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INTEGRAL REPRESENTATION AND Γ-CONVERGENCE
OF VARIATIONAL INTEGRALS WITH P (X)-GROWTH

Alessandra Coscia1 and Domenico Mucci1

Abstract. We study the integral representation properties of limits of sequences of integral functionals
like

�
f(x, Du) dx under nonstandard growth conditions of (p, q)-type: namely, we assume that

|z|p(x) ≤ f(x, z) ≤ L(1 + |z|p(x)) .

Under weak assumptions on the continuous function p(x), we prove Γ-convergence to integral func-
tionals of the same type. We also analyse the case of integrands f(x, u, Du) depending explicitly on u;
finally we weaken the assumption allowing p(x) to be discontinuous on nice sets.
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Introduction

The aim of this paper is the study of the Γ-convergence and integral representation properties for sequences of
integral functionals of the type

F (u, Ω) :=
∫

Ω

f(x, u(x), Du(x)) dx, (0.1)

where Ω is an open subset of R
n and f is a non-negative Borel function defined on Ω × R

N × R
nN . Under the

assumption of p-growth

|z|p ≤ f(x, u, z) ≤ L(1 + |z|p) (0.2)

existence and integral representation of the Γ-limit with respect to the strong topology of Lp of a sequence of
functionals as (0.1) was proved in the scalar case in [11, 15, 16], and in the vector-valued case in [21], under
suitable assumptions on the dependence of f on u, see also [10, 14].

In the context of regularity theory for minimizers, ten years ago Marcellini [22] replaced (0.2) with the more
flexible (p, q)-growth assumption

|z|p ≤ f(x, u, z) ≤ L(1 + |z|q) , q ≥ p > 1 ; (0.3)
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the theory of integrals with (p, q)-growth received contributions from various authors, see the references in [23].
Dealing with the passage to the limit for variational problems, i.e., convergence of energies as j → +∞, and

in the context of Γ-convergence, Zhikov [27] proved several results, under the (p, q)-growth assumption (0.3),
when N = 1 and f(x, u, ·) is convex. If (0.3) is satisfied, the functional F is coercive if regarded on the Sobolev
space W 1,p (Ω; RN ), whereas it is bounded (and, in case of convexity, continuous) if regarded on the smaller
space W 1,q (Ω; RN ). This fact is responsible for the presence of the so called Lavrentiev effect, due to the lack
of W 1,q-density of smooth functions in W 1,p (Ω; RN ), see [28]. On the other hand, for the same reason it is
not clear how to obtain existence of the Γ-limit with respect to Lp-convergence in the whole space, see e.g. [10]
(Ch. 21).

In the context of cavitation and related theories, dealing with integral functionals satisfying a q-growth
condition from above and taken to be +∞ outside W 1,q (Ω; RN ), measure representation of the relaxation with
respect to weak W 1,p convergence is obtained in [6] and [1], assuming z �→ f(x, z) is convex and p > q − q/n.

A borderline case lying between (0.2) and (0.3) is the one of p(x)-growth:

|z|p(x) ≤ f(x, u, z) ≤ L(1 + |z|p(x)) , p(x) ≥ 1. (0.4)

This kind of growth was first considered by Zhikov in the context of homogenization, see [31], and in recent
years the subject gained importance by providing variational models for many problems from Mathematical
Physics. For instance, recently Rajagopal and Růžička elaborated a model for the electrorheological fluids; they
are special non-Newtonian fluids which are characterized by their ability to change their mechanical properties
when in presence of an electromagnetic field, see [25] and [26]. Other models of this type arise for fluids whose
viscosity is influenced in a similar way by the temperature, see [30]; the mathematical model for Zhikov’s
thermistor problem includes equations like

−div(p(x)|Du|p(x)−2Du) = 0 ,

whose solutions correspond to minimizers of
∫
Ω |Du|p(x) dx.

For the regularity of minimizers of functionals with p(x)-growth, we refer to [2, 3, 5, 12, 13, 20, 22, 28]. In
particular, Zhikov proved higher integrability of the gradient under the following condition about the modulus
of continuity ω(R) of p(x)

lim sup
R→0+

ω(R) log(1/R) < +∞ , (0.5)

a condition which is sharp since, in general, dropping it causes the loss of any type of regularity of minimizers,
see [29].

Moreover, condition (0.5) seems to play a central role in the theory of functionals with p(x)-growth since
Zhikov proved in [29] that such functionals exhibit the Lavrentiev phenomenon if (0.5) is violated. On the other
side, in [1] it is proved that the singular part of the measure representation of relaxed functionals with growth
(0.4) disappears if (0.5) holds true.

In this paper we show that if the growth exponent p(x) satisfies a local continuity estimate of the type (0.5),
then integral representation holds for non-negative local functionals satisfying a p(x)-growth condition from
above in the set W 1,p(x) (Ω; RN ) of functions u ∈ W 1,1 with |Du|p(x) ∈ L1.

Also, we prove Γ-compactness in W 1,p(x) (Ω; RN ) for sequences of local functionals satisfying the p(x)-growth
condition (0.4). Moreover, the Γ-limit turns out to be the integral of a quasi-convex function in the sense of
Morrey [24], satisfying the same p(x)-growth condition from above. More precisely, we organize the paper as
follows.

After giving the notation and some preliminary results in Section 1, we analyse in Section 2 the properties of
functionals with p(x)-growth, in particular recalling a density result due to Zhikov in the set W 1,p(x) (Ω; RN ),
see Proposition 2.18. Here a central role is played by the local assumption (0.5) on the modulus of continuity
of p(x). In Section 3 we prove an integral representation result of the type

∫
f(x, Du) dx for non-negative
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local functionals satisfying a p(x)-growth condition from above, see Theorem 3.1. Then, in Section 4 we prove
existence and integral representation of the Γ(L1)-limit of sequences of local functionals with p(x)-growth, see
Theorems 4.1 and 4.2. Section 5 is dedicated to the more general case of integrands f(x, u, Du) with explicit
dependence on u, obtaining the same conclusions under the assumption of a continuous dependence of f on u,
see Theorems 5.1 and 5.2. Finally, in Section 6 we generalize the results allowing the growth exponent p(x) to be
discontinuous on a negligible set given by the interfaces between nice subsets of the domain Ω, see Theorems 6.1
and 6.2. We finally remark that, in the particular case of relaxation (i.e., the Γ-limit of a constant sequence)
we expect the relaxed functional to be the integral of the quasi-convex envelope of f : see Corollary 6.3 for the
case of p(x) piecewise constant.

1. Notation and preliminaries

In the sequel Ω is a fixed bounded open subset of R
n and A is the family of its open subsets; if A, B ∈ A, by

A ⊂⊂ B we mean that the closure A of A is a compact set contained in B, and by A0 we denote the class of all
A ∈ A such that A ⊂⊂ Ω. Also, Bδ(x) denotes the ball of radius δ > 0 centred at x ∈ R

n.
As usual, Lp(Ω; RN ) and W 1,p(Ω; RN ) will denote the standard Lebesgue and Sobolev spaces of functions

u : Ω → R
N , for any p ≥ 1. Finally, we will denote by p∗ the Sobolev conjugate of p, i.e., p∗ := np/(n − p)

if 1 ≤ p < n, and p∗ = +∞ if p ≥ n. We recall that if u ∈ L1(Ω; RN ) and Du ∈ Lp(Ω; RnN ), then
u ∈ W 1,p(Ω; RN ) provided Ω has Lipschitz boundary (also weaker conditions are sufficient, see e.g. [4]). For
such sets Ω, if a sequence {uj} is bounded in L1 (Ω; RN ) and {Duj} is bounded in Lp(Ω; RnN ), then {uj} is
bounded in W 1,p (Ω; RN ).

We recall the main definitions and results from the theory of Γ-convergence. We refer to [14] or [10] for a
more extensive introduction to the subject.

Definition 1.1. Let Fj : X → R be a sequence of functions defined on a metric space (X, d). We say that
{Fj} is Γ(d)-converging to F : X → R if for all x ∈ X we have

1. (lim inf inequality) for every sequence {xj}, if d(xj , x) → 0, then

F (x) ≤ lim inf
j→+∞

Fj(xj) ;

2. (existence of a recovery sequence) there exists a sequence {xj}, with d(xj , x) → 0, such that

F (x) = lim
j→+∞

Fj(xj) .

The function F is called the Γ(d)-limit of {Fj} and we write F = Γ(d)- lim
j→+∞

Fj .

Remark 1.2. It is well known that if Fj ≡ G for all j ∈ N, then Γ(d)-limj Fj = G, where G is the d-lower
semicontinuos envelope of G (or d-relaxed functional), given by

G(x) := inf
{

lim inf
j→+∞

G(xj) | {xj} ⊂ X , d(xj , x) → 0
}
·

Since in general the Γ-limit may not exist, we introduce the Γ(d)-upper and lower limits.

Definition 1.3. Let Fj : X → R and x ∈ X . We define the Γ(d)-upper limit of {Fj} at x as

Γ(d)- lim sup
j→+∞

Fj(x) := inf
{

lim sup
j→+∞

Fj(xj) | {xj} ⊂ X , d(xj , x) → 0
}
·
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Similarly, we define the Γ(d)-lower limit of {Fj} at x as

Γ(d)- lim inf
j→+∞

Fj(x) := inf
{

lim inf
j→+∞

Fj(xj) | {xj} ⊂ X , d(xj , x) → 0
}
·

Therefore, the upper and lower Γ-limits always exist and, since the two infima in the definition above are
actually minima, the Γ-limit exists at x if and only if Γ(d)-lim infj Fj(x) = Γ(d)-lim supj Fj(x). Anyway, for
Γ-convergence the following compactness property holds:

Proposition 1.4. If (X, d) is a separable metric space and Fj : X → R, j ∈ N, are given functions, there exists
an increasing sequence {jk} such that Γ(d)-limk Fjk

(x) exists for all x ∈ X.

We also recall the following facts about set functions:

Definition 1.5. A function α : A → [0, +∞] is called an increasing set function if α(∅) = 0 and α(A) ≤ α(B)
if A ⊆ B. An increasing set function α is said to be subadditive if

α(A ∪ B) ≤ α(A) + α(B)

for all A, B ∈ A, and it is said to be superadditive if

α(A ∪ B) ≥ α(A) + α(B)

for all A, B ∈ A with A ∩ B = ∅; finally, α is said to be inner regular if for all A ∈ A
α(A) = sup{α(B) | B ∈ A , B ⊂⊂ A}·

In this paper we will consider functionals defined on the Lebesgue space L1(Ω; RN ). We will first prove an
integral representation theorem and then we will apply the direct method of Γ-convergence, which consists
in proving general abstract compactness results, ensuring the existence of Γ-converging sequences, and then
recovering enough information on the structure of the Γ-limits to obtain a representation in a suitable form.
For both problems we make use of the localization method, which consists in considering at the same time the
dependence of the Γ-limit on the function and on the open set.

More precisely, if Fj : L1 (Ω; RN )×A → [0, +∞] is a sequence of functionals, u ∈ L1 (Ω; RN ) and A ∈ A, we
denote by F ′(u, A) and F ′′(u, A) the lower and upper Γ-limits

F ′(u, A) =: inf
{

lim inf
j→+∞

Fj(uj , A) | {uj} ⊂ L1 (Ω; RN ) , uj → u in L1 (Ω; RN )
}

,

F ′′(u, A) =: inf
{

lim sup
j→+∞

Fj(uj , A) | {uj} ⊂ L1 (Ω; RN ) , uj → u in L1 (Ω; RN )
}

,

so that with the previous notation d is the metric of L1 (Ω; RN ) and X = L1 (Ω; RN ).
The following compactness theorem holds for the Γ-limit of localized functionals, see [17]:

Proposition 1.6. Let Fj : L1(Ω; RN ) × A → [0, +∞] be a sequence of functionals. Suppose that for every
u ∈ L1(Ω; RN ) the lower and upper Γ-limits

α′(A) := F ′(u, A) = Γ(L1 (Ω; RN ))- lim inf
j→+∞

Fj(u, A)

α′′(A) := F ′′(u, A) = Γ(L1 (Ω; RN ))- lim sup
j→+∞

Fj(u, A)

define inner regular increasing set functions. Then there exists a subsequence {jk} such that the Γ-limit

F (u, A) = Γ(L1 (Ω; RN ))- lim
k→+∞

Fjk
(u, A)
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exists for all A ∈ A and u ∈ L1(Ω; RN ).

2. Functionals with p(x)-growth

In this paper we consider functionals F : L1 (Ω; RN )×A → [0, +∞] satisfying a growth condition of the form

0 ≤ F (u, A) ≤ β

∫
A

(a(x) + |Du|p(x)) dx

for all A ∈ A and all u ∈ L1 (Ω; RN ) such that
∫
Ω(|u|p(x) + |Du|p(x)) dx < +∞, where β is a positive constant,

a(x) ∈ L1(Ω) and p : Ω → R are given functions with p(x) ≥ 1.
It is natural to define, for every A ∈ A, the sets

Lp(x) (A; RN ) :=
{

u : A → R
N |

∫
A

|u|p(x) dx < +∞
}

,

W 1,p(x) (A; RN ) :=
{
u ∈ Lp(x) (A; RN ) | Du ∈ Lp(x)(A; RnN )

}
,

W
1,p(x)
loc (A; RN ) :=

{
u : A → R

N | u|B ∈ W 1,p(x)(B; RN ) ∀B ∈ A , B ⊂⊂ A
}

,

which coincide with the spaces Lp (A; RN ), W 1,p (A; RN ) and W 1,p
loc (A; RN ) in case p(x) ≡ p ≥ 1. In the sequel,

the target space R
N will be omitted when it is clear from the context, for example within proofs.

Note that in general Lp(x)(Ω) and W 1,p(x)(Ω) are not vector spaces: taking e.g. p(x) so that
∫
Ω 2p(x) dx =

+∞, clearly u ≡ 1 ∈ Lp(x)(Ω) but 2u /∈ Lp(x)(Ω). It is easy to show that they become vector spaces if
supΩ p(x) < +∞, thus W

1,p(x)
loc (Ω) is a vector space if p(x) is locally bounded (as e.g. if p(x) is continuous).

In any case, since | · |p(x) is a convex function if p(x) ≥ 1, it comes out that Lp(x)(Ω) and W 1,p(x)(Ω) are
convex sets.

We will work with continuous exponent functions p(x), or in the last section with a particular class of
discontinuous functions. We introduce the following assumptions, which we shall use only when needed:

Definition 2.1. A family {Ωi} is a locally finite regular partition of an open set Ω if each Ωi is an open set
with Lipschitz boundary and

Ω = Σ ∪
+∞⋃
i=1

Ωi

where |Σ| = 0, Ωi ∩ Ωj = ∅ if i �= j, and if A ∈ A0 yields A ∩ Ωi = ∅ except for a finite number of indices.

Definition 2.2. A function p : Ω → [1, +∞) is a regular piecewise continuous exponent if there exist a locally
finite regular partition {Ωi} of Ω and, for every i, a uniformly continuous function pi : Ωi → [1, +∞) such
that p(x) = pi(x) for every x ∈ Ωi.

Remark 2.3. If p(x) is a regular piecewise continuous exponent satisfying

inf
x∈Ωi

pi(x) > 1 ∀ i (2.1)

then for every A ∈ A0 there exist p, q such that 1 < p ≤ p(x) ≤ q < +∞ a.e. in A.

Since we need to work with open sets A which do not satisfy the assumptions of the Sobolev embedding the-
orem, if u ∈ L1(A) and

∫
A
|Du|p(x) dx < +∞ we cannot expect that |u|p(x) belongs to L1(A), see Example 2.5.
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However, we can prove the following:

Lemma 2.4. Let p : Ω → [1, +∞) be continuous in Ω. Then, for every function u ∈ L1 (Ω; RN ) such that∫
Ω
|Du|p(x) dx < +∞ and every A ∈ A0 we have∫

A

|u|p(x) dx < +∞ . (2.2)

In addition, if Ω has Lipschitz boundary and p(x) is uniformly continuous in Ω, then (2.2) holds for every A ∈ A
and in particular |u|p(x) ∈ L1(Ω).

Proof. Let us fix A ∈ A0; for every x0 ∈ A, choose εx0 > 0 so small that

1 ≤ p(x0) − εx0 < p(x0) + εx0 < (p(x0) − εx0)
∗ if p(x0) > 1 ,

or just p(x0) + εx0 < 1∗ if p(x0) = 1. Now, by the continuity of p(x) we can find δ = δ(x0, εx0) > 0 such
that Bδ(x0) ⊂⊂ Ω and in Bδ(x0) either |p(x) − p(x0)| < εx0 if p(x0) ≤ n, or p(x) ≥ n if p(x0) > n. By the

compactness of A, we can extract a finite cover
m⋃

i=1

Bδi(xi) of A, where xi ∈ A and δi = δ(xi, εxi) for each

i = 1, . . . , m. Denoting now

Bi := Bδi(xi) , pi
min := min

x∈Bi

p(x) , pi
max := max

x∈Bi

p(x) ,

we have ∫
Bi

|Du|pi
min dx ≤

∫
Bi

(1 + |Du|p(x)) dx < +∞ ,

hence u ∈ W 1,pi
min(Bi) for each i = 1, . . . , m. Since by construction either pi

min ≥ n or pi
max < (pi

min)∗, the
Sobolev embedding theorem yields that u ∈ Lpi

max(Bi) for each i = 1, . . . , m. Then we get∫
A

|u|p(x) dx ≤
m∑

i=1

∫
Bi

(1 + |u|pi
max) dx < +∞ ,

which proves (2.2). Finally, if Ω has Lipschitz boundary and p(x) is uniformly continuous in Ω, once p(x)
is extended in a continuous way to the closure Ω, to obtain |u|p(x) ∈ L1(Ω) we can argue exactly as above,
simply replacing Bδi(xi) with Bδi(xi)∩Ω, provided the radii δi are chosen so that all these sets have Lipschitz
boundary.

Example 2.5. Remark that Lemma 2.4 may fail to hold if p(x) is a generic discontinuous function. Indeed, if
x0 ∈ Ω and p(x) is any function such that

∫
Bε(x0)

2p(x) dx = +∞ for every ε, then the function u(x) ≡ 2 is
in L1(Ω) and

∫
Ω
|Du|p(x) dx = 0 , but |u|p(x) /∈ L1

loc(Ω) since
∫

Bε(x0)
|u|p(x) dx = +∞. However, the following

result clarifies the situation:

Corollary 2.6. If p : Ω → [1, +∞) is a regular piecewise continuous exponent, then from u ∈ L1 (Ω; RN ) and∫
Ω |Du|p(x) dx < +∞ we deduce

∫
A |u|p(x) dx < +∞ for every A ∈ A0.

To prove this result, it is enough to enclose A in an open set A′ ∈ A0 such that A′ ∩ Ωi has Lipschitz
boundary for every i, and to apply Lemma 2.4.

Remark 2.7. It follows from Lemma 2.4 that if p(x) is uniformly continuous in A ∈ A, then

W 1,p(x)(A; RN ) =
{

u ∈ L1(A; RN ) |
∫

A

|Du|p(x) dx < +∞
}



VARIATIONAL INTEGRALS WITH p(x)-GROWTH 501

if A has Lipschitz boundary, or at least the cone property (see [4]). In any case, if p(x) is continuous in Ω we
have that

W
1,p(x)
loc (A; RN ) = {u ∈ L1

loc(A; RN ) | |Du|p(x) ∈ L1
loc(A)} · (2.3)

In the sequel we will also need the following result:

Lemma 2.8. Let p : Ω → [1, +∞) be continuous in Ω. If u ∈ L1
loc(Ω; RN ), then for every open set A ∈ A0 with

Lipschitz boundary and for every sequence {uj} converging to u in L1(A; RN ) with

sup
j∈N

∫
A

|Duj|p(x) dx < +∞ , (2.4)

we have
lim

j→+∞

∫
A

|uj − u|p(x) dx = 0 .

Proof. If
m⋃

i=1

Bδi(xi) is a finite cover of A defined as in Lemma 2.4, but with the radii δi chosen so that

Ai := Bδi(xi) ∩ A has Lipschitz boundary, we deduce by (2.4)∫
Ai

|Duj|pi
min dx ≤ C ∀ i = 1, . . . , m , ∀ j ∈ N ,

thus {uj} is bounded in W 1,pi
min(Ai), for each i = 1, . . . , m. By Rellich’s theorem we obtain that uj → u in

Lpi
max(Ai) for each i, hence u ∈ Lp(x)(A) and

lim
j→+∞

∫
A

|uj − u|p(x) dx ≤ lim
j→+∞

m∑
i=1

∫
Ai

|uj − u|p(x) dx ≤ lim
j→+∞

m∑
i=1

∫
Ai

(|uj − u|pi
min + |uj − u|pi

max) dx = 0

and the proof is complete.

We have an analogous of this result for discontinuous exponents:

Corollary 2.9. The result of Lemma 2.8 holds again for regular piecewise continuous exponents p : Ω →
[1, +∞).

Remark 2.10. By Remark 2.7 the sequence {uj} of Lemma 2.8 belongs to W 1,p(x) (A; RN ); in addition, by
Proposition 2.13 below we also have u ∈ W 1,p(x) (A; RN ).

If A′, A are open sets in A, with A′ ⊂⊂ A, a cut-off function between A′ and A is a smooth function
ϕ ∈ C∞

0 (Ω) with sptϕ ⊂ A, 0 ≤ ϕ ≤ 1 and ϕ ≡ 1 on A′. In order to prove the fundamental estimate for a
family of functionals with p(x)-growth (compare Prop. 4.4) we will also need the following:

Lemma 2.11. Let p : Ω → [1, +∞) be continuous in Ω. Also, let A′, A, B ∈ A with A′ ⊂⊂ A, and let
u ∈ W

1,p(x)
loc (A; RN ) and v ∈ W

1,p(x)
loc (B; RN ). Then for every cut-off function ϕ between A′ and A we have that

ϕu + (1 − ϕ)v ∈ W
1,p(x)
loc (A′ ∪ B; RN ).

Proof. Clearly ϕu + (1 − ϕ)v ∈ L1
loc(A

′ ∪ B); in addition, by setting K := sptϕ and q := supK p(x) < +∞,
for every C ∈ A with C ⊂⊂ A′ ∪ B we have∫

C

|D(ϕu + (1 − ϕ)v)|p(x) dx =
∫

C

|ϕDu + (1 − ϕ)Dv + Dϕ ⊗ (u − v)|p(x) dx

=
∫

C∩A′
|Du|p(x) dx +

∫
C\K

|Dv|p(x) dx +
∫

(C∩K)\A′
| · |p(x) dx =: I + II + III .
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Since C ∩ A′ ⊂⊂ A and C \ K ⊂⊂ B, the terms I and II are finite; also,

III ≤ 4q−1

∫
(C∩K)\A′

[(|Du|p(x) + |Dv|p(x)) + (1 + ‖Dϕ‖q
∞)(|u|p(x) + |v|p(x))] dx

which is finite, since (C ∩ K) \ A′ ⊂⊂ A ∩ B, and by (2.3) the proof is complete.

Corollary 2.12. The result of Lemma 2.11 holds again for regular piecewise continuous exponents p : Ω →
[1, +∞).

In order to preserve the p(x)-growth condition in the Γ-limit (see Th. 4.1 and Prop. 4.3) we need to study
some measure-theoretic and lower semicontinuity properties of the functionals Ψp(x), Ψ̃p(x) : L1 (Ω; RN )×A →
[0, +∞] given by

Ψp(x)(u, A) :=


∫

A

|Du(x)|p(x) dx if u ∈ W
1,p(x)
loc (A; RN )

+∞ elsewhere on L1 (Ω; RN ) ,
(2.5)

Ψ̃p(x)(u, A) :=


∫

A

(|u|p(x) + |Du(x)|p(x)) dx if u ∈ W
1,p(x)
loc (A; RN )

+∞ elsewhere on L1 (Ω; RN ) ,
(2.6)

where p : Ω → [1, +∞) is a given function (possibly discontinuous).
It is easy to verify that Ψp(x)(u, ·) and Ψ̃p(x)(u, ·) are measures on A for every u ∈ L1 (Ω; RN ). We remark

that if we replace W
1,p(x)
loc (A) with W 1,p(x)(A) in (2.5), then Ψp(x)(u, ·) may fail to be inner regular, and hence

a measure, even if p(x) ≡ p > 1, since we may find u ∈ L1(Ω) \ Lp(A) with Du ∈ Lp(A) when the boundary
of A is not smooth. In the definition (2.6) of Ψ̃p(x) we can replace W

1,p(x)
loc (A) with W 1,p(x)(A) still obtaining

exactly the same functional, due to the presence of the term
∫

A |u|p(x) dx. In addition we are able to prove
lower semicontinuity of the functionals Ψp(x) and Ψ̃p(x).

Proposition 2.13. If p : Ω → (1, +∞) is continuous and such that p(x) ≥ p > 1 on Ω, then for every A ∈ A
the functional Ψp(x)(·, A) defined in (2.5) is lower continuous in L1 (Ω; RN ). The same result holds for the
functional Ψ̃p(x)(·, A) defined in (2.6) without any continuity assumption on p(x).

Proof. Let uj → u in L1(Ω) and A ∈ A: we have to prove that

Ψp(x)(u, A) ≤ lim inf
j→+∞

Ψp(x)(uj , A) . (2.7)

We may assume that the right-hand side is finite and that we are working on a subsequence, which we still label
{uj}, such that the lower limit in (2.7) is a limit. Then {uj} ⊂ W

1,p(x)
loc (A) and

∫
A
|Duj |p(x) dx ≤ c, which

implies that {Duj} is bounded in Lp(A) since∫
A

|Duj|p ≤
∫

A

(1 + |Duj |p(x)) dx ≤ c .

Thus we may also suppose that {Duj} converges weakly in Lp(A), but uj → u in L1(Ω), so it is easy to
verify that Du ∈ Lp(A) and Duj ⇀ Du in Lp(A). Now we may apply De Giorgi’s lower semicontinuity
theorem [7] (Th. 2.3.1), which holds without any regularity assumption on A and by which the functional
G(v, w) =

∫
A |w|p(x) dx, defined for v ∈ L1 (A; RN ), w ∈ Lp(A; RnN ), is lower semicontinuous with respect to
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the strong topology in L1 (A; RN ) and the weak topology in Lp(A; RnN ), obtaining that∫
A

|Du|p(x) dx ≤ lim
j→+∞

∫
A

|Duj |p(x) dx = lim
j→+∞

Ψp(x)(uj , A) < +∞ .

Then
∫

A |Du|p(x) dx < +∞ and by the continuity assumption on p(x) we may apply Lemma 2.4 to conclude
that u ∈ W

1,p(x)
loc (A) and Ψp(x)(u, A) =

∫
A
|Du|p(x) dx, which yields (2.7) and completes the proof.

To prove lower semicontinuity of the functional Ψ̃p(x)(·, A), we apply De Giorgi’s theorem to the functional
G(v, w) =

∫
A(|v|p(x) + |w|p(x)) dx and we may conclude without applying Lemma 2.4, thus the continuity of

p(x) is not needed.

Corollary 2.14. The result of Proposition 2.13 holds again for regular piecewise continuous exponents, provided
(2.1) holds.

Example 2.15. Remark that Ψp(x)(·, A) may fail to be L1(Ω)-l.s.c. if p(x) is not continuous. Indeed, if we
take p(x) as in Example 2.5, but with∫

Ω

(2 − δ)p(x) dx < +∞ ∀ δ > 0 ,

then the sequence uj(x) := 2 − 1/j converges to u(x) := 2 in L1(Ω) and Duj ≡ 0, thus Ψp(x)(uj, Ω) = 0, but
Ψp(x)(u, Ω) = +∞ since u /∈ W

1,p(x)
loc (Ω).

For our purposes, mainly to prove the integral representation Theorem 3.1, we need to introduce a suitable
notion of strong convergence on the set W

1,p(x)
loc (Ω), which in particular coincides with the W 1,p

loc convergence in
the constant case p(x) ≡ p ≥ 1. More precisely, we give the following:

Definition 2.16. We say that a sequence {uj} ⊂ W
1,p(x)
loc (Ω; RN ) converges to u ∈ W

1,p(x)
loc (Ω; RN ) strongly

in W
1,p(x)
loc (Ω; RN ) if

lim
j→+∞

∫
A

(|uj − u|p(x) + |Duj − Du|p(x)) dx = 0 (2.8)

for every A ∈ A0.

Remark 2.17. If uj → u in W
1,p(x)
loc (Ω; RN ), then |Duj|p(x) → |Du|p(x) in L1

loc(Ω), as an easy consequence of
the estimate |Duj|p(x) ≤ 2p(x)−1(|Duj − Du|p(x) + |Du|p(x)) and of the dominated convergence theorem.

We will make use of the following density result with respect to the convergence above, which is essentially
due to Zhikov [30], compare also [1] (Lem. 4.5).

Proposition 2.18. Let p : Ω → [1, +∞) be a continuous function satisfying the following local estimate about
the modulus of continuity:

∀A ∈ A0 ∃ γA > 0 : |p(x) − p(y)| ≤ γA

| log |x − y|| ∀x, y ∈ A , 0 < |x − y| <
1
2
· (2.9)

Then for every u ∈ W
1,p(x)
loc (Ω; RN ) there exists a sequence of smooth functions {uj} ⊂ C∞

0 (Ω; RN ) such that
uj → u in W

1,p(x)
loc (Ω; RN ). If in addition u ∈ W 1,p(x) (Ω; RN ), then uj → u also in L1 (Ω; RN ).

Proof. Let ρ(x) be a standard mollifier with support in the unit ball B1(0) ⊂ R
n, for every j ∈ N let ρj(x) :=

jnρ(j x), and set

uj(x) := (uj ∗ ρj)(x) , uj(x) :=

{
u(x) if dist(x, ∂Ω) > 1/j

0 otherwise .
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Then it is well known that uj ∈ C∞
0 (Ω), uj → u in W 1,1

loc (Ω), and uj → u in L1(Ω) if u ∈ L1(Ω). To prove that
|Duj − Du|p(x) → 0 in L1

loc(Ω), fix A ∈ A0, choose 0 < ε0 < 1 so that dist(A, ∂Ω) ≥ 2ε0, call q0 := supA p(x)
and try to apply the Lebesgue dominated convergence theorem to the sequence {|Duj − Du|p(x)}j>2/ε0 . Since
a.e. in A we have Duj = Du ∗ ρj → Du and |Duj − Du|p(x) ≤ 2q0−1 (|Duj |p(x) + |Du|p(x)), it is enough to
estimate from above the sequence {|Duj|p(x)}j>2/ε0 with some sequence strongly convergent in L1(A). To do
this, let us set

A′ := {x ∈ Ω | dist(x, A) < ε0} , 1 ≤ p := inf
x∈A′

p(x) , q := sup
x∈A′

p(x) < +∞ ,

g(x) := |Du|p(x), pj(x) := min{p(y) | |x − y| ≤ 1/j} and ϕj(x, z) := |z|pj(x), z ∈ R
nN .

Using the fact that ϕj(x, Du(y)) ≤ 1 + |Du(y)|p(y) if |x− y| ≤ 1/j, we are able to estimate |Duj |pj(x). Indeed,
since ϕj is a Carathéodory function convex with respect to z, by Jensen inequality we have

ϕj(x, Duj(x)) ≤
∫

|x−y|≤1/j

ρj(x − y)ϕj(x, Du(y)) dy

≤
∫

|x−y|≤1/j

ρj(x − y)(1 + |Du(y)|p(y)) dy = 1 + (g ∗ ρj)(x) .
(2.10)

In addition, using Hölder inequality if p > 1, and simply estimating ρj if p = 1, we obtain

|Duj(x)| ≤
∫

|x−y|≤1/j

|ρj(x − y)Du(y)| dy

≤ ‖Du‖Lp(A′) · jn−n(p−1)/p · ‖ρ‖Lp/(p−1)(B1(0)) = c(p) ‖Du‖Lp(A′) · jn/p.

(2.11)

Therefore, by (2.10) and (2.11) we have

|Duj(x)|p(x) = |Duj(x)|p(x)−pj(x) · ϕj(x, Duj(x))
≤ (1 + c(p)q−p ‖Du‖q−p

Lp(A′)) · (jn/p)p(x)−pj(x) · (1 + (g ∗ ρj)(x)) .

Finally, if x ∈ A, estimate (2.9) means that 0 ≤ p(x) − pj(x) ≤ γA/log j, hence

(jn/p)p(x)−pj(x) ≤ (jγA/ log j)n/p = enγA/p

and then we obtain
|Duj(x)|p(x) ≤ c (1 + (g ∗ ρj)(x))

for all x ∈ A, where c > 0 only depends on n, p, q, γA and u. Now, since g ∗ ρj → g in L1(A), we can apply the
Lebesgue dominated convergence theorem to conclude at the same time that |Duj(x)|p(x) → |Du(x)|p(x) and
|Duj(x) − Du(x)|p(x) → 0 in L1(A), as required.

Finally, it follows directly from Lemma 2.8 that
∫

A
|uj − u|p(x) dx → 0, thus uj → u in W

1,p(x)
loc (Ω) and the

proof is complete.

We recall now that a function u ∈ L1 (Ω; RN ) is piecewise affine in Ω if there exists a finite family {Ωi}i∈I

of disjoint open subsets of Ω and a Borel subset N of Ω with |N | = 0 such that Ω = (
⋃

i∈I Ωi)
⋃

N and u|Ωi

is affine on each Ωi. The following density result holds:

Proposition 2.19. Under the assumptions of Proposition 2.18, for every u ∈ W 1,p(x) (Ω; RN ) there exists a
sequence {uj} ⊂ W 1,p(x) (Ω; RN ) of functions which are piecewise affine on Ω and such that uj → u both in
L1 (Ω; RN ) and in W

1,p(x)
loc (Ω; RN ).
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Proof. By Proposition 2.18 for every u ∈ W 1,p(x)(Ω) there exists a sequence {uj} ⊂ C∞
0 (Ω) converging to u

both in L1(Ω) and in W
1,p(x)
loc (Ω). On the other side, by [19] (Ch. X, Prop. 2.1), given u ∈ C∞

0 (Ω) there exists
a sequence {uj} of functions in C0

0 (Ω) which are piecewise affine on Ω and such that uj → u and Duj → Du

uniformly in Ω. Then uj ∈ W 1,p(x)(Ω) and, since uniform convergence implies that
∫
Ω(|uj − u|p(x) + |Duj −

Du|p(x)) dx → 0, the desired sequence is obtained by a diagonal procedure.

3. An integral representation result

In this section we state and prove an integral representation theorem for a class of functionals with p(x)-growth.
More precisely, we have the following:

Theorem 3.1. Let p : Ω → [1, +∞) be a continuous function satisfying (2.9). Let F : L1(Ω; RN )×A → [0, +∞]
satisfy the following conditions:

1. (locality) F is local, i.e., F (u, A) = F (v, A) for every A ∈ A and u, v ∈ L1 (Ω; RN ) with u = v a.e. on
A;

2. (measure property) for all u ∈ L1(Ω; RN ) the set function F (u, ·) is increasing, and is the trace on A of
a Borel measure;

3. (growth conditions) there exist β > 0 and a(x) ∈ L1
loc(Ω) such that

0 ≤ F (u, A) ≤ β

∫
A

(a(x) + |Du|p(x)) dx

for all u ∈ W 1,p(x)(Ω; RN ) and A ∈ A;
4. (translation invariance in u) F (u + c, A) = F (u, A) for all u ∈ L1(Ω; RN ), A ∈ A, c ∈ R

N ;
5. (lower semicontinuity) F (·, A) is sequentially lower semicontinuous with respect to the strong convergence

in L1 (Ω; RN ) for all A ∈ A.
Then there exists a Carathéodory function f : Ω × R

nN → [0, +∞) such that

F (u, A) =
∫

A

f(x, Du(x)) dx (3.1)

for every A ∈ A and for every u ∈ L1 (Ω; RN ) such that u|A ∈ W
1,p(x)
loc (A; RN ); in addition, the function f(x, ·)

is quasi-convex on R
nN for a.e. x ∈ Ω and satisfies the growth condition

0 ≤ f(x, z) ≤ β (a(x) + |z|p(x)) (3.2)

for a.e. x ∈ Ω and all z ∈ R
nN .

Proof. The proof of Theorem 3.1 works as in the classical case of Sobolev spaces, see [9] (Th. 1.1), with the
exception of Steps 4, 5 and 7; for more details on the other steps see e.g. [14] (Th. 20.1) and [10] (Th. 9.1).

Step 1: definition of f .
For every z ∈ R

nN denote by uz : Ω → R
N the linear function uz(x) = zx. By ii), F (uz, ·) can be extended

to a Borel measure on Ω which, by iii), is absolutely continuous with respect to the Lebesgue measure. Hence,
there exists a density function gz ∈ L1

loc(Ω) such that

F (uz, A) =
∫

A

gz(x) dx

for all A ∈ A. We set f(x, z) := gz(x) for all x ∈ Ω and z ∈ R
nN . Then it is easy to verify that f is a Borel

function satisfying (3.2) for a.e. x ∈ Ω and all z ∈ R
nN .

Step 2: integral representation on piecewise affine functions.
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By the measure property of F it is easy to show that (3.1) holds for all A ∈ A and all u ∈ W 1,p(x)(Ω) which
are piecewise affine on Ω.

Step 3: rank-one-convexity of f .
It can be shown that for every fixed x ∈ Ω the function f(x, ·) is rank-one-convex, that is

f(x, tz2 + (1 − t)z1) ≤ tf(x, z2) + (1 − t)f(x, z1)

for all z1, z2 ∈ R
nN with rank(z1 − z2) ≤ 1 and for every t ∈ (0, 1). In particular it is well known that a

rank-one-convex function with a growth condition of order p satisfies a local Lipschitz condition, hence f(x, ·)
is locally Lipschitz for every x ∈ Ω and then f is a Carathéodory function.

Step 4: the inequality F (u, A) ≤
∫

A

f(x, Du(x)) dx for u ∈ W 1,p(x) (Ω; RN ) and A ∈ A.

As f is a Carathéodory function (see Step 3) satisfying the growth conditions (3.2), we have that for every
A′ ∈ A0 the functional

u �→
∫

A′
f(x, Du(x)) dx (3.3)

is continuous with respect to the W
1,p(x)
loc (Ω) convergence of Definition 2.16 (use the dominated convergence

theorem on subsequences).
Now, let u ∈ W 1,p(x)(Ω) and A ∈ A. By Proposition 2.19 there exists a sequence {uj} of functions in

W 1,p(x)(Ω) which are piecewise affine on Ω and such that uj → u in L1(Ω) and in W
1,p(x)
loc (Ω). Then by lower

semicontinuity v) of F , Step 2 and the continuity of the functional (3.3) in W
1,p(x)
loc (Ω), we obtain for every

A′ ∈ A0, A′ ⊂⊂ A, that

F (u, A′) ≤ lim inf
j→+∞

F (uj , A
′) = lim

j→+∞

∫
A′

f(x, Duj(x)) dx =
∫

A′
f(x, Du(x)) dx.

Since F (u, ·) is a measure, taking the limit as A′ ↗ A we get by the monotone convergence theorem

F (u, A) ≤
∫

A

f(x, Du(x)) dx (3.4)

for every u ∈ W 1,p(x)(Ω) and for every A ∈ A.

Step 5: the equality F (u, A) =
∫

A

f(x, Du(x)) dx for u ∈ W 1,p(x) (Ω; RN ) and A ∈ A.

Fix u ∈ W 1,p(x)(Ω) and let A, A′ ∈ A with A′ ⊂⊂ A. We modify the function u in the following way: take
A′′ ∈ A0 such that A′ ⊂⊂ A′′ ⊂⊂ Ω, let ϕ be a cut-off function between A′ and A′′ and set ũ := ϕu. It is
easy to verify that ũ ∈ W 1,p(x)(Ω) and that ũ + v ∈ W 1,p(x)(Ω) for every v ∈ W 1,p(x)(Ω), since ũ has compact
support.

Consider the functional G : L1(Ω) ×A → [0, +∞] defined by

G(v, B) := F (v + ũ, B).

Then G satisfies all hypotheses of Theorem 3.1. Indeed, i), ii), iv) and v) are trivially satisfied, whereas for all
v ∈ W 1,p(x)(Ω) and all B ∈ A we have

0 ≤ G(v, B) = F (v + ũ, B) ≤ β

∫
B

(a(x) + |Dũ + Dv|p(x)) dx ≤
∫

B

(b(x) + |Dv|p(x)) dx
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where γ = 2q−1β, with q = supx∈A′′ p(x) < +∞, and b(x) = a(x) + |Dũ(x)|p(x) ∈ L1
loc(Ω). Therefore from

Steps 1–4 above it follows that there exists a Carathéodory function g : Ω × R
nN → [0, +∞), satisfying (3.2)

with γ and b(x) instead of β and a(x), such that

G(v, B) ≤
∫

B

g(x, Dv(x)) dx ∀ v ∈ W 1,p(x)(Ω) , ∀B ∈ A , (3.5)

with equality for v piecewise affine in Ω. In addition, arguing as for (3.3), we can prove that for every B′ ∈ A0

the functional

v �→
∫

B′
g(x, Dv(x)) dx (3.6)

is continuous in W
1,p(x)
loc (Ω). We now prove that

F (u, A′) =
∫

A′
f(x, Du(x)) dx ; (3.7)

since F (u, ·) is a measure, taking A′ ↗ A we will obtain (3.1) for all A ∈ A and u ∈ W 1,p(x)(Ω).
By Proposition 2.19 there exists a sequence {uj} of functions in W 1,p(x)(Ω), piecewise affine in Ω, such that

uj → ũ in L1(Ω) and in W
1,p(x)
loc (Ω). Then, using the locality i) of F , Step 4, Step 2, equation (3.5) and the

continuity of the functionals (3.3) and (3.6), we obtain∫
A′

g(x, 0) dx = G(0, A′) = F (ũ, A′) = F (u, A′) ≤
∫

A′
f(x, Du) dx

=
∫

A′
f(x, Dũ) dx = lim

j→+∞

∫
A′

f(x, Duj) dx = lim
j→+∞

F (uj , A
′)

= lim
j→+∞

G(uj − ũ, A′) ≤ lim
j→+∞

∫
A′

g(x, D(uj − ũ)) dx =
∫

A′
g(x, 0) dx

and (3.7) is proved.

Step 6: the equality F (u, A) =
∫

A

f(x, Du(x)) dx for u|A ∈ W
1,p(x)
loc (A; RN ) and A ∈ A.

If u ∈ L1(Ω), A ∈ A and u|A ∈ W
1,p(x)
loc (A), then for every A′ ∈ A0, A′ ⊂⊂ A, we can find a function

v ∈ W 1,p(x)(Ω) such that v|A′ = u|A′ (it suffices to take v = ϕu, where ϕ ∈ C∞
0 (Ω) is a cut-off function

between A′ and A′′, with A′ ⊂⊂ A′′ ⊂⊂ A). Then, by the locality of F and Step 5 we have

F (u, A′) = F (v, A′) =
∫

A′
f(x, Dv(x)) dx =

∫
A′

f(x, Du(x)) dx

and we obtain the assertion as A′ ↗ A, by the measure property of F .

Step 7: quasi-convexity of f .
It is enough to prove that, for every A ∈ A0 with Lipschitz boundary, f(x, ·) is quasi-convex on R

nN for a.e.
x ∈ A. If A ∈ A0 is fixed and q := supA p(x) < +∞, the restriction f : A × R

nN → [0, +∞) is a Carathéodory
integrand with

0 ≤ f(x, z) ≤ β(a(x) + |z|p(x)) ≤ β(1 + a(x) + |z|q) ≤ b(x)(1 + |z|q)
where b(x) := β(1 + a(x)) ∈ L1(A). In addition, by lower semicontinuity v) it is easy to verify that the
functional (3.3) is sequentally weakly l.s.c. on W 1,q(A); hence we can apply [7] (Th. 4.1.5) to obtain that f(x, ·)
is quasi-convex in R

nN for a.e. x ∈ A.
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4. A Γ-convergence result

In this section we state and prove the main result of the paper, which characterizes the Γ-limit in the L1 (Ω; RN )
topology of a class of functionals with p(x)-growth. We will consider functions satisfying

α|z|p(x) ≤ f(x, z) ≤ β(a(x) + |z|p(x)) (4.1)

for a.e. x ∈ Ω and all z ∈ R
nN , where 0 < α ≤ β are positive constants and a(x) ∈ L1(Ω). More precisely, we

are able to prove the following results:

Theorem 4.1. Let p : Ω → (1, +∞) be a continuous function with p(x) ≥ p > 1 for all x ∈ Ω. Let
fj : Ω × R

nN → [0, +∞) be Borel functions satisfying (4.1) for a.e. x ∈ Ω and all z ∈ R
nN . Finally let

Fj : L1(Ω; RN ) ×A → [0, +∞] be the variational functionals defined by

Fj(u, A) :=


∫

A

fj(x, Du(x)) dx if u ∈ W
1,p(x)
loc (A; RN )

+∞ elsewhere on L1 (Ω; RN ) .
(4.2)

Then there exists a subsequence {jk} such that the Γ-limit

F (u, A) := Γ(L1 (Ω; RN ))- lim
k→+∞

Fjk
(u, A) (4.3)

exists for all u ∈ L1(Ω; RN ) and A ∈ A, with estimates

α Ψp(x)(u, A) ≤ F (u, A) ≤ β

(∫
A

a(x) dx + Ψp(x)(u, A)
)

(4.4)

for all u ∈ L1 (Ω; RN ) and A ∈ A, where the functional Ψp(x) is defined in (2.5).

Theorem 4.2. Let F (u, A) be the as in (4.3) and, in addition to the hypotheses of Theorem 4.1, suppose that
the function p satisfies (2.9). Then there exists a Carathéodory function f : Ω×R

nN → [0, +∞), satisfying the
growth estimate (4.1) for a.e. x ∈ Ω and all z ∈ R

nN , with f(x, ·) quasi-convex for a.e. x ∈ Ω, such that for
every A ∈ A

F (u, A) =


∫

A

f(x, Du(x)) dx if u ∈ W
1,p(x)
loc (A; RN )

+∞ elsewhere on L1 (Ω; RN ) .

(4.5)

Proof of Theorem 4.1. The proof is divided in two steps: first we prove existence of the Γ-limit and then we
show measure property.

Step 1: existence of the Γ-limit.
First of all, we prove a growth estimates for the upper and lower Γ-limits F ′′(u, A) and F ′(u, A).

Proposition 4.3. If p : Ω → (1, +∞) is a continuous function with p(x) ≥ p > 1 in Ω, and {Fj} is given by
(4.2), then for every A ∈ A and u ∈ L1 (Ω; RN ) we have

α Ψp(x)(u, A) ≤ F ′(u, A) ≤ F ′′(u, A) ≤ β

(∫
A

a(x) dx + Ψp(x)(u, A)
)

. (4.6)

Proof. Since the functional Fj satisfies (4.4), and since by Proposition 2.13 the functional Ψp(x)(·, A) is L1(Ω)-
l.s.c. for every A ∈ A, applying [14] (Prop. 6.7) we obtain (4.6) for every u ∈ L1(Ω) and A ∈ A.
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Remark that Proposition 4.3 yields that the Γ-limit F (u, A) exists and is equal to +∞ for every A ∈ A and
every u ∈ L1(Ω) such that u /∈ W

1,p(x)
loc (A) or u ∈ W

1,p(x)
loc (A) but

∫
A |Du|p(x) dx = +∞.

To prove existence of the Γ-limit for every u and A, we want to apply the compactness result of Proposition 1.6;
thus we need to show that for fixed u ∈ L1(Ω) the upper and lower Γ-limits F ′′(u, ·) and F ′(u, ·) define inner
regular increasing set functions. Now, the increasing property is inherited by the same property of the integral
functionals Fj . To show inner regularity, we use the following uniform fundamental Lp(x) estimate for the
sequence {Fj}:
Proposition 4.4. (Uniform fundamental estimate) If p : Ω → [1, +∞) is continuous in Ω, for all open
sets A, A′, B ∈ A, with A′ ⊂⊂ A, and for every σ > 0, there exists a constant Mσ > 0, depending on α, β, p(x)
and a(x), such that for every u, v ∈ L1(Ω; RN ) there exists a cut-off function ϕ between A′ and A such that for
any j ∈ N

Fj(ϕu + (1 − ϕ)v, A′ ∪ B) ≤ (1 + σ)(Fj(u, A) + Fj(v, B)) + Mσ

∫
A∩B

|u − v|p(x) dx + σ . (4.7)

Proof. Fix A, A′, B ∈ A, with A′ ⊂⊂ A, σ > 0 and choose u, v ∈ L1(Ω) so that the right-hand side of (4.7)
is finite. Then by (4.2) we have u ∈ W

1,p(x)
loc (A), v ∈ W

1,p(x)
loc (B), |Du|p(x) ∈ L1(A) and |Dv|p(x) ∈ L1(B).

If 2 δ := dist(A′, ∂A), 0 < ν < δ, 0 < r < δ − ν, d(x) := dist(x, A′), let ϕ be a cut-off function between
{x ∈ A | d(x) < r} and {x ∈ A | d(x) < ν + r}, with ‖Dϕ‖∞ ≤ 2/ν. Since by Lemma 2.11 the function
ϕu + (1 − ϕ)v belongs to W

1,p(x)
loc (A′ ∪ B), by (4.2) one has

MFj(ϕu + (1 − ϕ)v, A′ ∪ B) =
∫

A′∪B

fj(x, D(ϕu + (1 − ϕ)v)) dx

≤ Fj(u, A) + Fj(v, B) +
∫

Bν
r

fj(x, D(ϕu + (1 − ϕ)v)) dx , (4.8)

where
Bν

r := {x ∈ B | r < d(x) < r + ν}·
We need to estimate the right-hand side in (4.8) independently of r and ν, which will be chosen at the end. To
this purpose note that for any possible choice of r and ν we have Bν

r ⊂ Kδ := {x ∈ A ∩ B | 0 < d(x) < δ},
with Kδ ∈ A0. Therefore, if we set q := supKδ

p(x), which is independent of r and ν, by (4.1) we obtain (for
2/ν > 1 )∫

Bν
r

fj(x, D(ϕu + (1 − ϕ)v)) dx ≤ β 2q−1

∫
Bν

r

(a(x) + |Du|p(x) + |Dv|p(x) + |Dϕ ⊗ (u − v)|p(x)) dx

≤ µ(Bν
r ) + β 22q−1 ν−q

∫
A∩B

|u − v|p(x) dx ,

where
µ(E) := β 2q−1

∫
E

(a(x) + |Du|p(x) + |Dv|p(x)) dx .

Now, if N ∈ N is large enough that

N ≥ max
{

β 2q−1

σα
,

β 2q−1

σ

∫
A∩B

a(x) dx

}
,

there exists k ∈ {1, . . . , N} such that, for r = δ (k − 1)/N and ν = δ/N , we have

µ(Bν
r ) ≤ 1

N
µ(Kδ) ≤ 1

N
µ(A ∩ B) ≤ σ α

∫
A∩B

(|Du|p(x) + |Dv|p(x)) dx + σ < +∞ .



510 A. COSCIA AND D. MUCCI

In addition, by (4.1) we obtain

α

∫
A∩B

(|Du|p(x) + |Dv|p(x)) dx ≤
∫

A∩B

(fj(x, Du) + fj(x, Dv)) dx ≤ Fj(u, A) + Fj(v, B) .

Therefore we obtain (4.7) with Mσ = β22q−1N qδ−q, which only depends on α, β, p(x), a(x), A′, A and B, as
required.

We are now able to prove the following:

Proposition 4.5. For every u ∈ L1(Ω; RN ), the lower and upper Γ-limits F ′(u, ·) and F ′′(u, ·) define inner
regular set functions on A.

Proof. We prove inner regularity of the lower Γ-limit; the same proof works for the upper Γ-limit. For any fixed
u ∈ L1(Ω) and C ∈ A, we have to show that

F ′(u, C) ≤ sup{F ′(u, A) | A ∈ A , A ⊂⊂ C} , (4.9)

since the other inequality follows immediately from the monotonicity of F ′(u, ·). If the right-hand side of (4.9)
is equal to +∞ there is nothing to prove; else, by (4.6) and (2.5) we have sup{∫

A
|Du|p(x) dx | A ∈ A, A ⊂⊂

C} < +∞, thus |Du|p(x) ∈ L1(C) and hence u ∈ W
1,p(x)
loc (C) by (2.3).

Now fix a compact subset K ⊂ C, choose A′, A ∈ A0 such that K ⊂ A′ ⊂⊂ A ⊂⊂ C, A with Lipschitz
boundary, and define B := C \ K. By definition of F ′(u, A) < +∞ there exists a sequence {uj} converging to
u in L1(Ω) such that F ′(u, A) = lim inf

j→+∞
Fj(uj , A). As usual, we may assume that the lower limit is a limit and

that

sup
j∈N

∫
A

|Duj|p(x) dx < +∞ , (4.10)

so {uj} ⊂ W 1,p(x)(A) by Lemma 2.4. By the fundamental estimate (4.7), applied to uj on A and u on B, and
by (4.1), for any σ > 0 we can find Mσ > 0 and a sequence {ϕj} of cut-off functions between A′ and A such
that

Fj(ϕjuj + (1 − ϕj)u, A′ ∪ B) ≤ (1 + σ)(Fj(uj , A) + Fj(u, B)) + Mσ

∫
A∩B

|uj − u|p(x) dx + σ

≤ (1 + σ)
(

Fj(uj , A) + β

∫
B

(a(x) + |Du|p(x)) dx

)
+ Mσ

∫
A

|uj − u|p(x) dx + σ .

Now, since ϕjuj + (1 − ϕj)u → u in L1(Ω), using (4.10) and Lemma 2.8 we obtain

F ′(u, C) = F ′(u, A′ ∪ B) ≤ lim inf
j→+∞

Fj(ϕjuj + (1 − ϕj)u, A′ ∪ B)

≤ (1 + σ)

(
F ′(u, A) + β

∫
C\K

(a(x) + |Du|p(x)) dx

)
+ σ

that is, by the arbitrariness of σ > 0,

F ′(u, C) ≤ F ′(u, A) + β

∫
C\K

(a(x) + |Du|p(x)) dx . (4.11)

Since |Du|p(x) ∈ L1(C), the last term in (4.11) can be taken arbitrarily small as |C \ K| → 0 and the proof is
complete.
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Applying Proposition 1.6, we obtain a subsequence {jk} such that the Γ-limit F (u, A) in (4.3) exists for all
u ∈ L1(Ω) and A ∈ A; in addition F (u, ·) is an increasing set function on A for every u ∈ L1(Ω) and F (u, A)
satisfies the estimates (4.4) by Proposition 4.3.

Step 2: measure property of the Γ-limit.
We now show that for all u ∈ L1 (Ω; RN ) the Γ-limit F (u, ·) is the trace on A of a Borel measure.
In order to apply the De Giorgi-Letta criterion [18], we have to prove that for every fixed u ∈ L1(Ω)

the increasing set function F (u, ·) is subadditive, superadditive and inner regular. Since we have just proved
(Prop. 4.5) that both the upper and lower Γ-limits are inner regular, and it is well known that the lower Γ-limit
F ′(u, ·) is superadditive (see e.g. [14], Prop. 16.12), we only have to show that the upper Γ-limit F ′′(u, ·) is
subadditive.

Proposition 4.6. For every u ∈ L1(Ω; RN ) we have

F ′′(u, A ∪ B) ≤ F ′′(u, A) + F ′′(u, B) (4.12)

for every A, B ∈ A.

The subadditivity (4.12) of F ′′(u, ·) follows, by means of inner regularity, from the following weak subaddi-
tivity property:

F ′′(u, A′ ∪ B) ≤ F ′′(u, A) + F ′′(u, B) (4.13)

for every A′, A, B ∈ A with A′ ⊂⊂ A and B with Lipschitz boundary.
We first prove (4.13) under the additional assumptions that A belongs to A0 and A ∩ B has Lipschitz

boundary. To this purpose let us fix u ∈ L1(Ω) and let A′, A, B ∈ A, with A′ ⊂⊂ A, A ∈ A0, B and A∩B with
Lipschitz boundary, such that the right-hand side of (4.13) is finite. By definition of upper Γ-limit, there exist
two sequences {uj} and {vj}, both converging to u in L1(Ω), such that

F ′′(u, A) = lim sup
j→+∞

Fj(uj , A) < +∞ and F ′′(u, B) = lim sup
j→+∞

Fj(vj , B) < +∞

and hence by (4.2) and (4.1)

sup
j∈N

∫
A

|Duj |p(x) dx < +∞ and sup
j∈N

∫
B

|Dvj |p(x) dx < +∞ . (4.14)

By the fundamental estimate (Prop. 4.4) applied to uj and vj , for any σ > 0 we can find Mσ > 0 and a sequence
wj := ϕjuj + (1 − ϕj)vj , where the ϕj are cut-off functions between A′ and A, such that

Fj(wj , A
′ ∪ B) ≤ (1 + σ)(Fj(uj , A) + Fj(vj , B)) + Mσ

∫
A∩B

|uj − vj |p(x) dx + σ

≤ (1 + σ)(Fj(uj , A) + Fj(vj , B)) + Mσ 2q−1

∫
A∩B

(|uj − u|p(x) + |vj − u|p(x)) dx + σ

where q := supx∈A∩B p(x) < +∞. Since wj → u in L1(Ω), A∩B belongs to A0, A∩B has Lipschitz boundary
and (4.14) holds, by definition of upper Γ-limit and Lemma 2.8 we obtain

F ′′(u, A′ ∪ B) ≤ lim sup
j→+∞

Fj(wj , A
′ ∪ B) ≤ (1 + σ)(F ′′(u, A) + F ′′(u, B)) + σ

and hence (4.13) holds by the arbitrariness of σ > 0. To extend (4.13) to any A ∈ A, it is enough to take
C ∈ A0 such that A′ ⊂⊂ C ⊂⊂ A and C ∩ B has Lipschitz boundary, and by the monotonicity of F ′′(u, ·) we
obtain

F ′′(u, A′ ∪ B) ≤ F ′′(u, C) + F ′′(u, B) ≤ F ′′(u, A) + F ′′(u, B) .
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Now, to prove (4.12) we fix u ∈ L1(Ω) and A, B ∈ A such that the right-hand side of (4.12) is finite, which in
particular gives F ′′(u, A ∪ B) < +∞ by (4.6). By inner regularity, it is clear that (4.13) yields (4.12) for any
A, B ∈ A, provided B has Lipschitz boundary. In fact, for any C ∈ A with C ⊂⊂ A ∪B, by enlarging a bit the
subset C \ B, we can find A′ ⊂⊂ A such that C ⊂ A′ ∪ B, which yields

F ′′(u, C) ≤ F ′′(u, A′ ∪ B) ≤ F ′′(u, A) + F ′′(u, B)

and by inner regularity (4.12). Finally, to prove (4.12) for any B ∈ A, since F ′′(u, A ∪ B) < +∞, by inner
regularity for each small ε > 0 we can find C ⊂⊂ A ∪ B such that

F ′′(u, C) ≥ F ′′(u, A ∪ B) − ε .

By enlarging a bit the set C \ A, we can find an open subset B̃ of B with Lipschitz boundary and such that
C ⊂ A ∪ B̃. Then one has

F ′′(u, A ∪ B) ≤ F ′′(u, C) + ε ≤ F ′′(u, A ∪ B̃) + ε ≤ F ′′(u, A) + F ′′(u, B̃) + ε ≤ F ′′(u, A) + F ′′(u, B) + ε

and hence (4.12), by letting ε → 0+.

Proof of Theorem 4.2. We can apply Theorem 3.1 to the Γ-limit functional F (u, A) given by (4.3). Indeed the
locality property is well known (see e.g. [14], Prop. 16.15), the measure property ii) was proved in Step 2 of
Theorem 4.1, we saw in Step 1 that the Γ-limit F satisfies (4.4), which in particular gives the growth condition
iii), and conditions iv) and v) are trivially satisfied. Therefore, Theorem 3.1 implies that (3.1) holds for all
u ∈ W

1,p(x)
loc (A) and A ∈ A, with f quasi-convex. Finally, it is easy to conclude that (4.4) and (2.5) yield the

growth estimate (4.1) for f and the integral representation (4.5) on all of L1 (Ω; RN ).

5. Integrands depending on u

In this section we extend the results previously obtained to the case of functionals with explicit dependence on
u. We will then consider functions satisfying

α(|u|p(x) + |z|p(x)) ≤ f(x, u, z) ≤ β(a(x) + |u|p(x) + |z|p(x)) (5.1)

for a.e. x ∈ Ω and for all u ∈ R
N and z ∈ R

nN , where 0 < α ≤ β and a(x) ∈ L1(Ω). We are able to prove the
following results:

Theorem 5.1. Let p : Ω → (1, +∞) be a continuous function with p(x) ≥ p > 1 for all x ∈ Ω. Let
fj : Ω × R

N × R
nN → [0, +∞) be Borel functions satisfying (5.1) for a.e. x ∈ Ω and for all u ∈ R

N and
z ∈ R

nN . Finally let Fj : L1(Ω; RN ) ×A → [0, +∞] be the variational functionals defined by

Fj(u, A) :=


∫

A

fj(x, u(x), Du(x)) dx if u ∈ W
1,p(x)
loc (A; RN )

+∞ elsewhere on L1 (Ω; RN ) .

Then there exists a subsequence {jk} such that the Γ-limit

F (u, A) := Γ(L1 (Ω; RN ))- lim
k→+∞

Fjk
(u, A) (5.2)

exists for all u ∈ L1(Ω; RN ) and A ∈ A, with estimates

α Ψ̃p(x)(u, A) ≤ F (u, A) ≤ β

(∫
A

a(x) dx + Ψ̃p(x)(u, A)
)

, (5.3)
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where Ψ̃p(x) is the local functional given by (2.6).

Theorem 5.2. Let F (u, A) be as in (5.2) and, in addition to the hypotheses of Theorem 5.1, suppose that the
function p satisfies (2.9) and that for every A ∈ A0

|fj(x, u1, z) − fj(x, u2, z)| ≤ ωA(|u1 − u2|)(bA(x) + |z|p(x)) (5.4)

holds for a.e. x ∈ A, where bA(x) ∈ L1(A) and ωA : R
+ → R

+ is an increasing continuous function with
ωA(0) = 0. Then there exists a Carathéodory function f : Ω × R

N × R
nN → [0, +∞), satisfying the growth

estimate (5.1) for a.e. x ∈ Ω and all u ∈ R
N and z ∈ R

nN , with f(x, u, ·) quasi-convex in R
nN for a.e. x ∈ Ω

and all u ∈ R
N , such that for every A ∈ A

F (u, A) :=


∫

A

f(x, u(x), Du(x)) dx if u ∈ W 1,p(x)(A; RN )

+∞ elsewhere on L1 (Ω; RN ) .
(5.5)

In proving Theorems 5.1 and 5.2, we will only outline the main differences from the case when there is no
dependence on u of the integrands fj. Condition (5.4) is required to rely on the classical integral representation
theorem of Buttazzo and Dal Maso, see [8] (Th. 1.10). In fact, we will first write the Γ-limit F (u, A) as an
integral functional only for u ∈ W 1,q(A; RN ) and A ∈ A0, where q = supx∈A p(x), and then we will extend the
integral representation.

Proof of Theorem 5.1. Since each of the local functionals Fj satisfies (5.3), and by Proposition 2.13 the func-
tional Ψ̃p(x)(·, A) is L1(Ω)-l.s.c. for every A ∈ A, we obtain

α Ψ̃p(x)(u, A) ≤ F ′(u, A) ≤ F ′′(u, A) ≤ β

(∫
A

a(x) dx + Ψ̃p(x)(u, A)
)

(5.6)

for every u ∈ L1(Ω) and A ∈ A. In particular, the Γ-limit F (u, A) is equal to +∞ if and only if u ∈
L1(Ω) \ W 1,p(x)(A).

Moreover, the uniform fundamental Lp(x) estimate of Proposition 4.4 holds again. In fact, the upper estimate
of Fj(ϕu + (1 − ϕ)v, (A′ ∪ B) ∩ {0 < ϕ < 1}), due to (5.1), contains the extra term

β

∫
Bν

r

|ϕu + (1 − ϕ)v|p(x) dx ≤ β

∫
Bν

r

(|u|p(x) + |v|p(x)) dx .

Then it suffices to choose

µ(E) := β 2q−1

∫
E

(a(x) + |u|p(x) + |Du|p(x) + |v|p(x) + |Dv|p(x)) dx

and remark that by (5.1) one has

α

∫
A∩B

(|u|p(x) + |Du|p(x)) dx ≤
∫

A∩B

fj(x, u(x), Du(x)) dx .

Monotonicity of the lower and upper Γ-limits F ′(u, ·) and F ′′(u, ·) is trivial. Moreover, to show inner regu-
larity, we reduce to prove (4.9) in case the right-hand side is finite, which yields that u ∈ W 1,p(x)(C) by (5.6)
and (2.6). Following Proposition 4.5, by means of the fundamental Lp(x) estimate we deduce, instead of (4.11),

F ′(u, C) ≤ F ′(u, A) + β

∫
C\K

(a(x) + |u|p(x) + |Du|p(x)) dx
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and again, as K ↗ C, we obtain (4.9), and hence inner regularity. By Proposition 1.6, we then have existence
of the Γ-limit F (u, A) with the growth estimates (5.3) given by (5.6).

To show the measure property of the Γ-limit F (u, ·), following Step 2 in Theorem 4.1, it suffices to recover
subadditivity of the upper Γ-limit F ′′(u, ·): this holds since the right-hand side of (4.13) is finite for u ∈
W 1,p(x)(A ∪ B), and the proof of Proposition 4.6 actually relies on the fundamental Lp(x) estimate.

Proof of Theorem 5.2. To avoid overcrowding the paper with indices, we relabel Fj the Γ-converging subse-
quence. To obtain the integral representation of the Γ-limit, take any sequence Oi ↗ Ω such that Oi ∈ A0

and Oi has Lipschitz boundary for every i. Then (5.4) holds for a.e. x ∈ Oi whereas, by continuity of p(x),

qi := sup
x∈Oi

p(x) < +∞ ∀ i . (5.7)

Denoting by Ai the family of open subsets of Oi, we now consider the functional Gi : W 1,qi(Oi)×Ai → [0, +∞]
given by

Gi(u, A) := F (u, A) ,

where u ∈ W 1,p(x)(Ω) is any extension of u. From now on we drop all the indices i: we will recover the full
notation later. By (5.3) and (5.7) we have

0 ≤ G(u, A) ≤ β

∫
A

(2 + a(x) + |u|q + |Du|q) dx

for all u ∈ W 1,q(O) and A ∈ A, and hence G satisfies a growth condition of order q. Moreover, locality of F
implies that also G is local on A. Also, since F (·, A) is L1(Ω)-l.s.c., and O has Lipschitz boundary, for every
A ∈ A the functional u �→ G(u, A) is sequentially w∗-W 1,∞(O)-l.s.c. and strongly W 1,q(O)-l.s.c.. Finally, since
G(u, ·) is a measure on A for every u ∈ W 1,q(O), in order to apply [8] (Th. 1.10) we have to show that G
also satisfies a weak condition ω. More precisely, we show the existence of a sequence of functions ωm(x, r),
integrable in x, increasing and continuous in r and with ωm(x, 0) ≡ 0, such that

|G(u + s, A) − G(u, A)| ≤
∫

A

ωm(x, |s|) dx (5.8)

for every m ∈ N, A ∈ A, s ∈ R
N and u ∈ C1(O) with |u|, |u + s|, |Du| ≤ m in O. In fact, assume e.g. that

G(u + s, A) ≥ G(u, A), let u ∈ W 1,p(x)(Ω) be an extension of u and let {uj} be such that uj → u in L1(Ω)
and Fj(uj , A) → F (u, A) = G(u, A). Then by (5.4) we have

G(u + s, A) − G(u, A) = F (u + s, A) − F (u, A) ≤ lim inf
j→+∞

(Fj(uj + s, A) − Fj(uj , A))

≤ lim inf
j→+∞

∫
A

|fj(x, uj + s, Duj) − fj(x, uj , Duj)| dx

≤ lim inf
j→+∞

∫
A

ωO(|s|)(bO(x) + |Duj |p(x)) dx

≤ lim inf
j→+∞

ωO(|s|)
(∫

A

bO(x) dx +
1
α

Fj(uj , A)
)

= ωO(|s|)
(∫

A

bO(x) dx +
1
α

F (u, A)
)

≤ ωO(|s|)
∫

A

(
bO(x) +

β

α
(2 + a(x) + |u|q + |Du|q)

)
dx ,

where we used (5.3), and we obtain (5.8) with ωm(x, r) := ω(r)
(
bO(x) +

β

α
(2 + a(x) + 2mq)

)
.
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Then, by [8] (Th. 1.10), there exists a Carathéodory integrand g(x, u, z) : O × R
N × R

nN → [0, +∞),
quasi-convex in z for a.e. x ∈ O and all u ∈ R

N , and satisfying a growth condition of order q, such that

G(u, A) =
∫

A

g(x, u(x), Du(x)) dx (5.9)

holds for every u ∈ W 1,q(O) and A ∈ A. We now recover the notation with the index i. In particular,
equation (5.9) holds for the restriction u|Oi

of every function u ∈ C∞
0 (Ω), and thus for i < j large enough that

spt(u) ⊂ Oi we have Gi(u,Oi) = F (u,Oi) = Gj(u,Oi), so that gi(·, u, z) ≡ gj(·, u, z) for a.e. x ∈ Oi. Setting
f(x, u, z) := gi(x, u, z) if x ∈ Oi, we have that

F (u, A) =
∫

A

f(x, u(x), Du(x)) dx (5.10)

for every u ∈ C∞
0 (Ω) and all A ∈ A0 and hence, by the measure property, for all A ∈ A.

To extend the integral representation (5.10) to all u ∈ W 1,p(x)(Ω), we first remark that (5.3) and (5.10) yield
that the integrand f satisfies the p(x)-growth condition (5.1). Consequently, since f is a Carathéodory function
satisfying (5.1), we have that for every A ∈ A0 the functional u �→ ∫

A f(x, u, Du) dx is continuous with respect
to the W

1,p(x)
loc (Ω) convergence, compare Step 4 in Section 3. Now fix u ∈ W 1,p(x)(Ω) and, by the density result

in Proposition 2.18, let {uj} ⊂ C∞
0 (Ω) be a smooth sequence converging to u both in W

1,p(x)
loc (Ω) and in L1(Ω):

by the lower semicontinuity of F

F (u, A) ≤ lim inf
j→+∞

F (uj , A) = lim
j→+∞

∫
A

f(x, uj , Duj) dx =
∫

A

f(x, u, Du) dx , (5.11)

hence one inequality holds in (5.10) for all u ∈ W 1,p(x)(Ω) and A ∈ A0. To obtain equality, let u ∈ W 1,p(x)(Ω)
be an extension of u outside A, with compact support in Ω, see Step 5 of Section 3, let q0 be the maximum of
p on the support of u, and consider the functional G : L1(Ω) ×A → [0, +∞] given by

G(v, B) := F (v + u, B) + α Ψ̃(u, B) .

It is easy to show that G satisfies hypotheses similar to (5.1), since in particular by (5.1)

G(v, B) ≥ α

∫
B

(|u + v|p(x) + |u|p(x) + |Du + Dv|p(x) + |Du|p(x)) dx

≥ α

∫
B

21−p(x)(|v|p(x) + |Dv|p(x)) dx ≥ α 21−q0 Ψ̃(v, B)

and similarly

G(v, B) ≤ β

∫
B

(ã(x) + |v|p(x) + |Dv(x)|p(x)) dx

for all v ∈ W 1,p(x)(Ω) and B ∈ A, with ã(x) ∈ L1(Ω). Then, by the previous argument, there exists a
Carathéodory function g : Ω × R

N × R
nN → [0, +∞), satisfying p(x)-growth estimates similar to (5.1), such

that

G(v, B) ≤
∫

B

g(x, v(x), Dv(x)) dx , ∀ v ∈ W 1,p(x)(Ω) , B ∈ A0 , (5.12)

with equality holding for v ∈ C∞
0 (Ω). As we remarked above for f , also the functional v �→ ∫

B
g(x, u, Dv) dx

is strongly continuous in W
1,p(x)
loc . If {uj} ⊂ C∞

0 (Ω) is the same sequence we chose to get (5.11), and
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α := α Ψ̃(u, A) , we have∫
A

g(x, 0, 0) dx − α = F (u, A) = F (u, A) ≤
∫

A

f(x, u, Du) dx = lim
j→+∞

∫
A

f(x, uj , Duj) dx

= lim
j→+∞

F (uj , A) = lim
j→+∞

G(uj − u, A) − α ≤ lim
j→+∞

∫
A

g(x, uj − u, D(uj − u)) dx − α

= lim
j→+∞

∫
A

g(x, uj − u, D(uj − u)) dx − α =
∫

A

g(x, 0, 0) dx − α

and therefore equality in (5.10) holds for all u ∈ W 1,p(x)(Ω) and A ∈ A0 and hence, by the measure property
of F , for all A ∈ A.

Finally, we argue as in Step 6 in Section 3 to extend the integral representation (5.10) to all u ∈ L1(Ω) with
u|A ∈ W 1,p(x)(A); since by (5.3) we have F (u, A) = +∞ if u|A /∈ W 1,p(x)(A), we obtain (5.5) and the proof is
complete.

6. Integrands with discontinuous p(x)-growth exponent

In this section we extend the results previously obtained to the more general case of functionals with p(x)-growth
where p(x) is allowed to be discontinuous in a negligible set Σ ⊂ Ω: henceforward, p(x) is a regular piecewise
continuous exponent, according to Definition 2.2.

In the sequel, if A ∈ A we will denote Ai := A ∩ Ωi the intersection of A with Ωi. We will again obtain
existence and integral representation of Γ-limits. More precisely, we are going to prove the following results.

Theorem 6.1. Let p : Ω → (1, +∞) be a regular piecewise continuous exponent satisfying (2.1), and let
fj : Ω × R

nN → [0, +∞) be Borel functions satisfying (4.1) for a.e. x ∈ Ω and all z ∈ R
nN . If Fj is as in

(4.2) there exists a subsequence {jk} such that the Γ-limit (4.3) exists for all u ∈ L1(Ω; RN ) and A ∈ A, with
estimates (4.4).

Theorem 6.2. Under the assumptions of Theorem 6.1, suppose that each function pi satisfies (2.9) in Ωi.
Then there exists a Carathéodory function f : Ω×R

nN → [0, +∞), with f(x, ·) quasi-convex for a.e. x ∈ Ω, f
satisfying the growth estimates (4.1), such that the integral representation (4.5) holds for all A ∈ A.

In the particular case when p(x) is constant on each region Ωi, as in the case of standard p-growth we obtain
the precise expression of the relaxed functional, compare [7] (4.4.5). To this aim, if f : Ω × R

nN → [0, +∞)
is a Borel function satisfying the growth condition (4.1), and F : L1 (Ω; RN )×A → [0, +∞] is the variational
functional given by

F(u, A) :=


∫

A

f(x, Du(x)) dx if u ∈ W
1,p(x)
loc (A; RN )

+∞ elsewhere on L1 (Ω; RN )

for all A ∈ A, we denote by F(u, A) the relaxed functional of F(u, A) in the L1 topology,

F(u, A) := inf
{

lim inf
k→+∞

F(uk, A) | {uk} ⊂ L1 (Ω; RN ), uk → u in L1 (Ω; RN )
}
·

Also, we recall that if g : R
nN → [0, +∞) is a Borel function, the quasi-convex envelope of g, denoted by Qg,

is the greatest quasi-convex function which is lower than or equal to g; if f is defined on Ω × R
nN , we denote

by Qf the quasi-convex envelope of z �→ f(x, z). We will now prove the following:

Corollary 6.3. Under the assumptions of Theorem 6.1, with fj ≡ f , suppose in particular that there exist
constants pi ≥ 1 such that p(x) ≡ pi for each x ∈ Ωi and all i. Then, if f(x, ·) is upper semicontinuous in R

nN
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for a.e. x ∈ Ω, we have

F(u, A) :=


∫

A

Qf(x, Du(x)) dx if u ∈ W
1,p(x)
loc (A; RN )

+∞ elsewhere on L1 (Ω; RN )
(6.1)

for all A ∈ A, where Qf(x, ·) is the quasi-convex envelope of f(x, ·), for a.e. x ∈ Ω.

Proof of Corollary 6.3. By Theorem 6.2 (which still holds if pi(x) ≡ 1 for some i) we obtain the integral
representation (6.1) with a generic integrand ϕ(x, z) quasi-convex in R

nN for a.e. x ∈ Ω and satisfying

α|z|pi ≤ ϕ(x, z) ≤ β(a(x) + |z|pi) (6.2)

a.e. in Ωi, see Remark 6.4 below.
Now the integral functional u �→ ∫

A
ϕ(x, Du) dx is L1(Ω)-lower semicontinuous in W

1,p(x)
loc (A), for all A ∈ A.

In fact, if {uk} ⊂ W
1,p(x)
loc (A) is such that uk → u in L1(Ω) with

lim inf
k→+∞

∫
A

ϕ(x, Duk) dx < +∞ , (6.3)

equation (6.2) yields supk ‖Duk‖Lpi (Ai) < +∞. Then, passing to a subsequence which we relabel {uj} we can
suppose that uj ⇀ u in W 1,pi(Ai), or in the weak BV sense if pi = 1, and that the lower limit in (6.3) is
actually a limit.

Recall now that quasi-convexity of ϕ yields lower semicontinuity of the functional u �→
∫

Ai

ϕ(x, Du) dx with

respect to w-W 1,pi(Ai) convergence (weak BV if pi = 1). We then deduce

∫
A

ϕ(x, Du) dx =
+∞∑
i=1

∫
Ai

ϕ(x, Du) dx ≤
+∞∑
i=1

lim inf
j→+∞

∫
Ai

ϕ(x, Duj) dx

≤ lim inf
j→+∞

+∞∑
i=1

∫
Ai

ϕ(x, Duj) dx = lim
j→+∞

+∞∑
i=1

∫
Ai

ϕ(x, Duj) dx = lim
j→+∞

∫
A

ϕ(x, Duj) dx

and hence L1(Ω)-lower semicontinuity. Therefore, by definition of relaxed functional we obtain∫
A

Qf(x, Du(x)) dx ≤
∫

A

ϕ(x, Du(x)) dx ≤
∫

A

f(x, Du(x)) dx

for all u ∈ W
1,p(x)
loc (A) and A ∈ A. Finally, since Qf and ϕ are Carathéodory integrands, and f(x, ·) is upper

semicontinuous, we have
Qf(x, z) ≤ ϕ(x, z) ≤ f(x, z)

for a.e. x ∈ Ω and all z ∈ R
nN , and hence ϕ = Qf by the quasi-convexity of ϕ.

Remark 6.4. The estimate from below in (6.2) holds even if pi = 1 for some i. In fact, if uk → uz(x) := zx
in L1(Ω) with F (uk, A) → F(uz, A) < +∞, A ⊂ Ωi and pi = 1, up to a subsequence we have uk ⇀ uz in the
weak BV sense so that, by lower semicontinuity of the total variation, we have

α

∫
A

|z| dx ≤ lim inf
k→+∞

α

∫
A

|Duk| dx ≤ lim inf
k→+∞

F(uk, A) = F(uz, A) =
∫

A

ϕ(x, z) dx .
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Proof of Theorem 6.1. We first remark that by Corollary 2.14 we again obtain (4.6), whereas the fundamental
estimate (Prop. 4.4) holds too, since it relies on Corollary 2.12 and on the fact that q := sup

x∈Kδ\Σ
p(x) < +∞,

which holds again by Remark 2.3, as Kδ ∈ A0.
Inner regularity of the upper and lower Γ-limits holds again, since Proposition 4.5 actually relies on (4.6, 2.3),

which follows from Corollary 2.6, on Proposition 4.4 and Corollary 2.9. We then obtain Γ-convergence by
Proposition 1.6, with the estimates (4.4).

Subadditivity (4.12) of the upper Γ-limit F ′′(u, A) holds again, since Proposition 4.6 relies on inner regularity,
on (4.4), on the fundamental estimate and on Corollary 2.9. Then, by the De Giorgi–Letta criterion, we obtain
the measure property of the Γ-limit F (u, ·).
Proof of Theorem 6.2. Conditions i)–iv) and v) in Theorem 3.1 are easily verified. However, the growth expo-
nent p(x) satisfies the local estimate (2.9) for each open set A ⊂⊂ Ωi. Then for every i we obtain a quasi-convex
function fi : Ωi × R

nN → [0, +∞), satisfying growth condition (3.2), such that (3.1) holds, with f = fi, for
each u ∈ W

1,p(x)
loc (A) and for all open sets A ∈ A with A ⊂ Ωi.

To extend the integral representation to all open sets A ∈ A, we define f(x, z) := fi(x, z) if x ∈ Ωi and
z ∈ R

nN , and set
Σr := {x ∈ Ω | dist(x, Σ) < r}·

Then, for every u ∈ W
1,p(x)
loc (A) and A ∈ A0, if r > 0 is small, by increasing property and subadditivity we have

F (u, A \ Σr) ≤ F (u, A) ≤ F (u, A \ Σr) + F (u, Σ2r ∩ A) . (6.4)

Now we have

F (u, A \ Σr) =
+∞∑
i=1

F (u, Ai \ Σr) =
+∞∑
i=1

∫
Ai\Σr

fi(x, Du) dx =
∫

A\Σr

f(x, Du) dx .

Moreover we get

lim
r→0+

|Σ2r ∩ A| = 0 . (6.5)

In fact, since A ∈ A0, if 0 < δ < dist(A, ∂Ω) is fixed and Aδ := {x ∈ Ω | dist(x, A) ≤ δ}, then Aδ is a compact
subset of Ω and hence Definition 2.1 yields that Aδ intersects finitely many Ωi. Then we can select a finite set
of indices Iδ such that for every 0 < r < δ/2

Σ2r ∩ A ⊂
⋃
i∈Iδ

(∂Ωi)2r , (6.6)

where (∂Ωi)2r := {x ∈ Ω | dist(x, ∂Ωi) < 2r}. Now, since Ωi has smooth boundary we have that |(∂Ωi)2r| → 0+

as r → 0+ and hence by (6.6) we obtain (6.5).
By (6.5), by growth condition (4.4) and by absolute continuity we get

F (u, Σ2r ∩ A) ≤ β

∫
Σ2r∩A

(a(x) + |Du|p(x)) dx → 0

as r → 0+. Finally, since ∫
A\Σr

f(x, Du) dx →
∫

A

f(x, Du) dx ,

letting r → 0+ in (6.4) we obtain (3.1) for A ∈ A0 and hence, by the measure property, for all A ∈ A and
u ∈ W

1,p(x)
loc (A). Finally, (4.6) yields growth condition (4.1) for f and integral representation (4.5) on all

L1(Ω).
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(2003).

[2] E. Acerbi and G. Mingione, Regularity results for a class of functionals with non standard growth. Arch. Rational Mech. Anal.
156 (2001) 121-140.

[3] E. Acerbi and G. Mingione, Regularity results for a class of quasiconvex functionals with non standard growth. Ann. Scuola
Norm. Sup. Pisa Cl. Sci. 4 XXX (2001) 311-339.

[4] R.A. Adams, Sobolev spaces. Academic Press, New York (1975).
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[6] G. Bouchitté, I. Fonseca and J. Malý, The effective bulk energy of the relaxed energy of multiple integrals below the growth

exponent. Proc. Roy. Soc. Edinburgh Ser. A 128 (1988) 463-479.
[7] G. Buttazzo, Semicontinuity, relaxation and integral representation in the calculus of variations. Longman, Harlow, Pitman

Res. Notes in Math. 207 (1989).
[8] G. Buttazzo and G. Dal Maso, A characterization of nonlinear functionals on Sobolev spaces which admit an integral repre-

sentation with a Carathéodory integrand. J. Math. Pures Appl. 64 (1985) 337-361.
[9] G. Buttazzo and G. Dal Maso, Integral representation and relaxation of local functionals. Nonlinear Anal. 9 (1985) 515-532.

[10] A. Braides and A. Defranceschi, Homogenization of multiple integrals. Oxford University Press, Oxford, Oxford Lecture Ser.
in Maths. and its Appl. 12 (1998).

[11] L. Carbone and C. Sbordone, Some properties of Γ-limits of integral functionals. Ann. Mat. Pura Appl. (iv) 122 (1979) 1-60.
[12] V. Chiadò Piat and A. Coscia, Hölder continuity of minimizers of functionals with variable growth exponent. Manuscripta

Math. 93 (1997) 283-299.
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[14] G. Dal Maso, An introduction to Γ-convergence. Birkäuser, Boston, Prog. Nonlinear Differential Equations Appl. 8 (1993).
[15] G. Dal Maso and L. Modica, A general theory for variational functionals. Quaderno S.N.S. Pisa, Topics in Funct. Anal. (1982).
[16] E. De Giorgi, Sulla convergenza di alcune successioni di integrali di tipo dell’area. Rend. Mat. Univ. Roma 8 (1975) 277-294.
[17] E. De Giorgi and T. Franzoni, Su un tipo di convergenza variazionale, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat.

58 (1975) 842-850.
[18] E. De Giorgi and G. Letta, Une notion générale de convergence faible pour des fonctions croissantes d’ensemble. Ann. Scuola

Norm. Sup. Pisa Cl. Sci. 4 (1977) 61-99.
[19] I. Ekeland and R. Temam, Convex analysis and variational problems. North Holland, Amsterdam (1978).
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