/ / lul® dzdt < C E— <7"2> / / u|® dzdt (T <1 + ﬁ) H ) , (4.10)
0 Ary (z0) Ary (2o)

where the constants C~’, H, ~, are as above.
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In order to prove Theorem 4.1 we proceed in the following way. We begin by establishing a three spheres
inequality at the boundary for the function w defined in Proposition 3.1, solution of the following elliptic
equation

wyy +div(k(z)Vw) =0 in (=4, A4) x (' NAg(x0)), (4.11)
and satisfying the following Cauchy and boundary conditions:

u(to) in Q"N Ag/(zo),

=0 in QN AR/Q (:L'o), (4.12)
0 on (—A,A) x ((0Y) N Agya(wo)),

where u is solution of (4.1), and to € (0,T) is a fixed time. Once a three spheres inequality at the boundary for
w is at hand (see Prop. 4.4 below), we derive inequality (4.2) by using Cauchy estimate (3.5), and a suitable
trace inequality for w.

We begin by establishing a three spheres inequality at the boundary for w. More precisely we prove the
following:

Proposition 4.4. Under the assumptions of Theorem 4.1, let w be solution of (4.11, 4.12). For any three
numbers 1, o, T3 verifying

T3
0<r <7y < ——, < 0*A
T <Tr2 205N r3

(0*, Cy, A as in Th. 4.1), the following inequality holds:

T

n+1
/ lw?dX < C (7"—3) / w|? dX
T2

(Rx Q)N By (Xo) (Rx2)NBr, (Xo)
1—7'
4C4 N
4AT2T'3 . lw|? dX , (4.13)
(204)\7"2 — Tg)
(RxQ' )N By (Xo)
where

’ o ’ 1 T3 / ol T2
= , =In|( = , = S In [ 4ACy— |,

T Ozf)—l—ﬁé (%) n<2+404/\7"2> 50 € 0 n 47“1

and the constants 6’, C depend on E, a, A\, A only.
We recall that B,.(Xp) is the ball in R"*! of center X, and radius 7, Xo € R"*! is the point (0,z0), and dX

is the (n + 1)-dimensional volume Lebesgue measure.

In order to prove Proposition 4.4 we need some auxiliary results. First of all let us introduce the following
notations. We denote by © a domain in R**! such that 00 is of Lipschitz class with constants 79, L. Assume
that 0 € 90. For some p > 0, let w be a nonidentically zero solution of the problem

{div(K(X)vw) =0 in ONB, (4.14)

w=0 on (00)NBKB,,
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where K(X) := (I?i»(X))lgi,anH isan (n+ 1) x (n 4+ 1) symmetric matrix-valued function in ©, satisfying
the following assumptions:

(i) there exists a constant \g > 1 such that for all X € ©, and all £ € R*+!

AP < K(X)E-€ < o l¢f; (4.15)
(if)
K(0) = Ins1; (4.16)
(iii) for all X € (9©) N B,
K(X)X -n > 0; (4.17)

(iv) for 0 < a < 1, there exists a constant ¢ > 0 such that for all X € ©

K(X) - K(0)] < X"

o |X|a71
67 .

, ]qux)] <e=is

= (4.18)

(Here I,,+1 denotes the (n+ 1) x (n+ 1) identity matrix, and n is the outer unit normal at (0©) N B,.) Under
assumptions (4.15—4.18), we prove a three spheres inequality at the boundary for a nonidentically zero solution
w of (4.14). More precisely the following result holds:

Lemma 4.5. Let © be a domain in R™! such that 0O is of Lipschitz class with constants ro, L. Assume that

0 € 00, and, under assumptions (4.15-4.18), let W be a nonidentically zero solution of (4.14). There exists a
positive constant 7, T € (0, p|, with T/p depending on ro, L, Ao only, such that for any three numbers r1, ro, T3

verifying
0<nr <ro<r3<r,

the following inequality holds:

s 1—s
~ (ra\" ! 2rar
/ @2dx <& <—3) / arax | | 22 / @2ax | (4.19)
T2 (re —rs3)
enB,, eNB,, ONB,,
where the constants C~’, C depend on Ao, a, c, ;% only, and
aq 1 r3 cI% . 2re
si=———, op:=In|-+-—"—], =e 0 In—-
a; + 3 ! <2 27"2) A 1

The proof of Lemma 4.5 is based on the following result due to Adolfsson and Escauriaza [1].
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Lemma 4.6. Under the assumptions of Lemma 4.5, let w be a nonidentically zero solution of (4.14). For
r € (0,p), let us define the following functions:

1
H(r):= — / |w]? do,

.
©NoB,
D(r) == 11 /I?(X)va.vwdx,
TTL—
onB,
_ D(r)
MO EGy

r™H(r) is a nondecreasing function of r € (0,T); (4.20)

’H'(r) - %D(r) < C’%ro‘_lH(r) forr € (0,7); (4.21)
(iid)
N'(r) > —C%TO‘AN(T) for € (0,7). (4.22)
To

(Here do denotes the n-dimensional surface Lebesgue measure, and H' (resp. N') the derivative of H (resp.
of N).)

r

Proof of Lemma 4.5. First of all we observe that multiplying (4.22) by 78 we have

a—1 =
N =

0 < (N'(r)+ Ca—;
To

2
|
| ~
7N
D
Q
D"p“b
=
=
N———

This implies that TN (r) is a nondecreasing function of r € (0,7). Hence
N(r) < eC%B‘N(s) for all 7,5, 0 <r < s <T. (4.23)

Dividing (4.21) by H(r), integrating over (r1,72), and using (4.23) we have

=

(ra
(1

(1S — %) + 278 N(rs) In :—j : (4.24)

<C

In

e

:;Q|'—‘

Similarly, dividing (4.21) by H(r), integrating over (ra,rs), and using (4.23) we obtain

3)
H(rz)

=
s

(rg —r8) +2¢ T N(ry)In -2 . (4.25)

> _C
T2

§Q|H
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542
Hence (4.24, 4.25) imply
H(r H(r
In 122 _ Ty Crzlrs —19)  Cie(ry —r8)  Ingl
ez —° In 22 InZ2 InZ2
1 T1 T2 T2
Multiplying both terms of (4.26) by In (:—f) In (;—i), and by the inequality:
GG =0
T2 T1 RN
we obtain
In I3 g7".“820% ezc% In 22
() )" iy
H(ry) —\n H(rs)
Therefore (4.27) yields
T a/ / /
H(rs) < (i) H(r)* H(rs)'™,
1
where
! =
, o) , T3 , 20Ty . T2
, o :=In—, i=e "0 ln—,
of + 3 ' T2 g T
and
%r?eQC%ﬁl

oh + B

”'57"3 respectively, it follows that

Now by (4.28) with 71, 2, r3 replaced by &, 7o,

a 1—s
ro + 13 T1\)* ro + 13
H(ry) < (121073 (H (—)) H ,
(r2) < < " ) 2 2

where

a1 ro + 13 20T 219

= =1 = 6 In —=

at+ 6 T e fri=e W in I
and

Crge i

"o

T+ B

We recall that the classical trace inequality yields, for r < p,

_ 2 _
l@Pdo<ec| > / @2 dX + =
r 2
©NBr

©NdBr ©NBzr
2 2 2

V> dX

(4.26)

(4.27)

(4.28)

(4.29)

(4.30)
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and that the Caccioppoli inequality gives

/ V> dX < cﬁ / |w?dX  for v’ <1 <p, (4.31)

enB,., enB,

where the constant C' depends on g only. So by (4.30) for r =y, r = 2223 and by (4.31) we get

1
/ |w]>do < C— / |w]? dX, (4.32)

T

©NdBry 1enB,‘1
and
|@|2da§0(r2_i32 / @) dX, (4.33)
T2 7“3)
ONIB rytry ©nB,,
2

respectively, where the constant C' depends on Ay only.
Next we rewrite (4.29) as follows:

mo < (22 (2)7 (22) () () (25) w (252)

So, by the definition of H, we have

s 1-s
a s g\ 9 n(l—s) N N
H(m)g(m) (-) ( ) / (5[2 do / |32 do
1 1 ro 73
©NoBry ONIB ryirg
2
Therefore using (4.32, 4.33) we obtain
s 1—s
ro + 173 “ 2\ 2 n(1=s) 1 9 ro + 13 2
(e WA R Rl PR e e
1 1 T2 + 73 1 (r3 —12)
e enB

r T3

where the constant C' depends on A\g only. Now since from (4.20) we know that " H(r) is a nondecreasing
function of r € (0,7), equation (4.34) yields

s 1—s
a ns n(l—s)
2 2 1 - ~
pHG) <o (2E0) (2 = [ arax| (2 [ jarax
1 71 ro+ 73 1 (r3 —ra)
©nB,, ©NB,,
for n < rq. Finally, integrating over (0,r2), a simple calculation gives:
s 1-s
"2 r a Ty (n+1)s roT
[ 1atax < [rmma < o) (2) [arax | |2 [ arax |
&l 1 (rs —72)
©nB,, 0 ©nB,, ©NB,,

(4.35)
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where the constant C' depends on Ay only. We complete the proof of Lemma 4.5 by proving that the ratios
a (n+1)s a
(7"—3) ) (:—f) in (4.35) are bounded. In fact the term (:—f) can be bounded in the following way:

T1

C 20%(

a L ra rs r2 —
3 rse In 2 +1In2) C _, 20
— | =exp Yo <exp|—T'e "0 .
1 In 7’22j27’3 +e 5 ln 2ra Ty

1

n+1)s
Finally we increase the term (:—f) as follows:
(n+1)s In r2trs n+1
T2 2 T2 T3
(7)) =ew (o )< ()
1 In rg;;;g +e " In rle 1 2
The proof of Lemma 4.5 is complete. g

We are now in a position to prove Proposition 4.4.

Proof of Proposition 4.4. We shall follow the main lines of the proof of Theorem 0.4 in [1]. The idea is to
construct a C1@ diffeomorphism ® from © N By, 4 to (R x Q') N By, 4(Xp), for a suitable domain © C R"*1,
and some constants 61,62 € (0, 1], showing that w(Z) := w(®(Z)) satisfies the assumptions of Lemma 4.5 and
hence inequality (4.19). From (4.19) one derives a similar inequality for w.

First of all, up to a rigid motion, we can suppose that Xy = 0, and

(R x Q)N Bag :={X € Bag s.t. z,, > (')}

(as usual X € R™*! is the point (y,z), and 2’ := (z1,---2,_1) are the first (n — 1)-components of z € R")
where ¢ is a C1® function on A}, C R"! satisfying

©(0) = [Ve(0)| =0,

and

HSDHCLQ(A;R) < ERyp.

1 0
RX)= (o k(:p))

the (n + 1) x (n + 1) matrix-valued function in R x Q/, and by w(X) the solution of:

Next let us denote by

diVX (K(X)wa

~
Il
o

in (A, A) x QU NAgp,
0 u(to,z) in QN Ags,
0,z) =0 in QN Ag,
0 on (—A,A)x ((0¥) N Agy2),

(4.36)
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where we recall that A := min{\/ﬁé, toﬁ/aR}, 0= %, and ap = ﬁ, cp being the Poincaré constant.

Two cases can happen: either
(i) K(0) = Ip41 (Iny1 is the (n + 1) x (n + 1) identity matrix), or
(i) K(0) £ L.
We begin by studying case (i), that is we suppose that K(0) = I,,4+1. Let us denote by Z = (zo, ... , zn) the new

variable in R"™1 and by Z’ = (20, - ,2,_1) the first n-components of Z. For C3 := %, let us define
Cs
(I)(Z) = (Zlazn + _z |Z| +1> )
Rg
that is
@O(Z) = 20,
(bl(Z) = Z1,
CS a+1
S.(2)i=z2p+—|Z .
(2) = 20t 2 12]
Moreover we denote by
©:={Z € By, st z, > (z’)f&|Z|a+1
: A, S.L. Zp [%2) Rg s
where 2’ := (21,--+,2,—1) are the first (n — 1)-components of z = (z1,--- ,z,). Following the computations

in [1], we have that there exist 61,02 € (0,1] with 6;/Ro, 02/Ro only depending on F and «, such that
® € C1*(Bg,a,R") satisfies

o (Z', o) g— |Z|a“) (2, ("),

@(@ n BezA) C (RXQ/) n BQIA,

1

5121 =12(2)| < Cu|Z] VZ € Bo,a, (4.37)

ot < |det D(I)(Z)| <2 VZe BQQA, (438)
(00) N By, 4 is of Lipschitz class with constants 62 A, L, (4.39)

where the constants Cy in (4.37) and L in (4.39) depend on E and « only.
Now, let us denote

w(Z) == w(®(Z)),
and

K(Z) := |det D®(Z)| (D®™")(2(2)) K(2(2))(D®~")*((2)),



546 B. CANUTO, E. ROSSET AND S. VESSELLA

where (D®~1)* denotes the transpose matrix of D®~1. One can verify that @ solves

div(K(Z)V@) =0 in  ©nN By,a,
(K(Z)Vw) 024 (4.40)
w=0 on (00)NBg,a,
and that K satisfies the following properties:
(i) for all Z € ©, and all ¢ € R™H!
1 -
AP S K(2)g € <Al (4.40a)
(i)
K(0) = Lsq; (4.40D)
(111) for all Z € (8@) n BQQA
K(Z)Z -n>0; (4.40¢)
(iv) there exists a constant C' > 0 only depending on F, A, A such that for all Z € ©
)vf((Z)) <Xz, |K(@2) - K0 <oz (4.40d)
R Ry

(As usual n denotes the unit outer normal to (00) N By,4.) Hence we can apply Lemma 4.5 to solution w of
(4.40) with rg = p = 62A, \g = A\, ¢ = C. Then there exists 8* € (0, 63], with 8* /02 only depending on E and «
such that for any three numbers r1, 79, r3 satisfying

T3
O0<ri<rg < —, r3<f*A
1 2 2047 3 )

inequality (4.19) holds for w with radii respectively &5 2ra, &, that is

! 1—7
n+1
2 ~(rs 2 4Cyrar3 2
9ﬁBQT2 @ﬂB,,.l/c4 @ﬂB,,.B/c4
where

oy T ol ACyT

" 0 " 3 /1 e 472
=— =1In {1 = Ry In ——— 4.42
T O/O/ +56” Qo n( + 4047“2) s 0 e 0 n ri ’ ( )

and the constants 5, C depend on FE, o, A, A only.
Next we decrease [ |@ 1 dZ in the left hand side of (4.41) in terms of i lw|? dX, and we increase
©NBar, (Rx )N B,.,
[ |@w[*dZ, j = 1,3, in the right hand side of (4.41) in terms of J lw|>dX. We begin by observing
ONB.;/cy (]RXQ')F]B,,.J.
that from (4.37) we have

(Rx Q)N B,y CHONB,)C(Rx Q)N Ba,, Vr<bA (4.43)
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Hence from (4.38), and the left hand side of (4.43) we have

N | =

/|@|2d2: / lw]? |det D&~ (X)| dX > / lw|? dX. (4.44)

©NBay, ®(©NBay,) (RxQ')NB,,

Similarly from (4.38), and the right hand side of (4.43) we have, for j = 1, 3,

w*dZ = / lw]? |det D&~H(X)|dX < 2"H! / lw|? dX. (4.45)

ONB,; /¢y ®(ONB,;/c,) (]RXQ/)HBTJ.

Finally (4.41, 4.44, 4.45) yield

1"
T 1—7

n+1
/ wi?dx <c (2 / w|? dX __ACurars / lw|? dX ,
T2 (2047“2 — 7“3)2

(RxQ')NBr, RxQ')NB,, (RxQ')NBry

where the constant C depends on E, a;, A, A only.
Now we treat case (ii), that is we assume that K(0) # I,11. We can consider a linear transformation

S : R™! — R™! such that, setting K(SX) = %, we have K(0) = I,4;. We have that, under
such a transformation, the modified coefficient K, the transformed domain S((—A, A) x (' N Ag/s)) and the
transformed boundary portion S((—A4, A) x ((0€2') N Ag/2)) satisfy assumptions analogous to Proposition 4.4,
with constants which are dominated by the a priori constants A\, A, Ry, E, up to multiplicative factors which

only depend on A. We also have that the ellipsoids S((R x Q') N B,.) for r < %A, satisfy
(RxQ’)ﬂBﬁrCS((RXQ’)QBT)C(RXQ’)QB\/XT. (4.46)

Therefore, by a change of variables, using the result just proved when K(0) = I,,41, we obtain

’ ’
T 1—7

n+1
~ AC U \ro T
/ lw?dX < C (T_?’) / lw?dX _ 4C4Arars / lw|? dX 7

T2 (204)\7"2 - 7"3)2
(RxQ')NBr, RxQ')NB,, (RxQ")NBry
where
/ * 4y
, 7 , 1 r3 , clra” 4C4Ary
= =1 — = R 1 e a—
et (i) s ().

and the constants 5, C depend on FE, o, A, A only.
The proof of Proposition 4.4 is complete. 0

Now we prove Theorem 4.1.
Proof of Theorem 4.1. Let rq, 2, r3 be three numbers satisfying

r3
0<r <rog< ——0,
ST 60
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where r3 < min{6*A,d}. Let us define m := 641%' Using the three spheres inequality at the boundary (4.13)
for w with radii 1, 3r2, r3, we have

n+1
/ w2dX < G (:—3> / lo[2 dX
2

T

(RxQ')NBsry (Xo) RxQ')NBr (Xo)
1—7
1204)\7“27“3 / 2
—_—— dX 4.47
(604)\7"2 — T3)2 |w| ’ ( )
(RxQ")NBry (Xo)
where
Qo 1 T3 C(Wiﬁ)a 1204)\7“2
= — =In{ =+ -—— = B In| ————
T ap+ Bo’ o n<2+12c4)\7"2)’ bo=e ’ n( 71 ’

the constants 5’, C depend on E, a, A, A only, and the constant Cy > % depends on E and « only. Recalling

the Cauchy estimate (3.5) for w established in Proposition 3.1, with r = 71, p = %\/ieﬂ'/\ﬁ, P = 2v2p, we
obtain

B 1-8

1
/ w2 dX < CF / u(to)2de | | = / wdx |

1
(RXQ/)ﬁBﬁ (Xo) lﬁAp/4($0) (RXQ/)QB[,(XQ)

where the constant C' > 1 depends on A only, and 3 := 22 Hence (4.47) becomes (since § < rq, and p < r3)

14+a°
BT
- n+l
wf?dx < & (—) T B T
T2
(RxQ")NBsry (Xo) "NA, (z0)
1 1757'
1204\

« [ L2Cadrars / |2 dX , (4.48)

(604)\7"2 — Tg)

(RxQ")NB4 (Xo)
where the constant C depends on F, a, A, A only. Next we decrease Ik |w|2 dX in the left hand

(RxQ")NBsry (Xo)
side of (4.48) in terms of i lu(to)|* dz. By inequality (7.12) (see the Appendix) for F(y,z) = w(y, z),
Q' ﬂA-,Q (CEQ)
p = 1o, 7 = 219, and by Caccioppoli inequality we have

1
/ lu(to)|” dz < C— / lw|? dX, (4.49)
2
Q' NA, (z0) (RxQ')NBsry (Xo)
where the constant C' depends on A only. Finally we increase the integral J |w*dX in the right

(RxQ)NBry (Xo)
hand side of (4.48) in terms of the a priori data. We recall that w(y, z) := w; (y, z) + w2 (y, x), where wy (y, x) :=
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+oo
= [ eruy(p, x) cosh(v/=ipy)dp, and wa(y, ) := Z ajetitop;(x) cosh(y/|pjly) (see Prop. 3.1). Since |y| <

— 00 ]—
min {0* A, §}, using (3.10) we have, for y > 0,

1 — -
s @)z mar oy < 01O s @ m ooy < 3 / 3 () L3 0 2y [0SV 08|

—o00
<CCH(T+ ! ) ! (4.50)
- arjs) 62(1—1/v/2)%’ :
where the constant C' depends on A only, and C1, defined in (3.8), depends on A\, 7— to’ % only. Inequal-
ity (4.50) implies (recalling that ws (y, ) is even in y, § := % and ag 1= 5, R2)
T3 T 2
/ lwi 2 dX < 2/||w1(y)|\2L2(Q/ﬂAT3(xO) dy < CC%r3H? <ﬁ + 1) . (4.51)
(RxQ)NBry (Xo) 0
Similarly, for y > 0 we have (since |y| < min{6*A,d})
2 2 2
w2 (W20 Ay o)) < Nw2WL2(0 nasn (@) < / [u(0)" dz < H?. (4.52)
Q/QAQR(I[))
Therefore (4.52) implies
/ |U)2| dX < 2/ ||'U)2 ”LZ Q NA-g dy < 2T3H2 (453)
(RxQ)NBry (Xo)
Hence (4.48, 4.49, 4.51, 4.53) yield
BT _
n+2 1—r N 1-Br
~ [ 7 12C4 A T
Juto)* dz < & (—3) [ P | (2O (1 . _4) )
T2 (604)\7"2 - 7”3) R
Q/F‘IATQ(QS()) /ﬂArl (320)
(4.54)
. R2
that is (4.2), where the constant C>1 depends on E, a, A\, A, 7= to’ 7—4- only.

Now if we suppose that to € (sT,(1 — s)T'), for some fixed s € (0, 2) then (4.54) holds uniformly in
(sT, (1 —s)T). So integrating (4.54) over the interval (sT, (1 — s)T'), and using Holder inequality, we obtain

(1—$)T (1—$)T pr

n+2
/ / luf? dazdt < C (7”3> / / u|® dadt

sT NA,, (zo sT NA,; (zo
2 1

1-81

1—7 9 2
% 1204)\7“27“3 . T (1 + T_4) H2 ’
(604)\7“2 — 7“3) RO
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~ 2 p—
where the constant C' > 1 depends on E, a, A, A, %, f—TO only, which, putting « := (7, conclude the proof of

Theorem 4.1. O
We conclude this section by proving Corollary 4.2.
Proof of Corollary 4.2. The proof follows step by step from the proof of Theorem 4.1, by observing that

wa(y,x) = 0. O
5. AUXILIARY PROPOSITIONS

In the present section we give a sequence of propositions which we shall use in the next section to prove
Theorem 1.1. The proofs of these propositions are very similar to those of the corresponding Neumann case
studied in [8]. Therefore the reader interested in more complete and detailed proofs can see [8], and also [4].

In what follows 2 is a bounded domain in R™, n > 2, satisfying assumptions (1.7, 1.9), and D;, i = 1,2, are
two domains satisfying (1.8) such that D; C , dist(09, 0D;) > Ry, and Q\D; is connected. Moreover we shall
denote

Q; = Q\D;,
and
G the connected component of Q1 N Qs s.t. 9N C IG.
Proposition 5.1 (Stability estimates of continuation from Cauchy data on time-like surfaces). Under the as-

sumptions of Theorem 1.1, let u := uy —ug in (0,T) x G. There exists a constant 7, 7 € (0,1), depending on
A and A only, such that we have

s Ml
lu(to) | L2(ag(rey) < ORg (ﬁ e (5.1)
0

uniformly in ty € [0,7/2]. Here R := ﬁ_ﬁm), P =P — m?ﬁn (n denotes the outer unit normal at

P, € 0Q), the constant C depends on E, A\, A %ﬁ only, and

~ T1/2R("_1)/2
P [ B (5.2)
11l a0/

Proof of Proposition 5.1. By Theorem 3.3.1 in [8], we know that if

Ry ||z=u §T1/2R(()n—1)/2€7
on H/4((0,T),H'/2(T"))
then
1=
[u(to)ll 22 copt [ Mz N o
0/IL2(AR(P2)) = 0 TI/QR(()'rL—l)/Q , .

2
uniformly in ¢y € [0,7/2], where the constant C' > 1 depends on E, A, A, % only. The aim is then to estimate

H6%1“HH1/4((0,T),H1/2(F)) in terms of Hé%uHm((o,T)xr) and the a priori data. We observe that the functions wu,
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Uy, Ug satisfy

—div(k(x)Vu) =0 in (0,7)x G
w(0)=0 in G,
u=0 in (0,7) x ON.

Hence we may apply boundedness estimates (see for example Ladyzhenskaja et al. [13]) obtaining

lutll oo (0, x5y < CT 2Ro ||f||1/41/2, (5.4)

lweell oo 0,1y x@) < CT_§R0 ||f||1/4 1/2, (5.5)

where C depends on E, a, A, A, RTg only. We may think at u(t) as solution of

~—
£
—~
~~
~—
=
Q

{ div(k(z)Vu(t)

Similarly, we may think at u.(t) as solution of

div(k(x)Vue(t)) = uu(t) in G,
u(t) =0 on ON.

By LP regularity estimates (see [10]), by (5.4, 5.5), by trace inequalities and by the immersion of W'~1/P»(T)
in H'=/P(I"), for p > 2, we have

0

sup | Ro||=—u t)H
te[O,T]( Oon ( H1-1/p(T)

where C depends on E, A\, A, —3 only. Therefore

Hl—l/p(r\)

0

Ry n < Clfll1/any2, (5.6)

He/2((0,T),H~(I"))

with @ :==1—1/p > 1/2, where C depends on E, A, A, =2 only By interpolation (see Lions and Magenes [16]),
we have

2,

On

where 0 is given by (1 — 0)a = 1/2. By (1.11, 5.6) and (5.7), choosing p = 4, we obtain

0

, (5.7)
L2((0,T)xT)

H1/4((0,T),HV/2(T)) H He/2((0,T),Ho(T)) H

1/3
P TI/QR(n_l)/QE
Ry i <Clflljaie | ——— 5
n HY/4((0,T),H'/2(T)) Hf”1/4,1/2
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where C depends on E, A, A, RTg only. Finally by (5.3) we derive

af Wfllyaae | =
u(to)lL2(an(p)) < CRG (4 57 | €
3 Tl/QR(()" )/

uniformly in ¢ € [0,7/2], where C depends on E, A, A RTS only.
The proof of Proposition 5.1 is complete. |

Proposition 5.2 (Stability estimate of continuation from Cauchy data). (1) Under the assumptions of Theo-
rem 1.1, let f € H¥*((0,T), H'/2(9Q)) be such that u; € H*((0,T), H'(Q\D;)), i = 1,2, is solution of (1.3)
when D := D;, and the initial temperature u;o = 0 in Q\D;. Then the following inequality holds

T/2

/ |ug*dadt < ROHfH%/4,1/2W (

T1/2R(()n1)/26>
0 2\G

114172

where w is an increasing continuous function on [0,00) which satisfies
w(t) < C(ln |1nt|)*71t, for every t <e™ !,

2
where C' depends on E, a, A, A, %, M only.
(II) Moreover if we suppose that there exist positive constants ro, L, ro € (0, Ro], such that OG is of Lipschitz
class with constants ro, L, then (5.8) holds with w given by

wt) <Clnt|™, foreveryt <e™!, (5.9)

where C, v depend on E, a, A\, A, RTg, M, L, Ry/ro only.

The proof of Proposition 5.2 will be given at the end of this section.
In the sequel, for p > 0 and A a bounded domain in R™, we shall denote

A, = {x € Ast. dist(z, A°) > p}, (5.10)

where A°:=R"\A4, i.e. the complementary of A.

Proposition 5.3 (Stability estimate of continuation from the interior). Let f € H3/*((0,T), H'/?(0%)) sat-
isfy (1.10) such that u; € HY((0,T), HY(Q\D;)) is solution of (1.3) when D := D;, and the initial temperature
uio =0 in Q\D;. Then, for every p > 0 and every x; € (£;),, we have
T/2
2
Jusl” dzdt > CRo|| fII% 4,12 (5.11)

0 Ap(wi)

where C' depends on E, a, A\, A, RTS, M, F, Ry/p only.

Proof of Proposition 5.3. The proof follows from Proposition 4.3 in [4], and from Proposition 5.5 in [8], up to
obvious changes. O

At this stage, we recall the notion of modified distance introduced in [4].
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Definition 5.4. We call modified distance between bounded domains €; and 5 in R™ the number

dm (21, 02) —max{ sup dist(z,Q2), sup dist(Ql,ac)}~
€ €N

Notice that obviously we have
dm(Qla QQ) § dH(Qla QQ);

but, in general, d,, does not dominate the Hausdorff distance, and indeed it does not satisfy the axioms of a
distance function. This is made clear by the following example: € := B1(0), Q2 := B1(0) \ B1/2(0). In this
case dp, (21, Q2) = 0, whereas dy(£21,8) = 1/2.

Proposition 5.5. Let Q1, Qo be bounded domains satisfying (3.7). There exist positive numbers dy, 1o, ro €
(0, Rol, for which the ratios dy/Ro, 10/ Ro only depend on E and «, such that if we have

dH(Qla QQ) § d07

then the following facts hold:

(i) any connected component G of Q1 N Qq has boundary of Lipschitz class with constants ro, L, where rg is
as above and L > 0 only depends on E and «;
(i) there ewxists an absolute constant ¢ > 0 such that

dH(Qla QQ) < Cdm(Qh Q2)

Proof of Proposition 5.5. The proof is contained in [4]. a

__In the proof of Proposition 5.2 we shall need to approximate the domains €, with regularized domains, say
Q,, 7> 0. To this aim let us recall the following result, which was obtained in [4] (Lem. 5.3).

Lemma 5.6 (Regularized domains). Let Q be a bounded domain such that OS2 is of Lipschitz class with con-

stants Ry, EE. There exists a family of reqularized domains Q; C Q, for 0 < h < aRy, having C' boundary such
that

Qn, C Uy 0< hy < ho,

Yoh < dist(z, 0Q) < ymh, for every x € O, (5.12)
2\ Q| <72 MRy~ h, (5.13)
0Q%n—1 < MR, (5.14)

for every x € OQy, there exits y € 0N s.t.
ly — | = dist(x, 09), (5.15)

where a, v;, 1 = 0,1,2,3, are positive constants depending on E, a only.

(Here | - |n—1 denotes the surface measure.)
We are now in a position to prove Proposition 5.2.

Proof of Proposition 5.2. For r < Ry, let us denote

U = {z € Q\D s.t. dist(z,00) <r}-
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From regularity estimates for solutions of parabolic equations [13], we have, for i = 1,2,

_ —(n—1)/2
H“i”cm([o,T]x(W)) < T~ V2Ry Y/ I1fll1)4,1/2, (5.16)

g — uzncl,a(m@ < CT 2Ry "V fll1 /125 (5.17)

where C' > 0 depends on E, «a, A, A7 -, M only.
We prove Proposition 5.2 for ¢ = 1, the case ¢ = 2 being analogous.

Proof of Part (I). With no loss of generality we can assume that € < ji, where € is defined in (5.2), and f,
0 < i < e~ ! is a constant only depe~nding on F, a, /\ A, M, which will be chosen later on, since, otherwise,

equation (5.8) becomes trivial. Let § = min{a -}, where a, 1 have been introduced in Lemma 5.7.

; 16(1+E2
We have that 6 depends on F and « only. Let 7 := HRO and let

Y7 ={z € G s.t. dist(z,00Q) =17} -
For r <7, let ﬁ be the connected component of 5; N ﬁ; whose closure contains 3,7 We have

O\ G C [\ Q) \GlU QL \ Vi,

A, \ Vi) =T1, UTa,,

where I"; is the part of boundary contained in 86;,, and I"; is the part contained in 86;; N a’v?. Therefore
we have

T/2 T/2

/ / |ug | dxdt</ / |y dxdtJr/ / |uy|?dadt. (5.18)

0 o\G 0 (@\Q1)\G Q1 \Vr

By (5.16) and (5.13) we have

T/2

/ / furPdadt < Crl[ 1241 (5.19)

0 (@\Q1,,\G

where C depends on E, a, A, A M only. By the divergence theorem, we have, for 7 € (0,7/2),

) T,
T/2

% / |ur(T)] dx</ / |[kVuy - nuq| dodt.

Q\Vn 0 Ty .Ul

Hence, integrating over the interval (0,7/2), we obtain

T/2

/ / lug|?dadt < T/ / |[kVuy - nuq| dodt. (5.20)

Q ’V‘\V Iy, ’V‘UFQ r



A STABILITY RESULT IN THE LOCALIZATION OF CAVITIES 555

Let x € I"; By (5.15, 5.12) there exists y € 9D such that |z — y| = dist(x,90D;1) < y17. Since u; = 0 on
(0,T) x 0Dy, from (5.16) it follows that

12 p—(n=1)/2 T
s (t,2)| = [us(t,2) — wn (8, 9)] < CT/2 Ry ”/ZR—OHme,uz (5:21)

uniformly in ¢ € [0,7/2], and x € I‘l ., where C depends on E, a, A, A, T , M only. Similarly, for x € I‘g T
there exists y € 9Dy such that |z — y| < y1r. Since ug =0 on (0 T) x 0Dg, by (5.16) it follows that

_ —(n— r
jun (8, )| < Ju(t,2)] + CT~V2Rg 1)/2R—0||f||1/4,1/2 (5.22)

uniformly in ¢ € [0,7/2], and = € Ty, +, where C depends on E, «a, A, A, T , M only. (5.16, 5.13, 5.18-5.22)
yield

T/2

r n+1)/2
[ [ st < cRolflgas o (R—0||f||1/4,1/2+Ré“/ Il = 75 ) (5.23)
0 O\G

where the constant C' depends on F, o, A, A, -+, M only.

In order to estimate Hu||Loo (o.1/2x7) Ve shall make use of Proposition 5.1. So let (¢,Z) be such that
|u(t,z)| = Hu”Loo([o,T/z]xw) Since min{dist( Py, 91),

dist(Pa, 002)} > > ~1r, we have that P, € 7,,, where P, has been introduced in Proposition 5.1.

Ro
T6(1+E57)
Let ¢ be an arc in V,. joining T to Pa. Let us define {x;}, ¢ = 1,...,s, as follows: x1 = Py, 2,11 = p(ti),

where t; = max{t s.t. |p(t) — 2] = &5z} if |z, — 7| > & 5525, otherwise let i = s and stop
the process (0* is the constant defined in Th. 4.3). By construction, the balls Axgr (x;) are pairwise disjoint
|Tip1 — ] = 2* ez, for i =1,...,8 — 1, |5 — T <& % Hence we have s < S (%)n, with S only

depending on E, a, M.
At this stage, since A.,(P2) C G, by iterated application of the three spheres inequality at the interior (4.9)
for tg = ¢, with radii

oo O qor e 07 o 07
LT 024 16erA2’ 2T 2 8- 16emA2’ 0 2 16emA?’
we have
i o y® 1 T2 ) 1—v°
Hu(t)HLQ(A,.l @) =C (Hu(t)HLa(A7,1(p2))) (R_o (1 + r—4> ||f|1/4,1/2> ; (5.24)

where C' > 1 depends on E, «, A, A, _3 only, v € (0,1) depends on A and A only. (In (4.9) we have used the
estimate H? < Cl; Hf|\1/4,1/2, the constant C depending on E, a, A only, see for example [13].) By (5.1) we
obtain

~2 =,

o T2\'"" 2
Hu(t)HLQ ,l(m))SCR ( +r_4) ||f||1/41/2 e, (5.25)
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2
where the constant C' > 1 depends on E, a, A, A, % only. Let us recall now the following interpolation
inequality

1/2

=
2a+n

2 San 1 2
[vllLoe(a,) <c /|v| dx [v](igp + e [v|” dz , (5.26)
A, A,

which holds for any function v € C%*(A,) defined in the ball A, C R™ and for any o, 0 < o < 1. By
applying (5.26) to u(t) in A, (T), with « = 1, by (5.25) and (5.17) we have

- 1 Ro\ % 72\ /2 -,
]u(t,x)’ < CW (T) <1 + T_4> ||f||1/4,1/2gy K ) (5-27)
0

where C depends on E, a, A, A, RTg only, and v := 3(%7”7, ~" € (0,1). From r < Ry, we have that r < CT~2,

2
with C' depending on E, A, A, % only. Therefore we can estimate

72 Ro\*
1+—4§C<—0) ,
r r

where C depends on E, A\, A, RTﬁ only. By substituting (5.27) in (5.23), and by the above inequality, we have

T/2

, R\ (Y2,
//|u1|2dxdtSCRonfnfm/Q R—O+(7) o) (5.28)

0 Q,\G
where C depends on E, a, A, A, RTg, M only.
Let us set i := exp{7$ exp (%)}, i := min{j, exp(fv%)}. We have that ji < e”! and it depends
on E, a, A, A, M only. Let € < i and let

2(S + 1) Jny[\ "
In [lneY'|

r(é) == Ry <

Since r(€) is increasing in (0,e!) and since r(fz) < (1) = Rof, inequality (5.28) is applicable when r = r(é)
and we obtain

T/2

/ 71/”
//|u1|2dxdt§CROHfoMJ/Q(ln‘Ine”YD ,

0 Q\C

2
where C depends on E, o, A, A, %, M only. On the other hand, since ¢ < eXp(—Vl,g), we have that In+y’ >

—3In|Iné, so that
o 1 ~
ln‘ln.s7 ’ > §ln|lne|.

The proof of Part (I) is complete.
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Proof of Part (II). By the divergence theorem we have

T/2 T/2
/ / lup|® dzdt < T / / [kVuy - nup| dodt, (5.29)
0 O\G 0 T UT'y

where T'; is a part of 9Dy and T’z is a part of 9Dg. Since u; = 0 on [0,T] X dD;, i = 1,2, by (5.17), and the
fact that |T;| < CRy ™', C depending on E, o, M only (see [2], Lem. 2.8), we have

T/2

2 n+3)/2
| [ el dedt < RO el
0 O\G

2
where u = u; — ug in (0,7) x G, and C depends on E, a, A, A, %, M only. Arguing as in the proof of
Proposition 5.4 in [7], up to obvious changes, we obtain (5.9).
The proof of Proposition 5.2 is complete. g

6. PROOF OF THEOREM 1.1

Our task in this section is to prove Theorem 1.1. Before doing so, we need to establish the following
preliminary:

Proposition 6.1. Under the assumptions of Theorem 1.1, suppose that

/2
max / / |ug|? daxdt <,
i€{1,2}
0 Q\G
Then
0
dy(1,Q2) < CRy <+> , (6.1)
Ro ||f”1/4,1/2
where the constants C' and 6 depend on E, a, A\, A, &;1, M, F only.

Once this result is at hand we can prove Theorem 1.1.

Proof of Theorem 1.1. We divide the proof into two steps.

Step 1: By Proposition 5.2 Part (I), and Proposition 6.1 we have

(n—1)/2 —0/n
In TY2Ry" e 7 (6.2)
111 /4,172

where C, 6 depend on E, o, A, A B oM , F only. Let €y be such that, for € < ¢g, the following inequality holds

s T
1/2 p(n—1)/2 —0/n
In (L) D < do, (6.3)

d'H(Ql,Qg) S CRO (hl

CRO In
( 17111 ja,1/2
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where dj is the positive constant introduced in Proposition 5.5. Hence, equations (6.2) and (6.3) yield
dr(21,Q9) < dp. (6.4)

By Proposition 5.5 we know that (6.4) implies that G is of Lipschitz class (we recall that G is the connected
component of 3 N Qs such that 92 C IG). Therefore, by Proposition 5.2 Part (II), we can improve (6.2) and

we obtain
. TI/QR(()”_l)/26
1Nl /,1,2

Step 2: In this step we prove the assertion of Theorem 1.1. In order to simplify the notations, let us denote

—K

dy(Q1,Q2) < CRy (6.5)

d:=dy(D1,D3), and §:=dp(Q1,Q0).
First we observe that, by the definition of §, we have
(D1); C Do,

where the set (D1)s is defined in (5.10). So

D1\D2 C D1\(D1)s,
and

|D1\D2| < |D1\(D1)s| < CRG™'6,

C depending on E, o, M only (see [2], Lem. 2.8). Similarly we have

|D2\D1| < CRy™ 16,
and so

|D1 A Dy| < CRy16. (6.6)

Without loss of generality, let 9 € D; be such that d = dist(xg, D2). Up to a rigid motion, we can suppose
that g = (0, o, ). Then is not difficult to prove that

E
C(z0,Ro/2) := {:p € R" s.t. N |z — z(| < Ty, — Ton, |z — xo| < R0/2},
0

that is the intersection of the ball Ag,/2(z0) with the cone having vertex o, and axis in the x,-direction, is
contained in D;. Since

Ad(zo) C (R™\D2),
then
(Au(0) N Clz0, Ro/2)) C Dy\Ds.
Hence (6.6) implies

|A4(x0) N C(x0, Ro/2)| < CRY™YS. (6.7)
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Let ¢ be an absolute constant such that
|O(I0,RQ)| = CRS

If we suppose that

then (6.7) yields that d < %. In fact if d > %, then
c(Ro/2)" = |Ad(20) N C(x0, Ro/2)| < CRY™'6 < ¢(Ro/2)",
which leads a contradiction. Then Ag(xo) N C(x0, Ro/2) = C(z0,d), and

cd™ = |Ag(zo) N C (w0, Ro/2)| < CRY™S.

Hence
TL2RM=D/2 \ | T"
dr(D1,Dy) < CRo [n [P0 ¢ :
1114172
where C, k depend on E, a, A, A, RTg, M, F only. The proof of Theorem 1.1 is complete. O

Now we prove Proposition 6.1.

Proof of Proposition 6.1. Let d,, be the modified distance between 2; and 25 introduced in Definition 5.4. In
the sequel we shall denote

dm = dm(Ql, QQ)

(We recall that § := dp(Q21,2).) We begin by establishing (6.1) for d,,. Without loss of generality, assume
that

T/2

[ [ st <n 63)

0 Q\C

Two cases can occur: either
(@) dm < Q*QRO, or
(IT) dp, > £fo,
where 6* is the constant introduced in Theorem 4.1.

We begin by studying case (I). Without loss of generality let o € 9Q; be such that

dm = diSt(.Io, QQ)
By using the three cylinders inequality at the boundary (4.7) for u = wy, with radii

o 1 L Ro L R
L Omar 16Cer 2’ 2T 2 7-16C.en 2’ 2 2 16en\’



560 B. CANUTO, E. ROSSET AND S. VESSELLA

we have

T/2 T/2

/ / jua|? dadt < © / / Jua|? dadt (Ro 1 a2) o (6.9)

QlﬁA72($0) QlﬁAql(Qfo)

where the constant C' > 1 depends on E, a;, A, A, 7 only, and v € (0,1) depends on E, o, A, A only. (In (4.5)
2R is replaced by Ry and in (4.7) H? is replaced by H? < %RO Hf|\1/4,1/2, C depending on E, a, A only.) Now

let d := ﬁ’ T:=x0—dV1+ E?n, where n denotes the outer normal at g € 9Q;. We have
AL(T) C (1 N A, (0)). (6.10)
By (6.10), and (5.11) we have
T/2
ur [* dadt > CRo|| £113 4.1 /o (6.11)

0 QiNA,., (o)

where the constant C' depends on F, a, A, A M, F only. Now (6.8), and the fact that r < d,,, yield

7Ta

T/2
7,>/ / lua|? dard. (6.12)

0 QiNA,, (o)

So by (6.9, 6.11, 6.12) we have

~
1<C <+> , (6.13)
Ro ||f”1/4,1/2

where the constant C' depends on F, a, A, A M, F only. If < 1 a simple calculation gives

R/ S—
’ T ’ R()Hf“?/zk,l/2

6
dm < CRy <+> , (6.14)
Ro Hf”1/4,1/2

M, F only. On the other hand if =———%—— > 1, since

where the constants C' and 6 depend on F, a;, A, A
Rollf113 /412

) Ta
dm < CRy, (6.15)

where C depends on E and M only, equation (6.14) follows trivially.
Now we consider case (II), that is we assume that % < dp. As above we have

(21 NAG(T)) C (21N Ary(20)) C (1N Ag,, (20)) C \G,
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and
T/2
nz [l dedt = ORI e (6.16)
0 Q1NAZ(T)

2

where the constant C' depends on E, «, A, A, &Tl, M, F only. Hence (6.14) follows trivially from (6.16)
and (6.15).
Without loss of generality let zg € 1, zg ¢ 91, be such that

0= diSt(Io,Qg).
Denoting by
h := dist(zg, 00),

let us distinguish the following three cases:

(D) h <8
(i) h> 2 and h > %;
(iii) h > $ and h < &,

where dj is the constant defined in Proposition 5.4.

If case (i) occurs, taking zgp € 9€; such that h = |zg — 29|, and taking yo € Qo such that § = |xg — yol, by
the triangular inequality we have

[
2
[
2

d < h+lyo — 20| < 2dp,

so that (6.1) follows from (6.14).
If case (ii) occurs let us set

. [0 d
dy = mm{a,go}-

By using the three cylinders inequality (4.10) for u := u;, with radii

oo b T
LT 9 32erA2) 7T 2 7.32emA2” T 2 32em)

and by the bound H? < C %o |\f|ﬁ/4,1/2, we have

T z R
2 2 2 (17"/)
/ / fun |2 dadt < C / / wnPdadt | (Boll72 ) (6.17)
0 A, (zo) 0 Ay (z0)
where the constant C > 1 depends on FE, a, A, A, RT?), only, and v € (0,1) depends on A and A only. Repeating

the same arguments in order to obtain (6.14), we derive

(4
d, < CRy <+> , (6.18)
Ry ||f||1/4,1/2
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2
where the constants C' and 6 depend on E, o, A, A, %,

other hand if d; = d—2°, then (6.1) follows trivially since

M, F only. Now, if d; = g, the thesis follows. On the
)
—<C
do — ’
where C' depends on E, a, M only.

Finally, if case (iii) occurs, that is § < dy, by Proposition 5.5 we know that there exists an absolute constant
¢ such that

0 < cdy,.

Hence (6.1) follows from (6.14).
The proof of Proposition 6.1 is complete. g

7. APPENDIX
Proof of Lemma 3.3. Let us denote, for every u, £ € R, z € Q' N Agr(xo)
o(p; €, 7) = VI (u, 2).

For every p € R\ {0}, the function v(u) solves the uniformly elliptic problem

isgn(p)vee () +div(k(x)Vo(u)) =0 in R x (' N Axr(zo)), 1)
o() =0 on R x ((OQ) N Agg(zo)). '
Let us denote a; :=2 — %, for every j € {0,1,...,m}, and m € N. Moreover, let
0 if |S| > ay,
hy(s) = 1 m(aj41 —s) )
i(s): —(1+cos| ———= if aj 41 <|s| < aj,
2 aj+1 — Qj
1 if [s| <aj,q,
and
_ o)
We have that v;(p) solves
isgn()vsee (1) +div(k(@)Vo; (1)) =0 in R x (@ N Agr(wo)), )
vi(p) =0 on R x ((9Q) x Agg(zo)). '

Multiplying equation in (7.2) by v;(u)n3, where

n; (& x) = hy (%) h; (%) ;



A STABILITY RESULT IN THE LOCALIZATION OF CAVITIES

and integrating over D;(zo) := (—a;R, a; R) x (€' N Aq;r(20)), we obtain

2 2

— ov; 2 SA2mim
[ k@G- vt | | [ 25 s | < B g
D; (zo) Dj(zo)

Dj(wo)

Therefore, for every j € {0,1,...,m} we obtain

)\ 2.,2
/ Ivj+1(u)|2dxd§§@# / o (1)|? dzde.

Dj+1(zo) Dj(zo)

By iteration of (7.3) for j = 0,...,m — 1, we have

/ /Q NA g (z0) [om (I dade < 4R (f)}; = ) / a1 ()| da.

Q' NAzgr(z0)

Now, let us estimate the integral on the right hand side of (7.4). By (3.7) we obtain

2
1

+o0 2
U 1 ,
()22 nasr (o)) < I w1 ()| L2 nanm(aoy At | < cCTH? (T + an)
\— OO

Therefore, by (7.4), we have, for every p € R\ {0}, and for every m € N,

R m
/ / [um ()| dad¢ < cRC?H? <T+ _) \/_/\71'2 m? .
' NAg(z0) aR R

Moreover by Caccioppoli inequality we have

il

/ / Vv () < / / [0 (12) 2 e,
Q' ﬂAR/z(Io) Q' ﬁAR(Io)

_R

2

where the constant C' depends on A only. So from (7.5) it follows that
) CO2H? 1\? [ VEBar2m2\ "
/ |Vyom (p)]” dedé < (T + —) — | >
QlﬁAR/z(xo) R aR R

where the constant C' depends on A only.
For fixed 1 € R\ {0} and ¢ € L?(' N Ag/2(x0),C), let us denote

—n

vl

FO= [ duelugop@ds fori-L.

Q/QAR/z(xo)

563
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By the interpolation inequality (7.10), and by inequality (7.6) we have

cC Cl < 1

[FM ()] < oz (T @) @A (m 4+ D)™ 1ol 2 (0 08 s (w0))- (7.7)

By using inequality (7.7) for every m € N and the power series of F' at any point & such that Re € (—R/2, R/2),
Smé = 0, we have that the function F Can be analytically extended to the rectangle {£ € C s.t. Ref €
(—R/2,R/2),3m& € (—p,p)}, where p = 46M We continue to denote by F' the analytic extension of F. In

particular, choosing ¢ = —id, where ¢ := by (3.7) we obtain the estimate

Berx w
F(—i0)| <cCiH (T L 7.8
|[F(=10)] < cCy +m |\<P|\L2(Q'mAR/2(zO))~ (7.8)
On the other side, by the definition of v, we have

F(—id) = / e\/m‘sazﬁfl(u, z)p(x)dz fori=1,---,n, (7.9)

QIHAR/2(330)

so that by choosing ¢(z) = Oy, u1 (i, z) in (7.9) we obtain (3.10) from (7.8).
The proof of Lemma 3.3 is complete. |

Interpolation and trace inequalities

Given an interval I in R, and f € H'(I), we have

1 1/2
T <c(|f|||f|L2 mlfl%m)) , (7.10)

where |I| denotes the length of the interval I.

1/2 T 1/2
1 2 I+a e | 1 2 1 2
= [IVs@Pdr | <l (09 ,) T o [ @R | e [ir@par |
A, A, A,
(7.11)
where p < p’ <2p,0 < a <1 and C depends on « only.
For every p < r, we have
/|F(0,:E)|2d:n <ec X)2dX +r / |Fy(X))?dX | . (7.12)

For every h > 0, we have

h h
1
/|F (0,2)]%dz < ¢ E//|F Y, x 2dxdy+h//|Fy )|2dady | . (7.13)
0 A

JANS I3 0 Ay
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/|F(X)|2dX§c r/|F(0,x)|2dx+r2/|Fy(X)|2dX . (7.14)

h h
//|Fy, )?dydz < ¢ /|F0x|dx+h2//|F y,z)|*dydz | . (7.15)
0

A 0 A,
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