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LOCAL CONTROLLABILITY OF A 1-D TANK CONTAINING A FLUID
MODELED BY THE SHALLOW WATER EQUATIONS

Jean-Michel Coron
1

Abstract. We consider a 1-D tank containing an inviscid incompressible irrotational fluid. The tank
is subject to the control which consists of horizontal moves. We assume that the motion of the fluid is
well-described by the Saint–Venant equations (also called the shallow water equations). We prove the
local controllability of this nonlinear control system around any steady state. As a corollary we get
that one can move from any steady state to any other steady state.
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1. Introduction

During the nineties, J.-L. Lions has drawn the attention of mathematicians to flow control. In particular
in [14–18], he has obtained various important results and has given several conjectures on the controllability of
incompressible fluids. Here we consider a 1-D tank containing an inviscid incompressible irrotational fluid. The
tank is subject to one-dimensional horizontal moves. We assume that the horizontal acceleration of the tank
is small compared to the gravity constant and that the height of the fluid is small compared to the length of
the tank. This motivates the use of the Saint–Venant equations [22] (also called shallow water equations) to
describe the motion of the fluid; see e.g. [7] (Sect. 4.2). Hence the dynamics equations considered are (see [8])

Ht (t, x) + (Hv)x (t, x) = 0, (1.1)

vt (t, x) +
(
gH +

v2

2

)
x

(t, x) = −u (t) , (1.2)

v(t, 0) = v(t, L) = 0, (1.3)
ds
dt

(t) = u (t) , (1.4)

dD
dt

(t) = s (t) , (1.5)

where (see Fig. 1),
• L is the length of the 1-D tank;
• H (t, x) is the height of the fluid at time t and for x ∈ [0, L];
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• v (t, x) is the horizontal water velocity of the fluid in a referential attached to the tank at time t and
for x ∈ [0, L] (in the shallow water model, all the points on the same vertical have the same horizontal
velocity);

• u (t) is the horizontal acceleration of the tank in the absolute referential;
• g is the gravity constant;
• s is the horizontal velocity of the tank;
• D is the horizontal displacement of the tank.

H

D x

v

L

Figure 1. Fluid in the 1-D tank.

This is a control system, denoted Σ, where
• the state is Y = (H, v, s,D);
• the control is u ∈ R.

Our goal is to study the local controllability of this control system Σ around the equilibrium point

(Ye, ue) := ((He, 0, 0, 0), 0).

This problem has been raised in [8]. Of course, the total mass of the fluid is conserved so that, for every solution
of (1.1) to (1.3),

d
dt

∫ L

0

H (t, x) dx = 0. (1.6)

(One gets (1.6) by integrating (1.1) on [0, L] and by using (1.3) together with an integration by parts.) Moreover,
if H and v are of class C1, it follows from (1.2) and (1.3) that

Hx(t, 0) = Hx(t, L) (= −u (t) /g). (1.7)

Therefore we introduce the vector space E of functions Y = (H, v, s,D) ∈ C1([0, L]) × C1([0, L]) × R × R such
that

Hx(0) = Hx(L), (1.8)

v(0) = v(L) = 0, (1.9)

and consider the affine subspace Y ⊂ E of Y = (H, v, s,D) ∈ E satisfying

∫ L

0

H(x)dx = LHe. (1.10)
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The vector space E is equipped with the usual norm

|Y | := |H |1 + |v|1 + |s| + |D|,

where, for w ∈ C1([0, L]),

|w|1 := Max{|w(x)| + |wx(x)|; x ∈ [0, L]}·
With these notations, we can define a trajectory of the control system Σ.

Definition 1. Let T1 and T2 be two real numbers satisfying T1 6 T2. A function (Y, u) = ((H, v, s,D), u) :
[T1, T2] → Y × R is a trajectory of the control system Σ if

(i) the functions H and v are of class C1 on [T1, T2] × [0, L];
(ii) the functions s and D are of class C1 on [T1, T2] and the function u is continuous on [0, T ];
(iii) the equations (1.1) to (1.5) hold for every (t, x) ∈ [T1, T2] × [0, L].

Our main result states that the control system Σ is locally controllable around the equilibrium point (Ye, ue).
More precisely, one has the following theorem:

Theorem 2. There exists T > 0, C0 > 0 and η > 0 such that, for every Y0 = (H0, v0, s0, D0) ∈ Y, and for
every Y1 = (H1, v1, s1, D1) ∈ Y such that

|H0 −He|1 + |v0|1 < η, |H1 −He|1 + |v1|1 < η, |s1 − s0| + |D1 − s0T −D0| < η,

there exists a trajectory (Y, u) : [0, T ] → Y × R, t 7→ ((H (t) , v (t) , s (t) , D (t)) , u (t)) of the control system Σ
such that

Y (0) = Y0 and Y (T ) = Y1, (1.11)

and, for every t ∈ [0, T ],

|H (t) −He|1+|v (t)|1+|u (t)| < C0

(√
|H0 −He|1 + |v0|1 + |H1 −He|1 + |v1|1 + |s1 − s0| + |D1 − s0T −D0|

)
.

(1.12)

As a corollary of this theorem, any steady state Y1 = (He, 0, 0, D1) can be reached from any other steady state
Y0 = (He, 0, 0, D0). More precisely, one has the following corollary:

Corollary 3. Let T , C0 and η be as in Theorem 2. Let D0 and D1 be two real numbers and let k be a
positive integer such that |D1 − D0| < kη. Then, there exists a trajectory (Y, u) : [0, kT ] → Y × R, t 7→
((H (t) , v (t) , s (t) , D (t)) , u (t)) of the control system Σ such that

Y (0) = (He, 0, 0, D0) and Y (kT ) = (He, 0, 0, D1), (1.13)

|H (t) −He|1 + |v (t)|1 + |u (t)| < C0
|D1 −D0|

k
∀t ∈ [0, kT ]. (1.14)

Indeed, it suffices to apply Theorem 2 with Y0 = (He, 0, 0, D0 + (i/k)(D1 − D0)) and Y1 = (He, 0, 0, D0

+((i+ 1)/k)(D1 −D0)) for i ∈ {0, . . . , k − 1}.
In Section 2 we give the steps of the proof of Theorem 2. This proof relies on two propositions (Props. 6

and 5), whose demonstration are given in Sections 3 and 4 respectively.
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2. Sketch of the proof of Theorem 2

Let us first point out that by scaling arguments one can assume without loss of generality that

L = g = He = 1. (2.1)

Indeed, if we let

H∗ (t, x) :=
1
He

H

(
Lt√
Heg

, Lx

)
, v∗ (t, x) :=

1√
Heg

v

(
Lt√
Heg

, Lx

)
,

u∗ (t) :=
L

Heg
u

(
Lt√
Heg

)
, s∗ (t) :=

1√
Heg

s

(
Lt√
Heg

)
, D∗ (t) :=

1
L
D

(
Lt√
Heg

)
,

with x ∈ [0, 1], then equations (1.1) to (1.5) are equivalent to

H∗
t (t, x) + (H∗v∗)x (t, x) = 0,

v∗t (t, x) +
(
H∗ +

v∗2

2

)
x

(t, x) = −u∗ (t) ,

v∗(t, 0) = v∗(t, 1) = 0,
ds∗

dt
(t) = u∗ (t) ,

dD∗

dt
(t) = s∗ (t) .

From now on, we always assume that we have (2.1). Since (Y, u) = ((H, v, s,D), u) is a trajectory of the control
system Σ if and only if ((H, v, s − a,D − at − b), u) is a trajectory of the control system Σ, we may assume
without loss of generality that s0 = D0 = 0.

The proof of Theorem 2 relies on the return method, a method introduced in [1] in order to solve a stabilization
problem, and used in [2,3,5,9–11,24] for controllability problems. Roughly speaking, the return method consists
in looking for a trajectory (Ȳ , ū) : [0, T ] → Y × R of the control system Σ satisfying

Ȳ (0) = Ȳ (T ) = Ye, (2.2)

the linearized control system around (Ȳ , ū) is controllable. (2.3)

If such a trajectory (Ȳ , ū) exists, one can often (this is always the case for finite dimensional control system)
prove that, for every Y0 and Y1 close to Ye, there exists a trajectory (Y, u) close to (Ȳ , ū) such that

Y (0) = Y0 and Y (T ) = Y1.

Let us point out that, as already noticed in [8], property (2.3) does not hold for the natural trajectory (Ȳ , ū)
= (Ye, ue). Indeed the linearized control system around (Ye, ue) is

(Σ0)




ht + vx = 0,

vt + hx = −u (t) ,

v(t, 0) = v(t, 1) = 0,

ds
dt

(t) = u (t) ,

dD
dt

(t) = s (t) ,

(2.4)
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where the state is (h, v, s,D) ∈ Y0, with

Y0 :=

{
(h, v, s,D) ∈ E;

∫ L

0

hdx = 0

}
,

and the control is u ∈ R. But (2.4) implies that, if

h(0, 1 − x) = −h(0, x) and v(0, 1 − x) = v(0, x) ∀x ∈ [0, 1],

then

h(t, 1 − x) = −h(t, x) and v(t, 1 − x) = v(t, x) ∀x ∈ [0, 1], ∀t.

Remark 4. Even if the control system (2.4) is not controllable, one can move, as it is proved in [8], from any
steady state (h0, v0, s0, D0) := (0, 0, 0, D0) to any steady state (h1, v1, s1, D1) := (0, 0, 0, D1) for this control
system (see also [21] when the tank has a non-straight bottom). This does not imply that the related property
(move from (1, 0, 0, D0) to (1, 0, 0, D1)) also holds for the nonlinear control system Σ, but it follows from
Corollary 3, that this property indeed also holds for the nonlinear control system Σ. Moreover the fact that,
for the control system (2.4), it is possible [8], to move from any steady state (h0, v0, s0, D0) := (0, 0, s0, D0)
to any steady state (h1, v1, s1, D1) := (0, 0, s1, D1) explains why in the right hand side of (1.12) one has
|s1 − s0| + |D1 − s0T −D0| and not (|s1 − s0| + |D1 − s0T −D0|)1/2.

As in [1–3,5,9–11,24] one has to look for more complicated trajectories (Ȳ , ū) in order to have (2.3). In fact,
as in [4], one can require instead of (2.2), the weaker property

Ȳ (0) = Ye and Ȳ (T ) is close to Ye (2.5)

and hope that, as it happens in [4], the controllability around (Ȳ , ū) will be strong enough to tackle the problem
that Ȳ (T ) is not Ye but only close to Ye. Moreover, since as it is proved in [8], one can move for the linear
control system Σ0, from ye = (0, 0, 0, 0) to (0, 0, s1, D1), it is natural to try not to “return” to Ye, but requires
instead (2.5) the property

Ȳ (0) = Ye and Ȳ (T ) is close to (1, 0, s1, D1) . (2.6)

In order to use this method, one first needs to have trajectories of the control system Σ such that the linearized
control system around these trajectories are controllable. Let us give an example of a family of such trajectories.
Let us fix a positive real number T ∗ in (2,+∞). For γ ∈ (0, 1] and (a, b) ∈ R

2, let us define (Y γ,a,b, uγ) :
[0, T ∗] → Y × R by

Y γ,a,b (t, x) :=
(

1 + γ

(
1
2
− x

)
, 0, γt+ a, γ

t2

2
+ at+ b

)
∀t ∈ [0, T ∗], ∀x ∈ [0, 1], (2.7)

uγ (t) := γ ∀t ∈ [0, T ∗]. (2.8)
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Then, (Y γ,a,b, uγ) is a trajectory of the control system Σ. The linearized control system around this trajectory
is the following control system

(Σγ)




ht +
((

1 + γ
(

1
2 − x

))
v
)
x

= 0,

vt + hx = −u (t) ,

v(t, 0) = v(t, 1) = 0,

ds
dt

(t) = u (t) ,

dD
dt

(t) = s (t)

(2.9)

where the state is (h, v, s,D) ∈ Y0 and the control is u ∈ R. As we shall see in Section 4 below, this linear
control system Σγ is controllable if γ > 0 is small enough. Unfortunately the controllability of Σγ does not seem
to imply directly the local controllability of the control system Σ around the trajectory (Y γ,a,b, uγ). Indeed
the map from Y × C0([0, T ]) into Y which associates to any initial data Y0 = (H0, v0, s0, D0) ∈ Y and to any
u ∈ C0([0, T ]) such that

H0x(0) = H0x(1) = −u(0)

the state Y (T ) ∈ Y, where Y = (H, v, s,D) : [0, T ] → Y satisfies (1.1) to (1.5) and Y (0) = Y0 is well-defined
and continuous on a small open neighborhood of (Ye, 0) (see e.g. [19]) but is not of class C1 on this neighborhood.
So one cannot use the classical inverse function theorem to get the desired local controllability. To take care
of this problem, one adapts the usual iterative scheme used to prove the existence of solutions to hyperbolic
systems (see e.g. [6], pp. 476-478, [12], pp. 54-55, [19], pp. 96-107, [20], pp. 35-43 or [23], pp. 106-116) see
also [2, 3, 5, 9–11] for the Euler and the Navier control system for incompressible fluids): one uses the following
inductive procedure (hn, vn, sn, Dn, un) 7→ (

hn+1, vn+1, sn+1, Dn+1, un+1
)

so that

hn+1
t + vnhn+1

x +
(

1 + γ

(
1
2
− x

)
+ hn

)
vn+1

x − γvn+1 = 0 (2.10)

vn+1
t + hn+1

x + vnvn+1
x = −un+1 (t) (2.11)

vn+1(t, 0) = vn+1(t, L) = 0, (2.12)

dsn+1

dt
(t) = un+1 (t) , (2.13)

dDn+1

dt
(t) = sn+1 (t) , (2.14)

and
(
hn+1, vn+1, sn+1, Dn+1, un+1

)
has the required value for t = 0 and for t = T ∗. Unfortunately we have

only been able to prove that the control system (2.10, 2.14), where the state is
(
hn+1, vn+1, sn+1, Dn+1

)
and

the control is un+1, is controllable under a special assumption on (hn, vn). (This assumption is that θ, defined
in (4.38), is 0 see Rem. 26 below.) Hence one has to insure that, at each iterative step, (hn, vn) satisfies this
condition, which turns out to be possible. So one gets the following proposition, which is proved in Section 4.

Proposition 5. There exist C1 > 0,µ > 0 and γ0 ∈ (0, 1] such that, for every γ ∈ [0, γ0], for every (a, b) ∈ R
2

and for every (Y0, Y1) ∈ Y2 satisfying

|Y0 − Y γ,a,b(0)| 6 µγ2 and |Y1 − Y γ,a,b(T ∗)| 6 µγ2,
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there exists a trajectory (Y, u) : [0, T ∗] → Y × R of the control system Σ such that

Y (0) = Y0 and Y (T ∗) = Y1,∣∣Y (t) − Y γ,a,b (t)
∣∣+ |u (t)| 6 C1γ ∀t ∈ [0, T ∗]. (2.15)

One now needs to construct, for every given γ > 0 small enough, trajectories (Y, u) : [0, T 0] → Y × R of the
control system Σ satisfying

Y (0) = (1, 0, 0, 0) and |Y (T 0) − Y γ,a,b(0)| 6 µγ2, (2.16)

and trajectories (Y, u) : [T 0 + T ∗, T 0 + T ∗ + T 1] → Y × R of the control system Σ such that

Y
(
T 0 + T 1 + T ∗) = (1, 0, s1, D1) and

∣∣Y (T 0 + T ∗)− Y γ,a,b (T ∗)
∣∣ 6 µγ2, (2.17)

for suitable choice of (a, b) ∈ R
2, T 0 > 0, T 1 > 0. Let us first point out that it follows from [8] that one knows

explicit trajectories (Y l, ul) : [0, T 0] → Y×R of the linearized control system around (0, 0) satisfying Y l(0) = 0
and Y l(T 0) = Y γ,a,b(0). Then, the idea is that, if one moves “slowly”, the same control ul gives a trajectory
(Y, u) : [0, T 0] → Y × R of the control system Σ such that (2.16) holds. More precisely, let f0 ∈ C4([0, 4]) be
such that

f0 = 0 in [0, 1/2]∪ [3, 4], (2.18)

f0 (t) = s/2 ∀t ∈ [1, 3/2], (2.19)∫ 4

0

f0(t1)dt1 = 0. (2.20)

Similarly, let f1 ∈ C4([0, 4]) and f2 ∈ C4([0, 4]) be such that

f1 = 0 in [0, 1/2]∪ [1, 3/2] and f1 = 1/2 in [3, 4], (2.21)∫ 3

0

f1(t1)dt1 = 0, (2.22)

f2 = 0 in [0, 1/2]∪ [1, 3/2] ∪ [3, 4], (2.23)∫ 4

0

f2(t1)dt1 = 1/2. (2.24)

Let

D :=
{(
s̄, D̄

) ∈ R
2; |s̄| 6 1,

∣∣D̄∣∣ 6 1
} ·

For
(
s̄, D̄

) ∈ D, let fs̄,D̄ ∈ C4([0, 4]) be defined by

fs̄,D̄ := f0 + s̄f1 + D̄f2. (2.25)

For ε ∈ (0, 1/2] and for γ ∈ R, let uε,γ

s̄,D̄
: [0, 3/ε] → R be defined by

uε,γ
s̄,D̄

(t) := γf ′
s̄,D̄(εt) + γf ′

s̄,D̄(ε(t+ 1)). (2.26)
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Let
(
hε,γ

s̄,D̄
, vε,γ

s̄,D̄
, sε,γ

s̄,D̄
, Dε,γ

s̄,D̄

)
: [0, 3/ε] → C1([0, 1]) × C1([0, 1]) × R × R be such that (2.4) holds for (h, v, s,D)

=
(
hε,γ

s̄,D̄
, vε,γ

s̄,D̄
, sε,γ

s̄,D̄
, Dε,γ

s̄,D̄

)
, u = uε,γ

s̄,D̄
and

(
hε,γ

s̄,D̄
(0, ·), vε,γ

s̄,D̄
(0, ·), sε,γ

s̄,D̄
(0), Dε,γ

s̄,D̄
(0)
)

= (0, 0, 0, 0).

From [8] one gets that

hε,γ
s̄,D̄

(t, x) = −γ
ε
fs̄,D̄(ε(t+ x)) +

γ

ε
fs̄,D̄(ε(t+ 1 − x)), (2.27)

vε,γ
s̄,D̄

(t, x) =
γ

ε
fs̄,D̄(ε(t+ x)) +

γ

ε
fs̄,D̄(ε(t+ 1 − x)) − γ

ε
fs̄,D̄(εt) − γ

ε
fs̄,D̄(ε(t+ 1)), (2.28)

sε,γ
s̄,D̄

(t) =
γ

ε
fs̄,D̄(εt) +

γ

ε
fs̄,D̄(ε(t+ 1)), (2.29)

Dε,γ

s̄,D̄
(t) =

γ

ε2
Fs̄,D̄(εt) +

γ

ε2
Fs̄,D̄(ε(t+ 1)), (2.30)

with

Fs̄,D̄ (t) :=
∫ t

0

fs̄,D̄(t1)dt1.

In particular, using also (2.18) to (2.24), one gets

hε,γ

s̄,D̄

(
1
ε

+ t, x

)
= γ

(
1
2
− x

)
and vε,γ

s̄,D̄

(
1
ε

+ t, x

)
= 0 ∀t ∈

[
0,

1 − 2ε
2ε

]
, ∀x ∈ [0, 1], (2.31)

sε,γ
s̄,D̄

(
1
ε

+ t

)
=
γ

ε
+
γ

2
+ γt, Dε,γ

s̄,D̄

(
1
ε

+ t

)
= Dε,γ

s̄,D̄

(
1
ε

)
+
(γ
ε

+
γ

2

)
t+

γ

2
t2 ∀t ∈

[
0,

1 − 2ε
2ε

]
, (2.32)

hε,γ

s̄,D̄

(
3
ε
, x

)
= 0 and vε,γ

s̄,D̄

(
3
ε
, x

)
= 0 ∀x ∈ [0, 1], (2.33)

sε,γ
s̄,D̄

(
3
ε

)
=
γ

ε
s̄ and Dε,γ

s̄,D̄

(
3
ε

)
=

γ

2ε
s̄+

γ

ε2
D̄. (2.34)

Let Hε,γ

s̄,D̄
= 1 + hε,γ

s̄,D̄
and Y ε,γ

s̄,D̄
=
(
Hε,γ

s̄,D̄
, vε,γ

s̄,D̄
, sε,γ

s̄,D̄
, Dε,γ

s̄,D̄

)
. Consider

aε,γ :=
γ

ε
fs̄,D̄(1) +

γ

ε
fs̄,D̄(1 + ε) =

γ

ε
+
γ

2
, bs̄,D̄

ε,γ :=
γ

ε2
Fs̄,D̄(1) +

γ

ε2
Fs̄,D̄(1 + ε) = Dε,γ

s̄,D̄

(
1
ε

)
·

Using (2.7, 2.31) and (2.32), one has

Y ε,γ
s̄,D̄

(
1
ε

)
= Y γ,aε,γ ,bs̄,D̄

ε,γ (0, ·), (2.35)

and, if ε ∈ (0, 1/(2(T ∗ + 1))],

Y ε,γ

s̄,D̄

(
1
ε

+ T ∗
)

= Y γ,aε,γ ,bs̄,D̄
ε,γ (T ∗). (2.36)

The next proposition shows that one can achieve (2.16) with u = uε,γ

s̄,D̄
for suitable choices of T 0, ε and γ.
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Proposition 6. There exists a constant C2 > 2 such that, for every ε ∈ (0, 1/C2], for every (s̄, D̄) ∈ D and
for every γ ∈ [0, ε/C2], there exists one and only one map Ỹ ε,γ

s̄,D̄
: [0, 1/ε] → Y satisfying the two following

conditions (
Ỹ ε,γ

s̄,D̄
, uε,γ

s̄,D̄

)
is a trajectory of the control system Σ (on [0, 1/ε]),

Ỹ ε,γ

s̄,D̄
(0) = (1, 0, 0, 0) ,

and this unique map Ỹ ε,γ
s̄,D̄

verifies

∣∣∣Ỹ ε,γ

s̄,D̄
(t) − Y ε,γ

s̄,D̄
(t)
∣∣∣ 6 C2εγ

2 ∀t ∈ [0, 1/ε]. (2.37)

In particular, by (2.31),

∣∣∣∣ṽε,γ
s̄,D̄

(
1
ε

)∣∣∣∣
1

+
∣∣∣∣h̃ε,γ

s̄,D̄

(
1
ε

)
− γ

(
1
2
− x

)∣∣∣∣
1

6 C2εγ
2. (2.38)

Similarly, one has the following proposition, which shows that (2.17) is achieved with u = uε,γ

s̄,D̄
for suitable

choices of T 1, ε and γ.

Proposition 7. There exists a constant C3 > 2(T ∗+1) such that, for every ε ∈ (0, 1/C3], for every (s̄, D̄) ∈ D,
and for every γ ∈ [0, ε/C3], there exists one and only one map Ŷ ε,γ

s̄,D̄
: [(1/ε) + T ∗, 3/ε] → Y satisfying the two

following conditions

(
Ŷ ε,γ

s̄,D̄
, uε,γ

s̄,D̄

)
is a trajectory of the control system Σ (on [(1/ε) + T ∗, 3/ε]),

Ŷ ε,γ

s̄,D̄

(
3
ε

)
=
(
1, 0,

γ

ε
s̄,
γ

2ε
s̄+

γ

ε2
D̄
)

= Y ε,γ

s̄,D̄

(
3
ε

)
,

and this unique map Ŷ ε,γ verifies
∣∣∣Ŷ ε,γ

s̄,D̄
(t) − Y ε,γ

s̄,D̄
(t)
∣∣∣ 6 C3εγ

2 ∀t ∈ [(1/ε) + T ∗, 3/ε]. (2.39)

In particular, by (2.31),

∣∣∣∣v̂ε,γ
s̄,D̄

(
1
ε

)∣∣∣∣
1

+
∣∣∣∣ĥε,γ

s̄,D̄

(
1
ε

)
− γ

(
1
2
− x

)∣∣∣∣
1

6 C2εγ
2. (2.40)

Let us choose

ε := Min
(

1
C2
,

1
C3
,
µ

2C2
,
µ

2C3

)
6 1

2
· (2.41)

Let us point out that there exists C4 > 0 such that, for every (s̄, D̄) ∈ D and for every γ ∈ [−ε, ε],
∣∣∣Hε,γ

s̄,D̄

∣∣∣
C2([0,3/ε]×[0,1])

+
∣∣∣vε,γ

s̄,D̄

∣∣∣
C2([0,3/ε]×[0,1])

6 C4, (2.42)

which, with straightforward estimates, leads to the next proposition, whose proof is omitted.
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Proposition 8. There exists C5 > 0 such that, for every (s̄, D̄) ∈ D, for every Y0 = (H0, v0, s0, D0) ∈ Y with

|Y0 − Ye| 6 1
C5
, s0 = 0, D0 = 0

and for every γ ∈ [0, ε/C2], there exists one and only one Y : [0, 1/ε] → Y such that(
Y, uε,γ

s̄,D̄
−H0x(0)

)
is a trajectory of the control system Σ,

Y (0) = Y0,

and this unique map Y satisfies ∣∣∣Y (t) − Ỹ ε,γ

s̄,D̄
(t)
∣∣∣ 6 C5|Y0 − Ye|, ∀t ∈ [0, 1/ε].

Similarly, equation (2.42) leads to the following proposition:

Proposition 9. There exists C6 > 0 such that, for every (s̄, D̄) ∈ D, for every γ ∈ [0, ε/C3], and for every
Y1 = (H1, v1, s1, D1) ∈ Y such that

∣∣∣Y1 −
(
1, 0,

γ

ε
s̄,
γ

2ε
s̄+

γ

ε2
D̄
)∣∣∣ 6 1

C6
, s1 =

γ

ε
s̄, D1 =

γ

2ε
s̄+

γ

ε2
D̄

there exists one and only one Y : [(1/ε) + T ∗, 3/ε] → Y such that(
Y, uε,γ

s̄,D̄
−H1x(0)

)
is a trajectory of the control system Σ

Y (3/ε) = Y1,

and this unique map Y satisfies∣∣∣Y (t) − Ŷ ε,γ

s̄,D̄
(t)
∣∣∣ 6 C6

∣∣∣Y1 − Y ε,γ

s̄,D̄
(3/ε)

∣∣∣ , ∀t ∈ [(1/ε) + T ∗, 3/ε].

Finally define

T :=
3
ε
, (2.43)

η := Min
(

ε2µ

2C5(C2
3 + C2

2 )
,

ε2µ

2C6(C2
3 + C2

2 )
,
ε

C2
,
ε

C3
,

1
C5
,

1
C6
,
γ2
0µ

2C5
,
γ2
0µ

2C6
, γ0

)
. (2.44)

We want to check that Theorem 2 holds with these constants for a large enough C0. Let Y0 = (H0, v0, 0, 0) ∈ Y
and Y1 = (H1, v1, s1, D1) ∈ Y be such that

|H0 − 1|1 + |v0|1 6 η, |H1 − 1|1 + |v1|1 6 η, |s1| + |D1| 6 η. (2.45)

Let

γ := Max

(√
2C5

µ

√
|H0 − 1|1 + |v0|1,

√
2C6

µ

√
|H1 − 1|1 + |v1|1, |s1| + |D1|

)
, (2.46)

s̄ :=
ε

γ
s1, D̄ :=

ε2

γ

(
D1 − s1

2

)
, (2.47)
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so that, thanks to (2.34),

sε,γ

s̄,D̄
= s1, D

ε,γ

s̄,D̄
= D1. (2.48)

Note that, by (2.41, 2.45, 2.46) and (2.47), (
s̄, D̄

) ∈ D. (2.49)

By (2.44, 2.45) and (2.46), we obtain that

γ ∈
[
0,Min

(
ε

C2
,
ε

C3

)]
· (2.50)

Then, by Proposition 8, equations (2.44, 2.45) and (2.50), there exists a function Y 0 = (H0, v0, s0, D0) :
[0, 1/ε] → Y such that(

Y 0, uε,γ

s̄,D̄
−H0x(0)

)
is a trajectory of the control system Σ on [0, 1/ε], (2.51)

Y 0(0) = Y0, (2.52)∣∣∣Y 0 (t) − Ỹ ε,γ
s̄,D̄

(t)
∣∣∣ 6 C5|Y0 − Ye| ∀t ∈ [0, 1/ε]. (2.53)

By (2.46) and (2.53), ∣∣∣∣Y 0

(
1
ε

)
− Ỹ ε,γ

s̄,D̄

(
1
ε

)∣∣∣∣ 6 µγ2

2
· (2.54)

By Proposition 6, equations (2.41) and (2.50),∣∣∣∣Ỹ ε,γ

s̄,D̄

(
1
ε

)
− Y γ,aε,γ ,bs̄,D̄

ε,γ (0)
∣∣∣∣ 6 C2εγ

2 6 µγ2

2
,

which, with (2.54), gives ∣∣∣∣Y 0

(
1
ε

)
− Y γ,aε,γ ,bs̄,D̄

ε,γ

∣∣∣∣ 6 µγ2. (2.55)

Similarly, by Propositions 7 and 9, equations (2.41, 2.43–2.46, 2.48) and (2.50), there exists Y 1 = (H1, v1, s1, D1) :
[(1/ε) + T ∗, T ] → Y such that(

Y 1, uε,γ

s̄,D̄
−H1x(0)

)
is a trajectory of the control system Σ on [(1/ε) + T ∗, T ], (2.56)

Y 1(T ) = Y1, (2.57)∣∣∣Y 1 (t) − Ỹ ε,γ

s̄,D̄
(t)
∣∣∣ 6 C6 |Y1 − (1, 0, s1, D1)| ∀t ∈ [(1/ε) + T ∗, T ] , (2.58)∣∣∣∣Y 1

(
1
ε

+ T ∗
)
− Y γ,aε,γ ,bs̄,D̄

ε,γ (T ∗)
∣∣∣∣ 6 µγ2. (2.59)

By (2.44, 2.45) and (2.46),

γ 6 γ0. (2.60)
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From Proposition 5, equations (2.55, 2.59) and (2.60), there exists a trajectory (Y ∗, u∗) : [0, T ∗] → Y of the
control system Σ satisfying

Y ∗(0) = Y 0

(
1
ε

)
, (2.61)∣∣∣Y ∗ (t) − Y γ,aε,γ ,bs̄,D̄

ε,γ (t)
∣∣∣ 6 C1µγ ∀t ∈ [0, T ∗], (2.62)

Y ∗(T ∗) = Y 1

(
1
ε

+ T ∗
)
. (2.63)

The map (Y, u) : [0, T ] → Y defined by

(Y (t) , u (t)) = (Y 0 (t) , uε,γ

s̄,D̄
(t) −H0x(0)) ∀t ∈ [0, 1/ε],

(Y (t) , u (t)) = (Y ∗(t− (1/ε)), u∗(t− (1/ε))) ∀t ∈ [1/ε, (1/ε) + T ∗],

(Y (t) , u (t)) = (Y 1 (t) , uε,γ

s̄,D̄
(t) −H1x(0)) ∀t ∈ [(1/ε) + T ∗, T ],

is a trajectory of the control system Σ which, by (2.52) and (2.57), satisfies (1.11). Finally the existence of
C0 > 0 such that (1.12) holds follows from the construction of (Y, u), equations (1.7, 2.15, 2.27) to (2.30, 2.37,
2.39, 2.45, 2.46, 2.53, 2.58) and (2.62).

It remains to prove Proposition 5 and Proposition 6. We do it in Section 4 and Section 3 respectively.

3. Proof of Proposition 6

In this section we prove Proposition 6. Let
(
s̄, D̄

) ∈ D. Let Ỹ ε,γ

s̄,D̄
=
(
H̃ε,γ

s̄,D̄
, ṽε,γ

s̄,D̄
, s̃ε,γ

s̄,D̄
, D̃ε,γ

s̄,D̄

)
∈ C0

(
Ĩε,γ

s̄,D̄
;Y
)

be the (maximal) solution of (
H̃ε,γ

s̄,D̄

)
t
+
(
H̃ε,γ

s̄,D̄
ṽε,γ

s̄,D̄

)
x

= 0, (3.1)

(
ṽε,γ

s̄,D̄

)
t
(t, x) +


H̃ε,γ

s̄,D̄
+

(
ṽε,γ

s̄,D̄

)2

2




x

(t, x) = −uε,γ

s̄,D̄
(t) , (3.2)

ṽε,γ

s̄,D̄
(t, 0) = ṽε,γ

s̄,D̄
(t, 1) = 0, (3.3)

H̃ε,γ
s̄,D̄

(0, x) = 1, ṽε,γ
s̄,D̄

(0, x) = 0, (3.4)

ds̃ε,γ

s̄,D̄

dt
(t) = uε,γ

s̄,D̄
(t) , (3.5)

dD̃ε,γ

s̄,D̄

dt
(t) = s̃ε,γ

s̄,D̄
(t) , (3.6)

s̃ε,γ

s̄,D̄
(0) = 0, D̃ε,γ

s̄,D̄
(0) = 0. (3.7)

We consider solutions for positive time, so Ĩε,γ

s̄,D̄
is a subinterval of [0, 1/ε] containing 0. The system (1.1, 1.2) is

strictly hyperbolic if H > 0 and the boundary condition (1.3) satisfies the Lopatinski condition (see e.g. [23],
Vol. II, pp. 235-236) if v2 < H for x = 0 and x = 1. Let C7 > 0 be such that

(|H − 1| + |v| 6 1/C7) ⇒ (v2 < H).

For w ∈ C0(K), where K is a compact subset of R
n, let

|w|0 := Max{|w(x)|; x ∈ K}·
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For w = (w1, . . . , wm) ∈ C0(K; Rm), where K is a compact subset of R
n, let

|w|0 :=
i=m∑
i=1

|wi|0. (3.8)

Then [19] (Th. 4.2, pp. 96) gives

(∣∣∣H̃ε,γ

s̄,D̄
(t) − 1

∣∣∣
0
+
∣∣∣ṽε,γ

s̄,D̄
(t)
∣∣∣
0

6 1/C7 ∀t ∈ Ĩε,γ

s̄,D̄

)
⇒ Ĩε,γ

s̄,D̄
= [0, 1/ε]. (3.9)

(Moreover the left hand side of (3.9) for one solution implies the uniqueness of the solutions.) So, in order
to prove Proposition 6, it suffices to prove the existence of C8 > 2 such that, for every

(
s̄, D̄

) ∈ D, for every
ε ∈ (0, 1/C8), and for every γ ∈ [0, ε/C8], we have

∣∣∣Ỹ ε,γ

s̄,D̄
(t) − Y ε,γ

s̄,D̄
(t)
∣∣∣ 6 C8εγ

2 ∀t ∈ Ĩε,γ

s̄,D̄
. (3.10)

By construction,

s̃ε,γ

s̄,D̄
= sε,γ

s̄,D̄
, D̃ε,γ

s̄,D̄
= Dε,γ

s̄,D̄
. (3.11)

In order to simplify the notations, we omit the indices s̄, D̄, ε, γ. (We write H instead of Hε,γ

s̄,D̄
, H̃ instead of

H̃ε,γ
s̄,D̄

and so on.) Let us first put the hyperbolic system (3.1, 3.2) in a characteristic form by using the Riemann

invariants. Let us recall that the Riemann invariants of the hyperbolic system (2.54, 2.55) are −v+ 2
√
H, with

the speed of propagation v −√
H, and v + 2

√
H , with the speed of propagation v +

√
H (see e.g. [7], pp. 146).

Throughout this section only, let

R1 := −ṽ + 2
√
H̃ + v − 2

√
1 + h− hv, (3.12)

R2 := ṽ + 2
√
H̃ − v − 2

√
1 + h+ hv, (3.13)

λ1 := −3R1

4
+
R2

4
+ v −√

1 + h− hv, (3.14)

λ2 := −R
1

4
+

3R2

4
+ v +

√
1 + h− hv, (3.15)

with

h := H − 1. (3.16)

Then, equations (3.1) to (3.4) are equivalent, at least if the L∞ norm of h, R1 and R2 are small enough, to

R1
t + λ1R

1
x = A11R

1 +A12R
2 +G1, (3.17)

R2
t + λ2R

2
x = A21R

1 +A22R
2 +G2, (3.18)

R1(t, 0) = R2(t, 0), R1(t, 1) = R2(t, 1) ∀t ∈ Ĩ , (3.19)

R1(0, x) = R2(0, x) = 0 ∀x ∈ [0, 1], (3.20)
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with

A11 := −3
4

(
v0x − h0x√

1 + h
− (hv)x

)
,

A12 :=
1
4

(
v0x − h0x√

1 + h
− (hv)x

)
,

A21 :=
1
4

(
v0x +

h0x√
1 + h

− (hv)x

)
,

A22 := −3
4

(
v0x +

h0x√
1 + h

− (hv)x

)
,

G1 := −(hv)t + v0x

(
v − 2hv +

h2

√
1 + h

+ h2v

)
+ h0x

(
−v2 +

2hv√
1 + h

+ hv2

)
,

G2 := (hv)t + v0x

(
−v + 2hv +

h2

√
1 + h

− h2v

)
+ h0x

(
v2 +

2hv√
1 + h

− hv2

)
.

Our first step is an estimate on |R1 (t) |0 + |R2 (t) |0, which is given in the following lemma:

Lemma 10. There exists of C9 > 2 such that, for every
(
s̄, D̄

) ∈ D, for every ε ∈ (0, 1/C9], for every γ ∈
[0, ε/C9] and for every t ∈ Ĩ,

|R1 (t) |0 6 C9εγ
2, |R2 (t) |0 6 C9εγ

2. (3.21)

Proof. Let us first point out that from (2.27) and (2.28), one gets the existence of C10 > 0 such that, for every(
s̄, D̄

) ∈ D, for every ε ∈ (0, 1/2] for every γ ∈ [0,+∞) and for every t ∈ [0, 1/ε],

|v (t) |1 6 C10εγ, (3.22)

|v0t (t) |0 6 C10ε
2γ, (3.23)

|h (t) |1 6 C10γ, (3.24)

|h0t (t) |0 6 C10εγ. (3.25)

Using these inequalities one gets the existence of C11 > 0 such that, for every
(
s̄, D̄

) ∈ D, for every ε ∈ (0, 1/C11]
for every γ ∈ [0, ε] and for every t ∈ [0, 1/ε],

|G1 (t) |0 6 C11ε
2γ2, |G2 (t) |0 6 C11ε

2γ2, (3.26)

|A11 (t) |0 + |A12 (t) |0 6 C11γ, |A21 (t) |0 + |A22 (t) |0 6 C11γ. (3.27)
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Let us now prove the following lemma:

Lemma 11. Let ε > 0, T ∈ [0, 1/ε], λ1 and λ2 in C1([0, T ]× [0, 1]), r1, r2, f1, f2 in C0([0, T ]× [0, 1]) be such
that

λ1 (t, x) < 0 ∀ (t, x) ∈ [0, T ]× [0, 1], (3.28)

λ2 (t, x) > 0 ∀ (t, x) ∈ [0, T ]× [0, 1], (3.29)

r1t + λ1r
1
x = f1, (3.30)

r2t + λ2r
2
x = f2, (3.31)

r1(t, 0) = r2(t, 0), r1(t, 1) = r2(t, 1) ∀t ∈ [0, T ], (3.32)

r1(0, x) = r2(0, x) = 0 ∀x ∈ [0, 1], (3.33)

|f1 (t) |0 6 ε and |f2 (t) |0 6 ε ∀t ∈ [0, T ]. (3.34)

Then, for every t ∈ [0, T ],

|r1 (t) |0 6 1 and |r2 (t) |0 6 1. (3.35)

Remark 12. Of course, with r1 and r2 just continuous, equations (3.30) and (3.31) have to be understood by
using the corresponding system of integrals along the characteristics, that is, if ξ1(resp. ξ2) : [t−, t+] ⊂ [0, T ]
→ [0, 1] is a solution of

ẋ = λ1 (t, x) , (3.36)

(resp. ẋ = λ2 (t, x)), (3.37)

then

r1(t, ξ1 (t)) = r1(t−, ξ1(t−)) +
∫ t

t−
f1(s, ξ1(s))ds ∀t ∈ [t−, t+], (3.38)

( resp. r2(t, ξ2 (t)) = r2(t−, ξ1(t−)) +
∫ t

t−
f2(s, ξ2(s))ds ∀t ∈ [t−, t+]). (3.39)

We use this convention until the end of this paper. To prove Lemma 10 from Lemma 11 one could assume in
Lemma 11 that r1 and r2 are of class C1. But one needs to consider the case where r1 and r2 are just continuous
for the proof of Lemma 14.

The proof of Lemma 11 readily follows by looking at the evolution of r1 and r2 along the characteristics
(see (3.38) and (3.39)). Indeed, let a ∈ (0, 1) and τ ∈ [0, T ]. Let ξ ∈ C0 ([0, τ ]; [0, 1]) be such that there exist
k ∈ N \ {0} and 0 = τk < τk−1 < . . . < τ1 < τ0 = τ satisfying

ξ ∈ C1 ([0, τ ] \ {τ0, . . . , τk}) ,
ξ̇ = λ1(t, ξ) on (τj , τj−1) ∀j odd ∈ {1, . . . , k},
ξ̇ = λ2(t, ξ) on (τj , τj−1) ∀j even ∈ {1, . . . , k}

ξ (τ) = a.

The existence (and uniqueness of such a ξ) follows from (3.28) and (3.29). Then, by (3.32, 3.33, 3.38) and (3.39),

r1(τ, a) =
∑

j odd ∈{1,... ,k}

∫ τj−1

τj

f1(s, ξ(s))ds+
∑

j even ∈{1,... ,k}

∫ τj−1

τj

f2(s, ξ(s))ds,
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which, with (3.34), gives
|r1(τ, a)| 6 ετ.

Similarly one gets
|r2(τ, a)| 6 ετ,

which ends the proof of Lemma 11.
Let C12 > 2 be such that, for every

(
s̄, D̄

) ∈ D, for every ε ∈ (0, 1/C12], for every γ ∈ [0, 1/C12], for every
R1 ∈ [−1/C12, 1/C12] and for every R2 ∈ [−1/C12, 1/C12], λ1 defined by (3.14) and λ2 defined by (3.15) satisfy

λ1 < 0 < λ2. (3.40)

Let C13 and C9 be such that

C13 := Max (C12, 2C11), (3.41)

C9 > C13. (3.42)

We claim that, with such a C9, Lemma 10 holds. Indeed, if this is not the case, there exist ε ∈ (0, 1/C9],
γ ∈ (0, ε/C9] and T ∈ Ĩ satisfying

|R1 (t) |0 6 C9εγ
2, |R2 (t) |0 6 C9εγ

2 ∀t ∈ [0, T ], (3.43)

|R1(T )|0 = C9εγ
2 or |R2(T )|0 = C9εγ

2. (3.44)

From (3.26, 3.27) and (3.43), one gets

|(A11R
1 +A12R

2 +G1) (t) |0 6 C11

(
C9
γ

ε
+ 1
)
ε2γ2 6 2C11ε

2γ2 ∀t ∈ [0, T ]. (3.45)

Similarly

|(A21R
1 +A22R

2 +G1) (t) |0 6 2C11ε
2γ2 ∀t ∈ [0, T ]. (3.46)

From (3.41, 3.42) and (3.43),

|R1 (t) |0 6 1
C4

9

6 1
C12

∀t ∈ [0, T ]. (3.47)

Similarly

|R2 (t) |0 6 1
C12

∀t ∈ [0, T ]. (3.48)

From the definition of C12, equations (3.41, 3.42, 3.47) and (3.48), one gets

λ1 < 0 < λ2 on [0, T ]× [0, 1]. (3.49)

From Lemma 11, equations (3.17) to (3.20, 3.41, 3.45, 3.46) and (3.49), we have

|R1 (t) |0 6 2C11εγ
2 6 C13εγ

2 ∀t ∈ [0, T ]. (3.50)

Similarly

|R2 (t) |0 6 C13εγ
2 ∀t ∈ [0, T ]. (3.51)

But (3.42, 3.44, 3.50) and (3.51) are in contradiction. This ends the proof of Lemma 10.
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Remark 13. The term hv in the definition (3.12) to (3.15) of R1, R2, λ1 and λ2 is important even if it is of
order 0(εγ2). Indeed if one omits this term in (3.12) to (3.15), one gets, instead of (3.26), the weaker estimates

|G1 (t) |0 6 C11εγ
2, |G2 (t) |0 6 C11εγ

2,

which are not enough to get Lemma 10.

In view of (3.17) and (3.18), in order to have C0-estimates on R1
x (t) and R2

x (t), it suffices to have C0-estimates
on R̄1 (t) := R1

t (t) and R̄2 (t) := R2
t (t). Taking the derivative with respect to t of (3.17, 3.18) and (3.19), one

gets, using (3.14, 3.15, 3.17) and (3.18) to eliminate R1
x and R2

x,

R̄1
t + λ1R̄

1
x = − 3

4λ1
(R̄1)2 +

1
4λ1

R̄1R̄2 + Ā11R̄
1 + Ā12R̄

2 + Ḡ1, (3.52)

R̄2
t + λ2R̄

2
x =

3
4λ2

(R̄2)2 − 1
4λ1

R̄1R̄2 + Ā21R̄
1 + Ā22R̄

2 + Ḡ2, (3.53)

R̄1(t, 0) = R̄2(t, 0), R̄1(t, 1) = R̄2(t, 1) ∀t ∈ Ĩ , (3.54)

with

Ā11 := A11 +
3

4λ1
(A11R

1 +A12R
2 +G1) +

1
λ1

(v −√
1 + h− hv)t,

Ā12 := A12 − 1
4λ1

(A11R
1 +A12R

2 +G1),

Ḡ1 := A11tR
1 +A12tR

2 +G1
t −

1
λ1

(A11R
1 +A12R

2 +G1)(v −√
1 + h− hv)t,

Ā21 := A21 +
1

4λ2
(A21R

1 +A22R
2 +G2),

Ā22 := A22 − 3
4λ2

(A21R
1 +A22R

2 +G2) +
1
λ2

(v +
√

1 + h− hv)t,

Ḡ2 := A21tR
1 +A22tR

2 +G2
t −

1
λ2

(A21R
1 +A22R

2 +G2)(v +
√

1 + h− hv)t.

From (3.17, 3.18) and (3.20), one gets

R̄1(0, x) = R̄2(0, x) ∀x ∈ [0, 1].

Let us first point out that from (2.27) and (2.28), one gets the existence of C14 > 0 such that, for every(
s̄, D̄

) ∈ D, for every ε ∈ (0, 1/2] for every γ ∈ [0,+∞) and for every t ∈ [0, 1/ε],

|v0t (t) |1 6 C14ε
2γ, (3.55)

|v0tt (t) |0 6 C14ε
3γ, (3.56)

|h0t (t) |1 6 C14εγ, (3.57)

|h0tt (t) |0 6 C14ε
2γ. (3.58)

Hence, using also (3.22, 3.24) and Lemma 10, one gets the existence of C15 > 0 such that, for every
(
s̄, D̄

) ∈ D,
for every ε ∈ (0, 1/C15] for every γ ∈ [0, ε/C15] and for every t ∈ Ĩ,

|Ḡ1 (t) |0 6 C15ε
3γ2, |Ḡ2 (t) |0 6 C15ε

3γ2,

|Ā11 (t) |0 + |Ā12 (t) |0 6 C15γ, |Ā21 (t) |0 + |Ā22 (t) |0 6 C15γ.
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Again, proceeding as in the proof of Lemma 10 (one easily sees that the quadratic terms in R̄1, R̄2 in the right
hand sides of (3.52) and (3.53) do not create any problem), one gets the following lemma:

Lemma 14. There exists C16 > 0 such that, for every
(
s̄, D̄

) ∈ D, for every ε ∈ (0, 1/C16] for every γ ∈
[0, ε/C16] and for every t ∈ Ĩ,

|R̄1 (t) |0 6 C16ε
2γ2, |R̄2 (t) |0 6 C16ε

2γ2,

This lemma, together with (3.14, 3.15, 3.17, 3.18), Lemma 10, equations (3.26) and (3.27) gives:

Lemma 15. There exists C17 > 0 such that, for every
(
s̄, D̄

) ∈ D, for every ε ∈ (0, 1/C17] for every γ ∈
[0, ε/C17] and for every t ∈ Ĩ,

|R1 (t) |1 6 C17εγ
2, |R2 (t) |1 6 C17εγ

2.

But, by (3.12) and (3.13),

ṽ − v =
R2 −R1

2
− hv, (3.59)

H̃ −H =
(
R1 +R2

4

)2

+
√

1 + h

2
(R1 +R2). (3.60)

Hence, using Lemma 15, equations (3.11, 3.22, 3.24) one gets (3.10) for every
(
s̄, D̄

) ∈ D, for every ε ∈ (0, 1/C8],
for every γ ∈ [0, ε/C8] and for every t ∈ Ĩ provided that C8 is large enough. This ends the proof of Proposition 6.

4. Proof of Proposition 5

In this section, we prove Proposition 5. Since (Y, u) = ((H, v, s,D), u) is a trajectory of the control system Σ
if and only if ((H, v, s − a,D − at− b), u) is a trajectory of the control system Σ, we may assume without loss
of generality that a = b = 0. For simplicity we also omit the indices a (= 0) and b (= 0). Let us first put the
hyperbolic system (1.1, 1.2) in a characteristic form by letting

R1 : = −v + 2
√
H − 2

√
Hγ − σ, (4.1)

R2 : = v + 2
√
H − 2

√
Hγ + σ, (4.2)

λ1 : = −3R1

4
+
R2

4
−
√
Hγ − σ, (4.3)

λ2 : = −R
1

4
+

3R2

4
+
√
Hγ − σ, (4.4)

with

σ := s− γt. (4.5)

Then, at least if γ and the L∞-norm of R1 and R2 are small enough, equations (1.1) to (1.5) are equivalent to

Rtr
t + ΛRtr

x = M1R
tr + σM2, (4.6)

R2(t, 0) −R1(t, 0) = R2(t, 1) −R1(t, 1) = 2σ (t) , (4.7)
dσ
dt

(t) = w (t) , (4.8)

dδ
dt

(t) = σ (t) , (4.9)
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with

w := u− γ, δ := D − γt2

2
, (4.10)

R :=
(
R1, R2

)
, Λ :=

(
λ1 0
0 λ2

)
, (4.11)

M1 :=


− 3γ

4
√
Hγ

γ

4
√
Hγ

− γ

4
√
Hγ

3γ
4
√
Hγ


 , M2 :=


− γ√

Hγ

− γ√
Hγ


 , (4.12)

and where, for a matrix M , M tr denotes the transpose of M . Note that (1.10) is equivalent to

∫ 1

0

(
R1 +R2

)√
Hγ +

(R1 +R2)2

18
dx = 0. (4.13)

Let Z =
(
Z1, Z2

)
be defined by

Ztr := M3R
tr
x −M4R

tr, (4.14)

with

M3 :=


1 − 5γ

4
x 0

0 −1 +
5γ
4
x


 , M4 :=




5γ
8

−γ
8

γ

8
−5γ

8


 . (4.15)

From (4.6, 4.11, 4.12) and (4.14) to (4.15), one gets

Ztr
t + ΛZtr

x = F, (4.16)

with F = F (x, γ, σ,R,Rx) defined by

F : = (F1, F2)
tr := (M3M1 −M3Λx + ΛM3x +M4Λ − ΛM4)Rtr

x

+ (M3M1x −M4M1)Rtr + σ (M3M2x −M4M2) . (4.17)

From (4.6) to (4.8, 4.11, 4.12) and (4.14) to (4.15), one gets

2w (t) =
(
1 +

γ

4

) (
Z2 (t, 0) − Z1 (t, 0)

)
+B0 = (1 + γ)

(
Z2 (t, 1) − Z1 (t, 1)

)
+B1, (4.18)

with B0 = B0 (γ,R (t, 0) , Rx (t, 0)) defined by

B0 : =

(
−R

1 (t, 0) +R2 (t, 0)
4

+
γ2

16 + 4γ + 16
√

1 + γ
2

)(
R1

x (t, 0) +R2
x (t, 0)

)

+
γ

2

(
1√

1 + γ
2

− 1 − γ

4

)(
R1 (t, 0) +R2 (t, 0)

)
(4.19)
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and B1 = B1 (γ,R (t, 1) , Rx (t, 1)) defined by

B1 : =

(
−R

1 (t, 1) +R2 (t, 1)
4

+
γ2

16 − 4γ + 16
√

1 − γ
2

− 5γ2

4

)(
R1

x (t, 1) +R2
x (t, 1)

)

+
γ

2

(
1√

1 − γ
2

− 1 − γ

)(
R1 (t, 1) +R2 (t, 1)

)
. (4.20)

Note that, for some C18 > 0, one has for every (γ, r, rx) ∈ R × R
2 × R

2 with |γ| + |σ| + |r| + |rx| 6 1/2,

(|B0| + |B1|) (γ, r, rx) 6 C18

(
γ2 |r| + γ2 |rx| + |r| |rx|

)
, (4.21)

(|B0r | + |B1r|)(γ, r, rx) 6 C18(γ2 + |rx|), (4.22)

(|B0rx | + |B1rx |)(γ, r, rx) 6 C18(γ2 + |r|). (4.23)

Similarly, using (4.3, 4.4, 4.12, 4.15, 4.17) and straightforward computations, one gets the existence of C19 > 0
such that, for every (x, γ, σ, r, rx) ∈ [0, 1]× R × R × R

2 × R
2 with |γ| + |σ| + |r| + |rx| 6 1/2,

(|F | + |Fx|) (x, γ, σ, r, rx) 6 C19

(
γ2 (|σ| + |r| + |rx|) + |rx| (γ |σ| + γ |r| + |rx|)

)
, (4.24)

|Fσ| (x, γ, σ, r, rx) 6 C19

(
γ2 + γ |rx|

)
, (4.25)

|Fr| (x, γ, σ, r, rx) 6 C19

(
γ2 + γ |rx|

)
, (4.26)

|Frx | (x, γ, σ, r, rx) 6 C19

(
γ2 + |rx| + γ |σ| + γ |r|) . (4.27)

Let us point out that one can recover σ from Z. Indeed from (4.14) and (4.15), one gets

Z1 + Z2 =
(

1 − 5γ
4
x

)(
R1

x −R2
x

)− 3γ
4
(
R1 −R2

)
. (4.28)

Multiplying (4.28) by (1 − (5γx/4))−2/5, integrating the obtained equality and using an integration by parts
together with (4.7), one obtains

σ (t) =
1

2
(
1 − (1 − 5γ

4

)3/5
) ∫ 1

0

1(
1 − 5γ

4 x
)2/5

(
Z1 + Z2

)
(t, x) dx. (4.29)

From (4.29) one easily sees than one can also recover R from Z. More precisely, straightforward computations
(together with (4.29)) give the following lemma, whose proof is omitted:

Lemma 16. There exists γ5 ∈ (0, 1/2] and C20 > 0 such that, for every γ ∈ [−γ5, γ5] \ {0}, the two following
properties hold.

(i) For every Z =
(
Z1, Z2

) ∈ C0 ([0, 1])2 with

1
γ

∣∣∣∣
∫ 1

0

Z1 + Z2dx
∣∣∣∣+ |Z|0 6 γ5, (4.30)
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there exists one and only one (Rγ (Z) ,Sγ (Z)) ∈ C1 ([0, 1])2 × R such that, with Rγ (Z) =
(
R1, R2

)
,

Ztr = M3R
tr
x −M4R

tr,

R2 (0) −R1 (0) = R2 (1) −R1 (1) = 2Sγ (Z) ,∫ 1

0

R1 +R2

2

√
Hγ +

(R1 +R2)2

16
dx = 0.

One has

Sγ (Z) =
1

2
(
1 − (1 − 5γ

4

)3/5
) ∫ 1

0

1(
1 − 5γ

4 x
)2/5

(
Z1 + Z2

)
(x) dx.

(ii) For every Z =
(
Z1, Z2

) ∈ C0 ([0, 1])2 and for every Z̄ =
(
Z̄1, Z̄2

) ∈ C0 ([0, 1])2 such that

1
γ

∣∣∣∣
∫ 1

0

Z1 + Z2dx
∣∣∣∣+ |Z|0 6 γ5,

1
γ

∣∣∣∣
∫ 1

0

Z1 + Z2dx
∣∣∣∣+ |Z|0 6 γ5,

one has

|Rγ (Z)|0 + |Sγ (Z)| 6 C20

(
1
γ

∣∣∣∣
∫ 1

0

Z1 + Z2dx
∣∣∣∣+ |Z|0

)
,

|Rγ (Z)x|0 6 C20 |Z|0 ,∣∣Rγ
(
Z̄
)− Rγ (Z)

∣∣
0

+
∣∣Sγ

(
Z̄
)− Sγ (Z)

∣∣ 6 C20

(
1
γ

∣∣∣∣
∫ 1

0

Z̄1 + Z̄2 − Z1 − Z2dx
∣∣∣∣+ ∣∣Z̄ − Z

∣∣
0

)
,∣∣Rγ

(
Z̄
)
x
− Rγ (Z)x

∣∣
0

6 C20

∣∣Z̄ − Z
∣∣
0
.

For Z =
(
Z1, Z2

) ∈ C0 ([0, T ∗] × [0, 1])2 with

1
γ

∣∣∣∣
∫ 1

0

(
Z1 + Z2

)
(·, x) dx

∣∣∣∣
0

+ |Z|0 6 γ5,

and γ ∈ [−γ5, γ5] \ {0} let us define Rγ (Z) in C0
(
[0, T ∗] ; C1 ([0, T ∗])

)2 and Sγ (Z) in C0 ([0, T ∗]) by

Rγ (Z) (t, ·) := Rγ (Z (t, ·)) , Sγ (Z) (t) := Sγ (Z (t, ·)) .

Let (λ1, λ2) in C0([0, T ∗]; C1[0, 1])2 be such that

λ1 (t, x) < 0, λ2 (t, x) > 0 ∀ (t, x) ∈ [0, T ∗] × [0, 1]. (4.31)
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Let (τ0, τλ
1 , τ

λ
2 , τ

λ
3 , τ

λ
4 ) ∈ [0, T ∗]5 be such that

τ0 =
T ∗

2
− 1, (4.32)(

ξ̇ = λ2(t, ξ) and ξ (τ0) = 0
)
⇒ (

ξ
(
τλ
1

)
= 1
)
, (4.33)(

ξ̇ = λ1(t, ξ) and ξ
(
τλ
1

)
= 1
)
⇒ (

ξ
(
τλ
2

)
= 0
)
, (4.34)(

ξ̇ = λ1(t, ξ) and ξ (τ0) = 1
)
⇒ (

ξ
(
τλ
3

)
= 0
)
, (4.35)(

ξ̇ = λ2(t, ξ) and ξ
(
τλ
3

)
= 0
)
⇒ (

ξ
(
τλ
4

)
= 1
)
. (4.36)

Note that, by (4.31), if such a (τλ
1 , τ

λ
2 , τ

λ
3 , τ

λ
4 ) exists, it is unique. Moreover (τλ

1 , τ
λ
2 , τ

λ
3 , τ

λ
4 ) indeed exists if

|λ1 + 1|C0([0,T∗];C1[0,1]) + |λ2 − 1|C0([0,T∗];C1[0,1])

is small enough and the map

C0([0, T ∗]; C1[0, 1])2 → R
4

λ = (λ1, λ2) 7→
(
τλ
1 , τ

λ
2 , τ

λ
3 , τ

λ
4

) (4.37)

is of class C1 on an open neighborhood of (−1, 1) ∈ C0([0, T ∗]; C1[0, 1])2 (for the usual topology on the Banach
space C0([0, T ∗]; C1[0, 1])2). This can be proved by using classical estimates for ordinary differential equations
(mainly Gronwall’s lemma) together with the implicit function theorem. Let θ : C0([0, T ∗]; C1[0, 1])2 → R

2 be
defined by

θ (λ1, λ2) :=
(
τλ
3 − τλ

1 , τ
λ
4 − τλ

2

)
. (4.38)

One easily sees that θ′ (−1, 1)
(C0([0, T ∗]; C1[0, 1])2)

)
= R

2 (by the way this property follows from (4.79)
and (4.80) below). Hence there exists a map Π : C0([0, T ∗]; C1[0, 1])2 → C0([0, T ∗]; C1[0, 1])2 defined and of
class C1 on a neighborhood O of (−1, 1) ∈ C0([0, T ∗]; C1[0, 1])2 satisfying

θ ◦ Π = 0, (4.39)

((θ (λ) = 0) ⇒ (Π (λ) = λ)) ∀λ ∈ O. (4.40)

Let us point out that, at least for γ small enough,

θ(−
√
Hγ ,

√
Hγ) = 0. (4.41)

Indeed, for |γ| small enough and for (λ1, λ2) = (−√
Hγ ,

√
Hγ) := λγ , (4.31) clearly holds and, as one easily

checks,

τλγ

1 = τλγ

3 = τ0 +
2√

1 + (γ/2) +
√

1 − (γ/2)
,

τλγ

2 = τλγ

4 = τ0 +
4√

1 + (γ/2) +
√

1 − (γ/2)
·

For ν > 0 and γ ∈ (0, 1/2], let Lν,γ be the set of λ = (λ1, λ2) ∈ C0([0, T ∗]; C1[0, 1])2 satisfying

|λ1 +
√
Hγ |C0([0,T∗];C1[0,1]) + |λ2 −

√
Hγ |C0([0,T∗];C1[0,1]) 6 ν.
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Let L0
ν,γ be the set of λ = (λ1, λ2) ∈ Lν,γ such that θ (λ) = 0. By (4.39, 4.40) and (4.41), one gets, since θ is of

class C1, the existence of γ6 ∈ (0, 1) and of C21 > 0 such that, for every γ ∈ [−γ6, γ6] and for every ν ∈ [−γ6, γ6],

Π (Lν,γ) ⊂ L0
C21ν,γ . (4.42)

For ν > 0 and γ > 0 both small enough, let Hν,γ be the set of (λ, α, β, b, f) satisfying

λ = (λ1, λ2) ∈ L0
ν,γ , (4.43)

α =
(
α1, α2

) ∈ C0 ([0, 1])2 , β =
(
β1, β2

) ∈ C0 ([0, 1])2 , (4.44)

b = (b0, b1) ∈ C0 ([0, T ∗])2 , f = (f1, f2) ∈ C0 ([0, T ∗] × [0, 1])2 , (4.45)(
1 +

γ

4

) (
α2 (0) − α1 (0)

)
+ b0 (0) = (1 + γ)

(
α2 (1) − α1 (1)

)
+ b1 (0) , (4.46)(

1 +
γ

4

) (
β2 (0) − β1 (0)

)
+ b0 (T ∗) = (1 + γ)

(
β2 (1) − β1 (1)

)
+ b1 (T ∗) . (4.47)

This set Hν,γ is equipped with the topology defined by the usual norm on C0
(
[0, T ∗] ; C1 [0, T ∗]

)2 × C0 ([0, 1])4

×C0 ([0, T ∗])2 × C0 ([0, T ∗] × [0, 1])2.
For every compact subset K of R

n, for every continuous maps f : K → R, g = (g1, . . . , gm) : K → R
m and

for every real number ρ > 0, let

ωρ(f) := Max {|f(z)− f(z′)|; z ∈ K, z′ ∈ K, |z − z′| 6 ρ}, (4.48)

ωρ(g) :=
m∑

i=1

ωρ(gi). (4.49)

Let us assume that the following lemma, whose proof is postponed to Appendix A, holds.

Lemma 17. There exists C22 > 2 and γ7 ∈ (0, γ5] such that, for every γ ∈ (0, γ7], there exists a continuous
map Wγ

Hγ7γ,γ → C0 ([0, T ∗])

(λ, α, β, b, f) 7→ w = Wγ (λ, α, β, b, f) ,

such that the three following properties hold.

(i) One has

2w (0) =
(
1 +

γ

4

) (
α2 (0) − α1 (0)

)
+ b0 (0) = (1 + γ)

(
α2 (1) − α1 (1)

)
+ b1 (0) . (4.50)

(ii) The unique solution Z =
(
Z1, Z2

) ∈ C0 ([0, T ∗] × [0, T ∗])2 (which exists by the compatibility condi-
tion (4.50)) of

Z1
t + λ1Z

1
x = f1, Z

2
t + λ2Z

2
x = f2, (4.51)(

1 +
γ

4

) (
Z2(t, 0) − Z1(t, 0)

)
+ b0 (t) = (1 + γ)

(
Z2(t, 1) − Z1(t, 1)

)
+ b1 (t) = 2w (t) , (4.52)

Z (0, ·) = α, (4.53)
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satisfies

Z (T ∗, ·) = β,

1
γ

∣∣∣∣
∫ 1

0

(
Z1 + Z2

)
(·, x) dx

∣∣∣∣
0

+ |Z1|0 + |Z2|0 6 C22

γ
(|α|0 + |β|0 + |b|0 + |f |0) ,

1
γ
ωρ

(∫ 1

0

(
Z1 + Z2

)
(·, x) dx

)
+ ωρ(Z1, Z2) 6 C22

γ
(ωρ(α, β, b, f) + ρ (|α|0 + |β|0 + |b|0 + |f |0)) ∀ρ ∈ [0,+∞) .

(iii) The map Wγ (λ, ·) is linear.

Let us recall that (see Rem. 12) the solutions of (4.51) have to be understood by using the corresponding
system of integrals along the characteristics.

Lemma 17 is not sufficient to prove Proposition 5 by means of an iterative scheme: one has to deal with the
fact that θ = 0 is required at each step and that one wants to steer δ from δ0 to δ1. We do it by considering
special explicit

(
Z1, Z2

)
which are “almost” (i.e. up to the order γ2) solutions of

Z1
t + λ1Zx = 0, Z2

t + λ2Zx = 0,(
1 +

γ

4

) (
Z2 (t, 0) − Z1 (t, 0)

)
= (1 + γ)

(
Z2 (t, 1) − Z1 (t, 1)

)
,

Z1 (0, ·) = Z2 (0, ·) = Z1 (T ∗, ·) = Z2 (T ∗, ·) = 0.

Let g ∈ C∞(R) be such that

g = 0 ∈ (−∞, 1] ∪ [T ∗ − 1,∞). (4.54)

For γ ∈ [−1, 1], let ζγ = (ζγ,1, ζγ,2) ∈ C∞([0, T ∗]× [0, 1]) be defined by

ζγ,1 (t, x) :=
2

1 + γ
4

g
(
t− 1 + x− γ

4
(
x− x2

))− 2
1 + γ

g
(
t+ x− γ

4
(
x− x2

))
, (4.55)

ζγ,2 (t, x) :=
2

1 + γ
4

g
(
t+ 1 − x+

γ

4
(
x− x2

))− 2
1 + γ

g
(
t− x+

γ

4
(
x− x2

))
. (4.56)

Then, by (4.54),

ζγ (0, ·) = ζγ (T ∗, ·) = 0. (4.57)

Moreover,

ζγ,1
t − 1

1 − γ
4 (1 − 2x)

ζγ,1
x = 0, (4.58)

ζγ,2
t +

1
1 − γ

4 (1 − 2x)
ζγ,2
x = 0, (4.59)(

1 +
γ

4

) (
ζγ,2(t, 0) − ζγ,1(t, 0)

)
= (1 + γ)

(
ζγ,2(t, 1) − ζγ,1(t, 1)

)
= 2 (g (t+ 1) − g (t− 1)) . (4.60)

Note that there exists C23 > 0, which does not depend on g and γ ∈ (−1, 1), such that∣∣∣∣
∫ 1

0

(
ζγ,1 + ζγ,2

)
(·, x) dx

∣∣∣∣
0

6 C23γ |g|C1([1,T∗−1]) . (4.61)

Straightforward estimates, together with (4.57) to (4.60), give the following lemma, whose proof is omitted:
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Lemma 18. There exists γ8 ∈ (0, 1] and C24 > 0 such that, for every λ ∈ L0
ν,γ , with (ν, γ) ∈ [0, γ8]2 and for

every g ∈ C∞ (R) satisfying (4.54), the solution Z = (Z1, Z2) ∈ C1([0, T ∗] × [0, 1]) of

Z1
t + λ1Z

1
x = Z2

t + λ2Z
2
x = 0,(

1 +
γ

4

) (
Z2 (t, 0) − Z1 (t, 0)

)
= (1 + γ)

(
Z2 (t, 1) − Z1 (t, 1)

)
= 2 (g (t+ 1) − g (t− 1)) ,

Z(0, ·) = 0,

satisfies

|Z − ζγ |1 6 C24

(
ν + γ2

) |g|C2([1,T∗−1]) .

In particular, with (4.57),

|Z (T ∗, ·)|1 6 C24

(
ν + γ2

) |g|C2([1,T∗−1]) .

Note that, by (4.54),

∫ T∗

0

(g (t+ 1) − g (t− 1)) dt = 0, (4.62)

δ̄ :=
∫ T∗

0

∫ t

0

(g (t1 + 1) − g (t1 − 1)) dt1dt = 2
∫ +∞

−∞
g (t) dt. (4.63)

For γ ∈ [−1, 1], let us denote by Lγ the map

C0
(
[0, T ∗] ; C1 ([0, T ∗])

)2 × C0 ([0, T ∗]) → C0
(
[0, T ∗] ; C1 ([0, T ∗])

)2
(
R1, R2, σ

) 7→ (
λ1, λ2

)
defined by

λ1 := −3R1

4
+
R2

4
−
√
Hγ − σ, (4.64)

λ2 := −R
1

4
+

3R2

4
+
√
Hγ − σ. (4.65)

Let Θ : R × C0([0, T ∗]; C1[0, 1])2 × C0([0, T ∗]) → R
2 be defined by

Θ
(
γ,R1, R2, σ

)
:= θ ◦ Lγ

(
R1, R2, σ

)
.

The function Θ is of class C1 in a neighborhood of 0 in R × C0
(
[0, T ∗] ; C1 ([0, 1])

)2 × C0([0, T ∗]). Let R1] and
R2] be in C0([0, T ∗]; C1[0, 1]). Let σ] be in C0([0, T ∗]). Then

Θ′(0)
(
0, R1], R2], σ]

)
= (d1, d2), (4.66)

with

d1 = −1
4

∫ T∗
2

T∗
2 −1

((
3R1] −R2]

)(
t,−t+ T ∗

2

)
+
(
R1] − 3R2]

)(
t, t− T ∗

2
+ 1
)

+ 8σ] (t)
)

dt, (4.67)

d2 = d1 − 1
4

∫ T∗
2 +1

T∗
2

((
3R1] −R2]

)(
t,−t+ T ∗

2
+ 1
)

+
(
R1] − 3R2]

)(
t, t− T ∗

2

)
+ 8σ] (t)

)
dt. (4.68)
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Let g ∈ C∞(R) and ε ∈ R. Consider ζγ,ε as defined by (4.55) and (4.56) with εg instead of g in these
equations. Thanks to Lemma 16, one can associate to ζγ,ε a unique pair of continuous maps (Rγ,ε, σγ,ε) with
Rγ,ε =

(
R1,γ,ε, R2,γ,ε

)
: [0, T ∗] × [0, 1] → R

2, σγ,ε : [0, T ∗] → R such that

(ζγ,ε)tr = M3 (Rγ,ε
x )tr −M4 (Rγ,ε)tr , (4.69)

R2,γ,ε (0) −R1,γ,ε (0) = R2,γ,ε (1) −R1,γ,ε (1) = 2σγ,ε, (4.70)

∫ 1

0

R1,γ,ε +R2,γ,ε

2

√
Hγ +

(
R1,γ,ε +R2,γ,ε

)2
16

dx = 0, (4.71)

at least if γ ∈ [−γ5, γ5] \ {0} and |ε| are small enough. It turns out that, in this special case, such a (Rγ,ε, σγ,ε)
can be extended by continuity for γ = 0 and |ε| small enough. Straightforward computations give the following
lemma, whose proof is omitted:

Lemma 19. There exists εg > 0 such that there exists one and only one map of class C2

(−εg,−εg)2 → C2 ([0, T ∗] × [0, 1])2 × C2 ([0, T ∗])

(γ, ε) 7→ (Rγ,ε, σγ,ε)

such that, with Rγ,ε =
(
R1,γ,ε, R2,γ,ε

)
, one has (4.69, 4.70) and (4.71). Moreover

R1,] (t, x) :=
(
∂R1,0,ε

∂ε

)
ε=0

(t, x) = 2G (t− 1 + x) − 2G (t+ x) , (4.72)

R2,] (t, x) :=
(
∂R2,0,ε

∂ε

)
ε=0

(t, x) = 2G (t+ 1 − x) − 2G (t− x) , (4.73)

σ] (t) :=
(
∂σ0,ε

∂ε

)
ε=0

(t) = G (t+ 1) −G (t− 1) , (4.74)

with

G (t) :=
∫ t

−∞
g (t1) dt1. (4.75)

From (4.67) and (4.68), one gets

d1 = 3
(
G

(
T ∗

2

)
−G

(
T ∗

2
− 1
))

+
3
2

∫ T∗
2 −1

T∗
2 −2

G (t) dt− 3
2

∫ T∗
2 +1

T∗
2

G (t) dt, (4.76)

d2 = −3
(
G

(
T ∗

2
+ 1
)
− 2G

(
T ∗

2

)
+G

(
T ∗

2
− 1
))

+
3
2

∫ T∗
2 −1

T∗
2 −2

G (t) dt− 3
2

∫ T∗
2 +1

T∗
2 −1

G (t) dt+
3
2

∫ T∗
2 +2

T∗
2 +1

G (t) dt. (4.77)
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Let us now fix three functions g0, g1, g2 in C∞ (R) of support included in [−1, T ∗ + 1] such that, with δ̄, d1 and
d2 defined by (4.63, 4.76) and (4.77), one has

for g = g0,
(
δ̄, d1, d2

)
= (1, 0, 0) , (4.78)

for g = g1,
(
δ̄, d1, d2

)
= (0, 1, 0) , (4.79)

for g = g2,
(
δ̄, d1, d2

)
= (0, 0, 1) . (4.80)

Let w0, w1, w2 in C∞ ([0, T ∗]) be defined by

w0 (t) :=
(
g0 (t+ 1) − g0 (t− 1)

)
, (4.81)

w1 (t) :=
(
g1 (t+ 1) − g1 (t− 1)

)
, (4.82)

w2 (t) :=
(
g2 (t+ 1) − g2 (t− 1)

)
. (4.83)

For i ∈ {0, 1, 2}, λ ∈ Lν,γ with ν > 0 and γ both small enough, let us define Zi,λ,γ =
(
Z1

i,λ,γ , Z
2
i,λ,γ

)
∈ C1([0, T ∗] × [0, 1]) and βi,λ,γ ∈ C1([0, 1])2 by requiring

(
Z1

i,λ,γ

)
t
+ λ1

(
Z1

i,λ,γ

)
x

=
(
Z2

i,λ,γ

)
t
+ λ2

(
Z2

i,λ,γ

)
x

= 0,(
1 +

γ

4

) (
Z2

i,λ,γ (t, 0) − Z1
i,λ,γ (t, 0)

)
= (1 + γ)

(
Z2

i,λ,γ (t, 1) − Z1
i,λ,γ (t, 1)

)
= 2wi (t) ,

Zi,λ,γ(0, ·) = 0,

βi,λ,γ = Zi,λ,γ(T ∗, ·).

For Y0 = (H0, v0, s0, D0) ∈ Y and γ ∈ (−1, 1), let us define (R1
0γ , R

2
0γ) ∈ C1([0, 1])2, σ0 ∈ R, δ0 ∈ R and

αγ = (α1
γ , α

2
γ) ∈ C0([0, 1])2 by (see (4.1, 4.2, 4.5) and (4.14))

δ0 := D0, (4.84)

σ0 := s0, (4.85)

R1
0γ := −v0 + 2

√
H0 − 2

√
Hγ − σ0, (4.86)

R2
0γ := v0 + 2

√
H0 − 2

√
Hγ + σ0, (4.87)(

α1
γ

α2
γ

)
:=


1 − 5γ

4
x 0

0 −1 +
5γ
4
x



(
R1

0γx

R2
0γx

)
− γ




5
8
−1

8
1
8
−5

8



(
R1

0γ

R2
0γ

)
. (4.88)

Let us point out that, by (1.8–1.10, 4.19, 4.20) and (4.84) to (4.88), one has

(
1 +

γ

4

) (
α2

γ(0) − α1
γ(0)

)
+ B0(γ,R0γ(0), R0γx(0)) = (1 + γ)

(
α2

γ(1) − α1
γ(1)

)
+ B1(γ,R0γ(1), R0γx(1)), (4.89)

R2
0γ(0) −R1

0γ(0) = R2
0γ(1) −R1

0γ(1) = 2σ0, (4.90)∫ 1

0

(
R1

0γ +R2
0γ

)√
Hγ +

(
R1

0γ +R2
0γ

)2
8

dx = 0. (4.91)
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Similarly, for Y1 = (H1, v1, s1, D1) ∈ Y, we define (R1
1γ , R

2
1γ) ∈ C1([0, 1])2, σ1γ ∈ R, δ1γ ∈ R and βγ = (β1

γ , β
2
γ) ∈

C0([0, 1])2 by (see (4.1, 4.2, 4.5) and (4.14))

δ1γ := D1 − γT ∗2

2
, (4.92)

σ1γ := s1 − γT ∗, (4.93)

R1
1γ := −v1 + 2

√
H1 − 2

√
Hγ − σ1γ , (4.94)

R2
1γ := v1 + 2

√
H1 − 2

√
Hγ + σ1γ , (4.95)(

β1
γ

β2
γ

)
:=


1 − 5γ

4
x 0

0 −1 +
5γ
4
x



(
R1

1γx

R2
1γx

)
− γ




5
8
−1

8
1
8
−5

8



(
R1

1γ

R2
1γ

)
. (4.96)

Again, by (1.8–1.10, 4.19, 4.20) and (4.92) to (4.96), one has

(
1 +

γ

4

) (
β2

γ(0) − β1
γ(0)

)
+B0(γ,R1γ(0), R1γx(0)) = (1 + γ)

(
β2

γ(1) − β1
γ(1)

)
+ B1(γ,R1γ(1), R1γx(1)), (4.97)

R2
1γ(0) − R1

1γ(0) = R2
1γ(1) −R1

1γ(1) = 2σ1γ , (4.98)∫ 1

0

(
R1

1γ +R2
1γ

)√
Hγ +

(
R1

1γ +R2
1γ

)2
8

dx = 0. (4.99)

We let

χγ := δ1γ − δ0 − σ0T
∗. (4.100)

For ν ∈ (0, γ5] and γ ∈ (0, γ5], let Eν,γ (Y0, Y1) be the set of
(
Z1, Z2

)
in C0 ([0, T ∗] × [0, 1])2 satisfying

1
γ

∣∣∣∣
∫ 1

0

(
Z1 + Z2

)
(·, x) dx

∣∣∣∣
0

+ |Z1|0 + |Z2|0 + |δ|0 6 ν,

Z (0, ·) = αγ , Z (T ∗, ·) = βγ .

For ν > 0, let

Bν :=
{
q =

(
q0, q1, q2

) ∈ R
3;
∣∣q0∣∣+ ∣∣q1∣∣+ ∣∣q2∣∣ 6 ν

} ·
Let us define a map

F : Eν,γ (Y0, Y1) × Bν → C0 ([0, T ∗] × [0, 1])2 × R
3

(Z, q) =
(
Z1, Z2, q0, q1, q2

) 7→ (
Z̄, q̄

)
=
(
Z̄1, Z̄2, q̄0, q̄1, q̄2

)
,

by the following five-steps procedure:
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Step 1. One first define R =
(
R1, R2

) ∈ C0
(
[0, T ∗] ; C1 ([0, 1])

)2
, σ ∈ C0 ([0, T ∗]), f =

(
f1, f2

) ∈ C0 ([0, T ∗]
× [0, 1])2, b = (b0, b1) ∈ C0 ([0, T ∗])2 by

(R, σ) :=
(
Rγ
(
Z1, Z2

)
,Sγ

(
Z1, Z2

))
, (4.101)

b0 := B0(γ,R(·, 0), Rx(·, 0)), (4.102)

b1 := B1(γ,R(·, 0), Rx(·, 0)), (4.103)

f1 := F1(x, γ, σ,R,Rx), (4.104)

f2 := F2(x, γ, σ,R,Rx). (4.105)

Step 2. We define λ = (λ1, λ2) ∈ C0
(
[0, T ∗] ; C1 ([0, 1])

)2 by

λ := Π (Lγ (R, σ)) . (4.106)

Step 3. With these λ, b0, b1, f1, f2, we define w ∈ C0 ([0, T ∗]) by

w := Wγ

(
λ, αγ , βγ − q0β0,λ,γ − q1β1,λ,γ − q2β2,λ,γ , b, f

)
+ q0w0 + q1w1 + q2w2. (4.107)

Step 4. Then Z̄ =
(
Z̄1, Z̄2

)
is the unique continuous solution of

Z̄1
t + λ1Z̄

1
x = f1, Z̄

2
t + λ2Z̄

2
x = f2, (4.108)(

1 +
γ

4

) (
Z̄2(t, 0) − Z̄1(t, 0)

)
+ b0 (t) = (1 + γ)

(
Z̄2(t, 1) − Z̄1(t, 1)

)
+ b1 (t) = 2w (t) , (4.109)

Z (0, ·) = αγ , (4.110)

Step 5. Finally,
(
q̄0, q̄1, q̄2

)
is defined by

q̄0 := χγ + q0 −
∫ T∗

0

∫ t1

0

w (t1) dt1dt, (4.111)(
q̄1, q̄2

)
:=
(
q1, q2

)− Θ
(
γ,Rγ

(
Z̄
)
,Sγ

(
Z̄
))
. (4.112)

From Lemma 16 and straightforward estimates, one gets the following lemma, whose proof is omitted:

Lemma 20. There exists C25 > 0 such that, for every γ ∈ [−γ5, γ5] \ {0}, for every Z =
(
Z1, Z2

) ∈ C0 ([0, 1])2

with

1
γ

∣∣∣∣
∫ 1

0

Z1 + Z2dx
∣∣∣∣+ |Z|0 6 γ5,

one has

ωρ (Rγ ,Sγ) 6 C25

(
1
γ
ωρ

(∫ 1

0

(
Z1 + Z2

)
(·, x) dx

)
+ ωρ(Z) + ρ |Z|0

)
.

From (4.21) to (4.27, 4.61, 4.78) to (4.80, 4.89, 4.97), Lemma 16 to Lemma 20 and straightforward estimates,
one gets the following lemma, whose proof is omitted:
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Lemma 21. There exists γ9 ∈ (0, 1], and C26 > 0 such that, for every ν ∈ (0, γ9], for every γ ∈ (0, ν] and for
every (Y0, Y1) ∈ Y with |Y0 − Y γ(0)| + |Y1 − Y γ(T ∗)| 6 ν2γ2,

Eνγ,γ (Y0, Y1) is not empty, (4.113)

F is well-defined and continuous on Eνγ,γ(Y0, Y1) × Bν3/2γ , (4.114)

F
(Eνγ,γ(Y0, Y1) × Bν3/2γ

) ⊂ EC26ν3/2γ,γ × BC26ν2γ (4.115)

and, for every (Z, q) ∈ Eνγ,γ(Y0, Y1) × Bνγ and for every ρ ∈ [0,+∞),

1
γ
ωρ

(∫ 1

0

(
Z̄1 + Z̄2

)
(·, x) dx

)
+ ωρ

(
Z̄1, Z̄2

)
6 C26

(
ν

(
1
γ
ωρ

(∫ 1

0

(
Z1 + Z2

)
(·, x) dx

)
+ ωρ(Z1, Z2) + ρ

)
+

1
γ
ωρ (αγ , βγ)

)
, (4.116)

where
(Z̄, q̄) = F(Z, q).

Let

γ10 ∈
(

0,Min
(
γ9,

1
2C26

,
1
C2

26

)]
· (4.117)

Let γ ∈ (0, γ10], and (Y0, Y1) ∈ Y with |Y0 −Y γ(0)|+ |Y1 −Y γ(T ∗)| 6 γ2
10γ

2. We claim that F has a fixed point
in Eγ10γ,γ × B

γ
3/2
10 γ

. Let Ω ∈ C0([0, 1]; [0,+∞)) be such that

Ω(0) = 0, (4.118)

Ω(ρ) > 2C26

γ
ωρ (αγ , βγ) + ρ ∀ρ ∈ [0,+∞) (4.119)

and such that the set K of
(
Z1, Z2, q

) ∈ Eγ10γ,γ × B
γ
3/2
10 γ

satisfying

1
γ
ωρ

(∫ 1

0

(
Z1 + Z2

)
(·, x) dx

)
+ ωρ(Z1, Z2) 6 Ω(ρ) ∀ρ ∈ [0,+∞)

is not empty. Then, K is a nonempty convex compact subset of C0([0, T ∗]× [0, 1])2 ×R
3, and, by (4.115–4.117)

and (4.119),
F(K) ⊂ K.

Hence, by the Leray–Schauder fixed point theorem, F has a fixed point in K.
Let us now check that the existence of a fixed point to F in Eγ10γ,γ × B

γ
3/2
10 γ

implies Proposition 5. Let

(Z1, Z2, q) be a fixed point of F in Eγ10γ,γ ×B
γ
3/2
10 γ

. Let R =
(
R1, R2

) ∈ C0([0, T ∗]; C1[0, 1])2 and σ ∈ C0([0, T ∗])
be defined by

(R, σ) :=
(
Rγ
(
Z1, Z2

)
,Sγ

(
Z1, Z2

))
. (4.120)

Using the fact that one has q̄ = q in (4.112), one gets that

Θ (γ,R, σ) = 0. (4.121)
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In particular λ defined by (4.106) satisfies

λ = Lγ (R, σ) . (4.122)

Let w be defined by (4.107). Note that, by (4.111) with q̄0 = q0, one has

χλ,γ =
∫ T∗

0

∫ t1

0

w (t1) dt1dt. (4.123)

Moreover (4.107), together with (4.108) to (4.110) (with Z̄ = Z), implies that

Z (0, ·) = αγ , Z (T ∗, ·) = βγ . (4.124)

Let φ =
(
φ1, φ2

) ∈ C0 ([0, T ∗] × [0, 1])2 be defined by

φtr (t, x) := Rtr (t, x) −Rtr (0, x) +
∫ t

0

(
ΛRtr

x −M1R
tr − σM2

)
(t1, x) dt1. (4.125)

Proposition 5 is proved if one checks that

φ1 = φ2 = 0, (4.126)

σ̇ = w. (4.127)

(Indeed the estimate (2.15), with C1 large enough, follows from Lem. 16 if γ10 > 0 is small enough.) From (4.11,
4.12, 4.14–4.17) and (4.125), one gets


1 − 5γ

4
x 0

0 −1 +
5γ
4
x



(
φ1

x

φ2
x

)
− γ




5
8
−1

8
1
8
−5

8


(φ1

φ2

)
= 0. (4.128)

By (4.120), one has (4.7). From (4.3, 4.4, 4.7, 4.11, 4.12, 4.14, 4.15, 4.18–4.20) and (4.125), one gets

φ2(t, 0) − φ1(t, 0) = φ2(t, 1) − φ1(t, 1) = 2
(
σ (t) − σ0 −

∫ t

0

w (t1) dt1

)
. (4.129)

Define (see (4.1) and (4.2))

v :=
R2 −R1

2
− σ, (4.130)

H :=

(
R1 +R2

)2
16

+
√
Hγ

R1 +R2

2
+Hγ . (4.131)

Using (4.3, 4.4, 4.11, 4.12, 4.125, 4.130) and (4.131), one gets

H (t, ·) −H (0, ·) +
∫ t

0

(Hv)x dt1 =

(√
Hγ

2
+
R1 +R2

8
− φ1 + φ2

16

)(
φ1 + φ2

)

+
∫ t

0

(
λ1R1x + λ2R2x − γ√

Hγ
R2 +

γ√
Hγ

R1 +
2γσ√
Hγ

)
φ1 + φ2

8
dt1. (4.132)
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By (4.120) and (4.131), ∫ 1

0

(H (t, x) −H (0, x)) dx = 0. (4.133)

By (4.7) and (4.130),

v (·, 0) = v (·, 1) = 0. (4.134)

Using (4.132–4.134) and an integration by parts, one gets∫ 1

0

((
φ1 + φ2

)
M
)
(x, t) dx =

∫ t

0

∫ 1

0

((
φ1 + φ2

)
N
)
(x, t1) dxdt1, (4.135)

with

M :=
√
Hγ +

R1 +R2

4
− φ1 + φ2

8
, (4.136)

N := −1
4

(λ1R1x + λ2R2x) +
2γ√
Hγ

R2 − 2γ√
Hγ

R1 − 4γσ√
Hγ

· (4.137)

Straightforward estimates give the following lemma:

Lemma 22. There exists γ11 > 0 such that, for every γ ∈ (0, γ11], there exists Cγ > 0 such that for every
k ∈ C0 ([0, 1]) satisfying |k − 1|0 6 γ11 and for every

(
ψ1, ψ2

) ∈ C1 ([0, 1])2 satisfying
1 − 5γ

4
x 0

0 −1 +
5γ
4
x



(
ψ1

x

ψ2
x

)
− γ




5
8
−1

8
1
8
−5

8



(
ψ1

ψ2

)
= 0,

ψ2 (1) − ψ1 (1) = ψ2 (0) − ψ1 (0) ,

one has ∣∣ψ1
∣∣
0

+
∣∣ψ2
∣∣
0

6 Cγ

∣∣∣∣
∫ 1

0

(
ψ1 + ψ2

)
k

∣∣∣∣ .
Let e ∈ C0 ([0, T ∗]) be defined by

e(t) :=
∣∣φ1 (t, ·)∣∣

0
+
∣∣φ2 (t, ·)∣∣

0
.

Note that (4.125)

e (0) = 0. (4.138)

Let us apply (see also (4.128)) Lemma 22 with

ψ1 := φ1 (t, ·) , ψ2 := φ2 (t, ·) ,
k := M (t, ·) .

One gets the existence of C′
γ > 0 such that at least for γ10 small enough,

e (t) 6 C′
γ

∫ t

0

e (t1) dt1. (4.139)

From (4.138, 4.139) and Gronwall’s lemma, one gets e = 0, which, with (4.129), gives (4.126) and (4.127).
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Remark 23. It is in fact reasonable to conjecture that, at least for large enough n, Fn is a contracting map for
the C0

(
[0, T ∗] ;W−1,∞ (0, 1)

)×R
3-norm. Indeed such a phenomenon appears in the proof of the existence of the

solution to the Cauchy problem when there is no control; see for example [12] (pp. 54-55) or [19] (pp. 71-72).
If this is the case, F has a unique fixed point, which can be obtained as the limit of the iterative scheme
(Zn+1, qn+1) = Fn (Zn, qn). Compare also, for the control of the Euler incompressible inviscid fluids [3], where
the Leray–Schauder fixed point theorem was also used, with [11] where a contraction argument was used.

Appendix A. Proof of Lemma 17

For γ ∈ (0, 1/2], let A−
γ be the set of α = (α1, α2) ∈ C0([0, 1])2 satisfying

α2(0) = 0, −
(
1 +

γ

4

)
α1(0) = (1 + γ)(α2(1) − (α1(1)).

The set A−
γ is a closed linear subset of C0([0, 1])2.

Let us first prove the following lemma:

Lemma 24. There exists γ12 ∈ (0, 1/2] and C27 such that, for every γ ∈ (0, γ12], there exists a continuous
map W0

γ

L0
γ12γ,γ ×A−

γ → C0([τ0, T ∗])

(λ, α) = ((λ1, λ2), (α1, α2)) 7→ w = W0
γ(λ, α),

such that the following three properties hold.
(i) One has

2w (τ0) = −
(
1 +

γ

4

)
α1 (0) , (A.1)

and the solution z = (z1, z2) ∈ C([τ0, T ∗] × [0, 1])2 (which exists by the compatibility condition (A.1)) of

z1
t + λ1z

1
x = z2

t + λ2z
2
x = 0, (A.2)(

1 +
γ

4

) (
z2(t, 0) − z1(t, 0)

)
= (1 + γ)

(
z2(t, 1) − z1(t, 1)

)
= 2w (t) , (A.3)

z1(τ0, ·) = α1, z2(τ0, ·) = α2, (A.4)

satisfies

z1(T ∗, ·) = 0, z2(T ∗, ·) = 0. (A.5)∣∣∣∣
∫ 1

0

(
z1 + z2

)
(·, x) dx

∣∣∣∣
0

6 C27|α|0, (A.6)

ωρ

(∫ 1

0

(
Z1 + Z2

)
(·, x) dx

)
6 C27ρ|α|0 ∀ρ ∈ [0,+∞) . (A.7)

(ii) The following inequalities hold for every α =
(
α1, α2

) ∈ A−
γ

|w|0 6 C27

γ
|α|0, (A.8)

ωρ(w) 6 C27

γ
(ωρ(α) + |α|0ρ) ∀ρ ∈ [0,+∞). (A.9)
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(iii) The map W0
γ(λ, ·) is linear.

Let τ ′ ∈ (0,Min (1/2, (T ∗/2)− 1)). Let A+ be the set of α = (α1, α2) ∈ C0([0, 1])2 satisfying

α2(0) − α1(0) = α1(0) − α1(1) = 0.

Let κ ∈ C1(R) be such that

κ = 1 on (−∞, 0], κ = 0 on [τ ′,+∞). (A.10)

For ν > 0 and γ ∈ (0, 1/2] and λ = (λ1, λ2) ∈ L0
ν,γ , let τλ

4 be defined by (4.35, 4.36) and let

P+
λ,γ : A−

γ → A+

(α1−, α2−) 7→ (α1
+, α

2
+),

and

W+
λ,γ : A−

γ → C0([τ0, τλ
4 + τ ′])

(α1
−, α

2
−) 7→ w+,

be the linear mappings defined as follows. Let (z1, z2) ∈ C([τ0, τλ
4 + τ ′] × [0, 1])2 be the solution of

z1
t + λ1z

1
x = z2

t + λ2z
2
x = 0, (A.11)(

1 +
γ

4

) (
z2(t, 0) − z1(t, 0)

)
= (1 + γ)

(
z2(t, 1) − z1(t, 1)

)
, (A.12)

z2(t, 0) = 0 ∀t ∈ [τ0, τλ
4 ], (A.13)

z2(t, 0) − z1(t, 0) = −κ(t− τλ
4 )z1

(
τλ
4 , 0

) ∀t ∈ [τλ
4 , τ

λ
4 + τ ′], (A.14)

z1(τ0, ·) = α1
−, z

2(τ0, ·) = α2
−. (A.15)

It is not hard to see that there exists one and only one such a (z1, z2), at least if ν and γ are small enough. Let(
α1

+, α
2
+

) ∈ C0 ([0, 1])2 and w+ ∈ C0 ([0, T ∗]) be defined by

(
α1

+(x), α2
+(x)

)
:=
(
z1
(
τλ
4 + τ ′, x

)
, z2
(
τλ
4 + τ ′, x

))
, (A.16)

2w+ (t) :=
(
1 +

γ

4

) (
z2(t, 0) − z1(t, 0)

) (
= (1 + γ)

(
z2(t, 1) − z1(t, 1)

))
. (A.17)

Note that, by (A.10, A.12, A.14, A.16) and (A.17),

w+(τλ
4 + τ ′) = 0,

(
α1

+, α
2
+

) ∈ A+. (A.18)

Similarly, let

P−
λ,γ : A+ → C0([0, 1])2

(β1
+, β

2
+) 7→ (β1

−, β
2
−),

and

W−
λ,γ : A+ → C0([τ0, τλ

4 + τ ′])

(β1
+, β

2
+) 7→ w−,
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be the linear mappings defined as follows. Let (y1, y2) ∈ C([τ0, τλ
4 + τ ′] × [0, 1])2 be such that

y1
t + λ1y

1
x = y2

t + λ2y
2
x = 0, (A.19)(

1 +
γ

4

) (
y2(t, 0) − y1(t, 0)

)
= (1 + γ)

(
y2(t, 1) − y1(t, 1)

)
, (A.20)

y2(t, 0) − y1(t, 0) = 0 ∀t ∈ [τ0 + τ ′, τλ
4 + τ ′], (A.21)(

1 +
γ

4

) (
y2(t, 0) − y1(t, 0)

)
= − (1 + γ)κ(t− τ0)y1

(
τλ
4 , 1

) ∀t ∈ [τ0, τ0 + τ ′], (A.22)

y1
(
τλ
4 + τ ′, ·) = α1

+, y
2
(
τλ
4 + τ ′, ·) = α2

+. (A.23)

It is not hard to see that there exists one and only one such a (y1, y2), at least if ν > 0 and γ > 0 are small
enough – which is always assumed. We let(

β1
−(x), β2

−(x)
)

:= (y1(τ0, x), y2(τ0, x)),

2w− (t) :=
(
1 +

γ

4

) (
y2(t, 0) − y1(t, 0)

) (
= (1 + γ)

(
y2(t, 1) − y1(t, 1)

))
.

Let us point out that

P−
λ,γP

+
λ,γ

(A−
γ

) ⊂ A−
γ . (A.24)

Indeed, if with the above notations we have (β1
+, β

2
+) = (α1

+, α
2
+), then one has, following the characteristic

curves and using the boundary conditions for (y1, y2) and (z1, z2),

y2(τ0, 0) = y2
(
τλ
1 , 1

)
= y1

(
τλ
1 , 1

)
= y1

(
τλ
4 , 0

)
= y2

(
τλ
4 , 0

)
= β2

+ (aλ) = α2
+ (aλ) = z2

(
τλ
4 , 0

)
= 0,

where aλ is defined by (
ξ̇ = λ2(t, ξ) and ξ(τλ

4 ) = 0
)
⇒ (

ξ(τλ
4 + τ ′) = aλ

)
.

Let us assume for the moment being that the following lemma holds:

Lemma 25. There exists C28 > 1, ν0 > 0 and γ13 ∈ (0, 1/2] such that, for every ν ∈ (0, ν0], for every λ ∈ L0
ν,γ ,

for every γ ∈ (0, γ13], for every α ∈ A−
γ , for every β ∈ A+, and for every ρ ∈ [0,∞),

|P+
λ,γα|0 6 C28|α|0, (A.25)

ωρ(P+
λ,γα) 6 C28 (ωρ (α) + νρ|α|0) , (A.26)

|P−
λ,γP

+
λ,γα|0 6

(
1 − 11γ

16
+ C28ν

)
|α|0, (A.27)

ωρ

(
P−

λ,γP
+
λ,γα

)
6
(

1 − 11γ
16

+ C28ν

)
ω(1+ 5γ

8 +C28ν)ρωρ(α) + C28νρ|α|0, (A.28)

|W+
λ,γ(α)|0 6 C28|α|0, (A.29)

ωρ(W+
λ,γ(α)) 6 C28 (ωρ (α) + νρ|α|0) , (A.30)

|W−
λ,γ(α)|0 6 C28|α|0, (A.31)

ωρ(W−
λ,γ(β)) 6 C28 (ωρ (β) + νρ|β|0) . (A.32)

Let

γ12 := Min
(

1
64C28

,
√
ν0, γ13

)
. (A.33)
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Let us then prove that Lemma 24 holds with C27 large enough and

W0
γ(λ, α) =

(
+∞∑
i=0

W+
λ,γ(P−

λ,γP
+
λ,γ)i − W−

λ,γP
+
λ,γ(P−

λ,γP
+
λ,γ)i

)
α on

[
τ0, τ

λ
4 + τ ′

]
, (A.34)

W0
γ(λ, α) = 0 on

[
τλ
4 + τ ′, T ∗] . (A.35)

Indeed, let γ ∈ (0, γ12], λ = (λ1, λ2) ∈ L0
γ12γ,γ and α ∈ A−

γ . From (A.25) and (A.33), one gets, for every i ∈ N,

∣∣∣∣(P−
λ,γP

+
λ,γ

)i

α

∣∣∣∣ 6
(

1 − 43γ
64

)i

|α|0 . (A.36)

From (A.18, A.25, A.29, A.31, A.34) and (A.35), one gets the existence and the continuity of W0
γ(λ, α), as well

as (A.8) provided that

C27 > 64C28

43
(1 + C28) .

Moreover W0
γ is also continuous from L0

γ12γ,γ × A−
γ into C0([τ0, T ∗]) and W0

γ(λ, ·) is linear. Let us check
that (A.9) holds for C27 large enough. Let again γ ∈ (0, γ12], λ = (λ1, λ2) ∈ L0

γ12γ,γ and α ∈ A−
γ . From (A.27,

A.28) and (A.33), one gets, for every ρ ∈ [0,+∞) and for every i ∈ N \ {0},

ωρ

((
P−

λ,γP
+
λ,γ

)i

α

)
6
(

1 − 43γ
64

)i

ω(1+ 41γ
64 )iρ(α) +

γ

64

(
1 − 43γ

64

)i−1 i−1∑
j=0

(
1 +

41γ
64

)j

ρ|α|0

6
(

1 − 43γ
64

)i

ω(1+ 41γ
64 )iρ(α) +

1
41

(
1 +

41γ
64

)(
1 − γ

32

)i−1

ρ|α|0. (A.37)

Let us point out that, for every compact convex subset K of R
n, for every continuous map f : K → R

m and
for every real numbers C > 1 and ρ > 0,

ωCρ(f) 6 ([C] + 1)ωρ(f) 6 2Cωρ(f),

where [C] denotes the integer part of C. Hence, from (A.37), one gets (let us recall that C28 > 1 and that
γ ∈ (0, 1])

ωρ

((
P−

λ,γP
+
λ,γ

)i

α

)
6 2C28

(
1 − γ

32

)i

(ωρ (α) + ρ|α|0) ∀ρ ∈ [0,+∞), ∀i ∈ N. (A.38)

From (A.25, A.26, A.30, A.32, A.34, A.36) and (A.38), one gets (A.9) provided that C27 is large enough.
Finally it remains to check that (i) of Lemma 24 holds. Let γ ∈ (0, γ12], λ = (λ1, λ2) ∈ L0

γ12γ,γ and α ∈ A−
γ .

For ᾱ ∈ A−
γ and w̄ ∈ C0([τ0, τλ

4 + τ ′] satisfying

2w̄(0) =
(
1 +

γ

4

) (
ᾱ2(0) − ᾱ1(0)

)
= (1 + γ)

(
ᾱ2(1) − ᾱ1(1)

)
,

let us define

Φλ,γ(w̄, ᾱ) :=
(
z̄1
(
τλ
4 + τ ′, ·) , z̄2

(
τλ
4 + τ ′, ·)) ∈ C0([0, 1])2
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where (z̄1, z̄2) ∈ C0
([
τ0, τ

λ
4 + τ ′

]× [0, 1]
)2

are such that

z̄1
t + λ1z̄

1
x = z̄2

t + λ2z̄
2
x = 0,(

1 +
γ

4

) (
z̄2(t, 0) − z̄1(t, 0)

)
= (1 + γ)

(
z̄2(t, 1) − z̄1(t, 1)

)
= 2w̄ (t) ,

z̄1(τ0, ·) = α1, z̄2(τ0, ·) = α2.

Then, for every β ∈ P+
λ,γ(A−

γ )

Φλ,γ(W+
λ,γP

−
λ,γβ − W−

λ,γβ, 0) = Φλ,γ(W+
λ,γP

−
λ,γβ,P

−
λ,γβ) − Φλ,γ(W−

λ,γβ,P
−
λ,γβ) = P+

λ,γP
−
λ,γβ − β.

Hence, for every i ∈ N \ {0},

Φλ,γ

(
W+

λ,γ

(
P−

λ,γP
+
λ,γ

)i

α− W−
λ,γP

+
λ,γ

(
P−

λ,γP
+
λ,γ

)i−1

α, 0
)

= P+
λ,γ

(
P−

λ,γP
+
λ,γ

)i

α− P+
λ,γ

(
P−

λ,γP
+
λ,γ

)i−1

α. (A.39)

Since
Φλ,γ

(
W+

λ,γα, α
)

= P+
λ,γα,

we get, with (A.34) and (A.39),

Φλ,γ(Wγ(λ, α), α) = 0. (A.40)

Let z = (z1, z2) ∈ C0([τ0, T ∗] × [0, 1])2 be such that (A.2, A.3) and (A.4) hold with w = W0 (λ, α). It follows
from (A.40) that (A.6) holds. Let

e (t) =
∫ 1

0

(
z1 + z2

)
(t, x) dx. (A.41)

Note that by (A.5)

e (T ∗) = 0. (A.42)

Moreover, by (A.8), there exists C29 > 0, independent of γ ∈ (0, γ12] and of (λ, α) ∈ L0
γ12γ,γ such that

∣∣z1
∣∣
0

+
∣∣z2
∣∣
0

6 C29

γ
|α|0 . (A.43)

Taking the derivative with respect to time of (A.41), one gets, with (A.2, A.3) and an integration by parts,

ė (t) = (1 + γ − λ2 (t, 1)) z2 (t, 1) − (1 + γ + λ1 (t, 1)) z1 (t, 1) −
(
1 +

γ

4
− λ2 (t, 0)

)
z2 (t, 0)

+
(
1 +

γ

4
+ λ1 (t, 0)

)
z1 (t, 0) +

∫ 1

0

(
λ1xz

1 + λ2xz
2
)
(t, x) dx. (A.44)

Increasing if necessary C27, one gets (A.6) and (A.7) from (A.41–A.44) and Gronwall’s lemma.
Let us now prove Lemma 25. The estimates (A.25) to (A.32) are obtained by giving explicit expressions of

the linear operators P+
λ,γ , P−

λ,γ , W+
λ,γ and W−

λ,γ . For simplicity we shall give only the proofs of the two more
complicate estimates, which are (A.27) and (A.28). Let ν > 0, γ ∈ [0, 1], λ ∈ L0

ν,γ and α− = (α1−, α2−) ∈ A−
γ .
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Let (z1, z2) ∈ C0([τ0, τλ
4 + τ ′] × [0, 1])2 and (y1, y2) ∈ C0([τ0, τλ

4 + τ ′] × [0, 1])2 be such that (A.11) to (A.15,
A.19) to (A.22) hold and

y
(
τλ
4 + τ ′, ·) = z

(
τλ
4 + τ ′, ·) . (A.45)

Let us first an explicit expression for z
(
τλ
4 , ·
)
. One has

z2
(
τλ
4 , x

)
= 0, (A.46)

z1
(
τλ
4 , x

)
=
(

1 + γ
4

1 + γ

)2

α1
− (p1 (x)) +

1 + γ
4

1 + γ
α2
− (p2 (x)) , (A.47)

where p1 (x) and p2 (x) are the real numbers in [0, 1] such that there exist t−2 (x) ∈ [τλ
3 , τ

λ
4 ] and t−1 (x) ∈ [τ0, τλ

3 ]
satisfying

(
ξ̇ = λ1(t, ξ) and ξ(τλ

4 ) = x
)
⇒ (

ξ
(
t−2 (x)

)
= 1
)
,(

ξ̇ = λ1(t, ξ) and ξ
(
t−2 (x)

)
= 0
)
⇒ (

ξ
(
t−1 (x)

)
= 1
)
,(

ξ̇ = λ1(t, ξ) and ξ
(
t−1 (x)

)
= 0
)
⇒ (ξ (τ0) = p1 (x)) ,(

ξ̇ = λ2(t, ξ) and ξ
(
t−1 (x)

)
= 1
)
⇒ (ξ (τ0) = p2 (x)) .

Of course, p1, p2, t−1 and t−2 depend on λ so we should write for example pλ
1 , pλ

2 , tλ,−
1 and tλ,−

2 . For simplicity
we omit the index λ

Let us also define ψ = (ψ1, ψ2) ∈ C0([τλ
4 , τ

λ
4 + τ ′] × [0, 1])2 by requiring

ψ1
t + λ1ψ

1
x = ψ2

t + λ2ψ
2
x = 0, (A.48)

ψ1(τλ
4 + τ ′, ·) = 0, ψ2(τλ

4 + τ ′, ·) = 0, (A.49)(
1 +

γ

4

) (
ψ2(t, 0) − ψ1(t, 0)

)
= (1 + γ)

(
ψ2(t, 1) − ψ1(t, 1)

)
= κ(t− τλ

4 ). (A.50)

Of course, ψ depends on λ and γ. So we should write, for example, ψλ,γ . Again for simplicity we omit the
indices λ and γ. We use this simplification until the end of the proof of Lemma 25. So we write, for example,
τi for τλ

i . It follows from (A.10–A.12, A.14, A.19–A.21, A.45, A.48, A.49) and (A.50) that

y (t, x) = z (t, x) +
(
1 +

γ

4

)
z1 (τ4, 0)ψ (t, x) ∀ (t, x) ∈ [τ4, τ4 + τ ′] × [0, 1] .

In particular,

y (τ4, ·) = z (τ4, ·) +
(
1 +

γ

4

)
z1 (τ4, 0)ψ (τ4, ·) . (A.51)

Let (ȳ1, ȳ2) ∈ C0([τ0, τ4] × [0, 1])2 be such that

ȳ1
t + λ1ȳ

1
x = ȳ2

t + λ2ȳ
2
x = 0, (A.52)(

ȳ2 (t, 0) − ȳ1 (t, 0)
)

=
(
ȳ2 (t, 1) − ȳ1 (t, 1)

)
= 0, (A.53)

ȳ1 (τ4, ·) = y1 (τ4, ·) , ȳ2 (τ4, ·) = y2 (τ4, ·) . (A.54)
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Note that, by (A.19) to (A.21) and (A.52) to (A.54),

ȳ = y on [τ0 + τ ′, τ4] × [0, 1] . (A.55)

Following the characteristic curves ξ̇ = λ1(t, ξ), ξ̇ = λ2(t, ξ) and using the boundary conditions (A.53, A.54),
one gets

ȳ1(τ0, x) = y1(τ4, q1(x)), ȳ2(τ0, x) = y2(τ4, q2(x)), (A.56)

where q1 (x) and q2 (x) are the real numbers in [0, 1] such that there exist (t1 (x) , t3 (x)) ∈ [τ0, τ1]2 and
(t2 (x) , t4 (x)) ∈ [τ1, τ4]2 satisfying(

ξ̇ = λ2(t, ξ) and ξ (τ0) = x
)
⇒ (ξ (t1 (x)) = 1) ,(

ξ̇ = λ1(t, ξ) and ξ (t1 (x)) = 1
)
⇒ (ξ (t2 (x)) = 0) ,(

ξ̇ = λ1(t, ξ) and ξ (τ0) = x
)
⇒ (ξ (t3 (x)) = 0) ,(

ξ̇ = λ2(t, ξ) and ξ (t3 (x)) = 0
)
⇒ (ξ (t4 (x)) = 1) ,(

ξ̇ = λ2(t, ξ) and ξ (t2 (x)) = 0
)
⇒ (q2(x) = ξ (τ4)) ,(

ξ̇ = λ1(t, ξ) and ξ (t4 (x)) = 1
)
⇒ (q1(x) = ξ (τ4)) .

Let us now define φ = (φ1, φ2) ∈ C0([τ0, τ0 + τ ′] × [0, 1])2 by requiring

φ1
t + λ1φ

1
x = φ2

t + λ2φ
2
x = 0, (A.57)

φ1(τ0 + τ ′, ·) = 0, φ2(τ0 + τ ′, ·) = 0, (A.58)(
1 +

γ

4

) (
φ2(t, 0) − φ1(t, 0)

)
= (1 + γ)

(
φ2(t, 1) − φ1(t, 1)

)
= κ(t− τ0) ∀t ∈ [τ0, τ0 + τ ′]. (A.59)

It follows from (A.19, A.20, A.22, A.52, A.53, A.55, A.57, A.58) and (A.59) that

y (τ0, ·) = ȳ (τ0, ·) − (1 + γ) y1 (τ4, 1)φ (τ0, ·) . (A.60)

Note that, by (A.48) and (A.49), one has, at least if γ and ν are small enough

ψ1(τ4, 1) = 0,

which, with (A.51), gives

y1(τ4, 1) = z1(τ4, 1). (A.61)

From (A.47), one gets

z1 (τ4, 1) =
(

1 + γ
4

1 + γ

)2

α1
− (p1 (1)) +

1 + γ
4

1 + γ
α2
− (p2 (1)) =

(
1 + γ

4

1 + γ

)2

α1
− (1) +

1 + γ
4

1 + γ
α2
− (0)

=
(

1 + γ
4

1 + γ

)2

α1
− (1) , (A.62)
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which, with (A.60) and (A.61), gives

y (τ0, ·) = ȳ (τ0, ·) −
(
1 + γ

4

)2
1 + γ

α1
− (1)φ (τ0, ·) . (A.63)

From (A.12, A.46) and (A.62), one gets

z1 (τ4, 0) =
1 + γ

4

1 + γ
α1
− (1) . (A.64)

From (A.46, A.47, A.51, A.56, A.60, A.63) and (A.64) one gets

y1 (τ0, x) =
(

1 + γ
4

1 + γ

)2

α1
− (p1 ◦ q1 (x)) +

1 + γ
4

1 + γ
α2
− (p2 ◦ q1 (x))

+

(
1 + γ

4

)2
1 + γ

α1
− (1)

(
ψ1 (τ4, q1 (x)) − φ1 (τ0, x)

)
, (A.65)

y2 (τ0, x) =

(
1 + γ

4

)2
1 + γ

α1
− (1)

(
ψ2 (τ4, q2 (x)) − φ2 (τ0, x)

)
. (A.66)

Let us assume for the moment being that λ = (−√
Hγ ,

√
Hγ) with λ small enough so that λ ∈ L0. Then,

clearly,

φ (τ0 + t, ·) = ψ (τ4 + t, ·) ∀t ∈ [0, τ ′], (A.67)

and straightforward computations lead to

q1(x) = q2(x) = p1(x) = x ∀x ∈ [0, 1], (A.68)√
1 + γ

(
1
2
− p2 ◦ q1 (x)

)
=
√

1 +
γ

2
+
√

1 − γ

2
−
√

1 + γ

(
1
2
− x

)
∀x ∈ [0, 1]. (A.69)

Differentiating (A.69) with respect to x one gets

∣∣(p2 ◦ q1)′
∣∣
0

=

√
1 + γ

2

1 − γ
2

· (A.70)

From (A.67, A.68, A.70) and straightforward estimates, one gets the existence of C30 > 1, ν1 > 0 and γ14

∈ (0, 1/2] such that, for every ν ∈ (0, ν1], for every γ ∈ (0, γ14] and for every λ ∈ L0
ν,γ

|ψ (τ4, q1 (·)) − φ (τ0, ·)|1 + |ψ (τ4, q2 (·)) − φ (τ0, ·)|1 6 C30ν, (A.71)∣∣(p1 ◦ q1)′
∣∣
0

6 1 + C30ν, (A.72)∣∣(p2 ◦ q1)′
∣∣
0

6 1 +
5γ
8

+ C30ν. (A.73)

These inequalities, together with (A.65) and (A.66), give (A.27) and (A.28) provided that C28 is large enough
and γ13 > 0 is small enough (let us recall that |α|0 =

∣∣α1
∣∣
0
+
∣∣α2
∣∣
0

and that ωρ (α) = ωρ

(
α1
)
+ωρ

(
α2
)

(see (3.8)
and (4.49))).
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Remark 26. The proof of Lemma 25 relies heavily on the fact that θ (λ) = 0. Indeed, let us for example study
the case where τλ

3 < τλ
1 . Let t0 ∈ (τλ

3 , τ
λ
1

)
. Let us define (x0, x1, x2, x3) ∈ (0, 1)4, t1 ∈ (T ∗/2, τλ

3

)
, t2 ∈ (0, τλ

1

)
by requiring

(
ξ̇ = λ1(t, ξ) and ξ (t0) = 1

)
⇒ (ξ (t1) = 0) ,(

ξ̇ = λ1(t, ξ) and ξ (t1) = 1
)
⇒ (

ξ
(
τλ
4

)
= x0

)
,(

ξ̇ = λ1(t, ξ) and ξ (t0) = 0
)
⇒ (ξ (t2) = 1) ,(

ξ̇ = λ1(t, ξ) and ξ (t2) = 0
)
⇒ (ξ (τ0) = x1) ,(

ξ̇ = λ2(t, ξ) and ξ (t0) = 1
)
⇒ (ξ (τ0) = x2) ,(

ξ̇ = λ2(t, ξ) and ξ (t2) = 1
)
⇒ (ξ (τ0) = x3) .

For ν > 0 and γ > 0 small enough such (x0, x1, x2, x3), t1, t2 and t3 exist and are unique. Then, following the
characteristic curves and using (A.11, A.12) and (A.13) one gets

z1
(
τλ
4 , x

)
=
(

1 + γ
4

1 + γ

)
α2
− (x2) +

(
1 + γ

4

1 + γ

)2

α2
− (x3) +

(
1 + γ

4

1 + γ

)3

α1
− (x1) , (A.74)

which is quite different from (A.47). In particular, (A.74) implies that the norm of the linear map α− 7→ z
(
τλ
4

)
is at least 3/2 for γ small enough. By (A.47) and (A.46) the norm of this linear map is (1 + (γ/4)) / (1 + γ) < 1
when θ (λ) = 0.

Finally, let us deduce Lemma 17 from Lemma 24. Let (λ, α, β, b, f) ∈ Hγ7γ,γ with γ ∈ (0, γ7], where γ7 > 0
is small and will be specified later on. Let

w̃ =
1
2
(
(1 + γ)

(
β2 (1) − β1 (1)

)
+ b1 (T ∗)

)
(A.75)

and let Z̃ =
(
Z̃1, Z̃2

)
∈ C0 ([0, T ∗] × [0, 1])2 be defined by requiring

Z̃(T ∗, ·) = β, (A.76)

Z̃1
t + λ1Z̃

1
x = f1, Z̃2

t + λ2Z̃
2
x = f2, (A.77)(

1 +
γ

4

)(
Z̃2 (t, 0) − Z̃1 (t, 0)

)
+ b0 (t) = (1 + γ)

(
Z̃2 (t, 1) − Z̃1 (t, 1)

)
+ b1 (t) = 2w̃. (A.78)

The existence of such a Z̃ follows from the compatibility condition (4.47) and (A.75). Let Z̄ =
(
Z̄1, Z̄2

)
∈ C0 ([0, τ0] × [0, 1])2 be defined by requiring

Z̄(0, ·) = α− Z̃(0, ·),
Z̄1

t + λ1Z̄
1
x = 0, Z̄2

t + λ2Z̄
2
x = 0,(

1 +
γ

4

) (
Z̄2 (t, 0) − Z̄1 (t, 0)

)
= (1 + γ)

(
Z̄2 (t, 1) − Z̄1 (t, 1)

)
,

Z̄2 (t, 0) =
τ0 − t

τ0

(
α2 (0) − Z̃2 (0, 0)

)
.
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The existence of such a Z̄ follows from (4.46) and (A.78). Then, as one easily checks, it suffices to choose

w (t) :=




1+γ
2

(
Z̄2 (t, 1) − Z̄1 (t, 1)

)
+ w̃ if t ∈ [0, τ0] ,

W0
γ

(
λ,
(
Z̄1 (τ0, ·) , Z̄2 (τ0, ·)

))
(t) + w̃ if t ∈ [τ0, T ∗] .

Remark 27. Instead of Lemma 17, Lemma 25 can be used directly to build another map F which has also a
fixed point and such that the existence of a fixed point to F implies Proposition 5. We have preferred to present
Lemma 25 as an intermediate step just because we thought it was clearer that way.

We thank Pierre Rouchon for having attracted our attention to this controllability problem and for useful discussions.

References

[1] J.-M. Coron, Global asymptotic stabilization for controllable systems without drift. Math. Control Signals Systems 5 (1992)
295-312.
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[24] E.D. Sontag, Control of systems without drift via generic loops. IEEE Trans. Automat. Control. 40 (1995) 1210-1219.


