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UNIVALENT σ-HARMONIC MAPPINGS: APPLICATIONS TO COMPOSITES
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Abstract. This paper is part of a larger project initiated with [2]. The final aim of the present paper
is to give bounds for the homogenized (or effective) conductivity in two dimensional linear conductivity.
The main focus is therefore the periodic setting. We prove new variational principles that are shown to
be of interest in finding bounds on the homogenized conductivity. Our results unify previous approaches
by the second author and make transparent the central role of quasiconformal mappings in all the two
dimensional G-closure problems in conductivity.
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1. Introduction

This paper is part of a larger project initiated with [2]. The underlying main theme, is the study of a branch
of homogenization studying fine properties of so-called composite materials.

We will first introduce some notations and preliminary definitions and then explain the main focus of the
paper. We shall denote by Ms the class of real, two by two symmetric matrices and by Ms

K , K ≥ 1, the
subclass of matrices σ = {σij} ∈ Ms satisfying the uniform ellipticity condition

K−1|ξ|2 ≤ σijξiξj ≤ K|ξ|2 for every ξ ∈ R2. (1.1)

Let Ω be an open set in R2, we shall refer to any given σ ∈ L∞(Ω,Ms
K) as a conductivity and a mapping

U ∈W 1,2
loc (Ω, R2) will be said to be σ-harmonic if its components u1 and u2 are weak solutions to the divergence

form elliptic equation

div (σ∇ui) = 0 in Ω, i = 1, 2. (1.2)

We shall mainly consider Ω = R2. We set Q = (0, 1) × (0, 1) and we shall deal with functions which are
1-periodic with respect to each of its variables x1 and x2, which we will call Q-periodic, or for short, periodic.
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This will be indicated by the subscript ] in the relevant function spaces. For instance

L∞] (R2,Ms
K) ≡ {σ ∈ L∞(R2,Ms

K) |

σ(x1 +m,x2 + n) = σ(x1, x2) for a.e. (x1, x2) ∈ R2, ∀m,n ∈ Z},
W 1,2
] (R2, R2) ≡ {U ∈W 1,2

loc (R2, R2) |
U(x1 +m,x2 + n) = U(x1, x2) for a.e. (x1, x2) ∈ R2, ∀m,n ∈ Z}·

It is also convenient to define, for any two by two matrix A,

W 1,2
],A(R2, R2) ≡ {U ∈W 1,2

loc (R2, R2) | U −Ax ∈W 1,2
] (R2, R2)} · (1.3)

We are especially interested in boundary conditions of periodic type because of their central role in homoge-
nization and in particular in the so-called G-closure problems. Indeed let us recall the following very basic facts
in homogenization theory. Let σ ∈ L∞] (R2,Ms

K) be given and let Ω be a bounded open and simply connected
set with Lipschitz boundary. Let f ∈W−1,2(Ω, R) and, for ε > 0, set σε(x) = σ(xε ). Consider the problem{

−div(σε(x)∇uε(x)) = f in Ω
uε ∈W 1,2

0 (Ω, R).

Then uε ⇀ u0 in W 1,2(Ω, R) where u0 solves the following (homogenized) problem:{
−div(σhom∇u0(x)) = f in Ω
u0 ∈W 1,2

0 (Ω, R).

The result is well known [46] and [47]. (See [11] for an introduction to the subject.)
The new (constant) matrix σhom, called homogenized conductivity, belongs to Ms

K and it is determined by
the following rule

∀ξ ∈ R2, 〈σhomξ, ξ〉 = inf
u−〈ξ,x〉∈W1,2

] (R2,R)

∫
Q

〈σ(y)∇u(y),∇u(y)〉dy. (1.4)

It is important to change the definition (1.4) to an equivalent but more convenient one. To this end, we denote
the set of real two by two matrices by M and define σhom as the unique constant (and symmetric) matrix
satisfying the following rule

∀A ∈ M, tr(AσhomA
T ) = inf

U∈W1,2
],A(R2,R2)

∫
Q

tr
[
DU(y)σ(y)DU(y)T

]
dy. (1.5)

Note that the infimum in (1.5) is taken on a class of vector fields rather than functions. We use the notation D
(rather than ∇) to denote the gradient of vector valued mappings. Our convention is that for F = (f, g),

DF =
(
fx1 fx2

gx1 gx2

)
.

By the linearity of the Euler–Lagrange equations associated to the variational principle (1.4), one concludes
that (1.5) and (1.4) are indeed equivalent. Given A ∈ M, denote by UA a solution (unique up to an additive
constant vector) of {

Div
[
σ(y)(DUA(y))T

]
= 0 in R2

UA ∈W 1,2
],A(R2, R2), (1.6)
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where for any matrix B, DivB is the vector whose i-th component is the divergence of the vector whose
components form the i-th column of B.

Note that, by (1.6), UA is a solution of the Euler–Lagrange equations associated to (1.5).
A topic of great interest in material science and in optimal design is the so-called G-closure problem. The

simplest non trivial example is the so-called two-phase problem which we now describe. Assume that

σ(x) = (KχE(x) +K−1(1− χE(x)))I

where E is a measurable subset of Q. The G-closure problem in this case can be roughly described as follows.
The given data are the conductivities in each phase (KI and K−1I) and the volume fractions p, 1 − p with
p ∈ [0, 1]. The unknown is the set E, called the microgeometry. As E varies, so does the homogenized
matrix σhom. The goal is to characterize the exact range of σhom as the measurable set E varies in the family
of all possible measurable subsets of Q satisfying the constraint |E| = p (more precisely its closure in the space
of symmetric matrices equipped with its natural norm).

The study of the two-phase problem has been initiated by Hashin and Shtrikman [23] and it has been
completely solved only about twenty years later by Tartar and Murat [40,49] and by Cherkaev and Lurie [30].
However, many interesting G-closure problems are still open. For instance the three-phase problem in which σ
takes three distinct values with prescribed volume fractions, has attracted considerable attention.

Periodicity is a very convenient setting. However it is not necessary. On the contrary, the more general setting
of arbitrary sequences of matrices satisfying (1.1), has inspired very deep progress in this field. The general
plan to establish bounds on the effective conductivity is very clearly outlined by Tartar in his fundamental
paper [49] and also in the less known [48]. The idea is to consider any known differential constraint on the
fields coming into play. Transform this constraint (using the theory of compensated compactness developed
by Murat and Tartar [50] and [39]) into a compactness property for suitable weakly convergent sequences of
fields hence establishing necessary conditions that any effective conductivity (or more generally any H-limit in
the language of Murat and Tartar [49]) must satisfy. This approach has been tremendously successful. In two
dimensions, and restricting attention to periodic boundary conditions, the essence of the method, is to use what
(in the slightly different context of multi-well problems) are called the “minor relations”. In other words one
takes advantage of the fundamental fact that given any A ∈ M and any U ∈ W 1,2

],A(R2, R2), in addition to the
obvious constraint

∫
QDU(x)dx = A one has∫

Q

detDU(x)dx = detA. (1.7)

The latter is often expressed by saying that A → detA is a null-Lagrangian on the space W 1,2
],A(R2, R2). The

equality (1.7) is a special instance of a much more general phenomenon leading to the notion of quasiconvexity:
a real valued function F on the space of two by two matrices is quasiconvex if for any matrix A one has:

U ∈W 1,2
],A(R2, R2)⇒

∫
Q

F (DU)dx ≥ F (A).

By Jensen’s inequality, convex functions have this property and if the target space of U has dimension one, the
set of quasiconvex functions, reduces itself to the set of convex functions [51]. However, if both the domain and
the target space have dimension greater than one, there exist quasiconvex functions which are not convex as
shown for instance by (1.7). The compensated compactness developed by Murat and Tartar [40,50] is the natural
mathematical tool to find bounds on homogenized coefficients by using the existence of these functions. Due
to its elegance, simplicity and generality, the method has been a tremendous source of stimulus and results in
material sciences, optimal design as well as in their connections to certain branches of the calculus of variations.

In its general form, the compensated compactness method works with any quasiconvex function, not just
null-Lagrangians. However, as observed by Milton [35], many different quasiconvex functions may lead to the
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same bound. Therefore the method faces another difficulty, namely that very little is known about the set
of quasiconvex functions. In practice, in two dimensional linear conductivity, all the bounds obtained with
this approach select only the determinant (or not relevant modifications of it) in the (unknown) class of all
quasiconvex functions and use it as efficiently as possible. This is what we will call the conventional translation
method. Use of different quasiconvex functions (unconventional translation method) is in principle possible but,
at present, no other efficient candidates are available, at least in dimension two.

In recent years, however, there has been some progress in finding bounds for the G-closure problems. This
has been made by using (apparently) different approaches. In the first of such results [42], use has been made
of the fact (proved in [10]) that suitably chosen σ-harmonic mappings U are sense preserving (detDU ≥ 0 a.e.).

In another piece of work [43], use has been made of a recent fundamental advance in the theory of quasicon-
formal mappings due to Astala [6].

In these papers the strategy is inspired by the compensated compactness approach and it is similar to it.
The difference consists in using constraints on the variable U ∈ W 1,2

],A which are valid only for those fields U
which, in addition, are (in our language) σ-harmonic mappings.

The additional difficulty in this approach is that this constraint must depend only on the a priori information
on the pertinent G-closure problem.

The first goal achieved in this paper is to show that the papers [42] and [43] have indeed a very clear common
theme. In Section 3, we establish a new variational principle which defines σhom in an alternative way. This
is a refinement of a variational principle of Astala and Miettinen [7]. We will compare the latter with our new
one in some detail in Section 3 (see the discussion after Cor. 3.2). Ours has the important advantage that the
minimizers are quasiconformal independently of any assumption on the conductivity matrix!

The crucial ingredient which we will need in our analysis is the following.

Theorem A (Alessandrini–Nesi [2], Ths. 2 and 5). Set detA > 0, and let UA be a solution to (1.6). Then
(i) UA is univalent, that is, a homeomorphism of R2 onto itself;

(ii) UA is sense preserving, that is,

detDUA > 0 a.e. (1.8)

The quasiconformality of the minimizers of the new variational principle proved in Section 3 (see also the
statements of Ths. 3.1 and 3.2 later in this Introduction), is indeed a consequence of Theorem A. This rather
surprising connection is developed in the next Section 2, see, in particular, Propositions 2.1, 2.2. It is worth
noticing here that, instead, the quasiconformality of the minimizer is not guaranteed in general for the original
variational principle (1.5). In fact, it has been shown in [3] that for generic conductivities (in the sense of Baire
category) the minimizer of (1.5) is not quasiconformal.

In turn, the fact that, for the new variational principle, the results of Section 2 imply the quasiconformality
of the minimizers explains why studying the properties of quasiconformal mappings is central to any two
dimensional G-closure problem in linear conductivity.

Thus, this circle of ideas unifies and expands the work in [42] and [43] under a common scheme, and, especially,
it explains why the area distortion theorem of Astala [6] is a natural ingredient in this context.

To state in more detail the main results of the paper we need some further background. We recall that, given
f ∈W 1,2

loc (Ω, R2), the dilatation quotient for f is defined for almost every x ∈ Ω as

Df (x) =
max|ξ|=1 |∂ξf(x)|
min|ξ|=1 |∂ξf(x)| (1.9)

where ∂ξ denotes directional derivative in the direction ξ, and that, for a given K ≥ 1, a non constant f ∈
W 1,2

loc (Ω, R2) is said to be a (sense preserving) K-quasiregular mapping if

Df (x) ≤ K, and detDf > 0, for almost every x ∈ Ω, (1.10)
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where Df denotes the Jacobian matrix of f . A mapping f will be said K-quasiconformal if in addition it is
injective. We also recall that equivalent conditions to (1.10) are given by

tr(DfDfT ) ≤ (K +K−1)detDf almost everywhere in Ω, (1.11)

or else

|fz̄| ≤
K − 1
K + 1

|fz| almost everywhere in Ω, (1.12)

where the standard identification z = x1 + ix2 is used. See, as a basic reference for quasiregular mappings in
the plane, Lehto and Virtanen [29].

The connections between σ-harmonic and quasiregular mappings are many-sided.
First of all, the components u1 and u2 of a σ-harmonic mapping U are also the components of quasiregular

mappings. In fact, to each σ-harmonic function u (that is a solution to (1.2)) we can associate in a natural
fashion, a new function, the so-called stream function ũ which generalizes the harmonic conjugate, and which is
defined as follows. If Ω is simply connected and u is σ- harmonic, then there exists, and it is uniquely determined
up to an additive constant, a function ũ ∈W 1,2

loc (Ω, R) such that

∇ũ = Jσ∇u a.e. x ∈ Ω (1.13)

where

J =
(

0 −1
1 0

)
.

Such a stream function associated to u is σ
detσ -harmonic i.e. we have, in the weak sense

div
( σ

detσ
∇ũ
)

= 0 in Ω

and is such that the mapping f = u + iũ turns out to be K-quasiregular. Another (non trivially) equivalent
but very useful way to express the quasiregularity of a map f is the following. A mapping f ∈ W 1,2

loc (Ω, R2) is
K-quasiregular , if and only if there exists G ∈ L∞] (R2,Ms

K), with detG(x) = 1 almost everywhere, such that

Df(x)TDf(x) = G(x) detDf(x) a.e. (1.14)

These facts, which can be traced back to the functional analytic approach for two-dimensional elliptic equations
due to Bers and Nirenberg [13] (see also Bers et al. [12], Chap. II.6, and Vekua [52]), have been the starting
point for the geometric study of σ-harmonic functions in [1].

We now describe in more detail the results of the present paper restricting attention to periodic σ-harmonic
mappings. The first result, proved in Section 2, says that, given any sense preserving, periodic σ-harmonic
mapping U = (u1, u2), there exists a family of mappings obtained as a suitable combination of U and Ũ =
(ũ1, ũ2) which is K-quasiconformal. We refer to Section 2, Propositions 2.1 and 2.2.

In Section 3, we apply the results of Section 2 to issues in homogenization. We prove various new variational
principles. All of them enjoy the following properties. First, they define the effective conductivity. Second the
associated minimizers are quasiconformal. This fact does not depend on σ in any way and shows that, in two
dimensional conductivity, the effective conductivity can be defined in terms of quasiconformal mappings only
and therefore the latter are the natural tool to tackle the corresponding G-closure problem.

The main results of Section 3 are Theorem 3.1, Theorem 3.2 and the Corollaries 3.1 and 3.2. We state
immediately the theorems for the reader’s convenience.

Given σ ∈ L∞] (R2,Ms
K), we set

dm = ess inf
x∈Q

√
det σ. (1.15)
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Theorem 3.1. Let K > 1 be given, if σ ∈ L∞] (R2,Ms
K), then the homogenized conductivity σhom satisfies

detσhom ≥ d2
m (1.16)

and, for every λ ∈ (−dm, dm) and every A ∈M

tr(AσhomA
T )− 2λdetA

detσhom − λ2
= inf
φ∈W1,2

],A(R2;R2)

1
|Q|

∫
Q

tr[Dφ(y)σ(y)Dφ(y)T ]− 2λdetDφ(y)
detσ(y)− λ2

dy. (1.17)

Moreover the minimizer of (1.17) is uniquely determined up to an additive constant vector and is given by

φUBλ ,λ = λUBλ + JŨBλ , (1.18)

where UBλ is the solution to (1.5) when A is replaced with

Bλ =
−λA+ Adj(Aσhom)

detσhom − λ2
· (1.19)

Here AdjA stands for the adjugate of the matrix A.

The variational principle (1.17) is similar to that proved in [7]. We will later see the advantages of the
new one.

To state the next result it is convenient to make the following definitions.
Let S ∈ Ms be positive definite, set s =

√
detS and let λ ≥ 0. We define a set of quasiconformal matrices

and a corresponding function space as follows:

m(S, λ) ≡

 {M ∈ M : (s2 + λ2) detM > λtr(MAdj(S)MT )} if λ ∈ [0, s),
{M ∈ M : (s2 + λ2) detM = λtr(MAdj(S)MT )} if λ = s,
M if λ > s.

(1.20)

W (A, σ, λ) ≡ {φ ∈W 1,2
],A(R2, R2) : AdjDφ(x) ∈ m(σ(x), λ) a.e. x ∈ Q} · (1.21)

It is easy to check that S−
1
2 ∈ m(S, λ) for every λ ≥ 0, hence

∀λ ≥ 0, m(S, λ) 6= ∅. (1.22)

In Corollary 3.1 we shall show that, under the assumptions of Theorem 3.1, for every λ ∈ [0, dm) and for every
A ∈ m(σhom, λ), the minimizers of (1.17) are not only quasiregular but also quasiconformal.

We continue to adopt the notation of Theorem 3.1. We set

Qdm =
{
x ∈ Q :

√
detσ(x) = dm

}
(1.23)

and consider the following space:

B(A, σ, dm) ≡ {φ ∈W 1,2
],A(R2, R2) : AdjDφ(x) ∈ m(σ(x), dm) a.e. x ∈ Qm}. (1.24)

This space is easily described in words. It is the subspace of W 1,2
],A(R2, R2) given by those mappings which in

the set Qm satisfy the first order Beltrami equation (1.14), with the matrix G defined as follows

G =
(

σ√
detσ

)−1

·
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We remark that the set B(A, σ, dm) is a closed linear subspace of W 1,2
],A(R2, R2).

In the G-closure problems one is particularly interested in the case when the eigenvalues of σ take a finite
number of values. On the other hand if Q = Qdm the G-closure is well-known. It is convenient to avoid this
special case assuming that |Qdm | < 1. The assumptions of the next theorem are therefore very natural.

Theorem 3.2. Let K > 1 be given. For σ ∈ L∞] (R2,Ms
K), set dm and Qdm according to (1.15) and (1.23)

respectively. Assume that |Qdm | > 0 and

ess inf
Q\Qdm

√
det σ > dm. (1.25)

Then

detσhom > d2
m (1.26)

and the homogenized conductivity σhom satisfies the following variational principle. For every A ∈ m(σhom, dm),

tr(AσhomA
T )− 2dm detA

detσhom − d2
m

= inf
φ∈B(A,σ,dm)

∫
Q

{
χQdm (y)

tr[Dφ(y)σ(y)Dφ(y)T ]
2 detσ(y)

+(1− χQdm (y))
tr[Dφ(y)σ(y)Dφ(y)T ]− 2dm detDφ(y)

detσ(y)− d2
m

}
dy. (1.27)

Moreover the minimizer of (1.27) is unique up to a constant vector. It is given by

φUBdm ,dm = λUBdm + JŨBdm , (1.28)

where UBdm is the solution to (1.6) when A is replaced with

Bdm =
−dmA+ Adj(Aσhom)

detσhom − d2
m

· (1.29)

The minimizer of (1.27) given by (1.28) can be thought of as a constrained minimizer, to emphasize that it
might be different from the minimum of the same functional on the whole space W 1,2

],A(R2, R2).
In Corollary 3.2 we shall show that, under the assumptions of Theorem 3.2, the minimizer of (1.27) is

quasiconformal.
We conclude Section 3 with some examples illustrating the use of Theorems 3.1 and 3.2 in the two-phase

problem.
In Section 4, we give several examples and applications to G-closure problems. In particular, Theorem 4.1

gives new bounds which are a generalization of those proved in [42] and [43]. It must be said that these new
bounds are always at least as tight as those that one would obtain by all the other known bounds and reduce
to the standard one when the choice φ(x) ≡ Ax is made in either the variational principles (1.17) or (1.27)
or (4.1).

2. Quasiconformal mappings generated by σ-harmonic mappings

Given a simply connected open set Ω, K ≥ 1 and σ ∈ L∞(Ω,Ms
K), any σ-harmonic function u generates a

K-quasiregular mapping f = u + iũ via conjugation with its stream function ũ (see the Introduction and [2],
Sect. 2 for more details). In this section we show that any σ-harmonic mapping U which is sense preserving
(i.e. such that detDU ≥ 0 almost everywhere), generates a one parameter family of quasiregular mappings. In
particular one element of this family is exactly K-quasiregular. It is important to recall from [2], that typically,
locally univalent σ-harmonic mappings can be taken to be sense preserving. Here, by locally univalent we mean
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locally one-to-one. We will see later in the Example 2.1, that the classical way to generate K-quasiregular
mappings from a given σ-harmonic function u is a special case of our construction.

We will also see in Section 3, that the family of mappings introduced in the present section, has a central
role in questions concerning homogenized coefficients. We denote by

σ1(x) ≤ σ2(x) (2.1)

the eigenvalues of σ, at the point x ∈ Ω. Let U = (u1, u2) ∈ W 1,2
loc (Ω, R2) be σ-harmonic and let Ũ = (ũ1, ũ2)

be the mapping whose components are the stream functions of u1 and u2 respectively. For λ > 0 we define

φU,λ = λU + JŨ (2.2)

zλ(x) = max
(

1,min
(
σ2(x)
λ

,
λ

σ1(x)

))
(2.3)

and

kλ(x) = max
(
σ2(x)
λ

,
λ

σ1(x)

)
, Kλ = ||kλ(x)||L∞(Ω). (2.4)

We denote by DU,λ(x) the dilatation quotient of φU,λ, see (1.9).

Proposition 2.1. Let σ ∈ L∞(Ω,Ms
K) and let U ∈W 1,2

loc (Ω, R2) be σ-harmonic.

i) If detDU ≥ 0 almost everywhere in Ω, then, for any λ > 0, φU,λ is Kλ-quasiregular. More precisely

zλ(x) ≤ DU,λ(x) ≤ kλ(x) almost everywhere (2.5)

and hence

||DU,λ||L∞(Ω) ≤ Kλ. (2.6)

In particular φU,1 is K-quasiregular.
ii) If, in addition, U is locally univalent, then, for every λ > 0, φU,λ is locally univalent.

We will write M+ for the two by two real matrices with positive determinant.

Proposition 2.2. Let σ ∈ L∞] (R2,Ms
K) and let A ∈ M+. If UA ∈W 1,2

],A(R2, R2) (see (1.3)) is a σ-harmonic
mapping, then, for every λ > 0, φUA,λ = λUA + JŨA is, in addition, an homeomorphism of R2 onto itself and
therefore a Kλ-quasiconformal mapping.

Remark 2.1. An immediate corollary of Propositions 2.1 and 2.2 is that under the assumptions of Proposi-
tion 2.2, φUA,1 is actually K-quasiconformal.

Remark 2.2. At the end of the section (Ex. 2.3) we show that one can construct an example in which
||DU,λ||L∞(Ω) = K > 1 for every λ > 0. Therefore, in general, one cannot choose λ so that φλ is confor-
mal and, moreover, the inequality in (2.6) cannot be improved for λ = 1.

In the sequel trF and AdjF denote the trace and the adjugate of a matrix F respectively. We recall that,
by definition, for two by two matrices AdjF = JFJT and, also that FAdjFT = (detF )I. The proof of
Proposition 2.1 is based upon a simple algebraic fact.
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Lemma 2.1. Let A ∈M and S ∈ Ms. For λ ∈ R, set

B = λA + Adj(AS). (2.7)

Then

(detS − λ2)A = −λB + Adj(BS), (2.8)

detB = detA(detS + λ2) + λtr(ASAT ), (2.9)

(detS − λ2)2 detA = detB(detS + λ2)− λtr(BSBT ). (2.10)

Proof of Lemma 2.1. To verify (2.8), we compute its right hand side according to definition (2.7):

−λB + Adj(BS) = −λ2A− λAdj(AS) + Adj(λAS) + Adj[Adj(AS)S]
= −λ2A− λAdj(AS) + λAdj(AS) + (AS)AdjS = −λ2A+AdetS.

This proves (2.8). To prove (2.9) and (2.10), we use the identity

det(F +G) = detF + detG+ tr[F (AdjG)T ]

which holds for any pair of two by two matrices F and G. The calculation is omitted. �
Proof of i) of Proposition 2.1. We fix x ∈ Ω. The strategy is to apply Lemma 2.1 with the following choices:
S = σ and A = DU , with U a σ-harmonic and sense-preserving mapping. By (1.13) DŨ = DUσJT and
therefore Adj(DUσ) = JDŨ which, by (2.2), implies

DφU,λ = λDU + JDŨ = λDU + Adj(DUσ).

We set B = DφU,λ, take λ > 0 and then apply Lemma 2.1. Since U is sense preserving, (2.10) implies

detDφU,λ(detσ + λ2)− λtr(DφU,λσDφTU,λ) ≥ 0. (2.11)

Set 0 ≤ a1
λ ≤ a2

λ to be the singular values of DφU,λ (i.e. the eigenvalues of the square root of the ma-
trix DφTU,λDφU,λ).

Using (1.10), we see that φU,λ is L-quasiregular if and only if

DU,λ =
a2
λ

a1
λ

≤ L. (2.12)

We write (2.11) in these new variables. We have,

a1
λa

2
λ(detσ + λ2) = detDφU,λ(detσ + λ2) ≥ λtr(DφU,λσDφTU,λ) ≥ λ(σ2(a1

λ)2 + σ1(a2
λ)2). (2.13)

The latter inequality, follows by the so-called Von-Neumann theorem (saying that the tr(DφU,λσDφTU,λ) is
minimized when σ and DφTU,λDφU,λ are simultaneously diagonal and their eigenvalues are ordered with opposite
monotonicity). Recalling (2.1) and (2.12), we regard (2.13) as an inequality in the variable DU,λ and we obtain

zλ(x) ≤ DU,λ(x) ≤ kλ(x) (2.14)
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with kλ defined in (2.4). This implies (2.6). Moreover, since K−1 ≤ σ1 ≤ σ2 ≤ K,

kλ(x) ≤ K max
(

1
λ
, λ

)
, (2.15)

hence φU,1 is K-quasiregular.
In order to proceed to the proof of ii) of Proposition 2.1, we will need results from [2], we summarize some

of them here.
Let U and Ũ be as above. For any fixed ξ ∈ R2 with | ξ |= 1, we set

u = 〈ξ, U〉 = ξ1u1 + ξ2u2, ũ = 〈ξ, Ũ〉 = ξ1ũ1 + ξ2ũ2, f = u+ iũ. (2.16)

Theorem B. The following properties are equivalent.
(i) u has no geometric critical points for every ξ, | ξ |= 1;

(ii) f is locally univalent for every ξ, | ξ |= 1;
(iii) U is locally univalent;
(iv) Ũ is locally univalent.

See [2] Theorem 3 for a proof. The notion of geometric critical point, which appears above, has been introduced
in [1], Definition 2.3, see also [2], Section 2, where this notion has been used systematically. For the present
purposes it suffices to know that when a σ-harmonic function u is smooth, its geometric critical points coincide
with the usual critical points.

We shall also make use of the following generalization of a classical theorem of Radó.

Theorem C. Let Ω ⊂ R2 be a bounded simply connected open set, whose boundary ∂Ω is a simple closed curve.
Let Φ = (φ1, φ2), Φ : ∂Ω → R2 be a homeomorphism of ∂Ω onto a convex closed curve Γ and let D be the
bounded convex domain bounded by Γ.

Let σ ∈ L∞(Ω,Ms
K) and let U ∈W 1,2

loc (Ω, R2)∩C(Ω̄, R2) be the σ-harmonic mapping whose components are
the solutions of the Dirichlet problems{

div(σ∇ui) = 0 in Ω
ui = φi on ∂Ω, i = 1, 2.

Then U is a homeomorphism of Ω̄ onto D̄.

For a proof and for bibliographical remarks, see [2], Theorem 4.

Proof of ii) of Proposition 2.1. Let us, temporarily, assume in addition that σ ∈ C∞(Ω,Ms). By (iii)⇒(i) of
Theorem B we have that detDU > 0 everywhere. Consequently by (2.10), we obtain

detDφU,λ = det(λDU + Adj(DUσ)) = (det σ + λ2) detDU + tr(DUσDUT ) > 0 everywhere.

Now we remove the smoothness assumption. Let {σm} be a sequence of mollified conductivities, such that, for
any p ≥ 1, σm → σ in Lploc. Fix x0 ∈ Ω. Since U is locally univalent, there exists ρ > 0 such that setting
G = U−1(B(U(x0), ρ)), U is one-to-one on a neighborhood of G.

Let Um be the σm-harmonic mapping in G such that Um|∂G = U |∂G. By Theorem C we obtain that each Um
is univalent in G, moreover, we have Um → U in W 1,2

loc (G,R2). Consequently

φUm,λ → φU,λ in W 1,2
loc (G,R2).

By the above arguments, for every m, φUm,λ is locally univalent. By [1] Lemma 1 (which can be viewed as
an argument of stability of the degree for sequences of mappings, see also [2], Lem. 1), and by the equivalence
(i)⇔ (iii) of Theorem B, we obtain ii). �
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Proof of Proposition 2.2. By Theorem A, ∀A ∈M+, UA is sense preserving. Hence, by Proposition 2.1, φUA,λ
is quasiregular. Therefore it is enough to show that ∀A ∈ M+, φUA,λ is an homeomorphism. Let us outline
the strategy of the proof first. We will show that there exists Fλ ∈ M+ and Cλ ∈ L∞] (R2,Ms

Kλ
) such that

φUA,λ ∈W 1,2
],Fλ

(R2, R2) and it is a Cλ-harmonic mapping. Then, by Theorem A, it is an homeomorphism.
We fix A ∈M+ and λ > 0 and, for short, we write φλ = φUA,λ. We set

Gλ(x) =


DφTλ (x)Dφλ(x)

detDφλ(x)
if detDφλ(x) 6= 0

I if detDφλ(x) = 0.
(2.17)

By Proposition 2.1, Gλ defines a measurable field of matrices which is symmetric with detGλ = 1 almost
everywhere. Moreover, by (2.6), one has

K−1
λ I ≤ Gλ ≤ KλI

almost everywhere. In other words Gλ ∈ L∞] (R2,Ms
Kλ

). Note, for future reference that this clearly implies

G−1
λ ∈ L∞] (R2,Ms

Kλ
). (2.18)

By construction φλ satisfies the Beltrami equation

DφTλDφλ = Gλ detDφλ (2.19)

which we rewrite as
G−1
λ DφTλ = AdjDφTλ

which implies

Div(G−1
λ DφTλ ) = 0. (2.20)

So far we have never used the fact that UA ∈W 1,2
],A. Now we need this assumption. Indeed, we observe that ŨA

can be decomposed as a sum of an affine term and a periodic one. More precisely, one has

ŨA ∈W 1,2
],B, B = JT

∫
Q

Adj(DUAσ).

In the language of homogenization (see the Introduction), we have

Aσhom = JB, (2.21)

where σhom is the homogenized conductivity see (1.5). The only property that is needed here is that σhom is a
constant, symmetric and positive definite matrix.

Therefore setting Cλ = G−1
λ and using (2.18) and (2.21), one has that φλ is Cλ-harmonic and also φλ−Fλx ∈

W 1,2
] (R2, R2), where Fλ = λA+JB. In other words, φλ is a solution to (1.6) when σ and A are replaced by Cλ

and Fλ respectively.
In view of Theorem A, to conclude the proof we need to show that Fλ ∈ M+. Indeed, using (2.9) and the

formulas below it, one easily checks that

detFλ = (λ2 + detσhom) detA+ λtr(AσhomA
T ) > 0

because both terms in the sum are such. �
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We conclude this section with three examples.

Example 2.1. The classical way to construct the quasiregular map f = u + iũ from a given σ-harmonic
function u and the new way of generating quasiregular mappings explained in this section are actually related
in a simple fashion. Indeed, given the σ-harmonic function u, set U = (u, 0) and φ1 = U + JŨ . Then it is
easy to see that φU,1 = (u, ũ) so that φU,1 = f up to the identification between R2 and C. Clearly, U satisfies
detDU ≥ 0, in fact detDU = 0 almost everywhere. Therefore, the classical way can be seen as a very special
case of the new one.

Example 2.2. If σ has constant determinant (detσ = d2) almost everywhere on a measurable set E, by (2.11)
for any σ-harmonic mapping U ,

detDφU,λ(det σ + λ2)− λtr(DφU,λσDφTU,λ) ≥ 0, almost everywhere in E.

In particular, since ∀B ∈ M
2
√

detσ detB − tr(BσBT ) ≤ 0,
one has that

2ddetDφU,d = tr(DφU,dσDφTU,d), almost everywhere in E.

Therefore φU,d is K-quasiregular on E and satisfies the Beltrami equation

DφTU,dDφU,d =
(

σ√
detσ

)−1

detDφU,d, almost everywhere in E.

If σ is the identity on E, φU,d = φU,1 is therefore holomorphic in E (i.e. the Cauchy–Riemann system is verified
almost everywhere in E).

Example 2.3. This example justifies Remark 2.2. Set Ω to be a ball centered at the origin and of radius one.
Define for x 6= 0,

σ(x) = K−1n⊗ n+Kt⊗ t, n =
x

|x| , t = Jn; U = x|x|K−1.

One can check that U is σ-harmonic in Ω and it is univalent. A calculation shows that

DU(x) = |x|K−1(Kn⊗ n+ t⊗ n), DU(x)σ(x) = |x|K−1(n⊗ n+Kt⊗ t)

and hence
DφU,λ(x) = (λ + 1)|x|K−1(Kn⊗ n+ t⊗ t).

Therefore, it is readily verified that the dilatation is K for any λ.

3. Proofs of Theorems 3.1, 3.2

In this section we prove Theorems 3.1 and 3.2 stated in the Introduction. We also prove the corresponding
Corollaries 3.1 and 3.2. It is very convenient to review the definition and the basic properties of the orthogonal
splitting of the set (denoted by M) of two by two matrices into their conformal and anticonformal parts. For
M ∈ M, we write

M+ = 1
2 (M + AdjM) M− = 1

2 (M −AdjM) (3.1)

and set as usual

H+ ≡ {M ∈M : M −AdjM = 0}, H− ≡ {M ∈M : M + AdjM = 0} · (3.2)
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Then one easily checks that ∀M ∈ M , M = M+ +M− and that the decomposition is unique and orthogonal
in the sense that

A ∈ H+, B ∈ H− ⇒ tr(ABT ) = 0. (3.3)

It is convenient to introduce the inner product structure as follows

A ·B = tr(ABT ). (3.4)

We write ∀M ∈M, |M |2 = M ·M . Then ∀M ∈M

|M |2 = M ·M = M+ ·M+ +M− ·M− = |M+|2 + |M−|2,
2 detM = M+ ·M+ −M− ·M− = |M+|2 − |M−|2,
AdjM = M+ −M−.

(3.5)

It is convenient to split the proofs of the theorems of the present section presenting first some preliminary
results.

Lemma 3.1. For F,H ∈ M, λ ∈ R and S ∈Ms and positive definite, we define

f(F, S, λ) = tr(FSFT ) + 2λdetF (3.6)

and

f∗(H,S, λ) = sup
F∈M

[2H · F − f(F, S, λ)]. (3.7)

Part 1). As a function of the first variable, f is strictly convex if and only if λ2 < detS; it is convex but not
strictly convex if and only if λ2 = detS.

Part 2). The explicit expression of f∗ is given by

f∗(H,S, λ) =



tr(HAdjSHT )− 2λdetH
detS − λ2

if |λ| <
√

detS

tr[HAdjSHT ]
2 detS

if λ =
√

detS and HS−
1
2 ∈ H+

tr[HAdjSHT ]
2 detS

if λ = −
√

detS and HS−
1
2 ∈ H−

+∞ otherwise.

(3.8)

Proof of Lemma 3.1 Part 1). Let us fix λ ∈ R and S ∈ Ms and positive definite. We compute the gradient
and the Hessian of the function F → p(F ) = 2H · F − f(F, S, λ):

Dp(F ) = 2(H − FS − λAdjF), (3.9)

Hp(F ) = −2
(
S λJT

λJ S

)
, (3.10)
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where the four by four Hessian matrix of p has been written in two by two block form. It is easy to see that H(p)
is positive definite if and only if detS > λ2 and positive semidefinite if and only if detS = λ2. This proves
Part 1).

To prove Part 2), consider

p(F ) = 2H · F − tr(FSFT )− 2
λ√

detS
det
(
FS

1
2

)
.

Setting
A = FS

1
2 , s =

√
detS

one has

p(F ) = p̃(A) = 2tr(HS−
1
2AT )− |A|2 − 2

λ

s
detA.

We split A and HS−
1
2 into their conformal and anticonformal parts and use the properties reviewed earlier in

this section. It is convenient to set

B = HS−
1
2 . (3.11)

Using this formalism, equations (3.1–3.4) and (3.5), one has

p(F ) = p̃(A) = 2B+ · A+ + 2B− · A− − |A+|2 − |A−|2 − 2
λ

s
(detA+ + detA−)

= 2B+ · A+ + 2B− · A− − |A+|2 − |A−|2 −
λ

s
(|A+|2 − |A−|2),

hence

p̃(A) = 2B+ · A+ − |A+|2
(

1 +
λ

s

)
+ 2B− · A− − |A−|2

(
1− λ

s

)
· (3.12)

Now we consider several cases.

Case 1: (|λ| < s). By (3.12), p̃(A) is strictly convex and it is maximized at the unique stationary point Aopt

which satisfies

Aopt
+ =

s

s+ λ
B+, A

opt
− =

s

s− λB−. (3.13)

The value of the maximum is displayed in (3.8), first line.

Case 2: (λ = s). By (3.12), p̃(A) is still convex but not strictly convex. Indeed

p̃(A) = 2B+ · A+ − 2|A+|2 + 2B− · A−. (3.14)

From (3.14) one sees that necessary and sufficient condition for the supremum of p̃ to be finite is B− · A− = 0
for all A. This holds if and only if B− = 0, which, by (3.1) and (3.2) is equivalent to B ∈ H+. In view of (3.11),
the latter is equivalent to HS−1/2 ∈ H+. The optimal A in this case is not unique, but each of them satisfies

Aopt
+ =

1
2
B+.

The anticonformal part of Aopt is arbitrary. The value of p̃ at the optimal A’s is instead uniquely determined
and displayed in (3.8), second line.
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Case 3: (λ > s). By assumption λ = s(1 + 2α2) for some α 6= 0. By (3.12),

p̃(A) = 2B+ · A+ − 2|A+|2(1 + α2) + 2B− ·A− + 2|A−|2α2. (3.15)

Therefore (3.15) is unbounded in the anticonformal part, consequently f∗ = +∞.
The remaining cases, λ = −s and λ < −s, are similar to Case 2 and Case 3 respectively and will be omitted. �

Lemma 3.2. Let S ∈ Ms and positive definite and set s =
√

detS. For λ ≥ 0, H ∈ m(S, λ) (see (1.20)) and f
as in (3.6), we define

f∗,+(H,S, λ) = sup
F∈M+

[2H · F − f(F, S, λ)]. (3.16)

Then

f∗,+(H,S, λ) =



tr(HAdjSHT )− 2λdetH
s2 − λ2

if 0 ≤ λ < s

tr[HAdjSHT ]
2s2

if λ = s and HS−
1
2 ∈ H+

||HAdjSHt||
s2

if λ > s.

(3.17)

The symbol || · || denotes the operator norm which for positive semidefinite symmetric matrices is the same as
the largest eigenvalue.

Proof of Lemma 3.2. Let us first rephrase the hypothesis H ∈ m(S, λ) in terms of the new variable B
(see (3.11)). One can easily check that

H ∈ m(S, λ)⇔ (s− λ)2|B+|2 − (s+ λ)2|B−|2 > 0 if λ ∈ [0, s)
H ∈ m(S, s)⇔ B− = 0. (3.18)

It is convenient to treat separately the following three cases.

Case 1: (0 ≤ λ < s). The optimal A for the unconstrained problem (relative to Case 1 of Lem. 3.1),
satisfies (3.13). It follows that it satisfies

detAopt = detAopt
+ + detAopt

− =
(

s

s+ λ

)2

|B+|2 −
(

s

s− λ

)2

|B−|2.

Therefore, by (3.18), Aopt ∈ M+ if and only if H ∈ m(S, λ). This shows that Aopt as defined in (3.13) is also
optimal for the constrained problem because the constraint is automatically satisfied. Note that the hypothesis
H ∈ m(S, λ) is not only sufficient but also necessary to have detAopt > 0.

Case 2: (λ = s). By (3.18), we have B+ = 0. Hence by (3.12), we obtain

p̃(A) = 2B+ · A+ − 2|A+|2. (3.19)

The function in (3.19) ought to be maximized over the open setM+. If the supremum is achieved at an interior
point, then, this point must be stationary and then one easily verifies the corresponding value of p̃ is given
by (3.17), second line. If the supremum were only achieved at some Ã belonging to the closure of M+, then
det Ã = 0 which can be written as

|Ã+|2 = |Ã−|2. (3.20)
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However, equation (3.19) does not depend on A−. Therefore the constraint (3.20) can be always satisfied and
therefore it is irrelevant and the supremum of p̃ is not (strictly) increased by it.

Case 3: (s < λ). First we note that onM+, the function F → f(F, S, λ) is positive, hence bounded below and
it tends to +∞ when ||F || tends to +∞. Therefore f∗,+ is finite. Moreover, by continuity the supremum is the
same as the maximum taken over the closure of the set M+.

Such a maximum is either attained at a stationary point of the function F → 2H · F − f(F, S, λ), or it is
attained on the set of matrices with zero determinant.

The first set of values is given by
tr(HAdjSHT )− 2λdetH

s2 − λ2

as one immediately obtains using the calculations of Case 1. The second set of values is given by

||HAdjSHt||
s2

·

It is easy to check that for λ > s and for any H ∈M, the latter is greater or equal to the former. �
Lemma 3.3. Under the assumptions of Theorem 3.1, detσhom ≥ d2

m. Moreover setting Qdm as in (1.23) we
have

|Qdm| < 1⇒
√

detσhom > dm, (3.21)

|Qdm| = 1⇒
√

detσhom = dm.

Proof of Lemma 3.3. Our starting point is formula (1.6). We set A ∈M+. Applying (1.7) to ŨA and recalling
that |Q| = 1, one has∫
Q

detDŨA=detAdetσhom =
∫
Q

detσ(y) detDUA(y)dy=
∫

Qdm

d2
m detDUA(y)dy +

∫
Q\Qdm

detσ(y) detDUA(y)dy.

Therefore applying (1.7) to UA,

detA(detσhom − d2
m) =

∫
Q\Qdm

(detσ(y) − d2
m) detDUA(y)dy.

By (1.8, 1.23) and (1.15), the integrand of the right hand side is strictly positive almost everywhere. Therefore,
the right hand side is nonnegative and hence detσ(y) − d2

m ≥ 0. Now there are two cases. If |Qdm | = 1, then
obviously det σhom = d2

m. Otherwise, the measure of Q\Qdm is strictly positive, hence the right hand side in
the above formula is strictly positive and therefore so is its left hand side. �

To state the next result, recall (1.18) and (1.21).

Lemma 3.4. Let σ ∈ L∞] (R2,Ms
K), λ ∈ [0, dm] and A ∈ m(σhom, λ) be given and let φUBλ ,λ be defined

by (1.18). Then:
i) φUBλ ,λ ∈W (A, σ, λ) and
ii) ∫

Q

tr(DφUBλ ,λ(y)σ(y)DφUBλ ,λ(y)T )− 2λdetDφUBλ ,λ(y)
detσ − λ2

dy = tr(BλσhomB
T
λ ) + 2λdetBλ

=
tr(AσhomA

T )− 2λdetA
detσhom − λ2

·
(3.22)
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In particular, for any choice of σ ∈ L∞] (R2,Ms
K), λ ∈ [0, dm] and A ∈ m(σhom, λ),

W (A, σ, λ) 6= ∅. (3.23)

Proof of Lemma 3.4. We will check that for any choice of σ ∈ L∞] (R2,Ms
K), λ ∈ [0, dm] and A ∈ m(σhom, λ),

the mapping φUBλ ,λ ∈W (A, σ, λ). By (1.18) and (1.13), we have

DφUBλ ,λ = λDUBλ +DJŨBλ = λDUBλ + Adj(DUBλσ)

and by (2.10)

(detσ − λ2)2 detDUBλ = detDφUBλ ,λ
(
det σ + λ2

)
− λtr

(
DφUBλ ,λσDφ

T
UBλ ,λ

)
. (3.24)

By (1.8), detBλ > 0⇒ detDUBλ > 0 almost everywhere and, by (1.19) and (2.10),

detBλ > 0⇔ detA(det σhom + λ2)− λtr(AσhomA
T ) > 0⇔ A ∈ m(σhom, λ).

Finally it easy to check that, by construction,
∫
QDφUBλ ,λ = A. Using (3.24) it follows that φUBλ ,λ ∈W (A, σ, λ).

(Note that for λ = dm, both sides of (3.24) vanish consistently with the definition of W (A, σ, dm) given
in (1.21, 1.20).) This establishes part i). Part ii) is a calculation following the same lines and it is omit-
ted. Finally (3.23) is an immediate consequence of part i). �
Proof of Theorem 3.1. A possible proof of (1.17) follows the argument in [7]. Here we give a different and
conceptually more direct proof. First of all we note that, for fixed λ, the variational principle (1.17) has a
unique minimizer up to an additive constant. Indeed, by Lemma 3.1 applied with S = Adjσ, ∀λ ∈ (−dm, dm)
the function

A→ tr(Aσ(y)AT )− 2λdetA
detσ(y)− λ2

is the polar of a strictly convex function and therefore itself a convex function, moreover the strict convexity is
uniform with respect to x.

Next we show that the minimizers satisfy (1.18) for some matrix A. Indeed the minimizers satisfy the
following Euler-Lagrange equations{

Div
[

[DΨA(y)σ(y)]T−λAdj[DΨA(y)]T

detσ(y)−λ2

]
= 0 in R2

ΨA ∈W 1,2
],A(R2, R2),

(3.25)

in the weak sense. In two dimensions, (3.25) is equivalent to the following conditions. There exists B0 ∈ M
and there exist U] ∈W 1,2

] (R2, R2) such that

DΨA(y)σ(y)− λAdj(DΨA(y))
detσ(y)− λ2

= Adj(DU] +B0), almost everywhere (3.26)

or equivalently, setting UB0 = U] +B0x and taking Adj to both sides of (3.26), we have

DUB0(y) =
−λDΨA(y) + Adj(DΨA(y)σ(y))

detσ(y)− λ2
, almost everywhere. (3.27)
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Using Lemma 2.1, and the definition of DΨA, (3.27) can be written as follows. There exists B0 ∈ M and there
exist UB0 ∈W 1,2

],B0
(R2, R2) which satisfies

λDUB0(x) + Adj[DUB0σ(x)] = DΨA(x). (3.28)

One can solve (3.28) with respect to UB0 if and only if the left hand side is the differential of a vector field in
the suitable space i.e. if and only if {

Div[σ(x)DUTB0
(x)] = 0 in R2

UB0 ∈W 1,2
],B0

(R2, R2)
(3.29)

in the weak sense. Note that (3.29) uniquely determines UB0 in terms of B0 up to an additive constant vector.
From (3.29) and the definition (1.6), we see that

UB0 = UB0 .

Using (3.28) and (3.29) we conclude

ΨA(x) = λUB0 + JŨB0 + ξ, (3.30)

for some constant vector ξ.
In view of (3.30) and recalling (1.18) and (1.19), to prove the second part of Theorem 7.1, we are left with

showing that B0 = Bλ as defined in (1.19). Indeed, integration of both sides of (3.28) yields

A =
∫
Q

{λDUB0 + Adj[DUB0σ(x)]}dx = λB0 + Adj
∫
Q

[DUB0σ(x)]dx.

The latter combined with (1.6) and a new integration by parts yields

A = λB0 + Adj(B0σhom). (3.31)

We now solve for B0 in terms of A in (3.31). By (2.8), B0 = Bλ (as defined in (1.19)). Finally, evaluation of
the right hand side of (1.17) via Lemma 3.4, gives equality with its left hand side. �

Corollary 3.1. Under the assumptions of Theorem 3.1, if we assume that A ∈ m(σhom, λ), then the minimizers
of (1.17) are quasiconformal. Moreover, setting as before φλ = φUBλ ,λ, and recalling (1.9) one has the following
inequality

zλ(x) ≤ Dφλ(x) ≤ kλ(x) almost everywhere, (3.32)

where zλ and kλ are defined in (2.3) and (2.4).

Proof of Corollary 3.1. Indeed, one can check that if A ∈ m(σhom, λ), then detBλ > 0 and hence, by (1.8),
detDUBλ > 0 almost everywhere. Therefore an application of Propositions 2.1 and 2.2 to φUBλ ,λ yields the
thesis. �
Proof of Theorem 3.2. By Lemma 3.3, equation (1.26) holds. By i) of Lemma 3.4 the set W (A, σ, dm) is non
empty. Since W (A, σ, dm) ⊂ B(A, σ, dm), the latter set is a nonempty linear subspace of W 1,2

],A.
The uniqueness up to an additive constant vector of the minimizer of (1.27) follows then by the standard

theory. Indeed the integrand is strictly convex in the variable involving the gradient uniformly in the x variable
(because of the assumption (1.25)).
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By ii) of Lemma 3.4 the left hand side of (1.27) is smaller than or equal to its right hand side. Hence, to
obtain (1.27) it is enough to prove that the left hand side of (1.27) is greater than or equal to its right hand
side. For F ∈ M we set

g(F ) = tr(FσFT ) + 2dm detF (3.33)

and then define

g∗,+(H) = sup
F∈M+

[2H · F − g(F )], H ∈M. (3.34)

By (3.34),

∀F ∈M+, ∀H ∈ M, g(F ) + g∗,+(H) ≥ 2H · F. (3.35)

The notation reflects the obvious resemblance between g∗,+ and the polar of the function g usually denoted
by g∗.

Choose two arbitrary constant matrices A ∈ M and B ∈ M+ and set F = DU , H = AdjDV with
U ∈ W 1,2

],B(R2, R2) (see (1.3)) and satisfying detDU > 0 almost everywhere and V ∈ W 1,2
],A(R2, R2). Then

use (3.35) and integrate over Q. We obtain∫
Q

g(DU)dx ≥ 2
∫
Q

Adj(DV ) ·DUdx−
∫
Q

g∗,+(AdjDV )dx = 2Adj(A) ·B −
∫
Q

g∗,+(AdjDV )dx. (3.36)

The last equality follows integrating by parts. Now we apply (ii) of Theorem A which implies

∀B ∈M+, inf
{U∈W1,2

],B(R2,R2): detDU>0 a.e.}

∫
Q

g(DU) = tr(BσhomB
T ) + 2dm detB. (3.37)

Using (3.36) and (3.37) we obtain

∀A ∈ M, ∀B ∈ M+, ∀ V ∈W 1,2
],A(R2, R2),

2AdjA ·B − tr(BσhomB
T )− 2dm detB ≤

∫
Q

g∗,+(AdjDV )dx

which implies

∀A ∈ M, sup
B∈M+

[
2AdjA ·B − tr(BσhomB

T )− 2dm detB
]
≤ inf
V ∈W1,2

],A(R2,R2)

∫
Q

g∗,+(AdjDV )dx. (3.38)

By (1.23, 1.25), Lemma 3.3 and Lemma 3.1, the function B → tr(BσhomB
T ) + 2dm detB is strictly convex and

therefore the maximum over B ∈ M in the left hand side of (3.38) exists and it is given by the value of the
polar function of tr(BσhomB

T ) + 2dm detB. Using Lemma 2.1, one checks that the optimal B ∈ M+ ⇔ A ∈
m(σhom, dm). Therefore in (3.38) the sup over B ∈ M+ coincides with that taken over B ∈ M. The latter is
easily calculated using again Lemma 3.1. The previous remarks and (3.38) imply

tr(Adj(A)Adj(σhom)Adj(AT ))− 2dm det(AdjA)
detσhom − d2

m

=
tr(AσhomA

T )− 2dm detA
detσhom − d2

m

≤ inf
V ∈W1,2

],A(R2,R2)

∫
Q

g∗,+(AdjDV )dx = inf
V ∈W1,2

],A(R2,R2)

∫
Q

f∗,+(AdjDV (x), σ(x), dm)dx, (3.39)



398 G. ALESSANDRINI AND V. NESI

where f∗,+ is given by (3.17). Now the plan is to use Lemma 3.2. To this end, we first get an inequality in (3.39)
by imposing on V the pointwise constraint

AdjDV (x) ∈ m(σ(x), dm) almost everywhere in Qm. (3.40)

Recall that the latter is equivalent to the requirement V ∈ B(A, σ, dm). Hence (3.39) yields

tr(AσhomA
T )− 2dm detA

detσhom − d2
m

≤ inf
V ∈B(Aσ,dm)

∫
Q

f∗,+(AdjDV (x), σ(x), dm)dx, (3.41)

Then using Lemma 3.2 and (3.40), we obtain that for all V ∈ B(A, σ, dm) and at almost every point in Q one has

f∗,+(AdjDV (x), σ(x), dm) = χQdm (x)
tr[DV (x)σ(x)DV (x)T ]

2 detσ(x)

+(1− χQdm (x))
tr[DV (x)σ(x)DV (x)T ]− 2dm detDV (x)

detσ(x) − d2
m

· (3.42)

By (3.42), the right hand sides of (3.41) and (1.27) are the same and the proof is concluded. �

Corollary 3.2. Under the conditions of Theorem 3.2, the minimizers of (1.27) are quasiconformal. Moreover,
setting as before φdm = φUBdm ,dm, one has that their dilatation quotient satisfies the following inequality.

zdm(x) ≤ Dφdm (x) ≤ kdm(x) almost everywhere,

where zdm and kdm are defined in (2.3) and (2.4).

Proof. Almost identical to the proof of Corollary 3.1. We omit it. �

We conclude this section with some remarks and examples in order to provide some “a priori” motivations
of Theorem 3.1 and Theorem 3.2.

Let us begin by trying to explain the progress made with Theorem 3.1, We compare the latter with the more
traditional variational principle (1.5). The minimizers of (1.5) are, by definition, σ-harmonic. By Theorem A
(see the Introduction), if detA > 0 then these mappings are univalent. The main point, however, is that we
prove in [3] that, in general, these mappings are not quasiconformal. More precisely, this property depends
on the specific conductivity one deals with. In contrast, the new variational principle places no restrictions
on the conductivity and yet yields the quasiconformality of the minimizers for a large class of matrices A (see
Cor. 3.1). Let us emphasize, that Theorem 3.1 is a slight modification of a similar result obtained by Astala
and Miettinen [7] enlarging upon previous work by the second author [43].

We now explain the main difference between the new work and the preceding one. Originally, the second
author proved a variational inequality. Starting from affine boundary conditions (rather than periodic one) in
the classical variational principle (1.5), one obtains an inequality bounding the effective conductivity in terms of
the value of the integral on the right hand side of (1.17) evaluated at any quasiconformal mapping in a certain
special class called ΣK (see [43], p. 23, Def. 3.5).

This is a very natural class in the theory of quasiconformal mappings. It was crucial to be able to use this
class in the variational inequality because for this class one could make use of a major advance in the field,
namely a theorem of Astala [6] on the area distortion properties of these mappings. In [43], these results are used
(in conjunction with an important contribution of Eremenko and Hamilton [18]) to establish optimal bounds in
a G-closure problem which was previously open.

Astala and Miettinen [7] proved that the variational inequality was indeed a variational principle. An issue
that remained unanswered in the approach of both those papers was that quasiconformal mappings seemed to
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be somehow introduced by brute force in the problem and only for the special case under consideration namely
a mixture of one polycrystal with one isotropic phase in prescribed volume fraction.

The new variational principle resolves satisfactorily this issue. Indeed it shows that, starting with periodic
boundary condition, the analogue of the Astala-Miettinen variational principle delivers minimizers that are
globally quasiconformal mappings. This depends neither upon the specific choice of the conductivity under
consideration nor on the possible optimality of the specific microgeometry for the G-closure problem under
consideration. In this respect the new variational principle achieves a geometric rephrasement of any two-
dimensional conductivity G-closure problem.

A corresponding statement for the variational principle in [7] is presently unavailable.
The issue of whether it is enough to consider a narrower subclass of quasiconformal mappings in order to

address optimality issues in G-closure problem is an interesting but yet rather unexplored one.
We now explain the role of our new variational principle in the context of G-closure problems by considering

an example. We go back to the well understood two phase problem defined in the Introduction. Our goal
is to show that our variational principle delivers the known optimal bound. Along the way we will give the
motivation to Theorem 3.2.

For simplicity, we begin making the assumption that the composite is isotropic, i.e. we assume that there
exist a real number h such that

σhom = hI. (3.43)

The following is the simplest possible consequence of (1.17). It is obtained by considering an arbitrary matrix
A and choosing φ ≡ Ax as a test field.

Proposition 3.1. Let K > 1 and σ ∈ L∞] (R2,Ms
K) be given. Assume that the homogenized conductivity σhom

is isotropic. Then it satisfies the following family of bounds. For every λ ∈ (−dm, dm), for every A ∈ M one has

h|A|2 − 2λdetA
h2 − λ2

≤
∫
Q

tr[Aσ(y)AT ]− 2λdetA
detσ(y)− λ2

dy. (3.44)

Next we make the following crucial observation.

Proposition 3.2. In the two phase problem for any choice of λ ∈ (−dm, dm) and A ∈ M, the bound delivered
by (3.44) is not “attainable”. The same is true under the much weaker assumption that σ(y) = α(y)I for some
scalar function α ∈ L∞(R2; [K−1,K]) taking a finite (say N) number of values.

Sketch of the proof

Step 1. Fix λ ∈ (−dm, dm). Optimization over the matrix A shows that the tighter bound is obtained either
when A = A+ 6= 0 and A− = 0 or conversely when A = A− 6= 0 and A+ = 0.

Step 2. One checks that there is then no loss of generality in choosing A = I and λ ≥ 0.

Step 3. Let α =
∑
i αiχi(x)I. As usual we make the assumptions

0 < α1 < α2 < · · · < αN ,

∫
Q

χi(x)dx = pi > 0, i = 1, 2, · · · , N,
N∑
i=1

pi = 1. (3.45)

Assume that for A = I and for some λ ∈ (−dm, dm) the bound (3.44) holds as an equality. Then, by (1.18)
there exists a particular “microgeometry” (χ0

1, χ
0
2, · · · , χ0

N ) and there exists a constant matrix Bλ so that the
corresponding σ-harmonic periodic mapping U satisfies φU,λ = λU + JŨ By the uniqueness of the infimum of
the variational principle (1.17), one has φU,λ = x identically.
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Using Lemma 2.1 we solve the latter for DU and obtain

DU(x) =
−λI + Adj(σ(x))

detσ − λ2
=

1
α(x) + λ

I. (3.46)

Step 4. If (3.46) holds, then

B =
∫
Q

DU(x)dx = bI, b =
∫
Q

dx
α(x) + λ

(3.47)

and

detB = b2 =
∫
Q

detDU(x)dx =
∫
Q

dx
(α(x) + λ)2

· (3.48)

Then using (3.47, 3.48, 3.45) and Jensen’s inequality yield a contradiction.

Step 5. One can treat the case of “approximate solutions” to (3.46) corresponding to a weaker notion of
“attainability” (sometimes called “optimality”). In this case one would ask for the existence of a sequence of
microgeometry for which the difference between the left and the right hand side of (3.44) can be made smaller
and smaller. We will not give details here. �

Let us emphasize that our argument is similar to (and inspired by) the analogue so called “two-gradient”
problem in which one asks for necessary and sufficient conditions under which the differential inclusion

DU ∈ K

can be satisfied. The set K in that case is just the union of two given matrices. Then it is well known that a
necessary condition to solve the problem in any reasonably weak sense is that the rank of the difference between
the two given matrices be less or equal than one. This result was first obtained by Ball and James [9]. See [38]
for an introduction to this subject.

Proposition 3.2 gives a strong motivation to pass to the limit in (3.44) sending λ to dm. However, there are
two potential obstructions to this. The first one is that, if the set Qdm where σ(y) = dmI has positive measure,
then in the right hand side the latter limit is plus infinity unless one requires simultaneously

tr[Aσ(y)AT ]− 2dm detA = 0, ∀y ∈ Qdm. (3.49)

Since, in the set Qdm we have σ(y) = dmI, if |Qdm | > 0, equation (3.49) holds if and only if ATA = detA I i.e.
if and only if A ∈ H+ !

Under the latter assumption the bound (3.44) is independent of the specific (nonzero) holomorphic matrix A
because |A|2 = 2 detA and it reads:

1
h+ dm

≤
∫
Q

dy
σ(y) + dm

· (3.50)

This is the the so-called Hashin-Shtrikman bound which is optimal in this particular example. The second
potential obstruction is similar but concerns the right hand side of (3.44). This explains why (1.26) is important
in the statement of the theorem.

In fact the above calculation can be made without requiring (3.43). The result is similar. In the two-
phase problem, the bound is not optimal for λ ∈ (0, dm) (For λ = 0 is is optimal at exactly the (harmonic
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mean,arithmetic mean) point in eigenvalue space.) If we send λ to dm the bound is non trivial if and only
if A ∈ H+. In this case the bound does not depend on the specific (nonzero) matrix A and it reads

tr(σhom)− 2dm
detσhom − d2

m

≤
∫
Q

2
σ(y) + dm

dy. (3.51)

This is the bound of Tartar and Murat [49] and Lurie and Cherkaev [30]. It defines a curve in eigenvalue space.
Any point on this curve is optimal provided the eigenvalues of σhom satisfy simultaneously the harmonic and
arithmetic mean bound. The latter condition, in two dimensions, is automatically satisfied if one uses the upper
bound which can be found with the same technique via the usual “duality” argument.

Let us summarize the main points.
First the “best” bound with respect to optimization over λ does not exists. One needs to “push” λ to its

“extremal value” λ = dm.
Second, in doing so, one needs to satisfy (3.49).
Now we are in the position to explain why a dramatic change must occur if we suppose that in the set Qdm

(assumed to be of positive measure) the conductivity σ is not proportional to the identity and therefore not
constant.

In fact, this condition includes many different situations. In any of them in the set Qdm the conductivity has
the form RT (x)diag(α1, α2)R(x) where x→ R(x) is a measurable field of matrices in SO(2) (which is called a
rotation of the original crystal) and 0 < α1 < α2 are called principal conductivities. This class of conductivities
correspond to the situation that, in material science, goes under the name of polycrystalline materials.

Then the corresponding condition (3.49) cannot be satisfied (for an arbitrary field of rotations R) by choos-
ing A to be a constant matrix! This gives the exact limitation of what we have called in the introduction
the conventional translation method which, as one can check, requires that a constant field be optimal in the
variational principle (1.17) in the limit as λ tends to dm.

Theorem 3.2 was motivated by these arguments. We will show in Section 4, Example 4.2 that this approach
can deliver optimal bounds in cases where the conventional translation principle does not. Here we conclude
with an application of Theorem 3.2.

Example 3.1. We apply Theorem 3.2 to the two-phase problem. Select again φ = Ax. The condition φ ∈
B(A, σ, dm) implies A ∈ H+! Moreover the resulting bound is independent of the specific choice of A ∈ H+. It
is the same as (3.51) and gives the optimal bound.

4. Applications to the G-closure problem

In this section we prove Theorem 4.1 which delivers bounds for two-dimensional G-closure problems. This
is an application of Theorems 3.1 and 3.2. This new bound is a generalization of the results in [42, 43] and [7]
which unifies these previous work.

We will also give some examples comparing our bounds with the conventional translation method (see the
Introduction) and outlining why our progress is interesting. We will then review some basic literature. We
conclude this section recalling that the conventional translation method is related to a bound via “polyconvex-
ification” of a suitable function. For this reason our bound is an improvement in the search for quasiconvex
functions.

Theorem 4.1. Let K > 1 be given and let λ ≥ 0. For σ ∈ L∞] (R2,Ms
K), the homogenized conductivity σhom

satisfies the following inequality. For every matrix A ∈ M one has

f∗,+(A, σhom, λ) ≤ inf
φ∈B(A,σ,dm)

∫
Q

f∗,+(AdjDφ(y), σ(y), λ)dy (4.1)

where f∗,+ is defined in (3.17) and B(A, σ, dm) is defined in (1.24).
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Proof. It is very similar to the part of Theorem 3.2 where the inequality “≤” is shown. Let us just outline the
necessary changes. Use the same argument with an arbitrary λ ≥ 0. After formula (3.38) the argument has
to be changed. By definition, the maximum of the left hand side of (3.38) is given by f∗,+(A, σhom, λ). This
concludes the proof. �
Remark 4.1. It can be checked that the reverse inequality (“≥”) in (4.1) is false in general.

Remark 4.2. Theorem 3.1 asserts that for λ ∈ [0, dm) equality occurs in (4.1) and moreover the left and the
right hand sides of (4.1) agree with the left and the right hand sides of (1.17) respectively. Corollary 3.1 shows
that for A ∈ m(σhom, λ) the minimizers are, in addition, quasiconformal mappings.

Theorem 3.2 asserts that for λ = dm and A ∈ m(σhom, dm) equality occurs in (4.1) and moreover the left hand
side of (4.1) is the same as the left hand side of (1.27). Corollary 3.2 shows, in addition, that the minimizers
are quasiconformal mappings.

We will see in the next application that also the case λ > dm is very useful.

Example 4.1 (Three-phase problem). Given three real numbers 0 < σ1 < σ2 < σ3 and three positive num-
bers pi with

∑
i pi = 1, assume that σ(x) = α(x)I with

α(x) =
3∑
i=1

χi(x)σi,
∫
Q

χi = pi > 0, i = 1, 2, 3. (4.2)

We now apply Theorem 4.1 with λ = σ1. To give a bound we restrict attention to test fields of the form φ = Ax.
Then one easily checks that φ ∈ B(A, σ, λ) and p1 > 0 constrain the matrix A to belong to H+. Then it is easy
to check that the bound is independent of the specific matrix A ∈ H+ (see Ex. 3.1 for more details) which can
therefore set to be the identity. We obtain the bound

tr(σhom)− 2σ1

detσhom − σ2
1

≤
∫
Q

f∗,+(I, σ(x), σ1) =
∫
Q

[
χ1(y)

1
σ1

+ χ2(y)
2

σ1 + σ2
+ χ3(y)

2
σ2 + σ3

]
dy

=
p1

σ1
+
p2

σ2
+

2p3

σ1 + σ3
,

(4.3)

where f∗,+ is defined by (3.17).
This is the Hashin–Shtrikman–Kohn–Milton [23,36] bound. It is optimal (at least for isotropic composites)

provided one imposes extra conditions among the parameters in (4.2). However, if p1 is sufficiently small the
bound is not optimal.

To explore the latter (suboptimal) regime let us make a preliminary observation. It is known (see [36] and [42])
that, if the composite is isotropic and the parameters in (4.2) are such that the bound (4.3) is suboptimal, then
one may assume without loss of generality that h > σ2.

We now use Theorem 4.1 with the choice λ = σ2. If we restrict attention to test fields of the form φ = Ax,
then φ ∈ B(A, σ, λ) and p2 > 0 imply again A ∈ H+. Then the bound is again independent of the specific
matrix A which can therefore set to be the identity. Restricting attention to isotropic composites we obtain the
bound

f∗,+(I, hI, σ2) =
tr(hI)− 2σ2

det(hI)− σ2
2

=
2

h+ σ2
≤
∫
Q

f∗,+(I, σ(x), σ2)

=
∫
Q

[
χ1(y)

1
σ1

+ χ2(y)
1
σ2

+ χ3(y)
2

σ2 + σ3

]
dy =

p1

σ1
+
p2

σ2
+

2p3

σ2 + σ3
,(4.4)

where the first equality is a consequence of the assumption h > σ2.
In this particular example, the bound (4.4) is the same as that established in [42]. It is better than the usual

Hashin–Shtrikman bound when p1 is sufficiently small. This bound is not optimal unless p1 = 0 or σ3 tends to
infinity. Nevertheless it is better than any other known bound.
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Example 4.2 (Polycrystals). We remove the assumption that σ is (locally) isotropic. For instance assume
that σ has the following structure

σ(x) = σ2χ(x)I + σ1R
T (x)diag(K−1,K)R(x)(1− χ(x))

with 0 < σ1 < σ2 and K > 1.
Recalling (2.1), in this class we have

K−1σ1 = ess sup
x∈Qm

σ1(x) < dm = σ1 < ess inf
x∈Qm

σ2(x) = Kσ1. (4.5)

Applying Theorem 3.1 and Corollary 3.2, a calculation shows that, in the set Qdm, the dilatation quotient of
the minimizers is constant and equal to K > 1!

We conclude that the test field must be searched for in the class of quasiconformal mappings having prescribed
dilatation quotient in the set Qdm . More precisely, the natural space is a subset of the space of quasiconformal
mappings φ ∈W 1,2

],A which in addition satisfy

DφTDφ =
(

σ√
detσ

)− 1
2

detDφ a.e. in Qdm, (4.6)

i.e. φ ∈ B(A, σ, dm)!
The new difficulty now relies in computing an upper bound for the right hand side of (1.27) for such a

mapping. However this approach delivers optimal bounds! We refer to [7,43] and [37] for details. In [8] optimal
bounds for a much larger class of composites are obtained using further refinements of these ideas. Let us just
say that in all these cases one has to use in an essential way the fundamental work of Astala [6].

The results of this section should be seen as a continuation of the work of many authors. Let us quote some
very relevant literature. The simplest case is the single-phase polycrystal problem.

Here the only data is K > 1. The conductivity has the form RT (x)diag(K,K−1)R(x) where x→ R(x) is a
measurable field of matrices in SO(2) (which is called a rotation of the original crystal). Obviously

√
det σ = 1

at almost every point, hence dm = 1 and |Qm| = 1. The corresponding classical literature includes [17, 24]
and [33] and it is based on the idea of duality. In the language we introduced before these are the first papers
in the field of composites where the idea of stream function shows its power. Next the two-phase polycrystal
problem. Here the data are two crystals, i.e. two constant diagonal and positive matrices σa and σb, (giving the
conductivity of the pair of given crystals). To distinguish this example from the first we assume detσa 6= detσb.

The conductivity has the form σ(x) = RT (x)(σaχa + σbχb)R(x), where x → R(x) is a measurable field of
matrices in SO(2) and χa and χb are characteristic functions summing up to one. Phase a is characterized as
the set where the principal conductivities of σ and those of σa are the same.

If the volume fraction of each phase is not prescribed, the problem is simpler but non trivial. Its study was
initiated in [31] and completed later by Francfort and Murat [20] in an interesting paper which, unfortunately,
has not been fully appreciated.

Several papers deal with examples using various form of duality including [25, 44] and [45]. Some other
work partly focusing on the case with prescribed volume fraction, uses duality in conjunction with more refined
arguments [19,22] and [41] (Sect. 7.3). More recently, quasiconformal mapping are having an increasing impact
on the two-phase polycrystalline problem [7,37,43] and [8].

Finally the several-phase problem. Here each phase is isotropic but there is an arbitrary finite number of
them. This problem has been considered already by Hashin and Shtrikman (focusing on isotropic composites).
Later by Milton [34], by Kohn and Milton [36] (see also [27]) and by Zhikov [53]. Further progress has been
made by Lurie and Cherkaev [32], Gibiansky and Cherkaev [16], Cherkaev [15] (see pp. 319-342) and Gibiansky
and Sigmund [21]. The best available bounds were established in [42] and the best known microgeometries stem
at least for the three-phase problem from a combination of the work in [21] and [15].
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We conclude this section recalling the connection between our work and the literature concerning certain
problems of optimal design and the more general issue of search for quasiconvex functions.

Following the pioneering work of Kohn and Strang [28] (see also [26]) several authors have used the knowledge
of the G-closure in certain specific cases to compute the “quasiconvexification” of certain functions. A typical
example is a function f = min(f1, f2) where f1 and f2 are quadratic functions.

The quasiconvexification can be computed using results from the G-closure of the two-phase problem. This
has been studied in [28] in a limiting case and in a greater generality by Allaire and Francfort [4] and Allaire
and Lods [5]. Their analysis, in our language, shows that the conventional translation method gives all the
necessary information. However, it turns out that, in this particular case, the conventional translation method
corresponds to the “polyconvexification” of f and one proves by other means that this coincides with the
“rank-one convexification” and hence with the “quasiconvexification”.

The study of the quasiconvexification of a function which is a minimum of several (say three) quadratic
functions, reduces again itself to the study of a three-phase G-closure problem. The conventional translation
method again delivers the polyconvexification of f . Therefore, since our bounds improve upon it, we are
effectively giving a bound on f which is strictly tighter than the bound obtained using the polyconvexification
of f . Further investigation on this issue is the subject of ongoing work.

G. Alessandrini acknowledges partial support from M.U.R.S.T. grant no. MM01111258. V. Nesi acknowledges partial
support from M.U.R.S.T.

References

[1] G. Alessandrini and R. Magnanini, Elliptic equation in divergence form, geometric critical points of solutions and Stekloff
eigenfunctions. SIAM J. Math. Anal. 25 (1994) 1259-1268.

[2] G. Alessandrini and V. Nesi, Univalent σ-harmonic mappings. Arch. Rational Mech. Anal. 158 (2001) 155-171.
[3] G. Alessandrini and V. Nesi, Univalent σ-harmonic mappings: Connections with quasiconformal mappings, Quaderni Matem-

atici II serie, 510 Novembre 2001. Dipartimento di Scienze Matematiche, Trieste. J. Anal. Math. (to appear).
[4] G. Allaire and G. Francfort, Existence of minimizers for non-quasiconvex functionals arising in optimal design. Ann. Inst. H.
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