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SIGN CHANGING SOLUTIONS FOR ELLIPTIC EQUATIONS
WITH CRITICAL GROWTH IN CYLINDER TYPE DOMAINS ∗
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Abstract. We prove the existence of positive and of nodal solutions for −∆u = |u|p−2u+ µ|u|q−2u,
u ∈ H1

0(Ω), where µ > 0 and 2 < q < p = 2N(N −2), for a class of open subsets Ω of RN lying between
two infinite cylinders.
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Introduction

We are concerned with the existence of nonzero solutions for the nonlinear second order elliptic equation

−∆u = |u|p−2u+ µ|u|q−2u, u ∈ H1
0(Ω), (P)

where Ω is a smooth unbounded domain of RN with N ≥ 3, µ ∈ R+, 2 < q < p and p is the critical Sobolev
exponent p = 2∗ = 2N/(N − 2). Without loss of generality we assume that 0 ∈ Ω.

In the case where Ω is bounded, the proof of the existence of positive and of nodal (sign changing) solutions
for (P) or similar equations goes back to the work in [3, 4, 10]. In the case where Ω is unbounded and p is
subcritical (p < 2∗), we refer for example to [5, 12]. On the other hand, motivated by the work in [1, 2, 5, 7],
in [8] the authors prove the existence of a positive solution for a class of unbounded domains, concerning the
(somewhat simpler) equation −∆u = λu + |u|p−2u, where λ is positive and small (see also [9] for a related
result).

The present work complements the quoted results. Following [5, 8], we fix a number 1 ≤ ` ≤ N − 1 and
write RN = R` × RN−`, z = (t, y) ∈ R` × RN−`. For a given subset A ⊂ RN−` we denote Aδ = {y ∈ RN−` :
dist(y,A) < δ} and Â = R` ×A. Also, for t ∈ R` we let Ωt = {y ∈ RN−` : (t, y) ∈ Ω}. We shall consider both

situations (H) and (H)0 below:
(H) there exist two nonempty bounded open sets F ⊂ G ⊂ RN−` such that F is a Lipschitz domain and

F̂ ⊂ Ω ⊂ Ĝ. Moreover, for each δ > 0 there is R > 0 such that Ωt ⊂ Fδ for all |t| ≥ R;

Keywords and phrases: Nodal solutions, cylindrical domains, semilinear elliptic equation, critical Sobolev exponent, concentra-
tion-compactness.
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(H)0 there exists an open bounded set G ⊂ RN−` such that Ω ⊂ Ĝ and moreover for each δ > 0 there is R > 0
such that Ωt ⊂ BRN−`(0, δ) for all |t| ≥ R.

We have denoted by BRN−`(0, δ) the open ball in RN−` centered at the origin with radius δ > 0. The case (H)0

can be seen as a limit case of (H), with F = {0}. We prove the following:

Theorem 1. Consider problem (P) with 2 < q < p = 2∗ and assume either (H) or (H)0. Then, for every
µ > 0, the problem admits a positive (and a negative) solution of least energy.

In order to prove the existence of nodal solutions in case (H), we impose further restrictions on Ω, namely
that Ω approaches F̂ “smoothly and slowly”.
(H)′ Assume (H) and that Ω is of class C1,1 in such a way that the local charts as well as their inverses have

uniformly bounded Lipschitz constants. Moreover, there exist constants m > 0 and 0 < a1 < a0 such that(
1 + a

|t|m
)
F ⊂ Ωt for every a ∈ [a1, a0] and every |t| large.

Theorem 2. Consider problem (P) with 2 < q < p = 2∗ and assume either (H)′ or (H)0. In case (H)0 holds,
assume moreover that q > (N+2)/(N−2). Then, for every µ > 0, the problem admits a sign changing solution.

In Theorem 2 the conclusion is that (P) has a pair of sign changing solutions, since the nonlinearity is odd. In
case (H)0, the extra restriction on q is merely needed in lower dimensions (N = 3, 4, 5), since (N+2)/(N−2) ≥ 2
for N ≥ 6. In fact, Theorem 2 still holds if q = (N + 2)/(N − 2) provided µ is sufficiently large (see the remark
which follows the proof of Prop. 2.5).

The proof of our main theorems is given in Section 2 (see Props. 1.1 and 1.4); it relies on the concentration-
compactness principle at infinity and on some ideas of [4, 8]. Section 3 provides technical estimates which are
needed in the proof of Theorem 2. We also give further information on the decay properties of the solutions
found in Theorems 1 and 2.

1. Concentration-compactness

It is well known that the solutions of (P) correspond to critical points of the energy functional (for simplicity
of notations, we take µ = 1 in (P)):

I(u) =
1
2

∫
|∇u|2 − 1

p

∫
|u|p − 1

q

∫
|u|q, u ∈ H1

0(Ω),

where the integrals are taken over the domain Ω. We recall 2 < q < p = 2∗. It follows from assumptions (H)
or (H)0 that we can choose the norm ||u|| :=

(∫
|∇u|2

)1/2 in H1
0(Ω). Let

c0 := inf{I(u) : u ∈ H1
0(Ω), u 6= 0 and I ′(u)u = 0} · (1.1)

It is also clear that c0 > 0 and that every nonzero critical point u of I is such that I(u) ≥ c0. The following
result proves Theorem 1.

Proposition 1.1. Under assumptions (H) or (H)0, the infimum in (1.1) is attained in a critical point of I.

Proof. 1. We shall omit what concerns standard arguments (cf. [3, 4]). We first recall that there exists a
Palais–Smale sequence (un) ⊂ H1

0(Ω) at level c0, namely

I(un)→ c0 and I ′(un)→ 0. (1.2)

Since moreover c0 > 0, equation (1.2) implies that lim inf ||un|| > 0. This sequence is bounded and, up to a
subsequence, un ⇀ u weakly in H1

0(Ω), un(x) → u(x) a.e. and I ′(u) = 0, I(u) ≥ 0. Since lim inf ||un|| > 0 and
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I ′(un)un → 0, we also have that lim inf
∫
|un|p > 0; indeed, if

∫
|un|p → 0 along a subsequence, then, since

(
∫
u2
n) is bounded, by interpolation

∫
|un|q → 0, whence ||un|| → 0, as I ′(un)un → 0.

2. Up to subsequences, there exist measures µ and ν on Ω such that |∇(un − u)|2 ⇀ µ and |un − u|p ⇀ ν
weakly in the space M(Ω) of finite measures in Ω. Clearly, ||µ|| ≥ S||ν||2/p, where S is the best constant for
the embedding H1(RN ) ⊂ Lp(RN ). By testing I ′(un)→ 0 with unϕ for any ϕ ∈ D(RN ) and since I ′(u)uϕ = 0
we also see that

||µ|| = ||ν||. (1.3)

In particular,

µ 6= 0⇒ ||µ|| ≥ Sp/(p−2) = SN/2. (1.4)

3. Define

µ∞ := lim
R→∞

lim sup
n→∞

∫
|x|>R

|∇un|2,

ν∞ := lim
R→∞

lim sup
n→∞

∫
|x|>R

|un|p,

η∞ := lim
R→∞

lim sup
n→∞

∫
|x|>R

|un|q.

Again, it is clear that

µ∞ ≥ S ν2/p
∞ . (1.5)

By testing I ′(un) → 0 with unψR (R > 0) where ψR ∈ C∞(Ω), 0 ≤ ψR ≤ 1 is such that ψR(x) = 0 if |x| ≤ R
and ψR(x) = 1 if |x| ≥ R+ 1, it follows easily that

µ∞ = ν∞ + η∞. (1.6)

4. We recall from [1,2, 11] that ∫
|∇un|2 =

∫
|∇u|2 + ||µ||+ µ∞ + o(1),∫

|un|p =
∫
|u|p + ||ν||+ ν∞ + o(1),∫

|un|q =
∫
|u|q + η∞ + o(1).

As a consequence, and thanks to (1.2, 1.3) and (1.6), we have that

c0 = I(u) +
(

1
2
− 1
p

)
||µ||+

(
1
2
− 1
p

)
ν∞ +

(
1
2
− 1
q

)
η∞. (1.7)

In particular, c0 ≥ I(u). Since I ′(u) = 0, the proof will be complete once we show that u 6= 0. Indeed, in
this case we have that I(u) ≥ c0, whence I(u) = c0. (Incidentally, Eqs. (1.6) and (1.7) also show that, in fact,
||µ|| = µ∞ = 0, hence un → u in H1

0(Ω).)
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5. We recall from [3] that c0 < SN/2/N . Since (1.7) implies that

c0 ≥
(

1
2
− 1
p

)
||µ|| = 1

N
||µ||,

we deduce from (1.3, 1.4) that µ = ν = 0. Thus un → u in H1
loc(Ω) and

c0 = I(u) +
(

1
2
− 1
p

)
ν∞ +

(
1
2
− 1
q

)
η∞. (1.8)

6. Suppose first that Ω = F̂ . Since lim inf
∫
|un|p > 0, by Lemma 2.1 in [8] we may assume that, up to

translations,
∫
B1(0) |un|p ≥ c for some c > 0. Since un → u in H1

loc(Ω), we conclude that u 6= 0 and this proves

Proposition 1.1 for the case Ω = F̂ . Moreover, the argument shows that c0(F̂δ)→ c0(F̂ ) as δ → 0 (see (H) and
(1.12) for the notations).

7. We complete the proof in case (H)0 holds. Assume by contradiction that u = 0. Then, clearly
∫
u2
n → 0 (see

e.g. (2.1) in [8]). By interpolation, also
∫
|un|q → 0. In particular, η∞ = 0. Since c0 < SN/2/N , equations (1.5,

1.6) and (1.8) show that then ν∞ = 0, whence, by the second identity in Step 4,
∫
|un|p → 0. This contradicts

the fact that lim inf
∫
|un|p > 0 and proves Proposition 1.1 under (H)0.

8. At last, we consider the case where (H) holds and Ω 6= F̂ . Again, assume by contradiction that u = 0. Let
δ > 0 be given and take R > 0 according to assumption (H). Let ψR be as in Step 3 and denote

vn = unψR ∈ H1
0(F̂δ).

Since un → 0 in H1
loc(Ω), clearly we have that

I(vn) = I(un) + o(1) and I ′(vn)vn = o(1). (1.9)

We claim that

I(vn) + o(1) ≥ c0(F̂δ). (1.10)

Assuming the claim for a moment, it follows from (1.9, 1.10) that

c0 = I(un) + o(1) = I(vn) + o(1) ≥ c0(F̂δ).

Since δ > 0 is arbitrary, we conclude that c0 ≥ c0(F̂ ). On the other hand, since F̂ ⊂ Ω and c0(F̂ ) is attained
(see Step 6 above), we must have that c0 < c0(F̂ ). This contradiction completes the proof.

It remains to prove the inequality in (1.10). For this, we observe that (1.9) together with the fact that
lim inf I(un) > 0 implies that lim inf ||vn|| > 0 and lim inf

∫
|vn|p > 0. Now, let

wn = tnvn (tn > 0)

be such that I ′(wn)wn = 0; namely, tn is given by

tp−2
n

∫
|vn|p + tq−2

n

∫
|vn|q∫

|∇vn|2
= 1.
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Then (tn) is bounded and, since I ′(vn)vn → 0, we see that tn → 1. In particular,

I(wn) = I(vn) + o(1). (1.11)

Now, by definition, I(wn) ≥ c0(F̂δ) and (1.10) follows from (1.11).

Using the notation in assumption (H), we denote

c0(F̂ ) := inf{I(u) : u ∈ H1
0(F̂ ), u 6= 0 and I ′(u)u = 0} < SN/2/N. (1.12)

We also let

c∞0 := c0(F̂ ) in case (H), c∞0 := SN/2/N in case (H)0. (1.13)

We have shown in the proof of Proposition 1.1 that c0(F̂ ) is attained by a critical point of the energy functional
in H1

0(F̂ ). In fact, the argument above yields the following compactness result.

Proposition 1.2. Under assumptions (H) or (H)0, let (un) ⊂ H1
0(Ω) be such that

lim sup I(un) < c∞0 and I ′(un)(unψ)→ 0 (1.14)

for every ψ ∈ C∞(Ω) ∩W 1,∞(Ω). Suppose un ⇀ u weakly in H1
0(Ω), un(x)→ u(x) a.e. and I ′(u)(uψ) = 0 for

such functions ψ. Then un → u in H1
0(Ω).

Proof. Since I ′(u)u = 0, we have that I(u) ≥ 0. Denote vn := un − u. By the Brezis–Lieb lemma,

I(vn) = I(un)− I(u) + o(1) < c∞0 + o(1)

and
I ′(vn)(vnψ) = I ′(un)(unψ)− I ′(u)(uψ) + o(1)→ 0

for every ψ ∈ C∞(Ω) ∩W 1,∞(Ω). Since (vn) converges weakly to zero, a similar (though easier) argument
as in the proof of Proposition 1.1 shows that we cannot have lim sup I(vn) > 0. Thus I(vn) → 0. Since also
I ′(vn)vn → 0, we conclude that ||vn|| → 0, hence un → u in H1

0(Ω).

Next we turn to the proof of Theorem 2. Following [4], let

c1 := inf{I(u) : u ∈ H1
0(Ω), u± 6= 0 and I ′(u±)u± = 0} ≥ c0 > 0, (1.15)

where we denote u+ = max{u, 0} and u− = max{−u, 0}. The following proposition will be proved in Section 3
(cf. Props. 2.4 and 2.5).

Proposition 1.3. Assume (H)′ or (H)0 holds; in the latter case, we also assume that q > (N + 2)/(N − 2).
Then

c1 < c0 + c∞0 .

Our final result completes the proof of Theorem 2.

Proposition 1.4. Assume (H)′ or (H)0 holds; in the latter case, we also assume that q > (N + 2)/(N − 2).
Then the infimum in (1.15) is attained in a critical point of I.

Proof. It is known (cf. [4]) that there exists a Palais–Smale sequence at level c1, namely

I(un)→ c1 and I ′(un)→ 0,
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with the additional property that

I(u±n ) ≥ c0 + o(1) (1.16)

(so that, in fact, c1 ≥ 2c0). As in Step 1 in the proof of Proposition 1.1, modulo a subsequence, (un) converges
weakly in H1

0(Ω) and pointwise a.e. to a critical point u of I. Observe that I ′(un)→ 0 implies that

I ′(u±n )(u±nψ) = I ′(un)(u±nψ)→ 0 (1.17)

for every ψ ∈ C∞(Ω)∩W 1,∞(Ω). Similarly, I ′(u±)(u±ψ) = 0. Since moreover I(un) = I(u+
n )+I(u−n ) = c1+o(1),

we deduce from (1.16) and Proposition 1.3 that

lim sup I(u±n ) < c∞0 . (1.18)

It follows from (1.17, 1.18) and Proposition 1.2 that u±n → u± in H1
0(Ω). Hence un → u in H1

0(Ω), I(u) = c1
and I(u±) ≥ c0 > 0. This finishes the proof.

2. Decay and energy estimates

This section is devoted to general equations of the form

−∆u− λu = g(u), u ∈ H1
0(Ω), (2.1)

where Ω ⊂ RN (N ≥ 3) is an open set with C1,1 boundary and g satisfies (recall that p = 2∗ = 2N/(N − 2))

|g(s)| ≤ C (|s|+ |s|p−1), ∀s ∈ R. (2.2)

Under assumption (2.2), it follows from the Brezis–Kato estimates and classical elliptic regularity theory
that the solutions of (2.1) lie in C2(Ω) ∩ L∞(Ω) ∩ C(Ω). In view of the applications that we have in mind
(cf. assumptions (H)-(H)0), we let RN = R` × RN−` with 1 ≤ ` < N and accordingly write (t, y) ∈ R` × RN−`
for any point (t, y) ∈ RN .

Proposition 2.1. Let Ω = R`×F where F ⊂ RN−` is a C1,1 domain and let g ∈ C1(R) satisfy (2.2), g(0) = 0
and g′(s) = o(sε) near 0, for some ε > 0. Let u be a solution of

−∆u− λu = g(u), u ∈ H1
0(Ω), (2.3)

where λ < λ1 and λ1 is the first eigenvalue of (−∆,H1
0(F )). Then

|u(t, y)|+ |∇tu(t, y)| ≤ ϕ(y)e−
√

1+(λ1−λ)|t|2 , ∀(t, y) ∈ Ω, (2.4)

where ϕ is a positive eigenfunction associated to λ1. Also, there exists a constant C > 0 such that

|∇u(t, y)| ≤ Ce−
√

1+(λ1−λ)|t|2 , ∀(t, y) ∈ Ω.

Proof. 1. Since u ∈ L∞(Ω), we have from (2.2) that |g(u(x))| ≤ c|u(x)| for every x ∈ Ω. By elliptic regularity
theory (Th. 9.15 of [6]), there exists c > 0 such that, for all α ≥ 2,

||u||W2,α(B1(0)×F ) ≤ c ||u||Lα(B2(0)×F ).



NODAL SOLUTIONS FOR CRITICAL ELLIPTIC EQUATIONS IN CYLINDER TYPE DOMAINS 413

Due to invariance by translations,

||u||W2,α(B1(t)×F ) ≤ c ||u||Lα(B2(t)×F ) ∀t ∈ R`. (2.5)

In particular,

u(t, y)→ 0 as |t| → +∞, uniformly for y ∈ F (2.6)

and

|∇u(t, y)| → 0 as |t| → +∞, uniformly for y ∈ F. (2.7)

2. Suppose µ ∈]λ, λ1[ is fixed and let

Ψ(t) := αe−
√

1+(λ1−µ)|t|2 ∈ H1(R`),

where α will be chosen later. An easy computation shows that

−∆Ψ + (λ1 − µ)Ψ = (λ1 − µ) Ψ ((`− 1)θ−1/2 + θ−1 + θ−3/2) (2.8)

where θ(t) := 1 + (λ1 − µ)|t|2. In particular,

−∆Ψ + (λ1 − µ)Ψ ≥ α(λ1 − µ)
1 + (λ1 − µ)|t|2 e−

√
1+(λ1−µ)|t|2 =: h(t).

Let ϕ be a positive eigenfunction associated to λ1 and

z(t, y) := ϕ(y)Ψ(t).

The function z satisfies
−∆z − µz ≥ ϕ(y)h(t).

Hence, for w := z − u, we have

−∆w− µw ≥ ϕ(y)h(t) + (µ− λ)u− g(u) =: k(t, y). (2.9)

Since g(0) = 0 = g′(0), it follows from (2.6) that if u(t, y) ≥ 0, then

(µ− λ)u− g(u) ≥ 0

if |t| > R, where R is chosen large; hence also k(t, y) ≥ 0. In summary,

w < 0⇒ −∆w − µw ≥ 0, (2.10)

if |t| > R. Since ∂z/∂ν = h ∂ϕ/∂ν < 0 (ν stands for the outward normal to ∂Ω), we can fix α so large that
w ≥ 0 for |t| ≤ R. Let ω := {x ∈ Ω : w(x) < 0}. Since

w−(x) = 0 ∀x ∈ ∂ω,
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by multiplying (2.9) by w− and integrating, it follows from (2.10) that ω = ∅. Therefore u ≤ z. In the same
way we can prove that −u ≤ z, and so

|u(t, y)| ≤ ϕ(y)e−
√

1+(λ1−µ)|t|2 , ∀(t, y) ∈ Ω; (2.11)

the constant α has been incorporated into the function ϕ.

3. We now improve the previous estimate. Since g′(s) = o(sε), there exists C > 0 such that

|g(u(t, y))| ≤ C|u(t, y)|1+ε, ∀(t, y) ∈ Ω. (2.12)

We fix µ ∈]λ, λ1[, sufficiently close to λ, so that

γ := (1 + ε)
√
λ1 − µ >

√
λ1 − λ.

Combining (2.11) and (2.12),

|g(u(t, y))| ≤ Cϕ(y)1+εe−γ|t|, ∀(t, y) ∈ Ω. (2.13)

Let z(t, y) := ϕ(y)Ψ(t), where Ψ is like in Step 2, with µ replaced by λ. For w := z − u, we have

−∆w − λw ≥ α(λ1 − λ)
1 + (λ1 − λ)|t|2ϕ(y)e−

√
1+(λ1−λ)|t|2 − g(u(t, y)) =: p(t, y).

Since γ >
√
λ1 − λ, it follows from (2.13) that p(t, y) ≥ 0 if |t| is large. Choosing α sufficiently large leads to

p ≥ 0 in Ω. We conclude from the maximum principle, as before, that u ≤ z in Ω and in the same way, |u| ≤ z
in Ω.

4. To finish the proof we use the decay of u. Specifically, the derivatives v = ∂u/∂ti, for i = 1, . . . , `, satisfy

−∆v − λv = g′(u)v and v ∈ H1
0(Ω).

The argument in Steps 2 and 3 above proves an analogous decay for v. The main point in the final argument
is that if µ ∈]λ, λ1[ is sufficiently close to λ then

α(λ1 − λ)
1 + (λ1 − λ)|t|2ϕ(y)e−

√
1+(λ1−λ)|t|2 − Cϕε(y)e−ε

√
1+(λ1−λ)|t|2 × ϕ(y)e−

√
1+(λ1−µ)|t|2

is positive for |t| large. The final assertion in the statement of Proposition 2.1 follows from (2.5).

We now consider the setting analyzed in Section 2. Again, we denote by λ1 = λ1(F ) the first eigenvalue
of (−∆,H1

0(F )).

Proposition 2.2. Suppose Ω is a domain satisfying assumption (H) and moreover that Ω is of class C1,1 in
such a way that the local charts as well as their inverses have uniformly bounded Lipschitz constants. Let
g ∈ C1(R) be as in Proposition 2.1 and u be a solution of

−∆u− λu = g(u), u ∈ H1
0(Ω),

with λ < λ1. Then, for each λ ∈]λ, λ1[, there exists a constant C > 0 such that

|u(t, y)|+ |∇u(t, y)| ≤ Ce−
√

1+(λ−λ)|t|2 , ∀(t, y) ∈ Ω.
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Proof. The proof is similar to that of Proposition 2.1, so we just stress the differences. Thanks to our assumption
on Ω, the constant c in (2.5) can be taken uniformly bounded, hence (2.6) still holds. Now, fix δ > 0 in such
a way that λ < λ1(Fδ) < λ1. Running through the argument in Step 2 of the proof of Proposition 2.1 we see
that, similarly to (2.11),

|u(t, y)| ≤ ϕ(y)e−
√

1+(λ1(Fδ)−µ)|t|2 , ∀(t, y) ∈ Ω, |t| ≥ R,

provided R > 0 is sufficiently large; here, µ ∈]λ, λ1(Fδ)[ and ϕ is an eigenfunction associated to λ1(Fδ). Arguing
as in Step 3 of the quoted proof, the previous estimate for u can be improved to

|u(t, y)| ≤ ϕ(y)e−
√

1+(λ1(Fδ)−λ)|t|2 , ∀(t, y) ∈ Ω, |t| ≥ R.

This clearly implies that we can choose C > 0 such that

|u(t, y)| ≤ Ce−
√

1+(λ1(Fδ)−λ)|t|2 , ∀(t, y) ∈ Ω. (2.14)

A similar decay estimate for the derivatives of u follows from (2.5) and (2.14). Since λ1(Fδ) can be chosen
arbitrarily close to λ1 (see Lem. 2.3 of [8]), this proves the proposition.

Going back to Proposition 2.1, it may be interesting to observe that the asymptotic estimates can be sharp-
ened as follows:

Proposition 2.3. Under the assumptions of Proposition 2.1, let u be a solution of problem (2.3). Then:

(a) the conclusion of Proposition 2.1 still holds with e−
√

1+(λ1−λ)|t|2 replaced by e−
√

1+(λ1−λ)|t|2 |t|− `−1
2 ;

(b) (Hopf lemma) If u is positive and η < λ then u(t, y) ≥ ϕ̃(y)e−
√

1+(λ1−η)|t|2 for every (t, y) ∈ Ω, for some
positive eigenfunction ϕ̃ associated to λ1.

Proof. (a) We improve the estimate (2.4) by repeating the argument with

Ψ(t) := e−
√

1+(λ1−λ)|t|2 |t|− `−1
2 .

Indeed,

−∆Ψ + (λ1 − λ)Ψ = Ψ
(

(λ1 − λ)θ−1 + (λ1 − λ)θ−3/2 +
`− 1

2
`− 3

2
1
|t|2
)
,

a computation that can be easily checked using (2.8); here, of course, θ(t) := 1 + (λ1−λ)|t|2. As a consequence,
for sufficiently large |t| we have that

−∆Ψ + (λ1 − λ)Ψ ≥ 1
2

e−
√

1+(λ1−λ)|t|2 |t|− `+3
2 =: h(t).

Due to the assumptions on g, for the function on w := αϕΨ− u, with α a fixed positive number, we have

−∆w − λw ≥ αh(t)ϕ(y) −Aϕ1+ε(y)e−(1+ε)
√

1+(λ1−λ)|t|2 .

The right hand member above is positive for sufficiently large |t|. Using the maximum principle, we conclude,
as in (2.11), that

|u(t, y)| ≤ αϕ(y)e−
√

1+(λ1−λ)|t|2 |t|− `−1
2 , ∀(t, y) ∈ Ω. (2.15)



416 P. GIRÃO AND M. RAMOS

Finally, as in Step 4 of the quoted proof, a similar estimate for the derivatives of u follows from (2.4, 2.15) and
the fact that

α

2
ϕ(y)e−

√
1+(λ1−λ)|t|2 |t|− `+3

2 − Cϕε(y)e−ε
√

1+(λ1−λ)|t|2 |t|−ε `−1
2 × ϕ(y)e−

√
1+(λ1−λ)|t|2

is positive for |t| large.

(b) Here we let Ψ(t) := e−
√

1+(λ1−η)|t|2 . Fix any µ ∈]η, λ[. Similarly to (2.8), we can check that

h(t) := −∆Ψ + (λ1 − µ)Ψ ≤ 0 for every |t| ≥ R

with R sufficiently large. Since u(t, y) → 0 as |t| → ∞ and since g(0) = 0 = g′(0) we can choose R in such a
way that also (µ−λ)u−g(u) ≤ 0 for |t| ≥ R. Letting z := ϕΨ, we can fix a small α > 0 so that w := αz−u ≤ 0
if |t| ≤ R; this is possible because u ∈ C1(Ω), u > 0 in Ω and ∂u/∂ν < 0 on ∂Ω (outward normal derivative).
In summary, we have that (compare with (2.9))

−∆w − µw = αϕh+ (µ− λ)u− g(u) =: k(t, y)

and k(t, y) ≤ 0 for |t| ≥ R, while w ≤ 0 for |t| ≤ R. Using the maximum principle as in the proof of
Proposition 2.1 we conclude that w ≤ 0 for all (t, y).

We end this section with the proof of Proposition 1.3, which is contained in Propositions 2.4 and 2.5 below.
We will refer to the functional I introduced at the beginning of Section 2 as well as to the quantities c0, c∞0
and c1 defined in (1.1, 1.13) and (1.15), respectively.

Proposition 2.4. Assume (H)′ holds. Then c1 < c0 + c∞0 .

Proof. 1. We know that c0 is attained by a positive function v ∈ H1
0(Ω) and c∞0 is attained by some positive

function ψ ∈ H1
0(R` × F ) (cf. Prop. 1.1). Let m > 0 and 0 < a1 < a0 be given by assumption (H)′ and denote

A := a0/a1 > 1. Fix a large number M such that M > 2A and

a1

a0
<

(
M −A
M +A

)m
· (2.16)

Let ρ : R → R be a smooth function such that ρ(s) = 1 for |s| ≤ 1 and ρ(s) = 0 for |s| ≥ A. We define ρR
and ηR in R` by ρR = ρ(|t|/R) and ηR(t) = ρR(t−MRe1) = ρ(| tR −Me1|). We also let

vR(t, y) := v(t, y)ρR(t)

and

ψR(t, y) := λ
−N/p
R ψ

(
t−MRe1

λR
,
y

λR

)
ηR(t),

where

λR := 1 +
a0

(M +A)mRm
· (2.17)

We observe that vR and ψR have disjoint supports. Moreover, both functions belong to H1
0(Ω) if R is sufficiently

large. Indeed, suppose (t, y) ∈ ∂Ω and let us show that ψR(t, y) = 0. We may already assume that |t−MRe1|
≤ AR. In particular,

(M −A)R ≤ |t| ≤ (M +A)R. (2.18)
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Now, to prove the claim it is sufficient to show that ( t−MRe1
λR

, y
λR

) /∈ F̂ , i.e. that y
λR

/∈ F . Observing that

y =
(

1 +
a

|t|m
)

y

λR

where, according to (2.16–2.18),

a := a0

(
|t|

(M +A)R

)m
∈ [a1, a0],

the conclusion follows from (H)′ and the fact that (t, y) /∈ Ω.

2. Thanks to Proposition 2.2 (with λ = 0), we know that |v(t, y)| + |∇v(t, y)| = O(e−δ|t|) and similarly
for ψ. Here and henceforth δ denotes various positive constants. It then follows easily that I(vR) → I(v) and
I(ψR)→ I(ψ) as R→∞ and also that

I(vR) = I(v) + O(e−δR), I(ψR) = I(ψ) + O(e−δR). (2.19)

In fact, the second estimate can be improved, observing that∫
ψpR =

∫
ψpρpR =

∫
ψp +

∫
ψp(ρpR − 1) =

∫
ψp + O(e−δR)

and similarly
∫
|∇ψR|2 =

∫
|∇ψ|2 + O(e−δR), while∫

ψqR = λ
N(1− qp )

R

∫
ψq + O(e−δR)

so that

I(ψR) = I(ψ) +
(

1− λN(1− qp )

R

)∫
ψq + O(e−δR)

≤ I(ψ)−N
(

1− q

p

)
a0

(M +A)mRm

∫
ψq + O(e−δR),

whence, for every sufficiently large R,

I(ψR) < I(ψ). (2.20)

3. Clearly, as in (2.19, 2.20), for large R and uniformly for τ1, τ2 ∈ [1/2, 2], we have that

I(τ1vR − τ2ψR) = I(τ1vR) + I(τ2ψR) < I(τ1v) + I(τ2ψ)
≤ sup

s≥0
I(sv) + sup

s≥0
I(sψ) = c0 + c∞0 .

The last equality above is a direct consequence of the definitions of c0 and c∞0 , by standard arguments
(cf. [3, 4, 11]). In summary, there exists R0 such that

sup
1/2≤τ1,τ2≤2

I(τ1vR − τ2ψR) < c0 + c∞0 , ∀R ≥ R0. (2.21)

4. Thanks to (2.21), to complete the proof it remains to show that there exist τ1, τ2 ∈ [1/2, 2] and R ≥ R0 such
that w := τ1vR − τ2ψR satisfies I ′(w±)w± = 0. Since vR and ψR have disjoint supports, this amounts to prove
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that there exist τ1, τ2 ∈ [1/2, 2] and R ≥ R0 such that

I ′(τ1vR)vR = 0 and I ′(τ2ψR)ψR = 0. (2.22)

Now, we have that I ′(vR/2)vR → I ′(v/2)v > 0 and I ′(2vR)vR → I ′(2v)v < 0 as R → ∞ and similarly for ψ.
Hence (2.22) follows by applying the intermediate value theorem.

Proposition 2.5. Assume (H)0 holds and moreover that q > (N+2)/(N−2). Then c1 < c0+c∞0 = c0+SN/2/N .

Proof. Let U(x) = cN/(1 + |x|2)(N−2)/2 be the Talenti instanton, normalized in such a way that
∫
|U |p =∫

|∇U |2 = SN/2 (i.e. cN = (N(N − 2))(N−2)/4). Let Uε(x) = ε−N/pU(x/ε) be its rescaling, so that also∫
|Uε|p =

∫
|∇Uε|2 = SN/2. The following argument is similar to that in [12], except that we cut down the least

energy solution and also Uε and estimate the error in doing so, instead of computing the interference between
their energies.

Recall that, without loss of generality, we are assuming that 0 ∈ Ω. By Proposition 1.1, we know that c0 is
achieved by a positive function v ∈ H1

0(Ω) ∩ C1(Ω). Let ρ, η : R → R be smooth functions such that ρ(s) = 1
for |s| ≤ 1, ρ(s) = 0 for |s| ≥ 2, η(s) = 0 for |s| ≤ 2 and η(s) = 1 for |s| ≥ 3. We define ρε and ηε : RN → R by
ρε(x) = ρ(|x|/√ε) and ηε(x) = η(|x|/√ε). We also define

uε := Uε ρε and vε := v ηε.

It is clear that uε and vε have disjoint supports and that they both belong to H1
0(Ω). We can estimate∫

|∇vε|2 ≤
∫
|∇v|2 + 2

(∫
2ε1/2≤|x|≤3ε1/2

(|∇v|2η2
ε + v2|∇ηε|2)

)

≤
∫
|∇v|2 + O(εN/2) + O(ε(N−2)/2)

=
∫
|∇v|2 + O(ε(N−2)/2),

while ∫
vpε =

∫
vp +

∫
vp(ηpε − 1) ≥

∫
vp −

∫
|x|≤3ε1/2

vp ≥
∫
vp + O(εN/2)

and similarly for
∫
vqε , so that

I(vε) ≤ I(v) + O(ε(N−2)/2). (2.23)

As for uε, ∫
|∇uε|2 ≤

∫
|∇Uε|2 + 2

(∫
|∇Uε|2ρ2

ε + U2
ε |∇ρε|2

)
≤ SN/2 + O(ε(N−2)/2),

while, denoting by c > 0 some constant which is independent of ε,∫
upε ≥ SN/2 + O(εN/2) and

∫
uqε ≥ c εN(1− qp ),

as can be checked directly, using the explicit expression of Uε. In summary,

I(uε) ≤
(

1
2
− 1
p

)
SN/2 + O(ε

N−2
2 )− c εN(1− qp ). (2.24)
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Combining (2.23) and (2.24) yields

I(uε) + I(vε) ≤ c0 +
SN/2

N
+ c1 ε

N−2
2 − c2 εN(1− qp ), (2.25)

for some positive constants c1 and c2. In particular,

I(uε) + I(vε) < c0 +
SN/2

N
(2.26)

if ε is sufficiently small since, by assumption, N−2
2 > N(1 − q

p ); indeed, this condition is equivalent to
q > p− 1 = (N + 2)/(N − 2). From (2.26) we can end the proof of Proposition 2.5 with similar arguments as
in Steps 3 and 4 in the proof of Proposition 2.4.

Remark 2.6. As observed at the beginning of Section 2, for simplicity of notations we have assumed that
µ = 1 in problem (P). In the general case, (2.25) reads as

I(uε) + I(vε) ≤ c0 +
SN/2

N
+ c1 ε

N−2
2 − µ c2 εN(1− qp ).

Thus one still has (2.26) in case q = (N + 2)/(N − 2) provided µ is sufficiently large.
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[12] X.-P. Zhu, Multiple entire solutions of a semilinear elliptic equations. Nonlinear Anal. TMA 12 (1998) 1297-1316.


