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TRACKING WITH PRESCRIBED TRANSIENT BEHAVIOUR*

AcHiM ILCHMANN!, E.P. RyaN? AND C.J. SANGWIN?

Abstract. Universal tracking control is investigated in the context of a class S of M-input,
M-output dynamical systems modelled by functional differential equations. The class encompasses
a wide variety of nonlinear and infinite-dimensional systems and contains — as a prototype sub-
class — all finite-dimensional linear single-input single-output minimum-phase systems with positive
high-frequency gain. The control objective is to ensure that, for an arbitrary R -valued reference
signal 7 of class W' (absolutely continuous and bounded with essentially bounded derivative) and
every system of class S, the tracking error e between plant output and reference signal evolves within
a prespecified performance envelope or funnel in the sense that ¢(t)||e(t)]] < 1 for all ¢ > 0, where
¢ a prescribed real-valued function of class W with the property that o(s) > 0 for all s > 0 and
liminfs oo p(s) > 0. A simple (neither adaptive nor dynamic) error feedback control of the form
u(t) = —al(e(t)|le(t)]])e(t) is introduced which achieves the objective whilst maintaining boundedness
of the control and of the scalar gain a(p(+)|le(-)]]).
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1. INTRODUCTION

In 1991, Miller and Davison [4] posed the problem “of forcing this error (between plant output and reference
signal) to be less than an (arbitrary small) prespecified constant after an (arbitrarily short) prespecified period
of time, with an (arbitrarily small) prespecified upper bound on the amount of overshoot”. They solved this
problem for the rather general class of minimum phase, “stabilizable and detectable, single-input single-output
linear time-invariant plant(s)”. Their adaptive controller “consists of an LTI compensator together with a
switching mechanism to adjust the compensator parameters”. In the present paper, we address a similar
problem but with two basic issues which distinguish our formulation from that of [4]: (a) we restrict attention
to systems of relative degree one which satisfy a (generalized) positive high-frequency gain condition; (b) we
encompass a wide variety of nonlinear infinite-dimensional systems modelled by functional differential equations.
When compared with [4], (a) is a severe restriction (when viewed in the linear systems context of [4]) which,
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however, is counterbalanced by (b), the generality and diversity of nonlinear and infinite-dimensional effects
allowed in the current paper.

More specifically, our class of systems consists of infinite-dimensional, nonlinear M-input u, M-output y
systems (p, f,T), given by a controlled nonlinear functional differential equation of the form

y(t) = f(p(t)a (Ty)(t)a u(t))7 y|[7h,0] = yO € C([_h7 0]3RM) (1)

where, loosely speaking, h > 0 quantifies the “memory” of the system, p may be thought of as a (bounded)
disturbance term and T is a nonlinear causal operator. Whilst a full description of the system class S is
postponed to Definition 3, we remark here that diverse phenomena are incorporated within the class including,
for example, diffusion processes, delays (both point and distributed) and hysteretic effects. We also remark
that the class S is closely related to that of [2]; however, in [2], knowledge of bounding functions relating to f
and T is required in order to design an adaptive controller which ensures tracking with prescribed asymptotic
accuracy (but which cannot ensure prescribed transient behaviour).

The class R of reference signals is the same as in [4], namely W1%°(R >q; RM) (locally absolutely continuous
and bounded functions with essentially bounded derivative).

}|—> Error evolution
1

t=0

FIGURE 1. Prescribed performance funnel F,.

We formulate the control problem in terms of a performance funnel F,, where p € WH*(Rq; Rxg) is a
prescribed function with ¢(s) > 0 for all s > 0 and liminf,_. . ¢(s) > 0. The reciprocal of ¢ determines the
radius of the funnel:

Fp: t{ee RM p(t)|le]| < 1},
the funnel itself being identified with the graph of the above set-valued map (see Fig. 1).

The objective is an (R,S)-universal feedback control which, when applied to any system of the admissible
class § with any reference signal of class R, ensures that the tracking error e between plant output and reference
signal evolves within the performance funnel F,, provided that the initial data is such that e(0) = y°(0) —r(0) €
F,(0) (the latter condition is vacuous if ¢(0) = 0).

The main result of the paper is that the tracking objective is achieved by a simple (neither adaptive, nor
dynamic) time-varying error feedback of the form

u(t) = —afe(®)le®l) e(t),  e(t) =y(t) —r(t), (2)

where a : [0,1) — R>q is any continuous, unbounded injection: for example, a(s) = 1/(1 — s), in which case
the control takes a strikingly simple form u(t) = —[1 — @(¢)||e(t|] ~te(t).
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Underlying the “funnel controller” (2) is the simple idea that, if e(t) approaches the funnel boundary, then
the gain a(p(t)||e(t)]]) increases: this feature, in conjunction with a high-gain property of the underlying system
class, precludes boundary contact. Moreover, in all cases, the gain (and the control) remains bounded and e(-)
is bounded away from the funnel boundary.
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FIGURE 2. (R,S)-universal error feedback control.

The proposed controller (2) also tolerates output measurement disturbance n, provided that the disturbance
belongs to the same function class as the reference signals. With reference to Figure 2, the disturbed error
signal is then e = (y + n) —r = y — (r — n). Therefore, from a strictly analytical viewpoint, in the presence
of output disturbances of class W (R »o; RM), the disturbance-free analysis is immediately applicable on
replacing the reference signal r by the signal r —n. Even though the reference signal r and disturbance signal n
are assumed to be of the same class, practically, these signals might be distinguished by their respective spectra
(n typically having “high-frequency” content). Moreover, from a practical viewpoint, one might reasonably
expect that the disturbance n is “small”; if an a priori bound on the magnitude of the disturbance is available,
then the asymptotic radius of the funnel should be chosen to be commensurate with that bound.
We close this introduction with some remarks on notation.
R>o := [0, 00);
C4  the open right half complex plane;
C_  the open left half complex plane;

l|z|| :=+/(z, ), the Euclidean norm = € R";
BY(z) :={y € RM||z —y| <}, open ball of radius 7 > 0 centred at x € RY;
BY =B (0);

A closure of A c RY;

C(I;RY)  set of continuous functions I — R™, I C R an interval;

AC1oc(I; RY)  set of locally absolutely continuous functions I — RY I C R an interval;
L>®(I;RY) space of measurable essentially bounded functions I — R¥ with the following
norm;
[#]loo  := ess-suprer|[x(t)];

L (T RN ) space of measurable, locally essentially bounded functions I — RY:

Whee([;RN)  space of bounded functions x € ACjee(I; RY) with derivative & € L>(I; RY) and
the following norm;

Loo = [|Z[loo 4 [[#[loo s

x|y restriction of x: I — RN to J C I
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2. THE CLASS OF SYSTEMS

Here, we make precise the underlying class of systems of form (1), characterized by a triple (p, f,T). We first
define the class of operators T'.

Definition 1. Operator class 7. An operator T is said to be of class 7 if, and only if, for some h > 0 and
N, @ € N, the following hold:

L. T:C([—h,00);RY) — L (R 50; R9);

2. for every § > 0, there exists A > 0 such that, for all € C([—h,o0); RY),

sup |lz(t)]| <0 = |[(Tz)(#)|| <A for almost all ¢ > 0;
te[—h,00)

3. for all t € R, the following hold:
(a) for all z,¢& € C([—h,00); RY),

z(-)=&(-) on [—h,t] = (Tx)(s)=(TE(s) for almost all s € [0,¢];

(b) for all continuous ¢ : [—h,t] — RY, there exist 7,d, ¢ > 0 such that, for all z,£ € C([—h,c0); RY) with
z|—pyg = C = El—n,g and x(s),&(s) € Bs(((t)) for all s € [t,t+ 7],

ess-supse( 14| (T2)(s) — (TE)(s)]| < ¢ sup lz(s) — &(s)]]-
s€[t,t+7]

Remarks 2.

(i) Property 3a is an assumption of causality.

(ii) Property 3b is a technical assumption on T of a “locally Lipschitz” nature.

(iii) Let 7 € 7 and t > 0. Given x € C([-h,t);R"Y), let 2° denote an arbitrary extension of z to
C([~h,00);RY). By virtue of Property 3a, Tx|[o,+) is uniquely determined by the function x in the
sense that the former is independent of the extension z¢ chosen for the latter. Expanding on this obser-
vation, we will adopt the following notational convention. For s € [0,t), we simply write (T'z)(s) in place
of (Tz®)(s) (where z¢ € C([—h,o0); RY) is any continuous extension of ).

(iv) For each w € R, let S,, denote the shift operator given by (S,z)(t) := z(t + w) for all ¢ € R. Then

TeT — S,7S ,€7T forall w>0. (3)

Now, we define the class of systems underlying the paper.

Definition 3. System class S. S is the class of nonlinear M-input u, M-output y systems (p, f,T), given by
a controlled nonlinear functional differential equation of the form (1), where h > 0 quantifies the “memory” of
the system and, for some P,Q € N,
1. p € L®(R;RF);
2. f:RP xRQ x RM — RM is continuous;
3. for every non-empty compact set C C RY x R¥ and sequence (u,,) € RM \ {0}, the following property
(akin to radial unboundedness or weak coercivity) holds:

lun|| = 00 asn — oo = min M—)OO as n — oo; (4)

(v,w)eC HunH

4. T : C([=h,0); RM) — L2 (R>0; RY) is of class 7.



TRACKING WITH PRESCRIBED TRANSIENT BEHAVIOUR 475

Remarks 4

(i)
(i)

(iii)

Property 3 of Definition 3 generalizes the positive “high-frequency gain” concept in linear systems, as will
be discussed in Section 4.1.

It is straightforward to show that a necessary and sufficient condition for Property 3 of Definition 3 to
hold is that, for SM~1 := {u € RM| |lu| = 1} and for every compact set C C RY x R? the continuous
function ¢ : R>o — R, defined below, has the following property:

min u, f(v,w, su)) =: s 50 s 5 — oo, i
(um,w)eSMflxc< ( ) =:7ve(s) — . 5

An important consequence of Property 3 and Remark (ii) above is that, for every non-empty compact set
C C R” xR@,

(e, f(v,w,—ke)) < —~c(kllel]) el for all (v, w;e, k) € C x RM x R. (6)
This anticipates the role of v¢ in Lypunov-type analyses in later proofs.
Suppose that (p, f,T) satisfies Properties 1, 2, 4 of Definition 3, but instead of Property 3 we have:

3a. there exists known, symmetric, positive-definite G € RM*M such that, for every non-empty compact
set C C RP x R? and sequence (u,) C RM \ {0}, the following property holds:

(Un, Gf (v, 0, un))

lunllg = 00 asn — 00 = min — 00 as n — 00, (7)
(vw)ec unllc
where ||ullq := ||G2ul| for all u € RM.
We show that no additional generality results if Property 3 is replaced by Property 3a (in which case, one
simply replaces the norm || - || in (2) by the “G-induced” norm || - ||a).

Defining f : (v,w,4) — f(v,w,a) = G%f(v,w,G’%ﬁ), we have

(u,fﬁv,&v,u)} = <U’G‘|f|:(1|)|’w’u)> for all (a4, v;w) = (G%u,v;w) €C xRM.
u ullG

Therefore (7) implies that f has Property 3 of Definition 3. Defining TeT by T := TG’%7 it follows
that (p, f,T) is of class S. Under the coordinate transformations § = G%y and @ = G2 u, (1) is equivalent
to

9t = fp(t), (1)), 4(1)),  9l-no =5° € C ([=h, 0L RY). (8)
Hence, application of the control @(t) = —a(@(t)||é(t)]|)é(t) to (8), with reference signal # = G2r € R, is
equivalent to applying u(t) = —a(p(t)|e ( )|l )e(t) to (1) with reference signal r € R.

3. CONTROL OBJECTIVES

The overall control objective is twofold in nature. The primary objective may be summarized as that of
tracking with prescribed asymptotic accuracy. Precisely, given A > 0, a control strategy is sought which, for
each system (p, f, T) of class S and every reference signal r € W1 >°(R »¢; RM), when applied to (1) achieves the
following: for all (admissible) initial data, the initial-value problem for the closed-loop system has a solution,
every solution can be maximally extended, every maximal solution is forward complete, bounded and such that
lle(®)|l < A for all ¢ sufficiently large, where e(t) := y(t) —r(t) denotes the tracking error. The secondary objective
pertains to transient behaviour: in addition to achieving the primary objective, the control should shape the
error transient in the sense that the evolution of the tracking error is required to satisfy prescribed constraints.



476 A. ILCHMANN, E.P. RYAN AND C.J. SANGWIN

We capture both objectives by the requirement that, under feedback control, the tracking error e should be
such that o(t)]|e(t)|] < 1 for all t > 0, where ¢ € WH(R>0;R >¢) is a prescribed function with ¢(s) > 0 for
all s > 0. For example, for A > 0, 7 > 0 and € € (0, 1), the choice

teplt) = ! (9)

1—elt+em)A

corresponds to an overall objective of attaining prescribed tracking accuracy A > 0 in prescribed time 7 > 0.

1/e(t)

F1cURE 3. Typical funnel radius.

In summary and with reference to Figures 1 and 3, the control objective can be viewed in terms of a
performance funnel

Fo: t—{ee RM| o(t)||e| < 1},

the radius of which is determined by the reciprocal of a prescribed function p € W1H*°(R 5¢; R >0) with ¢(s) > 0
for all s > 0: a control is sought which, when applied to any system of class S with any reference signal r of
class WH(R »0; RM) and with initial data satisfying ¢(0)||y°(0) — 7(0)|| < 1, ensures that the tracking error
e =y — r evolves within the funnel F.

Reiterating remarks made in the Introduction, the main result of the paper is that the control objective is
achieved by a feedback strategy of form (2), where o : [0,1) — R>¢ is any continuous, unbounded injection.
Note that:

(a) if p(0) = 0, then the constraint on the initial data is vacuous and so the results are global;

(b) if ¢(0) > 0, then the initial data has to satisfy ||e(0)|| < 1/¢(0) and so the results are of a semi-global
nature. Such a semi-global control may arise from a requirement for maximal error overshoot. For
example, if for some § > 0 one requires |le(t)|| < ||e(0)|| + ¢ for all £ > 0, then one has to choose ¢ of the
admissible class with (1/¢(0)) € (]le(0)]l, [le(0)|| + d] and (1/¢(t)) < ||le(0)|| + ¢ for all ¢ > 0. Then the
feedback control will ensure that ||e(t)|| < |le(0)]] + ¢ for all £ > 0.

4. SUB-CLASSES OF &
Here, we highlight some particular sub-classes of the general system class S.

4.1. The finite-dimensional linear prototype

Consider the prototype class of finite-dimensional, real, linear, minimum-phase, M-input (u(t)), M-output
(y(t)) systems of the form

i(t) = Ax(t) + Bu(t), z(0) = 29, dot [s[n —-AB

y(t) = Calt), c 0]¢OWE@% (CB)" +CB >0, (10)
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with z(t) € RY (N arbitrary) and real matrices A, B, C' of conforming formats. In (10), the condition on the
determinant characterizes the minimum-phase assumption; the second condition requires the high-frequency
gain CB € RM*M {5 have positive definite symmetric part. Since the latter ensures invertibility of CB,
which gives RNV = im B @ ker C, there exists V € RV*V=M) " with imV = ker C, such that the coordinate
transformation

T B] =S 'z where § = [B(C’B)l : V]

takes (10) into the equivalent form

2(t) = Asy(t) + Asz(1), 2(0) = 2%, o(As) CC,
with z(t) € RVN=M and real matrices Ay, Ag, A3, A4 of conforming formats.
By the minimum-phase condition, A4 has spectrum in the open left half complex plane, and so by setting

T (0 = A(®)+ Az [ expate - ) Ay, pte) o= { 52 AT I2D (12)

the linear operator T': C(R >0; RM) — L (R »0; RM) belongs to 7 and p belongs to L>°(R >0; RM). Defining

loc
fiRM x RM x RM | (v, w,u) — v+ w + CBu,
and setting h = 0, we may recast system (11) in the form (1):
§(t) = p(t) + (Ty)(t) + CBu(t), y(0)=y° € RM. (13)

With reference to Figure 2, y — T(y) and (13), respectively, correspond to components Yo and ¥; of the
interconnected system.
Finally, noting that, for every non-empty compact set C C RM x RM

lul| max [jv+w| + (u, [(CB)T + CBJu) > min (u, f(v,w,u))
(v,w)eC (v,w)ec

> —||ul| (m%xc |v+wl||+(u, [(CB)T +CBlu)for all u € RM,
v,w)E
we see that Property 3 of Definition 3 is equivalent to the assumption (CB)T + CB > 0.

4.2. Infinite-dimensional regular linear systems

The finite-dimensional class of systems considered in (11) can be extended to an infinite-dimensional setting
by reinterpreting the operators Ay, As, As and Ay as the generating operators of a regular linear system (regular
in the sense of [8]). In particular, in this setting, A4 is assumed to be the generator of a strongly continuous
semigroup S = (S;);>0 of bounded linear operators on a Hilbert space X with norm || - || x. Let X; denote the
space dom(Ay) endowed with the graph norm and X_; denotes the completion of X with respect to the norm
2]l 1 = [|(sol — A4)~1z||x where sq is any fixed element of the resolvent set of A4. Then Aj is assumed to be a
bounded linear operator from R™ to X_; and A, is assumed to be a bounded linear operator from X; to RM.
Ay € RMXM g the feedthrough operator of the regular linear system. Finally, CB € RM*M ig as in (11).
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If we assume that the semigroup S is exponentially stable and that the operator As extends to a bounded
linear operator (again denoted by As) from X to R™ | then the operator

¢
(Ty)(t) := Ary(t) + A2/ Si—sAsy(s)ds (14)
0
is of class 7 (for details, see [5]) and the overall system can be recast in the form (13).

4.3. Nonlinear systems

Consider the following nonlinear generalization of (11)

§(t) = Yi(p(t), y(t), 2(t)) + Ya(y(t), z(t), u(t)), y(0) = y* € RM, } as)

2(t) = Z(t, 2(t), y(t)), 2(0) = 20 € R,

with continuous Y7 : RY x RM x RL — RM, Yo : RM x R RM — RM and Z : R>o x RM x RL — RL
having the properties: Z(-,y, z) measurable for all (y,z) € RM x R and, for every compact C C RM x R,
there exists k € L{ (R>0) such that ||Z(¢,y,2) — Z(t,9,2)|| < &(@)|(y,2) — (y,2)| for almost all ¢ € R>( and
all (y, 2), (g, 2) € C.

Then, viewing the second of the differential equations in (15) in isolation (with input y), it follows that, for
each (20,y) € RE x L (R>0; RM), the initial-value problem 2(t) = Z(t,y(t), 2(t)), 2(0) = 2° € RY has unique
maximal solution, which we denote by [0,w) — RZ, t +— z(t; 20, ).

In addition, we assume there exist ¢cg > 0 and ¢ > 1 such that

Yoy, 2,0)) > collul?  forall (u,y,2) € RM x RM x R, (16)

and there exists a function § € C(R>g; R >0) such that, for some constant ¢ > 0, and for all y € L (R >o; RM),

loc
12(£, 2% y)|| < ¢[1 + ess-supsepo.nf(lly(s)[)]  for all t € [0,w) (17)

which, in turn, implies that w = oco. Note that this is akin to, but weaker than, Sontag’s [6] concept of input-
to-state stability. We show that systems of the class (15) satisfying the above smoothness properties and in
particular (16) and (17) belong to the class S. To this end, fix 2% € R” arbitrarily. Define the operator

T:CR>0;:RY) = Lis, (R>0; RM x RY), y = Ty = (y(), 2(-, 2%, y)).

In view of (17), Property 2 of Definition 1 holds; setting h = 0, we see that Property 3a of Definition 1 also
holds. Arguing as in [5] (Sect. 3.2.3), via an application of Gronwall’s lemma, it can be shown that Property 3b
holds. Therefore, this construction yields a family (parameterized by the initial data z°) of operators T of
class 7.

Defining f : RF x RM+L x RM — RM | (v, w,u) — Y1 (v,w) + Ya(w,u) and assuming p € L>®(R >¢;R?),
system (15) may be expressed in the form (1) (with h = 0). Let C € RY x RM*L be compact. Then,
invoking (16),

min (/v w,0) > — max ||Yi(v,w)|| +collul|?t forallu € RM,
(v,w)eC [l (v,w)eC

whence Property 3 of Definition 3. Therefore, (p, f,T) € S.
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4.4. Nonlinear delay systems

Let functions ¥; : R x RM — R? : (t,y) — U,(t,y), i = 0,...,n be measurable in ¢ and locally Lipschitz in
y uniformly with respect to ¢: precisely, (i) for each fixed y, ¥;(-,y) is measurable and (ii) for every compact
C C RM there exists a constant ¢ such that

for almost all t, ||U;(t,y) — Ui(t, 2)|| < clly—z|| forall y,zeC.

For i =0,...,n, let h; € R>q and define h := max; h;. For y € C([—h,o0); RM), let

(Ty)(t) := /O Uo(s,y(t+s)) ds+ z": U, (t,y(t —h;)) forallt>0.

—ho i=1

The operator T, so defined, is of class 7: for details see [5]. Therefore, for p € L>(R;R”) and continuous
f:RP xRQ x RM — RM with the Property 3 of Definition 3 (p, f,T) defines an admissible system of class S.

4.5. Systems with hysteresis

A general class of hysteresis operators C(R>o;R) — C(R >o;R), which includes many physically motivated
hysteretic effects, is discussed in [3]. Examples of such operators include relay hysteresis, backlash hysteresis,
elastic-plastic hysteresis and Preisach operators. In [2], it is pointed out that these operators are of class 7.
Therefore, for any such operator 7', and assuming that p € L>(R;R”) and that f : RF x R x RM — RM is
continuous with Property 3 of Definition 3 (p, f,T') defines a system of class S. Below, we describe two examples
of hysteresis operators of class 7.

4.5.1. Relay hysteresis

Let a1 < ap and let p; : [a;,00) — R, p3 : (—00,a2] — R be continuous, globally Lipschitz and satisfy
p1(a1) = p2(a1) and p1(az) = p2(az). For a given input y € C(R >0;R) to the hysteresis element, the output w
is such that (y(t), w(t)) € graph(pi)Ugraph(ps) for all t € R>¢: the value w(t) of the output at t € R is either
p1(y(t)) or pa(y(t)), depending on which of the threshold values as or a; was “last” attained by the input y.
When suitably initialized, such a hysteresis element has the property that, to each input y € C(R >o;R), there
corresponds a unique output w = Ty € C(R >o;R): the operator T, so defined, is of class 7 with N = Q = 1.
This situation is illustrated by Figure 3.

FIGURE 4. Relay hysteresis.

4.5.2. Backlash hysteresis

Consider a one-dimensional mechanical link consisting of the two solid parts I and II, as shown in Figure 4a,
the displacements of which (with respect to some fixed datum) at time ¢ > 0 are given by y(¢) and w(t) with
ly(t) —w(t)| < a for all t, and w(0) := y(0) + £ for some pre-specified —a < & < a. Within the link there is
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mechanical play: that is to say the position w(t) of II remains constant as long as the position y(t) of I remains
within the interior of II. Thus, assuming continuity of y, we have w(t) = 0 whenever |y(t) — w(t)| < a. Given a
continuous input y € C(R >0;R), describing the evolution of the position of I, denote the corresponding position
of Il by w = Ty. The operator T (in effect we define a family T¢ of operators parameterized by the initial
offset £) so defined, is known as backlash or play and is of class 7 with N =@ = 1.

F1GUrE 5. Backlash hysteresis.

5. AN EXISTENCE THEOREM

The potential singularity in the proposed control (2) raises a basic question: is the resulting closed-loop
initial-value problem well posed? In due course, we will answer this question affirmatively. To this end, we first
provide an existence theory for initial-value problems of a form of sufficient generality to provide a framework
for the analysis of the proposed strategy and associated closed-loop system.

Consider the initial-value problem

l‘(t) = F(ta Z(t)a (fﬂ:)(t))v :L'(t) € Da x|[—h,0] = :L'O € C([fha 0];RN)7 CEO(O) € Da (18)

where D C RY is a non-empty open set, T is a causal operator of class 7 and F : [—h,o0) x D X RE — RN
is a Carathéodory function*. By a solution of (18) on [—h,w), we mean a function x € C([—h,w);RY), with
w € (0,00] and |[_p,0 = 20, such that 7|j0,.) 18 absolutely continuous and satisfies the differential equation
in (18) for almost all ¢t € [0,w), and z(t) € D for all ¢t € [0,w); = is maximal if it has no right extension that is
also a solution. We remark that a solution z : [—h,w) — R is required to take its values z(t) in the prescribed
set D only for t € [0,w); the values 2°(¢) of the continuous initial function are unconstrained for ¢ € [—h,0).

Theorem 5. Let D C RYN be non-empty and open, let T be a class T operator and x° € C([—h,0]; RY)
with 2°(0) € D. Assume F : [~h,00) x D x RK — RN s a Carathéodory function. There exists a solution
r: [~h,w) — RN, 2([0,w)) C D, of the initial-value problem (18) and every solution can be extended to a
mazimal solution; moreover, if F is locally essentially bounded and z : [~h,w) — RN, z([0,w)) C D, is a
mazximal solution with w < oo, then, for every compact set C C D, there exists t’ € [0,w) such that z(t') & C.

Proof. Since D is open and 2°(0) € D, the existence of w > 0 and a solution z : [~h,w) — RN, with
x([0,w)) C D, is a consequence of [2] (Th. 3). That every solution can be maximally extended may be concluded

4A function 0 : [—h,00) x D x RE — RN where D C RY denotes a non-empty open set, is deemed to be a Carathéodory
function if and only if (i) 6(t, -, -) is continuous for almost all ¢ € R (ii) 0(-, z,w) is measurable for each fixed (x,w) € D x RE and
(iii) for each compact C C D x RE there exists & € L{ _([—h,00);R >0) such that [|0(t, z,w)|| < k() for almost all ¢ € [~h,c0) and
all (z,w) € C.
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via the following argument (a modification of that used in the proof of [2] Th. 3). Let x : [~h,w) — RY,
z([0,w)) C D, be a solution of (18). Define

A:={(p,9|w<p<oo, £:[=h,p) — RY, £(]0,p)) C D, is a solution of (18), i) =},

that is, the set comprising (w,x) and all pairs (p, ), where £ is a proper right extension of x on [—h, p) and is
also a solution. On this non-empty set define a partial order < by

(p1,61) 2 (p2,&2) <= p1 < p2and §i(t) = &a(t) for all t € [~h, p1).

Let O be a totally ordered subset of A. Let P := sup{p|(p,£&) € O} and let = : [~h, P) — RY be defined by the
property that, for every (p,§) € O, Eljg,) = . Then (P,E) is in A and is an upper bound for O. By Zorn’s
lemma, it follows that A contains at least one maximal element.

Now let F : [~h,00) x D x RE — R¥ be locally essentially bounded. Assume that z € C([—h,w); RY),
z([0,w)) C D, is a maximal solution of (18) with w < co. Seeking a contradiction, suppose that there exists
a compact subset C of the set D with z([0,w)) C C. By compactness of C and local essential boundedness
of F, together with Property 2 (Def. 1) of ZA“, it follows that & is essentially bounded. Therefore, x is uniformly
continuous and so extends to a continuous function # : [~h,w] — RN with #(w) € C € D. Consider the
initial-value problem

i (
V][ (h4w),0] = v = 5,7 € C([~(h+w),0];RY), v°(0) € D,

which can be identified as an initial-value problem of the form (18), with h, F and TeT replaced by h=h+uw,
F: (t,v,w) — F(t — h,v,w) and T=8,T5o€eT (recall (3)), respectively. Therefore, the above existence
result applies to conclude that, for some @ > 0, the initial-value problem (19) has a solution v : [—(h +w), &) —
RY v([0,&)) C D. Define z¢ : [~h,w + @) — RY by 2¢(t) := v(t — w) = (S_,v)(t). Then, z¢([0,w + @)) C D
and

i°(t) = 0(t — w) = F(t,v(t —w), (T)(t — w)) = F(t,z(t), (Tz°)(t)) for a.a.t € [0,w+ @).

Therefore, 2¢ : [~h,w + &) — RN, 2([0,w +@)) C D, is a solution of (18) and is a proper right extension of the
solution x, contradicting maximality of the latter. This completes the proof. |

6. CONTROL PERFORMANCE

Before analysing dynamic performance under the proposed control, we highlight a fundamental property of
the system class S. This property informs the intuition behind the proposed control.

6.1. A high-gain property of the system class &

Proposition 6. Let ¢ € WH*(R¢;R>¢) be non-decreasing with ¢(t) > 0. For each (p,f,T) € S and
r € Whe(Rso; RM), there exists k* > 0 such that, for all k > k* and all initial data y° € C([—h,0); RM) with
©(0) |°(0) — 7(0)|| < 1, the control

u(t) = —ky(t) —r(t)] (20)
applied to system (1) yields the closed-loop, initial-value problem

g(t) = f(p(t), (Ty)(t), =kly(t) —r(t)]), y° € C([=h, 0ERM), (0)]y°(0) = r(0)] < 1, (21)
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which has a solution, every solution y has a mazximal extension with interval of existence [—h, o), and
o) ly) —r@)| < 1 forallt>0. (22)

Proof. Set A := 1/¢(0), by essential boundedness of r, together with Properties 2 and 3a of Definition 1 of
T €T, A >0 may be chosen so that, for all z € C([—h,o0); RM) and all t > 0,

max o) = r(@) A = max 2(s)] < A+ rll

= ||(T2)(s)]| <A for almost all s € [0,7]. (23)

Let compact P C R? be such that p(t) € P for almost all t € R >, write A := lim;_o(1/¢(t)) = 1/[|¢| s > 0,
and define the compact annulus A4 and the compact set C as follows

A:={e e RM| \/2 < |le| < A}, C:=P xBa CcRF xR,

Let vc be defined as in (5) and so, in view of Remark 4(ii), it has the property that vy¢(s) — oo as s — oc.
Therefore, we may choose k* > 0 sufficiently large so that

velkllel) > 14 |#]loo 4 [|2]|co AZ for all k> k™ and all e € A. (24)
Fix k > k* and let y° € C([—h,0];RM) be such that »(0) [|y°(0) — 7(0)|| < 1. Let D = R™. By Theorem 5,

the initial-value problem (21) has a solution and every solution has a maximal extension. Let y : [h,w) — RM
w > 0, be a maximal solution. Write e(t) = y(t) — r(¢) for all t € [—h,w) and define

I:={t € [0,w)] (e(t),p(t), (Ty)(t)) € AxC}.

Then, in view of (6) and (24), we have

% le@®I* = 2{e(t), f(p(t), (Ty)(t), —ke(t)) — 7(t))

=2 [ye(klle@)) = [I7llso] lle@®)] < —A for almost all ¢ € I. (25)

IN

Therefore, again invoking (24) and recalling that ¢(t)|e(t)]] < 1 for all ¢ € [0,w), we have

S OO = o0 | Il + 253 e

< —20(? Prelle@) — 7l — I2leA?] @] < —2p(t)? A

<0 for almost all t € 1. (26)
Next, we claim that ||e(t)|| < A for all t € [0,w). Suppose that the claim is false. Then, by continuity and
since e(0) = y°(0) — r(0) € F,(0), £ :== min{t € [0,w)| |le(t)]| = A} > 0 is a well-defined positive number.
Moreover, since A < A, there exists § € [0,#) such that ||e(t)|| > A\/2 for all t € [3,%]. Clearly, [3,#] C I and so,
invoking (26), we arrive at a contradiction:

0 < p(B)A < () 20 = A < p(f) [2le(®)ll - 2lle3)I] < 2¢(F)lled)]l - 2(3)lle(3)]] < 0.

Therefore ||e(t)]] < A for all ¢t € [0,w) and so, by boundedness of 7, y is bounded. Therefore, by Theorem 5,
w = 00.
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Now, we show that there exists s > 0 such that |le(s)|| < A/2. Seeking a contradiction, suppose otherwise.
Then A/2 < |le(t)|| < A for all t € R>g and so I = R>o which, together with (25) yields the contradiction:
lle®)]|?> < |le(0)]|?> — At for all ¢ > 0.

Our next step is to show that

lle(®)] < A for all ¢ > s*:=min{s > 0] |[e(s)]| < \/2}.

Note that s* is well defined since e is continuous and ||e(s)|| < A/2 for some s > 0. Again seeking a contradiction,
suppose |le(t)|| > A for some ¢t > s*. Define

t* :=min{t > s*| |le()|| = A} and t.:=max{t € [s",t"]| |le(t)|| = \/2}.

Then [t.,t*] C I which, together with (25), leads to the contradiction: A/2 < A = |le(t*)]| < ||le(ts)]| = A/2.

We now have ¢(t)|le(t)|| < A7 e(®)|| < 1 for all ¢ > s*. It remains to prove that ¢(t)|le(t)]| < 1 for
all t € [0,s*]. If s* = 0 then the result is immediate. Assume s* > 0. Then [0,s*] C I and so, by (26),
e(t)|le(t)]] < ¢(0)|le(0)]] < 1 for all ¢ € [0, s*]. This completes the proof. O

Proposition 6 implies that, if F, is any prescribed performance funnel of the admissible class and ¢(0) > 0,
then for each admissible system (p, f,T) € S and reference signal 7 of class W1>°, there exists a threshold
gain value k* such that for each fixed k > k* and all initial data with (0)||y°(0) — 7(0)|| < 1, the control
u(t) = —k[y(t) — r(t)] ensures that the tracking error evolves within the performance funnel F,. Evidently, the
threshold value k* depends on the plant data (p, f,T) and on the reference signal r and so is of limited use as
the basis of a control design. Proposition 6 does, however, serve to highlight the inherent stability property of
the system class under high-gain feedback.

6.2. Tracking within a prescribed performance funnel

In the ensuing Theorem 7, the main result of the paper, the high-gain property underpins the proposed
controller structure which ensures (a) prescribed funnel performance for every admissible system (p, f,T) and
reference signal r, and (b) boundedness of the control and of the attendant gain function.

Theorem 7. Let o : [0,1) — R be continuous, strictly increasing and unbounded. Let p € W (R >0; R >0)
with @(s) > 0 for all s > 0 and liminfs_, ©(s) > 0. For every system (p, f,T) € S, every reference signal
r € WHe(R 50; RM), and all initial data y° € C([—h,0); RM) with ¢(0) [|y°(0) — r(0)|| < 1 the control

u(t) = —k(t)[y(t) —r®)], k() = a(e@®)lyE) —r®)]) (27)

applied to system (1) yields the closed-loop initial-value problem

§(t) = £ (p(t), (Ty)(t), —a(e®y(t) — r@)]]) ly(t) — r(1)]) , }
Yli—n0 =y’ € C([=h, 0L RM),  ©(0) [[y°(0) = r(0)] <1,

which has a solution and every solution has a maximal extension.
Every maximal solution y : [—h,w) — RM of (28) has the properties:
(i) w=o0;
(ii) there exists € € (0,1) such that ¢(t)||y(t) —r@t)]| < 1—¢e forallt > 0;
(iii) the continuous functions u: Rsg — RM and k: R>g — R given by (27) are bounded.



484 A. ILCHMANN, E.P. RYAN AND C.J. SANGWIN

Proof. Let (p, f,T) € S, 7 € WH*(R>0; RM) and y° € C([—h,0);RM) with ¢(0) [|[y°(0) — r(0)|| < 1. Writing
e(t) = y(t) — r(t) and introducing the artifact z(t) = ¢, system (28) may be expressed in the form

)= £ (p(t), (T(e +1))(t), —a(e(=z()let)])e() — (),

! (29)
(e(t),2(1)) € D = {(e,2) € RM x R p(|2])lle]l < 1},
(€ 2)-no) = ¥° = rli—no, 0) = 2° € C([=h, 0, RM x R),  ¢(0) [l2°] < 1,

which, on writing z(t) = (e(t), 2(t)), can be interpreted as the initial-value problem (18) with N = M + 1,

K = @, the operator T' defined by (Tz)(t) = (T'(e, 2))(t) := (T'(e +))(t) and the locally essentially bounded
function F : [~h,00) x D x RE — R¥ given by

(t,m,w) = F(t,:L’,’LU) - F(tv (6,2),1[)) = (f(p(t)awa *O‘(QOOZD”@”)@) - f(t)a 1)

Therefore, by Theorem 5, there exists a solution of the initial-value problem (29) and every solution can be
maximally extended. Let (e, z) : [~h,w) — RY be a maximal solution, w € (0, 00]. Since (e(t), z(t)) € D for all
t € [0,w), it follows that ¢(t)|le(t)]] < 1 for all t € (0,w) which, together with continuity of e, implies that e is
bounded and so, by boundedness of r, we infer that y is bounded. Since p is essentially bounded and T' € T
satisfies Property 3 of Definition 1, there exists non-empty compact C C R” x R? such that (p(t), (Ty)(t)) € C
for almost all ¢ € [0,w). Let v¢ be defined as in (5) and so, in view of Remark 4(ii), y¢(s) — oo as s — oc.
Now, similar to (25) we have,

% le(®)I* = 2(e(t), £(p(t), (Ty)(¢), —k()e(t)) — #(t))
< =2 [ye(k@)]e®)]) = I7llo] lle(®)]|  for almost all ¢ € [0,w). (30)

Fix 6 € (0,w). By properties of ¢, there exists a constant ¢; > 1 such that ¢; ! < (t) < ¢; for all t € [§,w) and
|o(t)| < 1 for almost all ¢ € [0, w). Define ca := |7l + 3. In view of (30), we may conclude that

% [e(lle®)]” = (02 (2 + 200 le(t) |2

dt
< =20(0? | el - 1] = 2 ecol
< =20t [ye(k®)|e®)]) — ca] |le(t)]] for almost all ¢t € [§,w). (31)

Next we show that the function % : [0,w) — R>¢ is bounded. By continuity, k is bounded on [0, §]. Seeking a
contradiction, suppose that k is unbounded on [, w). For each n € N, define

Tn = 1nf{t € [§,w)| k(t) = k(0) + n+ 1} and o, :=sup{t € [§,7,)| k(t) = k(5) + n}
Choosing 7 € N sufficiently large so that 7 4+ k(d) > «(0) yields, for each n > n,

k(t) >n+k(0) forallt € [o,, ] andso ¢(t)|e(®)] > a t(n+k(S)) forallte [on,Tn],

1

where the strictly increasing function a™! : [a(0),00) — [0, 1) is the inverse of the bijection « : [0,1) — im(«),

whence

e > tatn+ k() > c;ta k() =1 ¢35 forallt e [o,,7,] and alln > 7.
1 1
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Therefore, since y¢(s) — 0o as s — 00, there exists n* € N such that
ye(k(@®)|le(®)) > c2 for all t € [op«, Tn+],
which, together with (31), yields

d

pr le@®)|le(®)]*> <0  for almost all £ € [0+, Tne] -

Thus, ¢(7,+)

| < @(on+)|le(on~)||, whence the contradiction:

L= k(mn+) = k(o) = a(p(rn-)lle(Tn-)l]) = a (o(on-)]le(on-)

|e(7n~)

|) <O.

This establishes boundedness of k£ from which, together with boundedness of e, we conclude boundedness of the
control u. Again by boundedness of k, there exists € > 0 such that p(t)|e(t)|| < 1 —¢ for all t € [0,w).

To complete the proof, it remains to show that w = co. By boundedness of e, there exists £ > 0 such that
lle(®)|| < E for all ¢t € [0,w). Suppose w < co. Then

C:={(e,;2) e RM x Ro| p(2)]le| <1—¢, [le] < B, 2 € [0,w]}

is a compact subset of D with the property z(t) = (e(t), z(t)) € C for all t € [0,w), which contradicts the fact
that, by Theorem 5, there exists ¢’ € [0,w) such that (¢') = (e(t'), z(t')) € C. Therefore, w = cc. O

A hypothesis in Theorem 7 is that ¢ € W1 (R >0;R>0) and so, in particular, ¢ is bounded. Clearly, this
precludes the use of a performance funnel with radius asymptotic to zero. Therefore, the case of tracking with
zero asymptotic error is excluded in the analysis. However, exclusion of the latter case is to be expected. We
elaborate this observation in the following remark.

Remark 8. Exact asymptotic tracking cannot be achieved in general by a continuous feedback of the form
u(t) = —k(t)e(t) with bounded gain k. To see this, consider the simple case of a scalar linear system with a
constant reference signal r = 1:

gt) =y(t) +ut),  y(0)=y° R (32)

Suppose that k is bounded and such that u(t) = —k(t)e(t) achieves exact asymptotic tracking in the sense that
lim; o0 €(t) = 0. Then u(t) — 0 as t — oo and so there exists T > 0 such that é(t) = e(t) + 1 + u(t) > 1/2
for all ¢ > T', contradicting the supposition of exact asymptotic tracking of the constant reference signal r = 1.
Precisely the same argument shows that exact asymptotic stabilization (tracking of the zero function r = 0)
cannot be achieved for a scalar affine linear system of the form §(¢) = a + y(t) + u(t) with a # 0. O

Therefore, in the context of the general system class S and reference signal class R, neither exact asymptotic
tracking nor exact asymptotic stabilization is achievable by a funnel-type control of the form (27) with bounded
gain k. However, in the ensuing subsection it is shown that, if the system class is restricted to the class of
linear, minimum-phase, relative-degree-one systems of the form (11) and if the tracking problem is reduced to
that of stabilization (in the sense of exact tracking of the zero reference signal r = 0), then funnel-type control
with bounded gain is achievable.

6.3. Asymptotic stabilization of linear systems

It is well-known (see [1]) that asymptotic stabilization of every member of the class of linear systems (11) can
be achieved by an adaptive control of the form wu(t) = —k(t)y(t), k(t) = |ly(t)||?, and, moreover, the adapting
gain k is bounded. (Here, we use the term “asymptotic stabilization” not in the Lyapunov sense but in the
weaker sense of global attractivity of the zero state of the controlled system.) An immediate question arises: is
stabilization of all systems of this linear class also achievable by a non-adaptive funnel controller of the form (27),
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whilst maintaining boundedness of k7 Proposition 9 below answers this question affirmatively, provided that
the function ¢ is unbounded and satisfies the following:

(a) ¢ : R>9 — R>q, ¢(0) =0, ¢ £ 0, is absolutely continuous and non-decreasing;
there exists ¢ > 1 such that:

(b) (t) <cep(t/2) forallteRsp;

(c) ¢(t) <c[l+4p(t)] for almost all t € R >.

For example, ¢t — ¢(t) =t satisfies (33) with ¢ = 2.

Proposition 9. Let a: [0,1) — R>q be continuous, strictly increasing and unbounded, and let ¢ : R>o — R>g
satisfy (33).

Then for each system of the form (11), and all initial data (y°,2°) € RM x RN=M with »(0)||ly°|| < 1, the
control

u(t) = —k@®)yt),  k(t) =ae®)lly®)) (34)

applied to the system yields the closed-loop initial-value problem

§(t) = Ary(t) + A22(t) — k(t) CBy(t), (CB)" + CB > 0, y(0) =y, »(0)lly°|l < L} (35)

2(t) = Agy(t) + Agz(t), o(Ay) C C_, 2(0) = 29,

which has a solution and every solution has a mawimal extension. Every mazimal solution y : [0,w) — RM
of (35) has the properties:
(i) w = o0;
(ii) there exists € € (0,1) such that ¢(t)||ly(t)|| < 1 —e for allt > 0;
(iii) the continuous functions u:R>q — RM and k: R>o — R>q given by (34) are bounded;
(iv) If ¢ is unbounded, then (y(t),z(t)) — (0,0) as t — oco.

Proof. Defining T' € T and p € L= (R;RM) as in (12) and introducing the artifact ((t) = ¢, system (35) may
be expressed in the form

y(t) = p(t) + (Ty)(t) — k(1) CBy(t), () =1, }
(y(1),¢(t) € D= {(y,¢) e RM xR p(I¢Dllyl <1}, (y(0),¢(0)) = (4°, 0) € D,

which, on writing z(t) = (y(t),((t)), can be interpreted as the initial-value problem (18) with N = M + 1,

~

K = M, 20 = (4°,0), the operator T’ defined by (Tz)(t) = (T'(y, 2))(t) := (Ty)(t) and the locally essentially
bounded function F : R>¢ x D x RE — RY given by

(36)

(t, 2, w) = F(t,2,w) = F(t, (y, (), w) = (p(t) + w —a(e(CDlyl)y, 1)

Therefore, by Theorem 5, there exists a solution of the initial-value problem (36) and every solution can be
maximally extended. Let (y,¢) : [0,w) — RY be a maximal solution. Since (y(t),t) = (y(t),((t)) € D for all
t € [0,w), it follows that ¢(¢)|ly(t)|| < 1 for all ¢ € (0,w) which, together with continuity of y, implies that y is
bounded.

1/2 <t¢/2™ < 1. Then,

ga(t) _ sD(Qn(t/2n)) < Cnga(t/Qn) < Cncp(].) < CgD(l)Q(n_l)lnc/ln2 < Cgo(l)ctlnc/ln2.
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Since t € (1, 00) is arbitrary, and writing p := In¢/In2; we may now conclude
0 < o) < @(1)[1+ct?] forall t> 0. (37)
Since A4 has spectrum in the open left half complex plane, there exist g, A > 0 such that
Ip(t)|| = || Ag exp(Ast)2°|| < pwexp(—At) for all t >0, (38)

and

t/2 t
mmwn§mmmmuu<A {LJ%MA@wM®MS

"
<||A = —At/2 for all .
<A Ol + 5 [exp(-At/2) s I+ o (o) for i€ D). (39

Next, we will prove boundedness of k. Seeking a contradiction, suppose that k is unbounded.
For each n € N, define

o = 1nf{t € [0,w)| k(t) = k(0) + n+ 1} and o, :=sup{t € [0,7,)| k(t) = k(0) + n}.

Note that, if 7 € N is chosen sufficiently large so that 7+ k(0) > «(0), then, for each n > n, k(t) > n+ k(0) for
all ¢t € [0, 7] and so

0 < co:=a '(1+k(0) < at(n+k(0))

< ey <1 for all t € [0y, 7] and all n > 7, (40)
where a~ ! : [a(0),00) — [0, 1) is the inverse of the bijection « : [0,1) — im(«a). Therefore,
h 1 0 0,1) is the i f the bijecti 0,1 i Theref
max |y(s)]] < < 0 ly(t)|] for allt € [0y, 7,] and all n > 7.
s€lt/2 1] e(t/2) ~ cop(t/2)

By (39), together with boundedness of y and property (a) of ¢, we may infer the existence of ¢; > 0 such that

H(Ty)®)| < e1 [exp(=At/2) + ||y(¢)|]] for all t € [0y, ] and all n > 7. (41)
Since the symmetric part of C'B is positive definite, c2 := ||[(CB)T + CB]7!||7! > 0 is a well defined positive
number. Invoking (38, 40, 41), property (33c) of ¢ and (37), we may conclude the existence of ¢3 > 0 such that
% [e®y®]° = 20®@® ly® + 20()* (w(#), p(t) + (Ty)(t) - k(t) CBy(t))
< 2 % + 200 ly O[O + [Ty )] = c2k @ [(®)ly(1)]I]”
< 2 % +2(t)[M exp(—At) + c1 exp(—At/2)] + 2¢1 — cachk(t)
< ez —cak(t) < c3 —cacin  for almost all t € [0,,,7,] and all n > 7. (42)

Choose n* > n such that c3 — CQC%TL* < 0, in which case we have

d

X o) ly()])> <0 for almost all ¢ € [+, T+
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and so @(7,,+)

ly(Tn) || < @(on)||y(on=)|, whence the contradiction:

1= k(7)) = k(on) = a (p(T0r)

|y (7)) — e (@lon=)lly(on=)) <O.

Therefore, k is bounded.

By boundedness of ¢ — k(t) = a(p(t)||ly(t)]), there exists € € (0,1) such that ¢(t)||y(t)]] < 1 —¢ for all
te0,w).

By boundedness of y, there exists E > 0 such that ||y(¢)|| < E for all ¢t € [0,w). Suppose w < co. Then

C:={(y,2) eRY xRl p(2) |yl <1~¢, |yl < E, z € [0,w]}

is a compact subset of D with the property x(t) = (y(t), 2(t)) € C for all ¢t € [0,w), which contradicts the fact
that, by Theorem 5, there exists t’ € [0,w) such a that z(t') = (y(¢'),2(t')) € C. Therefore, w = oo. This
establishes assertions (i-iii) of the lemma.

Finally, assume that ¢ is unbounded. Then |y(t)|| < 1/¢(t) — 0 as t — oo. Since o(A4) C C_, the second
equation in (35) yields that z(t) — 0 as t — oo. This completes the proof. O

In view of assertion (iv) of the Proposition 9 and choosing ¢ such that ¢(0) = 0, global asymptotic sta-
bilization of every linear system of the form (11) can be achieved by a control of the form u(t) = —k(t)y(t)
which is neither adaptive nor dynamic, and with bounded gain function ¢ — k(t) = a(e(t)|ly(¢)]]). In terms
of complexity, this compares favourably with the well-known adaptive and dynamic strategy u(t) = —k(t)y(¢),
k(t) = |ly(t)||?, which also achieves asymptotic stabilization of every member of the same class and ensures
that the adaptive gain function k is bounded®. Moreover, on one hand, the non-adaptive control has an added
benefit: the transient behaviour of the output y can be prescribed through choice of ¢. On the other hand, the
adaptive strategy is applicable to a wider class of linear systems: the condition (CB)? + CB > 0 on the high-
frequency gain can be weakened to the spectrum condition o(CB) C C; without compromising its stabilization
property. The non-adaptive control cannot tolerate the weakened condition: we elaborate this observation in
the following remark:

Remark 10. We construct a counterexample which shows that the assertions of Proposition 9 are invalid if
the assumption (CB)T + CB > 0 in (10) is relaxed to the spectrum condition o(CB) C C.
Consider the two-dimensional linear system, parameterized by p € R:

0 =Mt 3, = o]

which is of the admissible class S if, and only if, M| + M, > 0 (equivalently, [u| < 2). Note that o(M,) = {1}
and so the spectrum condition is valid for all 4 € R. Let « satisfy the hypotheses of Proposition 9 with a(0) = 1,
choose ¢ = 1, and let B denote the open unit ball centred at 0 € R2. If |u| < 2, then, by Proposition 9, the
initial-value problem

9(t) = —a(ly®)I)Muy(t), y(0)=y" B, (43)

has a solution and every solution y has maximal interval of existence R >o. Moreover, y(t) € B for all t € R>g
and ¢t — k(t) = a(]|y(t)]|) is bounded.

Now consider the case wherein |u| > 2. Seeking a contradiction, suppose that the assertions of the lemma
are also valid in this case. Then, for every y° € B, every maximal solution y of (43) has interval of existence
R >0; moreover y(t) € B for all ¢ € R>¢ and sup,~, k(t) =: k* < co. Let y : R>9 — R? be a maximal solution.

5Note the trade-off: the adaptive control requires an additional dynamic equation when compared with the non-adaptive control,
whilst, to ensure asymptotic stabilization, the latter requires an unbounded function ¢; however, we stress that ¢(¢)||y(¢)|| < 1 for
all ¢ > 0 and that the non-adaptive gain function ¢t — a(¢(t)||y(¢)||) is bounded.
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Define the bijection K : R>g — R>q by K () fo s)ds. Observe that t < K(t) < k*t for all t € R>¢. Define
z: R>o — R? by the relation z(K (t)) = (t) for all t € R>q. Writing 7 = K (¢), we have

d 1 d

— 2(r) = ———y(t) = —M,y(t) = —M,z(7), =2(0) = ¢°.

Therefore, the orbit y(R>() of the solution y of the nonlinear initial-value problem (43) coincides with the
positive semiorbit O = {(exp —M,7)y°| 7 € R>0} of the linear initial-value problem

Recalling that y(t) € B for all t € R >, it follows that z(7) = (exp —M,,7)y" € B for all T € R >¢. Since ¢ is an
arbitrary point of B, we may infer that B is positively invariant under the linear flow, that is (exp —M,7)(B) C B
for all 7 € R>q. Now, (2,—M,z) = —2% — 23 — pz125 for all z = (21, 22) € R? and since |u| > 2, there exists
2* = (2},25) € R? with Hz || = 1 such that (z*, —M,2*) =: ¢ > 0. By continuity, there exists § € (0,1) such
that (z,—M,z) > ¢/2 for all z € B with ||z — z*|| < 6. Define m* := ||M,||(= /1 + |u| + p2). Let y° = kz*
with k := 1 — de/(2(e + 2m*)) € (0,1). Then y° € B and so |z(7)| = ||(exp —M,7)y°|| < 1 for all T € R>.
Then

l2(r) = 2" < ll2(m) = ° + (1 — k)

IN

/01t IMyz(s)||ds + (1 — k) < m*t+ (1 — k)

M_;’_(l_k) = (1_k)(w+1)

9 9

IN

<(1—k)(2T: +1) = g <0 for all ¢ € [0, (1 — k?)/e] .

Therefore (d/dr)||z(7)||* = 2(z(7), —M.2(7 ) > ¢ forall t € [0, (1—4?)/e] and so we arrive at the contradiction:
1> [2((1 = B2)/)[2 > [5°)2 + (1 - K2) =

7. SIMULATIONS

The following simulations fulfil a triple purpose: (i) to illustrate the theoretical results of the previous sections,
(ii) to compare the “funnel” control with the adaptive control proposed in [2] for a class of systems similar to
class S of the present paper, and (iii) to compare the values of the gain function generated by funnel control with
the constant gain value of the feedback controller (20) (the latter being unrealisable in practice as it depends
on system data unavailable to the controller). Specifically, we consider a nonlinear system of the form

G0 _ [ awyr(t) + azly2 ()= + asya (Hyr (t — ha) + pa(t) "
(y2(t)) B (a4y1(t) + asy2(t) (y1 (t — h2))® + as(Byz)(t) + p2(t)) + Bult) (44)

for constants ag,...,as € R, p = (p1,p2) € L®(R;R?) and B € R?*? with BT + B > 0. Here B denotes the
backlash operator of Figure 5 (with parameter a > 0). Let h := max{hq, ho}, then by defining y := (y1,y=2), the
operator

T:C([—h,00;R?) — L¥(R>0;R%), (Ty)(t) = (y1(t), y2(t), y1(t — h1),y1(t — ha), (By2) (1)),

w = (w1, wy, w3, wy, ws), p= (p1,p2), and continuous f : R2 x R% x R2 — R? and f : R? x R’ — R? by

A 7 aiwy + a2|w2|% “+ aswiws + P1
,W,u) = , W —|—Bu, , W) 1= s
f(p ) f(p ) f(p ) ( aswi + a5w2wi + agws + p2 )
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we recast (44) in the form (1). Let C C R**® be compact. Then,

min (u,f(p,w,u)} > _ max ||f(p’w)” + <u,Bu>

> for all u € R? ,
(pw)eC [l (pw)eC [l

and since B + BT > 0 we have Property 3 of Definition 3. Furthermore, T € 7, p € L*(R;RR?), therefore
(p, f,T) € S. Thus (44) is of class S for any choice of parameters. For the purposes of numerical simulation,
we arbitrarily fix the parameters and initial data of (44) as follows:

1 11 1
a1:...:a6:1, hli]., h2:§, B|:O %:|, (ByQ)(O):O, a:g,

where a is the backlash parameter, and assume zero initial data
(y1(t),y2(t)) = (0,0) for all t € [—h,0].

Furthermore, as disturbance, we take p := (p1,p2)/5, where p1, p2 are the first two coordinates of the solution
of the initial-value problem for the Lorenz system

P1(t) = p2(t) — p1(t), p1(0) =1,
P2(t) = 2.8p1(t) — 0.1pa(t) — p1(t)ps(t), p2(0) =0,
Bs(t) = pr (pa() — opslt), pa(0) =3

(The solution is chaotic but bounded on R >¢: see, for example [7], Appendix C.) The reference signal is assumed
to be

t—r(t) = (ri(t), r2(t)) = (cos(t), cos(t/2)).

As performance funnel, we select ¢ as in (9) with parameters
A=1/5,e=1/2, 7=7, thatis, t— p(t)=—" (45)

All simulations were performed using ode45 within MATLAB.

7.1. Constant gain feedback

Proposition 6 asserts the existence of a k* such that, for each fixed & > k*, the control (20) guarantees that
the error evolves within the funnel (however, we reiterate that k* depends on system data that is unavailable to
the controller and so the constant-gain feedback is unrealisable). Figure 6 indicates that, for the chosen initial
data and parameters, a gain value of k = 35 is insufficiently large, whilst a value k = 45 is more than adequate.
Therefore, for the chosen initial data, a threshold gain value of approximately 40 provides a yardstick against
which the efficiency of the proposed control (and of the adaptive control of [2]) may be measured. As discussed
below, the adaptive control yields a limiting gain value close to the constant threshold value 40 and the funnel
control generates a gain function with average value significantly lower than the constant threshold value.

7.2. Adaptive A-tracking

Reference [2] contains an investigation (related to that of the present paper) of controlled nonlinear functional
differential equations of the form

y(t) = f(p(t), (Ty)(6) + g(p(t), (Ty)(6),u(t),  yli-no = y° € C([=h, 0 RM), (46)
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FIGURE 6. Constant gain feedback control (20) of system (44): ||e(-)| for k = 35,40, 45; funnel boundary (45).

with essentially bounded p, T € 7 (as in the present paper), and f : R xR? — RM and g : RYxRPxRM — RM
continuous. In addition, [2] posits:

(a) the existence of a continuous, increasing functions oy such that, for every compact set
C C RY, there exists ¢y with

£, w)ll < cp[L+ar(wl)]  for all (p,w) €C xRY;

(b) the existence of a continuous increasing function ap and constant cp such that
[(Ty)(®)|| < er |1+ max ar(ly(s)|)|  for all t>0;
s )

(c) for every compact set C C RY there exists a positive-definite, symmetric G € RM*M gych
that

(Gu, g(p,w,u)) > |[ul®  for all (p,w,u) € C x R? x RM.

Under the above hypotheses, an adaptive control is developed in [2], with a “dead-zone” in the gain adap-
tation, that achieves the following control objective: for every system of the admissible class, every reference
signal r € R every prescribed A > 0, all variables of the closed-loop system are bounded and the tracking error
tends asymptotically to the ball B}/, that is, lim;_ o dist(]le(2)]|,[0,A)) = 0. For the system (44), hypotheses
(a, b) and (c) hold with af : s +— s* ar : s+ s and G = I, in which case an admissible adaptive feedback
control of the class considered in [2] is

u(t) = =k [+ [le@)|*]e(t), &) =10dr(le®)]) +dallle@))*, e(t) :=y(t) —r(t), (47)

where the continuous function dy : R>¢ — R>¢ is given by di(s) := max{0, s — A}.

For system (44), with the above-chosen parameter values and initial data, performance under the adaptive
controller, with initial data k(t) = 0 for all t € [—h,0] and with A := lim;_.o 1/¢(t) = 1/10, is shown in
Figures 7, 8. Convergence of the gain is guaranteed; as indicated by Figure 8, the limiting gain value is close
to the constant gain threshold value 40. Note that performance issues, central to the present paper, are not
captured in the adaptive approach: the transient behaviour is not predictable and one may not stipulate a time
7 > 0 after which the error is guaranteed to evolve in the ball Bi” .
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FIGURE 7. Adaptive A-tracking control (47) of system (44). Upper: components of system
output (solid lines) and reference signal (dashed lines). Lower: adaptive gain k(-).

07 1 o7h

0.6, . 4 06

e o o 2on aon

0 5 10 15 20 25 30 470

FIGURE 9. System (44) under funnel control (27) with funnel envelope (45). Upper: compo-
nents of system output (solid lines) and reference signal (dashed lines). Lower: components of
error (solid lines) and funnel boundary (dashed line).

7.3. Tracking by funnel control

Finally, we consider the feedback control (27) with a(s) := 1/(1 —s) and funnel envelope (45); since ¢(0) = 0
the feasibility condition of (28) is vacuous. For system (44), with the above-chosen parameter values and initial
data, Figures 9-11 show the output evolving within the funnel as predicted by Theorem 5. Notice that the
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FIGURE 11. System (44) under funnel control (27) with funnel envelope (45): evolution of gain k(-)

largest “spike” of the gain function k is commensurate with the constant gain threshold value 40, whilst the
“average” gain value is considerably lower than this threshold.

We emphasize that, when contrasted with the adaptive control results of Section 7.2, “funnel” control ensures,
not only asymptotic performance, but also prescribed transient performance; moreover, this performance is
achieved without positing hypotheses (a) and (b) required by the adaptive design.
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