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WHICH SEQUENCES OF HOLES ARE ADMISSIBLE FOR PERIODIC
HOMOGENIZATION WITH NEUMANN BOUNDARY CONDITION?
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Abstract. In this paper we give a general presentation of the homogenization of Neumann type
problems in periodically perforated domains, including the case where the shape of the reference hole
varies with the size of the period (in the spirit of the construction of self-similar fractals). We shows that
H0-convergence holds under the extra assumption that there exists a bounded sequence of extension
operators for the reference holes. The general class of Jones-domains gives an example where this
result applies. When this assumption fails, another approach, using the Poincaré–Wirtinger inequality
is presented. A corresponding class where it applies is that of John-domains, for which the Poincaré–
Wirtinger constant is controlled. The relationship between these two kinds of assumptions is also
clarified.
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1. Introduction

The aim of this paper is to give a general presentation of the homogenization of Neumann type problems
in a periodically perforated domain Ωε = Ω \ Tε obtained by removing a compact set Tε of holes from a given
domain Ω of RN .

The holes Tε are ε-periodically distributed and ε-homothetic to a reference hole Tε, the shape of which can
also vary with ε approaching, for instance, a self-similar fractal.

Throughout this paper, ε will denote the general term of a sequence of positive reals which converges to zero
and we will assume that the characteristic function of Tε converges to that of a limit set T0 almost everywhere.

We consider the following type of problems
−div (Aε∇uε) = f in Ωε,

(Aε(x)∇uε) · ν = 0 on ∂Tε,

uε = 0 on ∂Ω,

(1.1)
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where f is given in L2(Ω), (Aε) is a sequence of uniformly bounded and uniformly coercive matrix-valued
functions, Ωε = Ω \ Tε of the form

Tε =
⋃{

ε(k + Tε); k ∈ ZN , ε(k + Tε) ⊂ Ω
}

(1.2)

and ν is the outward normal unit vector on the boundary of Ωε. The solution uε belongs to the Hilbert space

Vε = {v ∈ H1 (Ωε) : v|∂Ω = 0},

equipped with the H1-norm. Here H1(O) for a domain O is the usual Sobolev space of functions in L2(O) with
distributional first derivatives also in L2(O).

Homogenization (without holes) goes back to the late 1960’s. We refer to the by now classical well-known
works of Spagnolo [28], Bensoussan et al. [5] or Sanchez–Palencia [26].

Homogenization in perforated domains has been widely studied starting in the late 1970’s. The first papers
on the subject (Cioranescu and Saint Jean Paulin [12]), in the case of a fixed reference hole, made use of the
existence of an extension operator Pε from Vε to H1

0 (Ω) such that for some positive constant c independent of ε,

‖∇ (Pεv)‖(L2(Ω))N ≤ c ‖∇v‖(L2(Ωε))N , ∀v ∈ Vε. (1.3)

In a recent paper [8], this situation was formalized in the notion of H0-convergence which we recall below. It
is an extension to perforated domains of the H-convergence introduced in 1977 by Murat and Tartar in [24]
and [30] (see also [25]).

Notations.

– M(α, β,Ω) denotes, for two positive reals α < β, the set of the N × N matrix-valued functions A defined
on Ω and satisfyingA measurable on Ω,

(A(x)λ, λ) ≥ α|λ|2, (A(x)λ, λ) ≥ β−1|A(x)λ|2 ∀λ ∈ RN , a.e. x ∈ Ω;

– χE denotes the characteristic function of a subset E of RN ;
– |E| denotes the Lebesgue measure of a Lebesgue-measurable subset E of RN ;
– ṽ (or [v]̃ ) denotes the zero extension on Ω of any vector function v defined on Ωε;
– ν denotes the unitary external normal vector with respect to Ωε;
– ME(v) = 1

|E]

∫
E

v(x) dx for every Lebesgue-measurable subset of RN with |E] > 0.

Definition 1.1 [8]. The sequence {Tε}ε of compacts subsets of Ω is said to be admissible (in Ω) if

i) every L∞ weak ∗–limit point of
{
χΩε

}
ε

is positive a.e. in Ω (1.4)
ii) there exist a positive real c, independent of ε, and a sequence {Pε}ε of linear extension-operators such

that for each ε 
Pε ∈ L

(
Vε, H

1
0 (Ω)

)
,

(Pεv)|Ωε
= v ∀v ∈ Vε,

‖∇ (Pεv)‖(L2(Ω))N ≤ c ‖∇v‖(L2(Ωε))N ∀v ∈ Vε.

(1.5)

Observe that by (1.5), the Poincaré and Sobolev inequalities hold in Vε with a constant independent of ε.

Definition 1.2 [8]. Let {Aε}ε in M(α, β,Ω), {Tε}ε be admissible in Ω and for every ε, denote the adjoint
operator of Pε by P ∗

ε .
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The sequence {(Aε, Tε)}ε is said to H0-converge to the matrix A0 of M(α′, β′, Ω) (and denoted

(Aε, Tε)
H0

⇀ A0) if and only if, for every function g in H−1(Ω), the solution vε of
−div (Aε∇vε) = P ∗

ε g in Ωε,

(Aε∇vε) · ν = 0 on ∂Tε,

vε = 0 on ∂Ω,

(1.6)

satisfies the weak convergences
Pεvε ⇀ v weakly in H1

0 (Ω), (1.7)

Aε∇̃vε ⇀ A0∇v weakly in
(
L2(Ω

)
)N , (1.8)

where v is the unique solution of the following problem:−div
(
A0∇v

)
= g in Ω,

v = 0 on ∂Ω.
(1.9)

Remark 1.3. Suppose that in (1.4) the whole sequence χΩε
converges to some function θ. Then, in order to

have (Aε, Tε)
H0

⇀ A0 it is enough to check (1.7) and (1.8) when the right-hand side in (1.6) is f ∈ L2(Ω) and
the right-hand side in (1.9) is replaced by θf (see [8]).

The definition of H0-convergence is independent of the sequence {Pε}ε ([8], Prop. 2.7). Moreover the following
compactness result holds:

Theorem 1.4 [8]. Let {Tε}ε be an admissible sequence in Ω and {Aε}ε be in M(α, β,Ω). Then, there exist a

subsequence (still denoted {ε}) and a matrix A0 in M
(

α
c2
1
, β, Ω

)
, with c given in (1.5), such that {(Aε, Tε)}ε

H0-converges to A0.

The question here (as it is for the usual H-convergence) is whether the whole sequence converges and if so,
to what limit. Sections 2–4 of this paper present results concerning a general class of sequences of holes, for
which convergence holds. They generalize the classical periodic case (see [12] and [13]), where Aε is of the form

Aε(x) = A
(x

ε

)
a.e. in RN , (1.10)

with A(y) = (aij(y))ij , defined on RN , is such thatA Y − periodic,

A ∈ M(α, β, Y )
(1.11)

and Y = [0, l1[×.. × [0, lN [. Furthermore, Tε is a finite union of holes

Tε =
⋃{

ε(kl + T ); k ∈ ZN , ε(k + T ) ⊂ Ω
}
, (1.12)

T ⊂ Y being a reference hole satisfying some suitable assumptions in Y . In this case there exists a constant
matrix A0, explicitly computable (see Rem. 2.11), such that (Aε, Tε)

H0

⇀ A0. Recall that in this situation, the
θ of Remark 1.3 is given by θ = |Y \T |

|Y | .
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The fact that A0 is independent of x is a simple consequence of the ε-periodicity of the problem for each ε.
Indeed, any time the coefficients and the characteristic function of the perforated domain are ε-periodic, even
if they are not rescaled from a fixed Y -periodic function, provided H0-convergence holds for a sequence.

Theorem 2.10 shows that H0-convergence holds for the whole sequence, if the holes are defined by (1.2),
under the extra assumption that there exists a bounded sequence of extension operators from H1(Y \ Tε) to
H1(Y ). The reference cell Y can be quite general, provided it has the paving property (Def. 2.3).

In Section 4 we show how the sequences {Tε}ε can be chosen in the general class of Jones-domains (Def. 4.3),
an example of which is the two-dimensional snowflake (Cor. 4.6).

An alternate approach in the periodic case with a fixed reference hole, has been to prove the following two
convergences  i) ũε ⇀ θu weakly in L2(Ω),

ii) ||uε − u||L2(Ωε) → 0,
(1.13)

where u is the solution of problem (1.9) with right-hand side f ∈ L2(Ω) and θ = |Y \T |
|Y | (see Hruslov [18],

Allaire–Murat [2] and Briane [7]). One can observe that convergence (1.7) implies convergences (1.13).
For example, in [2] (in the same geometrical setup as in [12] with a somewhat different conditions on the

reference hole), the authors introduce the sequence {uε}ε of the local averages (on each ε-sized cell) and prove
that the sequence {uε}ε satisfies the Kolmogorov criterion for the strong compactness in L2(Ω). This yields
convergences (1.13). The main ingredient is the Poincaré–Wirtinger inequality in Y \ T and the fact that ∇̃ uε

is bounded in L2(Ω). Convergence (1.8) can also be shown, by similar arguments.
In [7], this approach is successfully applied to a particular situation of a sequence of reference holes (“small

bridges”) where there are no uniform extension operators (satisfying (1.4)) but where the Poincaré–Wirtinger
constant is controlled.

In Section 5–7 we present a general class for which this holds. In Theorem 5.10 we state the main convergence
result. In Section 7 we show how the sequences {Tε}ε can be chosen in the more general class of John-domains
(Def. 7.4), for which the Poincaré–Wirtinger constant is controlled (but for which an extension operator may
not even exist).

Finally, let us mention that another approach to these type of problems is presented in several papers of
Zhikov (see [33]), where the notion of “p-connectedness” is introduced and studied (see Rem. 6.5).

Plan:

2. H0 convergence in the periodic case;
3. Poincaré–Wirtinger. inequalities and proof of Theorem 2.10;
4. domains for which the extension property holds;
5. the case without extension property;
6. proof of the results of Section 5;
7. domains for which the Poincaré–Wirtinger property holds.

2. H0
-convergence in the periodic case

We start this section by describing the geometric setting.

Definition 2.1. A closed set Tε(RN ,S) is called a closed ε-periodic array whenever there exists a compact set
S of RN and a basis (b1, . . . , bN) (not necessarily orthonormal) such that

Tε(RN ,S) =
⋃

k∈ZN

ε

(
S +

N∑
l=1

klbl

)
. (2.1)
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For a given bounded domain Ω of RN we set

Tε(Ω,S) =

{⋃
ε

(
S +

N∑
l=1

klbl

)
, k ∈ ZN , ε

(
S +

N∑
l=1

klbl

)
⊂ Ω

}
· (2.2)

Remark 2.2. In practice, what is given is a closed ε-periodic array and the question is to represent it under
the form (2.1). Clearly, both the set S and the basis (b1, . . . , bN) are not uniquely defined. For example, for
the same S, another basis satisfies also (2.1) if and only if the matrix of the change of basis has only integer
entries and its determinant equals ±1.

Definition 2.3. A connected open set Y of RN has the paving property with respect to the basis (b1, . . . , bN )
if and only if

RN =
⋃

k∈ZN

Y k, Y k = Y +
N∑

l=1

klbl (2.3)

with k = (k1, . . . , kN ) and Y k ∩ Y h = ∅ for all k, h ∈ ZN , k 6= h.

Remark 2.4. Definition 2.3 is a particular case of the general geometric notion of fundamental domain under
the action of a group.

The canonical projection Π of Y into the periodic torus associated with the basis (b1, . . . , bN ) of RN is
actually onto. Consequently, functions defined on RN which admit (b1, . . . , bN ) as periods, can be seen as
periodic fonctions on Y . For simplicity, we will say that such fonctions are Y -periodic. In particular, we
denote by H1

per(Y ) the space of Y -periodic functions in H1
loc(R

N ). Similarly, if S is a compact subset of Y ,
we denote by H1

per(Y \ S) the space of Y -periodic functions in H1(Y \ S).
As in (1.10, 1.11), let Aε be given by

Aε(x) = A
(x

ε

)
a.e. in RN , (2.4)

where A(y) = (aij(y))ij defined on RN is such thatA Y − periodic,

A ∈ M(α, β, Y ).
(2.5)

In the present section, we will make the following:

Assumption 2.5. A basis (b1, . . . , bN) is given in RN . We assume that (Tε)ε is a sequence of compact sets of
RN , such that there exists a connected open set Y , with piece-wise smooth boundary, having the paving property
with respect to the basis (b1, . . . , bN) and

for every ε > 0, Tε ⊂ Y and Yε
.= Y \ Tε is connected.

Remark 2.6. i) If all the Tε’s are contained in a fixed compact subset of Y , the smoothness assumption on
the boundary of Y it is not restrictive. Indeed, one can modify Y in order to have a piece-wise C∞ boundary
(even piece-wise affine).

ii) Assumption 2.5 implies that RN \Tε(RN , Tε) is connected. It also implies that (but is strictly stronger than)
the fact that Π(Yε) is connected in the torus (as well as the image of RN \ Tε(RN , Tε) in the corresponding
ε-torus).

Exemples 2.7. Observe that for a given sequences of compact ε-periodic arrays, the choice of a Y verifying
Assumption 2.5 is not always straightforward.
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Figure 1

Figure 2

Figure 1 shows a situation in R2 for which one cannot choose Y as a parallelepipedon and gives a possible
choice of Y in order to satisfy Assumption 2.5.

Another example, in two dimensions, can be found in Acerbi et al. ([1], Sect. 2), where it is pointed out that
no rectangle Y satisfy Assumption 2.5. Actually, it suffices to choose the open set Y as in Figure 2 in order to
satisfy this assumption.

On the other hand, for the cases of Figures 3, no Y exists for which Assumption 2.5 holds.
In fact, in both cases, RN \Tε(RN , Tε) is not connected. Observe, however, that in the first case of Figure 3,

the image of RN \ Tε(RN , Tε) in the ε-torus is connected. This is not true for the second one.
For a given bounded domain Ω of RN and a given sequence of closed ε-periodic arrays Tε(RN ), we set

Ωε = Ω \ Tε(Ω, Tε), (2.6)

where Tε(Ω, Tε) is given by Definition 2.1. When there is no ambiguity, we will simply use Tε instead of Tε(Ω, Tε).
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Figure 3

In this situation, a sequence of extension operators {Pε}ε satisfying (1.5) is easily constructed from a similar
sequence in the reference cell as shown in the following proposition. The proof follows immediately by a mere
change of scale:

Proposition 2.8. Under Assumption 2.5, let Ωε be defined by (2.6). Suppose that for every ε there exists an
extension operator Pε from H1(Yε) to H1(Y ) having the following properties for some positive number c1:

i) Pε ∈ L
(
H1(Yε), H1(Y )

)
,

ii) (Pεv)|Yε
= v ∀v ∈ H1(Yε),

iii) ‖∇ (Pεv)‖(L2(Y ))N ≤ c1 ‖∇v‖(L2(Yε))N , ∀v ∈ H1(Yε).

(2.7)

Then there exists a sequence {Pε}ε of linear extension-operators satisfying (1.5).

Thanks to Theorem 1.4, we have the following trivial corollary:

Corollary 2.9. Under the assumptions of Proposition 2.8 and (1.4),

i) the sequence {Tε}ε is admissible in Ω;
ii) for any sequence {Aε}ε defined by (2.4, 2.5) there exists a subsequence subsequence {ε′} such that

{(Aε′
, Tε′)}ε′ H0-converges.

It remains to characterize all the possible H0-limits. In this direction, we now state Theorem 2.10 below.

Theorem 2.10. Under Assumption 2.5, let Ωε be defined by (2.6). Suppose that for every ε, there exists a
linear extension operator Qε from H1(Yε) to H1(Y ) satisfying

∀ ε, ∀ v ∈ H1(Yε), ||Qεv||H1(Y ) ≤ c0||v||H1(Yε), (2.8)

for some positive c0. Suppose furthermore that there exists a compact set T0 in Y for which, Y0
.= Y \ T0 is

connected and

χTε
→ χT0

in L1(Y ), (2.9)

and there exists a linear extension operator Q from H1(Y0) into H1(Y ).
Then

i) the sequence {Tε}ε is admissible in Ω;
ii) if Aε is given by (2.4, 2.5), then the whole sequence {(Aε, Tε)}ε H0-converge to some A0. The matrix

field A0 is constant and defined by

A0λ = MY ([A∇Ŵλ ]̃ ), ∀λ ∈ RN , (2.10)
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ε

Figure 4

where Ŵλ is the unique solution of the problem
−div(A(y)∇Ŵλ) = 0 in Y0,(
A(y)∇Ŵλ

)
· ν = 0 on ∂T0,

Ŵλ − λ · y Y − periodic,

MY0(Ŵλ − λ · y) = 0

(2.11)

and where
[
A∇Ŵλ

]
˜ denotes the zero extension of A∇Ŵλ to the whole of Y .

Remark 2.11. Observe that in the case Tε ≡ T0, the hypotheses of Theorem 2.10 concerning the holes reduce
to the fact that Y0 is connected and there exists a linear extension operator Q from H1(Y0) into H1(Y ). This
is exactly the case of [12]. In the general case, the A0 obtained in the theorem is the same as the H0-limit of
the sequence {(Aε, Tε(Ω, T0))}ε corresponding to the case Tε ≡ T0.

The solution of (2.11) is understood in the following variational sense:Find Ŵλ such that Ŵλ − λ · y ∈ H∫
Y0

A(y)∇Ŵλ∇ϕ = 0 ∀ ϕ ∈ H,
(2.12)

where H is defined by
H

.=
{
v ∈ H1

per(Y0), MY0(v) = 0
}
· (2.13)

Remark 2.12. Actually, no boundary terms on ∂Y appear, due to the periodicity and the fact that Y has
the paving property.

As usual, equation (2.12) holds for every ϕ in H1
per(Y0).

Remark 2.13. Note that in the hypotheses of Theorem 2.10 the fact that O \ S is connected is necessary and
not a consequence of (2.9), not even when Tε converges to T0 in the Hausdorff sense (which is stronger than
(2.9)) (see Fig. 4).

Question 2.14. It is an open question whether (2.8) together with (2.9) imply the existence of the extension
operator Q or at least the connectedness of Y0 .

The proof of Theorem 2.10, including the existence and uniqueness of the solution of (2.11), is given in the
following section.
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3. Poincaré–Wirtinger inequalities and proof of Theorem 2.10

We start this section by recalling the following well-known result which concerns the weak convergence of
sequences of periodic oscillating functions (see for instance [14], Appendix):

Proposition 3.1. For every ε > 0 let hε be a Y -periodic function in Lp(Y ) for some p ∈ [1, +∞]. Consider
the sequence {hε}ε defined in Lp

loc(R
N ) by hε(x) = hε(x

ε ). Then, the following hold:

i) (hε) is bounded in Lp
loc(R

N ) if and only if {hε}ε is bounded in Lp(Y );
ii) for 1 < p < +∞, (hε) converges weakly in Lp

loc(R
N ) if and only if the sequence MY (hε) is convergent;

under this condition, {hε}ε converges weakly to the limit of MY (hε).

Applying this to hε = χ
Ωε

yields:

Corollary 3.2. Convergence (2.9) of Theorem 2.10, implies that χ
Ωε

converges weakly ∗ in L∞ to |Y0|
|Y | , so

that (1.4) holds.

The existence of a variational solution of (2.11) requires the Poincaré–Wirtinger inequality for periodic
functions, which we recall here:

Definition 3.3. i) The bounded domain O satisfies the Poincaré–Wirtinger inequality (PWI) if there exists a
positive constant c such that

∀ v ∈ H1(O), ‖v −MO(v)‖L2(O) ≤ c‖∇v‖L2(O). (PWI)

The smallest such constant c is denoted C(O).

ii) Suppose that O = Y ∩ (RN \ S), where Y is some connected open set, with piece-wise smooth boundary
having the paving property with respect to some basis, and S is a closed (not necessarily compact) set of
RN included in Y . We say that O satisfies the Poincaré–Wirtinger inequality for periodic functions (PPWI) if
there exists some constant c such that

∀ v ∈ H1
per(O), ‖v −MO(v)‖L2(O) ≤ c‖∇v‖L2(O). (PPWI)

The smallest such constant c is denoted Cper(O).

Remark 3.4. A necessary condition in order to have property (PWI) is that O be connected. Similarly, a
necessary condition in order to have property (PPWI) is that Π(O) be connected in the periodic torus associated
with the basis (b1, . . . , bN ).
In the case ii) of Definition 3.3, clearly Cper(O) ≤ C(O).

Proposition 3.5. Let O be an open set of RN such that the embedding of H1(O) in L2(O) is compact and S
be a compact subset of O such that O \ S is connected. If there exists a continuous linear extension operator
Q ∈ L

(
H1(O \ S), H1(O)

)
then, O \ S satisfies (PWI).

A condition which implies the compact embedding in Proposition 3.5 is the existence of a linear continuous
extension operator from H1(O) to H1(RN ). Examples of domains having this extension property are given in
Section 4.
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Proposition 3.5 is obtained as a particular case of the following one:

Proposition 3.6. Let O an open set of RN such that the embedding of H1(O) in L2(O) is compact and {Sε}ε

be a sequence of compact subset of O such that, for every ε, O \ Sε is connected. Suppose that there exists
a sequence of continuous linear extension operator Qε ∈ L

(
H1(O \ Sε), H1(O)

)
and a positive constant c0

(independent of ε) with
∀ v ∈ H1(O \ Sε), ||Qεv||H1(O) ≤ c0||v||H1(O\Sε).

If there exists a compact set S in O with O \ S connected, and for which

χ
Sε

→ χ
S

in L1(O), (3.1)

then, O \ Sε satisfies the Poincaré–Wirtinger inequality with a constant C(O \ Sε) bounded with respect to ε.

Proof. The proof goes by contradiction. Assuming the conclusion does not holds, and using a subsequence
which we still denote by ε, there exists a sequence {uε}ε which satisfies

i) uε ∈ H1(O \ Sε),

ii) ||uε||L2(O\Sε) = 1,

iii)
∫
O\Sε

uε dx = 0,

iv) ||∇uε||L2(O\Sε) → 0.

(3.2)

By hypothesis, the sequence {wε
.= Qε(uε)}ε is bounded in H1(O) so that we can assume (up to the extraction

of a subsequence) that it converges to some w weakly in H1(O) and, by compact embedding, strongly in L2(O).
On the one hand ∫

O
(1 − χ

Sε
)w2

ε dx =
∫
O

u2
ε dx = 1. (3.3)

Observe that (3.1) implies the weak ∗-convergence in L∞(O). Hence, passing to the limit in (3.3) and using the
strong convergence in L2(O) of {wε}ε, we conclude that∫

O\S

w2 dx = 1. (3.4)

On the other hand, we now show that w vanishes on O \ S which contradicts (3.4).
First, the equality 0 =

∫
O\Sε

uε dx =
∫
O(1 − χ

Sε
)wε dx gives

∫
O\S

w dx = 0 (3.5)

at the limit.
Moreover, from (3.2)iv), for every Φ ∈ (D(O))N∣∣∣∣ ∫

O
(1 − χ

Sε
)Φ · ∇wε dx

∣∣∣∣ ≤ c||∇uε||L2(O\Sε) → 0.

But

0 = lim
ε→0

∫
O

(
1 − χ

Sε

)
Φ · ∇wε dx =

∫
O

(
1 − χ

S

)
Φ · ∇w dx

by (3.1) and since ∇wε converges weakly to ∇w in L2(O). Consequently, ∇w vanishes on O\S. By connectedness
of O \ S one concludes that w is constant on that set. One completes the proof with (3.5). �



ADMISSIBLE HOLES FOR PERIODIC HOMOGENIZATION 565

Corollary 3.7. Under the assumptions of Proposition 3.6, for every ε there exists an extension operator Pε

from H1(O \ Sε) to H1(O) having the following properties for some positive c1:
i) Pε ∈ L

(
H1(O \ Sε), H1(O)

)
,

ii) (Pεv)|O\Sε
= v ∀v ∈ H1(O \ Sε),

iii) ‖∇ (Pεv)‖(L2(O))N ≤ c1 ‖∇v‖(L2(O\Sε))N , ∀v ∈ H1(O \ Sε).

(3.6)

Proof. The proof follows the ideas of the periodic case given in [12]. Define, for every ε

Pε(v) = Qε

(
v −MO\Sε

(v)
)

+ MO\Sε
(v), ∀ v ∈ H1(O \ Sε).

Properties i) and ii) of (3.6) are straightforward; as for iii) we have

||∇Pε(v)||L2(O) = ||∇Qε

(
v −MO\Sε

(v)
)
||L2(O)

≤ ||Qε

(
v −MO\Sε

(v)
)
||H1(O) ≤ c0 ||v −MO\Sε

(v)||H1(O\Sε)

≤ c0

(
1 + C(O \ Sε)

)
||∇
(
v −MO\Sε

(v)
)
||L2(O\Sε)

= c0

(
1 + C(O \ Sε)

)
||∇(v)||L2(O\Sε). �

Let us prove now the existence of the solution of problem (2.11):

Proposition 3.8. Let Y be a connected open set, with piece-wise smooth boundary, having the paving property
with respect to the basis (b1, . . . , bN ). Suppose that S is a closed (not necessarily compact) set of RN , contained
in Y such that Y ∩ (RN \ S) satisfies the Poincaré-Wirtinger inequality for periodic functions (PPWI). Let A
be in M(α, β, Y ). Then, for every λ ∈ RN the problem

−div(A(y)∇Ŵλ) = 0 in Y ∩ (RN \ S),(
A(y)∇Ŵλ

)
· ν = 0 on ∂S,

Ŵλ − λ · y Y − periodic,

MY ∩(RN\S)(Ŵλ − λ · y) = 0

(3.7)

has a unique solution Ŵλ in the following variational sense:Find Ŵλ such that Ŵλ − λ · y ∈ H∫
Y ∩(RN\S) A(y)∇Ŵλ∇ϕ = 0 ∀ ϕ ∈ H,

(3.8)

where H is the space
H

.=
{
v ∈ H1

per(Y ∩ (RN \ S)), MY ∩(RN\S)(v) = 0
}
· (3.9)

Proof. Set η̃λ = λ · y − Ŵλ which belongs to the space H defined by (3.9). Hence, (3.7) can be rewritten as
−div(A(y)∇η̃λ) = −div(A(y)λ) in Y ∩ (RN \ S),

(A(y)∇η̃λ) · ν = A(y)λ · ν on ∂S,

η̃λ Y − periodic,

MY ∩(RN\S)(η̃λ) = 0.
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The variational formulation for (3.7) is thenFind η̃λ ∈ H∫
Y ∩(RN\S)

A(y)∇η̃λ∇ϕ dy =
∫

Y ∩(RN\S)
A(y)λ∇ϕdy ∀ ϕ ∈ H.

(3.10)

This problem has a unique solution via Lax–Milgram’s theorem, because for ϕ ∈ H we have

‖ϕ‖2
L2(Y ∩(RN\S)) ≤ Cper(Y ∩ (RN \ S))‖∇ϕ‖2

L2(Y ∩(RN\S))

≤ Cper(Y ∩ (RN \ S)) 1
α

∫
Y ∩(RN\S)

A(y)∇ϕ∇ϕ dy. �
Proof of Theorem 2.10. By Proposition 3.5, Theorem 2.10 is a corollary of Theorem 3.9 below, in which the
existence of an extension operator for Y0 is replaced by (PPWI). �

Theorem 3.9. Under Assumption 2.5, let Ωε be defined by (2.6) and Aε by (2.4, 2.5). Suppose that for every ε
there exists a linear extension operator Qε from H1(Yε) to H1(Y ) satisfying (2.8), i.e.

∀ ε, ∀ v ∈ H1(Yε), ||Qεv||H1(Y ) ≤ c0||v||H1(Yε),

for some positive c0. Suppose furthermore that there exists a compact set T0 in Y such that Y0
.= Y \ T0

satisfies the Poincaré–Wirtinger inequality for periodic functions (PPWI) and for which (2.9) holds, i.e.

χTε
→ χT0

in L1(Y ).

Then the sequence {Tε}ε is admissible in Ω and the whole sequence {(Aε, Tε)}ε H0-converge to the matrix
field A0 given by (2.10, 2.11).

The proof of Theorem 3.9, which is given at the end of this section, follows the original Tartar’s method
of oscillating test functions (see [11] for a detailed presentation). In this framework, the test functions Ŵ ε

λ ,
defined in the reference cell Yε depends upon ε. The following proposition gives their precise definition and the
properties of the corresponding rescaled functions ŵε

λ:

Proposition 3.10. Under the assumptions of Theorem 3.9, for every λ ∈ RN , there exists a unique solu-
tion Ŵ ε

λ of 
−div(A(y)∇Ŵ ε

λ) = 0 in Yε,(
A(y)∇Ŵ ε

λ

)
· ν = 0 on ∂Tε,

Ŵ ε
λ − λ · y Y − periodic,

MYε(Ŵ ε
λ − λ · y) = 0.

(3.11)

Setting

ŵε
λ(x) = εŴ ε

λ

(x

ε

)
, on Ωε, (3.12)

then we have [∇ŵε
λ]˜ ⇀

|Y0|
|Y | MY0

(
∇Ŵλ

)
weakly in

(
L2(Ω

)
)N ,

Aε [∇ŵε
λ]˜ ⇀

|Y0|
|Y | MY0

(
A∇Ŵλ

)
weakly in

(
L2(Ω

)
)N ,

(3.13)

where Ŵλ is the unique solution of (2.11).

Proof. The existence of a unique solution of (2.11) is given by Proposition 3.8. By Proposition 3.5, the existence
of the unique solution of (3.11) is also given by Proposition 3.8, written for S = Tε.
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Define η̃ε
λ = λ · y − Ŵ ε

λ , which satisfies∫
Yε

A(y)∇η̃ε
λ∇ϕ =

∫
Yε

A(y)λ∇ϕ ∀ ϕ ∈ Hε, (3.14)

where Hε is defined by
Hε

.=
{
v ∈ H1

per(Yε), MYε(v) = 0
}
· (3.15)

With the choice ϕ = η̃ε
λ in (3.14) and by (2.5), one concludes that

‖∇η̃ε
λ‖L2(Yε) ≤ C. (3.16)

Let Pε be the extension operator from H1(Yε) to H1(Y ) given by Corollary 3.7. From (3.16) and (3.6), up
to a subsequence, we can assume that there exists a subsequence (still denoted ε) and a function ωλ ∈ H1(Y )
such that

PεŴ
ε
λ ⇀ ωλ weakly in H1(Y ). (3.17)

We claim that:
ωλ|

Y0

= Ŵλ. (3.18)

The Y -periodicity of ωλ − λ · y follows, together with (3.17), from that of (PεŴ
ε
λ − λ · y), itself a consequence

of the Yε-periodicity of Ŵ ε
λ − λ · y and the compactness of Tε in Y .

The fact that MY0(ωλ − λ · y) = 0 follows from∫
Y0

ωλ − λ · y =
∫

Y

χ
Y0

(ωλ − λ · y) = lim
ε→0

∫
Y

χ
Yε

(PεŴ
ε
λ − λ · y) = 0,

where we used (2.9) and (3.17).
Finally, let ϕ be a smooth Y -periodic function. According to Remark 2.12, we have

0 =
∫

Yε

A(y)∇Ŵ ε
λ(y)∇ϕ(y) =

∫
Y

χ
Yε

A(y)∇(PεŴ
ε
λ)(y)∇ϕ(y).

Passing to the limit as ε → 0 while using (3.17) and Assumptions (2.9), yields

0 =
∫

Y

χ
Y0

A(y)∇ωλ(y)∇ϕ(y) dy =
∫

Y0

A(y)∇ωλ(y)∇ϕ(y) dy.

This means that ωλ|
Y0

is the solution of (2.11), so that, by uniqueness and by weak compactness, we get (3.18).

Set now hε = χ
Yε

∇PεŴ
ε
λ . Using convergences (2.9) and (3.17) together with (3.18), we get

MY (hε) =
1

|Y |

∫
Y

χ
Yε

∇PεŴ
ε
λ(y) dy → 1

|Y |

∫
Y

χ
Y0

∇ωλ(y) dy

=
1

|Y |

∫
Y0

∇Ŵλ(y) dy =
|Y0|
|Y | MY0(∇Ŵλ).

Then, Proposition 3.1, for this hε yields the first convergence in (3.13). The second convergence of (3.13) follow
similarly from the choice hε = χ

Yε
A∇PεŴ

ε
λ . �

Proof of Theorem 3.9. Admissibility follows from Corollary 3.7 for O = Y and Sε = Tε, together with
Corollary 3.2 and Corollary 2.9i).



568 A. DAMLAMIAN AND P. DONATO

Let f be given in L2(Ω), and uε the solution of
−div (Aε∇uε) = f in Ωε,

(Aε∇uε) · ν = 0 on ∂Tε,

uε = 0 on ∂Ω.

(3.19)

By Remark 2.3 and Theorem 2.4, there exists a subsequence (still denoted {ε}) and a matrix A0 such that

Pεuε ⇀ u weakly in H1
0 (Ω),

where u is the unique solution of −div
(
A0∇u

)
= θf in Ω,

u = 0 on ∂Ω,

and θ = |Y0|
|Y | , due to Corollary 3.2.

At this point, to obtain the claimed formula for A0, it suffices to use Proposition 3.10 in the method of
oscillating test functions, with ϕŵε

λ as test function in problem (1.1), where ϕ is in D(Ω) and

ŵε
λ(x) = εŴ ε

λ

(x

ε

)
on Ωε.

�
Questions 3.11.
• Are there reasonable conditions under which

PεŴ
ε
λ |Y0 → Ŵλ strongly in H1(Y0)?

• By Proposition 3.6 , hypotheses (2.8) and (2.9) imply the boundedness of the constant C(Yε) of Definition 3.3.
Does the boundedness of C(Yε) imply (PPWI) for Y0?

4. Domains for which the extension property holds

One of the main assumptions in Theorem 2.10 (and in the related results) is the existence of an extension
operator. The purpose of this paragraph is to present some sufficient conditions for a domain O of RN to have
this property. Classically, this property is used to establish important results concerning Sobolev spaces, such
as the density of smooth functions and Sobolev embeddings (including compactness).

Definition 4.1. For p ∈ [1,∞], the domain O has the p-extension property whenever there is a bounded linear
extension operator from W 1,p(O) to W 1,p(RN ).

This property is known to be connected to the regularity of the boundary of the domain. More precisely, we
have:

Theorem 4.2 (Calderon–Stein, see Stein [29]). If ∂O has the locally uniform cone property, then it has the
p-uniform extension property for every p.

It is known that the locally uniform cone-property is equivalent to having a Lipschitz boundary (see
Chenais [10]).

There are simple examples (in dimension 2) of domains which have cusps and do not have the p-extension
property (see Maz’ja [23]). On the other hand, one can wonder if some fractal behaviors of the boundary are
compatible with the p-extension property.

As far as we know, in this direction the following definition, due to Jones, of (ε, δ)-domains (now called
Jones-domains), gives the most general sufficient condition for the extension property. These domains were also
introduced independently in Martio [20] as uniform domains with a somewhat different definition.
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Definition 4.3 (see Jones [19]). For given positive ε and δ, O is an (ε, δ) Jones-domain whenever for every x
and y in O with d(x, y) < δ, there is a rectifiable arc γ in O satisfying:

`(γ) ≤ 1
ε
d(x, y), and d(z, ∂O) ≥ εd(x, z)d(y, z)

d(x, y)
for all z ∈ γ,

where d denotes the Euclidian distance in RN and `(γ) the length of the arc.

The notion of Jones-domain is related to the geometry of the boundary of the domain, and in some sense
prevents the presence of too many or intricate spikes.

The following result is then proved:

Theorem 4.4 [19]. Let O be an (ε, δ) Jones-domain in RN . Then O has the uniform p-extension property for
every p. Moreover, the norm of the extension operator is bounded above by a number which only depends upon
ε, δ and N .

A similar result holds for extensions on the spaces W k,p(O), k > 1.
In the case of dimension 2, things are somewhat simpler. First, for bounded domains (which we are considering

here), (ε, δ) Jones-domains are the same as (ε,∞) Jones-domains. Then, a simply connected domain O, locally
on one side of its boundary (in other words, the boundary of the domain is a Jordan curve), is an (ε,∞) Jones-
domain if and only if the complement of its closure is also an (ε,∞) Jones-domain. It turns out also that the
p-condition of Theorem 4.4 is essentially necessary:

Theorem 4.5 [19]. Let O be finitely connected in R2. Then, O has the p-uniform extension property for every
p if and only if it is an (ε, δ) Jones-domain, for some positive ε and δ.

Here, O finitely connected means that its complement in RN has finitely many connected components.
Actually, an interesting example of (ε,∞)-domain is given in the plane by the well-known snowflake domain

of Koch (see Fig. 5), as well as its complement (in a larger ball). These two domains are clearly not with
Lipschitz boundary, but they still have the p-extension property for every p.

Also, any element of the usual sequence approaching one of these domains is an (ε,∞)-domain. Hence,

Corollary 4.6. Theorem 2.10 applies for the sequence {Tε} approaching the plane snowflake domain of Koch
(as well as for the snowflake itself !).

However, Theorem 4.5 is not true for higher dimensions, since in dimension 3 there are domains with the
p-uniform extension property which are not (ε, δ) Jones-domains for any values of ε and δ (see [19]).

This leaves open the question of p-extension properties for such domains derived in R3 in similar way as the
Koch snowflake (the three-dimensional snowflakes).

It is a conjecture that the bounded component O of the (hyper)-snowflake in RN is a Jones-domain for
some (ε, δ), but not its complement, which, in our framework, is the interesting domain, O being the hole.

5. The case without extension property

In this section, we go beyond of the framework of the H0-convergence by not assuming the existence of the
extension operators as in Theorem 2.10.

We have in mind the following two cases. The first one is when Assumption 2.5 holds but there exists no
family satisfying (2.8). This can be due to a lack of regularity of the boundary of the Tε (no extension operators),
or to its increasing complexity (no uniform bound for existing extension operators).

The second one concerns the case where Tε is not compact in Y . For example, one can consider fibers in R3

or some reticulated structures (see for instance Bakhvalov–Panasenko [4], Briane [7], Cioranescu–Saint Jean
Paulin [13]).

In this situation, contrary to the case of Section 3, where the existence of (uniform) extension operators
together with the Poincaré inequality in H1

0 (Ω) insures the existence and uniform estimates for the solution uε,
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Figure 5

neither the existence nor uniform estimates for the H1
0 (Ωε) norm of solutions are straightforward. The simplest

way to avoid this difficulty, is to add a zero order term in the equation of the form auε with a strictly positive
constant a. Once this is take care of, the next (and more interesting) question is how to pass to the limit and
justify formulas.

Even though they are connected, these two questions are different in nature. Indeed, as we will see below,
the first one relies on Poincaré type inequality whereas the second one makes essentially use of the Poincaré–
Wirtinger inequality for periodic functions. We propose below to deal with each question separately.

We introduce the following geometrical hypothesis, which is more general than Assumption 2.5 (we still use
notations (2.1–2.3)).

Assumption 5.1. A basis (b1, . . . , bN ) is given in RN . Let {Tε}ε be a sequence of compact sets of RN , such
that either for every ε, Tε is the closure of its interior, or for every ε, Tε has zero Lebesgue measure. We
assume that there exists a connected open set Y , with piece-wise smooth boundary, having the paving property
with respect to the basis (b1, . . . , bN) and such that

for every ε > 0, Tε ⊂ Y and Yε
.= Y ∩ (RN \ Tε(RN , Tε)) is connected.

Remark 5.2. The assumption that Tε has zero Lebesgue measure implies that Int(Tε) = ∅) and corresponds
to the case of cracks (see Attouch–Murat for an example of periodic homogenization of cracks).

It is easy to check that Assumption 2.5 implies Assumption 5.1.
The following definition extends the notion of H1

per(Y \ S) used till now to the case where S is not compact
in Y .

Definition 5.3. Suppose that O = Y ∩(RN \S), where Y is some connected open set, with piece-wise smooth
boundary having the paving property with respect to some basis, and S is some compact set of RN included
in Y . We denote by H1

per(O) the space of Y -periodic functions in H1
loc(R

N \ T1(RN ,S)).
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Before stating the main theorem of this section, we introduce some notation and supplementary assumptions.

Assumption 5.4. Let Y and Tε be as in Assumption 5.1. There exists a compact set T0 ⊂ Y such that every
connected component Y i

0 , i ∈ I of Y0
.= Y ∩ (RN \ T0), satisfies the Poincaré-Wirtinger inequality for periodic

functions (PPWI) and

i) χTε
→ χT0

in L1(Y );

ii) the Hausdorff excess e(Tε, T0)
.= supx∈Tε

d(x, T0) tends to zero, as ε → 0.

If for every ε, Tε is the closure of its interior, we also assume that T0 ⊂ Y is the closure of its interior.

Remark 5.5. The Hausdorff convergence of Tε to T0 implies i) and ii) of Assumption 5.4. If for every ε the set
Tε has zero Lebesgue measure (case of cracks), then convergence i) implies that T0 has zero Lebesgue measure
also.

Assumption 5.6. Let Y and Tε be as in Assumption 5.1. Let T0 ⊂ Y be a compact set which is the closure
of its interior and set Y0

.= Y ∩ (RN \ T0).
For any smooth Y 0-periodic function ϕ and for every ε positive, there exists a function ϕε ∈ H1

per(Yε) such
that

i) ϕ̃ε|Y0
converges strongly to ϕ in L2(Y0);

ii) [∇ϕε] |̃Y0 converges strongly to ∇ϕ in L2(Y0).

Assumption 5.6 is a somewhat natural generalization of a variational convergence of spaces, adapted to the
H1

per(Yε)’s. Some examples where it is satisfied are given in the proposition below.

Proposition 5.7. Suppose that Assumptions 5.1 and 5.4i) hold. Then, Assumption 5.6 is satisfied in each of
the following cases:

a) for every ε, Yε ⊂ Y0;
b) there exists a linear continuous extension operator P0 from H1(Y0) to H1(Y );
c) Yε is obtained from Y0 by a smooth deformation Ψε (continuous with respect to ε).

Proof. From the classical Lebesgue measure theory, the following choices of ϕε satisfy 4.6 i) and ii) for each
case:

a) ϕε = ϕ|Yε
;

b) ϕε = (P0ϕ)|Yε
;

c) ϕε(x) = ϕ(Ψ−1
ε (x)). �

For f given in L2(Ω), consider the problem
−div (Aε∇uε) + aε

0uε = f in Ωε,

(Aε(x)∇uε) · ν = 0 on ∂Tε,

uε = 0 on ∂Ω,

(5.1)

where Ωε is defined by (2.6), Aε by (2.4, 2.5) and {aε
0}ε is a sequence such thata0 is a non-negative Y − periodic function in L∞(Y ),

aε
0(x) = a0

(
x
ε

)
a.e. in RN .

(5.2)
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The following result is straightforward:

Proposition 5.8. For f given in L2(Ω), let Ωε be defined by (2.6), Aε by (2.4, 2.5) and {aε
0}ε by (5.2),

under Assumption 5.1. If α0
.= inf a0 > 0, problem (4.1) has a unique solution in the space Vε (see (1.2)).

Furthermore, there exists a constant c such that∫
Ωε

(
|∇uε|2 + u2

ε

)
≤ c. (5.3)

Remark 5.9. If the Poincaré inequality holds in the spaces Vε with a constant independent of ε, then (5.3)
holds, but it is an open problem to characterize this situation with reasonable geometric conditions on the
holes, apart from the case where there exists a family of extension operator verifying (1.6). In particular, it
would be interesting to clarify the connection between the uniform Poincaré inequality for the spaces Vε and
the Poincaré–Wirtinger inequality in Yε.

Regarding convergence, the following result holds:

Theorem 5.10. Under Assumptions 5.1, 5.4 and 5.6, let Ωε be defined by (2.6) and Aε by (2.4, 2.5). For f
given in L2(Ω), suppose that for every ε, uε is a solution of (5.1) satisfying (5.3). Suppose further that for
every ε, the domain Yε satisfies the Poincaré-Wirtinger inequality and that

lim
ε→0

ε C(Yε) = 0. (5.4)

Let A0 be the constant matrix field defined by

A0λ = MY ([A∇Ŵλ ]̃ ), ∀λ ∈ RN , (5.5)

where Ŵλ is the unique solution of the problem
−div(A(y)∇Ŵλ) = 0 in Y0,(
A(y)∇Ŵλ

)
· ν = 0 on ∂T0,

Ŵλ − λ · y Y − periodic,

MY i
0
(Ŵλ − λ · y) = 0, i ∈ I,

(5.6)

where the Y i
0 , i ∈ I, are the connected components of Y0 (recall that [·]˜ denotes the extension by zero to the

whole of Y ).
Then, {ũε}ε is bounded in L2(Ω) and every converging subsequence {ũε′}ε satisfies

ũε′ ⇀ θu weakly in L2(Ω), (5.7)

where θ = |Y \T0|
|Y | and u satisfiesu ∈ H1(Ω),

−div
(
A0∇u

)
+ θMY0(a0)u = θf in D′(Ω).

(5.8)

Furthermore, in the case where Tε has zero Lebesgue measure (cracks), θ = 1 and the convergence in (5.7) is
strong, i.e.

uε′ → u strongly in L2(Ω). (5.9)
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In Theorem 5.10, the solution of (5.6) is understood in the following variational sense:Find Ŵλ such that Ŵλ − λ · y ∈ H∫
Y0

A(y)∇Ŵλ∇ϕ = 0 ∀ ϕ ∈ H,
(5.10)

where H is the Hilbert space defined by

H
.=
{
v ∈ L2

loc(Y0)), ∇v ∈ L2(Y0) and ∀ i ∈ I, v ∈ H1
per(Y i

0 ), MY i
0
(v) = 0

}
, (5.11)

endowed with the norm
||v||H = ||∇v||L2(Y0).

Remark 5.11. In general, equation (5.8) does not have a unique solution, since there is no boundary condition
for u. However, among all possible limit points u in (5.7), there is at most one in H1

0 (Ω), which is then the
unique solution of −div

(
A0∇u

)
+ θMY0(a0)u = θf in Ω,

u = 0 on ∂Ω.

A first step in addressing the question in Remark 5.11 is given in Proposition 5.13 below for which we introduce
the following assumption:

Assumption 5.12. Under Assumption 5.1, denote

∀j = 1, · · · , N, ∂Y ±
j

.= Y ∩ τ±bj (Y ).

For every ε, there exists a positive constant C′
ε such that

∀u ∈ H1(Yε), ∀j = 1, · · · , N, ‖u −M
Y

±
j

(u)‖L2(Yε) ≤ C′
ε‖∇u‖L2(Yε).

Proposition 5.13. Suppose that Assumption 5.12 holds with C′
ε bounded above by some positive constant C′

and let Ωε be defined by (2.6). Suppose furthermore that the boundary ∂Ω of Ω is Lipschitz continuous. Let
{vε}ε be a sequence such that, for each ε, vε ∈ Vε and ||vε||Vε is bounded. Then, every weak limit point in L2(Ω)
of {ṽε}ε is actually in H1

0 (Ω).

Remark 5.14. For a fixed reference hole contained in Y and having a Lipschitz boundary, a similar result,
concerning the limits of the sequence of local averages of {vε}ε is proved in [2] (Lem. 4.3). In this case,
Assumption 5.12 readily holds. As far as we know, a theory describing classes of sets satisfying that assumption
in the spirit of John domains remains to be studied.

The proof of Proposition 5.13, in the spirit of that of Lemma 4.3 in [2], is given in the Appendix.

Remark 5.15. The elements of H are not necessarily in L2(Y0) since the constants Cper(Y i
0 ) are not bounded

in general. If these are bounded, for instance if Y0 has a finitely many connected components (i.e. the set I is
finite), then the space H of (5.11) is simply{

v ∈ H1
per(Y0), ∀ i ∈ I, MY i

0
(v) = 0

}
·

The proof of Theorem 5.10, as well as the existence and uniqueness of the solution of (5.6), are given in Section 6.
Some examples where Theorem 5.10 applies can be found in [7], where it is shown that condition (5.4) is

optimal. A class of domains for which the results of this section can be applied is given in Section 7 (John-
domains).
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6. Proofs of the results of Section 5

The following proposition generalizes Proposition 3.8 to the case where Y0 is not connected:

Proposition 6.1. Let Y be a connected open set with piece-wise smooth boundary, having the paving property
with respect to some basis, and A in M(α, β, Y ). Let S be a compact set of RN included in Y , which is the
closure of its interior and such that such that every connected component Y i

s , i ∈ I, of Y ∩ (RN \ S) satisfies
the Poincaré-Wirtinger inequality for periodic functions (PPWI).
Then, for every λ ∈ RN the problem

−div(A(y)∇Ŵλ) = 0 in Y ∩ (RN \ S),(
A(y)∇Ŵλ

)
· ν = 0 on Y ∩ ∂S,

Ŵλ − λ · y Y − periodic,

MY i
s
(Ŵλ − λ · y) = 0, ∀ i ∈ I,

(6.1)

has a unique solution Ŵλ ∈ Ĥ in the following variational sense:Find Ŵλ such that Ŵλ − λ · y ∈ Ĥ∫
Y ∩(RN\S) A(y)∇Ŵλ∇ϕ = 0 ∀ ϕ ∈ Ĥ.

(6.3)

Here, Ĥ is the space of functions on Y ∩ (RN \ S) defined by

Ĥ
.=
{
v ∈ L2

loc(Y ∩ (RN \ S)), ∇v ∈ L2(Y ∩ (RN \ S)), ∀ i ∈ I, v ∈ H1
per(Y i

s ), M
Y i

s
(v) = 0

}
(6.2)

endowed with the norm
||v||H = ||∇v||L2(Y ∩(RN\S)).

Proof. The function Ŵλ is obtained on each connected component of Y ∩ (RN \S) by applying Proposition 3.8.
It only remains to check that ∇Ŵλ belongs to L2(Y ∩ (RN \ S)). This follows by summing, over i ∈ I, for
η̂λ

.= λ · y − Ŵλ, the following inequality

α2

∫
Y i

s

|∇η̂λ|2 ≤
∫

Y i
s

|A(y)λ|2

which, due to (6.3), is a consequence of

α

∫
Y i

s

|∇η̂λ|2 ≤
∫

Y i
s

A(y)∇η̂λ∇η̂λ =
∫

Y i
s

A(y)λ∇η̂λ. �

Corollary 6.2. Problem (4.6) has a unique solution.

The following proposition is one of the main ingredients for the proof of Theorem 5.10.

Proposition 6.3. Let Ŵ ε
λ be the unique solution of (5.6) and set η̂ε

λ = λ · y − Ŵ ε
λ , which is the solution of the

variational problem ∫
Yε

A(y)∇η̂ε
λ(y) =

∫
Yε

A(y)λ∇ϕ ∀ ϕ ∈ Hε, (6.4)
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where Hε is defined in (3.15). Under the assumptions of Theorem 5.10, the following convergences hold:
[
∇Ŵ ε

λ

]
˜ ⇀

[
∇Ŵλ

]
˜ weakly in

(
L2(Y

)
)N ,

A
[
∇Ŵ ε

λ

]
˜ ⇀ A

[
∇Ŵλ

]
˜ weakly in

(
L2(Y

)
)N ,

ε
[
η̂ε

λ

]
˜→ 0 strongly in L2(Y ),

(6.5)

where Ŵλ is the unique solution of (5.6) and

[
∇Ŵ ε

λ

]
˜ =

∇Ŵ ε
λ on Yε

0 on Tε

,
[
∇Ŵλ

]
˜ =

∇Ŵλ on Y0

0 on T0

,
[
η̂ε

λ

]
˜ =

ηε
λ on Yε

0 on Tε.

Moreover, 

[∇ŵε
λ]˜ ⇀

|Y0|
|Y | MY0

(
∇Ŵλ

)
weakly in

(
L2(Ω

)
)N ,

Aε [∇ŵε
λ]˜ ⇀

|Y0|
|Y | MY0

(
A∇Ŵλ

)
weakly in

(
L2(Ω

)
)N ,

ε
[
η̂ε

λ

(
.
ε

)]
˜→ 0 strongly in L2(Ω),

[ŵε
λ]˜ ⇀ θ (λ · x) weakly in L2(Ω),

(6.6)

where
ŵε

λ(x) = εŴ ε
λ

(x

ε

)
, on Ωε.

In the case of cracks, θ = 1, the zero extensions in (6.5) and (6.6) are not necessary and the last convergence
in (6.6) is strong.

Proof. The existence of Ŵλ is given by Corollary 6.2. As in the proof of Proposition 3.10, the convergences
in (6.6) follow directly from Proposition 3.1 and the convergences of (6.5), which we now establish.

By the choice ϕ = η̂ε
λ in (6.4) and by (2.5), one concludes that∥∥∥∇η̂ε

λ

∥∥∥
L2(Yε)

≤ C,
∥∥∥∇Ŵ ε

λ

∥∥∥
L2(Yε)

≤ C. (6.7)

Consequently, up to a subsequence, we can assume that[
∇Ŵ ε

λ

]
˜ ⇀ σλ weakly in

(
L2(Y

)
)N . (6.8)

Let ϕ be a smooth Y0-periodic function and let ϕε ∈ H1
per(Yε) be the function given by Assumption 5.6. Then

0 =
∫

Yε

A(y)∇Ŵ ε
λ(y)∇ϕε(y) dy =

∫
Y

χ
Yε

A(y)
[
∇Ŵ ε

λ

]
(̃y) [∇ϕε] (̃y) dy.

Passing to the limit as ε → 0 while using (6.8) and Assumptions 5.4i) and 4.6, yields

0 =
∫

Y

χ
Y0

A(y)σλ(y)∇ϕ(y) dy =
∫

Y0

A(y)σλ(y)∇ϕ(y) dy. (6.9)

This means that
−div(Aσλ) = 0 in Y0.
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Convergence i) of Assumption 5.4 implies that σλ = 0 in T0. Then, to prove the first two convergences it suffices
to shows that σλ = ∇Ŵλ on Y0. By uniqueness of the solution of (5.6), it is enough to establish that σλ is a
gradient on Y0.

To do so, we apply the De Rham’s theorem, which states that σλ is a gradient on Y0 if∫
Y0

σλ · g dy = 0

for all divergence-free g ∈ (D(Y i
0 ))N , for every i ∈ I. Indeed, from Assumption 5.4ii), such a g is also in

(D(Yε))N , for ε small enough, so that we have

0 =
∫

Yε

∇Ŵ ε
λ · g dy =

∫
Y

χ
Yε

[
∇Ŵ ε

λ

]
˜ · g dy →

∫
Y

χ
Y0

σλ · g dy =
∫

Y0

σλ · g dy = 0.

Finally, the third convergence concerning η̂ε
λ follows directly from (6.7) together with Assumption 5.4i). �

The next essential tool for proving Theorem 5.10 is a compactness result in L2. This kind of result was
originally introduced in [2] in the case of a fixed reference hole, making use of the Kolmogorov compactness
criterion. A variant of this result was given in [7] (Lem. 4.1), in a particular geometrical situation of varying
reference holes. The proof makes use of a singular perturbation argument, which actually applies in our context.
We give it here for the reader’s convenience.

Proposition 6.4. Under Assumption 5.1, let Ωε be defined by (2.6). Suppose that for every ε, the domain Yε

satisfies the Poincaré-Wirtinger inequality and that (cf. (5.4))

lim
ε→0

ε C(Yε) = 0.

Let {uε}ε be a sequence in L2(Ω) with uε = 0 on Ω \ Ωε and uε|Ωε
in H1(Ωε) for every ε, such that

‖∇uε‖L2(Ωε) is bounded and uε ⇀ u0 weakly in L2(Ω). (6.10)

Let {Kε}ε be a bounded sequence in L2
per(Y ) such that

MYε(Kε) → K0 ∈ R. (6.11)

Then
∀ϕ ∈ D(Ω),

∫
Ω

Kε

(x

ε

)
uε(x)ϕ(x) dx → K0

∫
Ω

u0(x)ϕ(x) dx. (6.12)

Proof. Suppose first that Int(Tε) 6= ∅. From (6.10) and (6.11) one has

∀ϕ ∈ D′(Ω),
∫

Ω

MYε(Kε) uε(x)ϕ(x) dx → K0

∫
Ω

u0(x)ϕ(x) dx.

It remains to prove (6.12) with zero right-hand side, for the sequence {Zε}ε, instead of {Kε}ε, where Zε =
Kε −MYε(Kε) has the extra property MYε(Zε) = 0.

Let Vε ∈ H1
per(Yε) be the solution, in the variational sense, of

− 1
ε2 ∆Vε + Vε = Zε in Yε,

∂Vε

∂n = 0 on ∂Tε,

Vε Y − periodic.

(6.13)
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By using the function 1 as test in (6.13), one deduces that MYε(Vε) = MYε(Zε) = 0. By taking Vε as test, one
obtains

1
ε2

∫
Yε

|∇Vε|2 +
∫

Yε

V 2
ε =

∫
Yε

VεZε. (6.14)

Since {Zε}ε is bounded in L2(Y ) by some M , one deduces the following estimates:

‖∇Vε‖L2(Yε) ≤ Mε and ‖Vε‖L2(Yε) ≤ M.

Now, it follows from (5.4) that

‖Vε‖L2(Yε) = ‖Vε −MYε(Vε)‖L2(Yε) ≤ MεC(Yε) → 0.

This, together with (6.14) yields
1
ε2

∫
Yε

|∇Vε|2 +
∫

Yε

V 2
ε → 0. (6.15)

Set vε(x) = Vε(x
ε ), which is εY -periodic and from (6.13) satisfies−∆vε + vε = Zε

(
x
ε

)
in RN \ Tε

(
RN , Tε

)
,

∂vε

∂n = 0 on ∂Tε

(
RN , Tε

)
.

(6.16)

From (6.15), for every bounded open set ω of RN , one has,∫
ω∩(RN\Tε(RN ,Tε))

(
|∇vε|2 + v2

ε

)
→ 0. (6.17)

For any ϕ ∈ D(Ω), using ϕuε as test in (6.16) and since uε vanishes outside Ωε, one has∫
Ω

Zε

(x

ε

)
ϕ(x)uε(x) dx =

∫
Ωε

∇vε∇(ϕuε) + vεϕuε =
∫

ω∩(RN\Tε(RN ,Tε))

∇vε∇(ϕuε) + vεϕuε,

where we have set ω = Int(supp (ϕ)) and used the fact that Ωε ∩ ω = ω ∩ (RN \ Tε(RN , Tε)) for ε sufficiently
small.

One easily concludes using (6.10, 6.17) and the Cauchy–Schwarz inequality.
The case where Tε has zero Lebesgue measure is proved in a similar way, taking into account the fact that

Ω \ Ωε is of zero Lebesgue-measure. �
Proof of Theorem 5.10. Once Propositions 6.1, 6.3 and 6.4 are established, the proof follows along the lines of
the well-know Tartar method [30] of oscillating test functions wε

λ, constructed here as follows.
For every λ ∈ RN , let Wλ be the unique solution of the problem

−div( tA(y)∇Wλ) = 0 in Y0,

( tA(y)∇Wλ) · ν = 0 on ∂T0,

Wλ − λ · y Y − periodic,

MY i
0
(Wλ − λ · y) = 0, i ∈ I.

(6.18)

Set
wε

λ(x) = εW ε
λ

(x

ε

)
, ηε

λ = λ · y − W ε
λ on Ωε. (6.19)
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Proposition 6.3 apply here (with tA in place of A) so that the following convergences hold:
[∇W ε

λ ]˜ ⇀ [∇Wλ]˜ weakly in
(
L2(Y

)
)N ,

tA [∇W ε
λ ]˜ ⇀ tA [∇λ]˜ weakly in

(
L2(Y

)
)N ,

ε [ηε
λ]˜→ 0 strongly in L2(Y ).

(6.20)

Here, as well as in the remainder of the proof, there is no need to use the zero extension if Tε has zero Lebesgue
measure.

From (5.3), by weak compactness in L2(Ω), there exists a subsequence (still denoted ε), such thati. ũε ⇀ θu weakly in L2(Ω),

ii. ξε ⇀ ξ0 weakly in (L2(Ω))N ,
(6.21)

where
ξε = [Aε∇uε]˜

and satisfies ∫
Ω

ξε ∇v +
∫

Ω

aε
0 ũε v =

∫
Ω

χ
Ωε

fv, ∀v ∈ H1
0 (Ω). (6.22)

From Proposition 6.4, applied to Kε = a0 and ϕ = v ∈ D(Ω) one has∫
Ω

aε
0 ũε v → MY0(a0)

∫
Ω

θu v, ∀ v ∈ D(Ω), (6.23)

where we used Assumption 5.4i). Hence, ξ0 satisfies∫
Ω

ξ0 ∇v + θMY0(a0)
∫

Ω

u v = θ

∫
Ω

f v, ∀v ∈ H1
0 (Ω), (6.24)

i.e.
−div ξ0 + θMY0(a0)u = θf in Ω.

Therefore, the result is proved if we show that

ξ0 = A0∇u. (6.25)

Indeed, this implies that u belongs to H1(Ω) since A0 is not singular. Hence, due to (6.24), u satisfies (5.8).
Let ϕ ∈ D(Ω) and choose ϕwε

λ as test function in (6.22) and ϕuε as test function in (6.6). We have respectively,∫
Ωε

ξε · ∇wε
λ ϕ +

∫
Ωε

ξε · ∇ϕ wε
λ +

∫
Ωε

aε
0 uε ϕwε

λ =
∫

Ωε

χ
Ωε

fϕwε
λ, ∀ϕ ∈ D(Ω),∫

Ωε

tA∇wε
λ · ∇uε ϕ dx +

∫
Ωε

tA∇wε
λ · ∇ϕ uε dx = 0, ∀ϕ ∈ D(Ω).

Observe that by definition
ξε · ∇wε

λ = Aε∇uε · ∇wε
λ in Ωε.

Therefore by subtraction∫
Ω

ξε · ∇ϕ [wε
λ]˜−

∫
Ω

tA [∇wε
λ]˜ · ∇ϕ uε +

∫
Ω

aε
0 ũε ϕ [wε

λ]˜ =
∫

Ω

χ
Ωε

fϕ [wε
λ] .̃ (6.26)
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From (6.20) and (6.21) we have

limε→0

∫
Ω

ξε · ∇ϕ [wε
λ]˜ = limε→0

∫
Ω
(ξε · ∇ϕ)

(
(λ · x) − ε

[
η̂ε

λ

(
.
ε

)]
˜
)

= limε→0

∫
Ω
(ξε · ∇ϕ)(λ · x) =

∫
Ω

ξ0 · ∇ϕ (λ · x).

Similarly,

lim
ε→0

∫
Ω

χ
Ωε

fϕ [wε
λ]˜ = lim

ε→0

∫
Ω

χ
Ωε

fϕ

(
(λ · x) − ε

[
̂

ηε
λ

( .

ε

)]
˜

)
= θ

∫
Ω

fϕ (λ · x).

On the other hand

lim
ε→0

∫
Ω

aε
0 ũε ϕ [wε

λ]˜ = lim
ε→0

∫
Ω

aε
0 ũε ϕ

(
(λ · x) − ε

[
̂

ηε
λ

( .

ε

)]
˜

)
= lim

ε→0

∫
Ω

aε
0 ũε ϕ (λ · x).

The same argument used to prove (6.24) (applying Prop. 6.4) gives

lim
ε→0

∫
Ω

aε
0 ũε ϕ [wε

λ]˜ = θMY0(a0)
∫

Ω

u ϕ (λ · x).

Finally, from (6.20) and Proposition 6.4, applied to Kε = tA [∇W ε
λ ]˜ and ∇ϕ one has

lim
ε→0

∫
Ω

tA [∇wε
λ]˜ · ∇ϕ uε = θ

∫
Ω

B0λ · ∇ϕ u,

where B0 is defined by B0λ = MY ( tA [∇Wλ] )̃.
Then, passing to the limit in (6.26) yields∫

Ω

ξ0 · ∇ϕ (λ · x) −
∫

Ω

B0λ · ∇ϕ u + θMY0(a0)
∫

Ω

u ϕ (λ · x) = θ

∫
Ω

fϕ (λ · x).

This gives, together with (6.24), written for v = (λ · x)ϕ,∫
Ω

ξ0 · λϕ dx = −
∫

Ω

B0λ · ∇ϕ u0 ∀ϕ ∈ D(Ω),

which implies that
ξ0 = tB

0∇u, a.e.
since λ is arbitrary in RN .

It remains to prove that A0 = tB
0, i.e.,

B0λ · µ = A0µ · λ, ∀λ, µ ∈ RN .

From the definition of B0 one has

B0λ · µ =
1

|Y |

∫
Y0

tA(y)(λ −∇η
λ
)µ dy =

1
|Y |

∫
Y0

A(y)µ · λdy − 1
|Y |

∫
Y0

A(y)µ∇η
λ

dy.

From (5.10) we obtain ∫
Y0

A(y)∇η̂µ∇ϕdy =
∫

Y0

A(y)µ∇ϕdy ∀ ϕ ∈ H. (6.27)
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By choosing ϕ = η
λ

in (6.27), one has

B0λ · µ =
1

|Y |

∫
Y0

A(y)µ · λdy − 1
|Y |

∫
Y0

A(y)∇η̂
µ
∇η

λ
dy.

A similar computation starting with the definition of A0, gives

A0µ · λ =
1

|Y |

∫
Y0

tA(y)λ · µ dy − 1
|Y |

∫
Y0

tA(y)∇η
λ
∇η̂

µ
dy,

which ends the proof in the case where Int(Tε) 6= ∅. Finally, the proof of (5.9) follows that of Attouch–Murat
(see [3]), which extends to our case by making use of Assumption 5.4ii). �

Remark 6.5. When the reference hole is independent of ε (i.e. Tε ≡ T ), another approach to these type of
problems is presented in several papers of Zhikov (see [33]), which introduce the notion of “2-connectedness”
and allows for some disconnected Y \T but with connected closure. The Sobolev space used there is the closure
of C∞(Y \ T ) for the H1-norm, which is smaller than the space used here. The analogous of Proposition 6.4
of the present paper is proved by a property of the heat semi-group (Prop. 9.4 of [33]). It is not clear whether
there exist conditions (more general than our (5.4)) which guarantee a uniform version of this heat semi-group
property for ε-dependent reference holes.

7. Domains for which the Poincaré–Wirtinger property holds

One of the main assumption in Theorem 5.10 (and in the related results) is the Poincaré–Wirtinger property
(PWI) given in Definition 3.3. In this paragraph we summarize general results connecting it with some geometric
properties of a bounded domain O of RN , in the same spirit as in Section 4.

Definition 7.1. For p ∈ [1,∞], the bounded domain O in RN is a p-Poincaré–Wirtinger domain (in short a
p-PW domain) whenever the Poincaré–Wirtinger inequality holds for all elements of W 1,p(O) (with a constant
depending only on O and p):

‖u −MO(u)‖Lp(O) ≤ C(O, p)‖∇u‖Lp(O).

The case for Theorem 5.10 is that of p = 2.
A variant of this property, related to Sobolev embeddings, is the following:

Definition 7.2. For p ∈ [1, N), the bounded domain O in RN is a p-Sobolev–Poincaré–Wirtinger domain (in
short a p-SP domain) whenever the Sobolev–Poincaré–Wirtinger inequality holds for all elements of W 1,p(O)
with zero average on O (with a constant depending on O and p):

‖u −MO(u)‖Lp∗(O) ≤ C(O, p)‖∇u‖Lp(O),

where p∗ = Np
N−p .

It is clear that, for either property to hold, connectedness of O is necessary. It is also obvious that p-SP implies
p-PW, and it is known that the converse is not true in general.

The same argument used to prove Proposition 3.5 (considered for S = ∅), implies that if for 1 < p < ∞,
the embedding from W 1,p(O) in Lp(O) is compact and O is connected, then O is a p-PW domain. A similar
statement holds for p-SP domains.

Consequently, due to Theorem 4.4, Jones-domains (see Sect. 3) are p-PW domains for every p (1 < p < ∞).

Proposition 7.3. If two intersecting domains O1 and O2, are p-PW domains (resp. p-SP domains), so is
their union.
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Proof. By contradiction suppose that O = O1 ∪ O2 is not a p-PW domain. Then, there exists a sequence (un)
in W 1,p(O) such that 

i) MO(un) = 0,

ii) ||un||Lp(O) = 1,

iii) ||∇un||Lp(O) → 0.

(7.1)

From (7.1)ii), MO1(un) and MO2(un) are bounded and (up to a subsequence) one can assume that they
converge to some c1 and c2 respectively.

Since O1 and O2 are p-PW domains, convergence (7.1)iii) implies

‖un −MO1(un)‖Lp(O1) → 0, ‖un −MO2(un)‖Lp(O2) → 0.

Consequently,
un → c1 strongly in Lp(O1), un → c2 strongly in Lp(O2).

Since O1 ∩ O2 6= ∅, one has c1 = c2 and from (7.1)i), c1 = c2 = 0, so that un strongly converges to zero in
Lp(O). This contradicts (7.1)ii). �

The following very geometric condition was originally introduced in Martio–Sarvas [22] (see also Martio [20],
Gehring–Martio [16], Väisalä [31]):

Definition 7.4. A connected domain O in RN is an (α, β) John-domain (0 < α ≤ β), provided there exist a
point x ∈ O (denoted a center) and, for every point y ∈ O a rectifiable curve in O joining x to y with length
`(γ) ≤ β, and along which the following holds:

inf
z∈γ

d(z, ∂O)
`(γ(z, y))

≥ α.

Here, as before, d is the Euclidian distance, and `(γ(z, y)) is the arc length of the part of γ which connects z
to y.

It can be seen that once a center exists, any other point can also be used as a center, but the values of α and
β may change. This definition, a sort of twisted cone-condition, prevents the presence of external cusps, but
allows for some fractal boundaries (for example, the snowflake domain in R2). Indeed,

Theorem 7.5 (see Gehring–Osgood [17], Smith–Stegenga [27]). Every bounded (ε, δ) Jones-domain is an (α, β)
John-domain for suitable α and β depending only upon ε and δ.

The converse is not true, as we will see further down.

The notion of John-domains provides a quite general class of domains for which condition (5.4) of Theo-
rem 5.10 holds, due to the following results applied in the case p = 2.

Theorem 7.6 (Martio [21]). Every (α, β) John-domain is a p-PW domain for every p. Furthermore, the best
p-Poincaré–Wirtinger constant of such a domain is bounded above by an expression involving only α, β, p and N .

Actually, this result is a consequence of:

Theorem 7.7 (Bojarski [6]). Every (α, β) John-domain is a p-SP domain (for every p ∈ [1, +∞)). Further-
more, the best p-Sobolev Poincaré–Wirtinger constant of such a domain is bounded above by an expression
involving only α, β, p and N .

The latter result is quasi-optimal:

Theorem 7.8 (Buckley–Koskela [9]). Suppose that O is a bounded domain in Rn and that it satisfies a sep-
aration hypothesis (explained below). Then O is a p-SP domain (for some p ∈ [1, N)) if and only if it is a
John-domain (for some values of α and β).
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The separation condition needed here is the following: there is a point x ∈ O (a center) and a constant C0

such that for each y ∈ O, there is a curve γ from x to y satisfying that for each z ∈ γ, γ(z, y) does not intersect
the connected component of x in O \ ∂Bz, where Bz denotes the ball of center z and radius C0 d(z, ∂O).

All the conditions indicated so far apply for every p indistinctly. There is a generalization of the notion of
John-domain which discriminates between values of p. We give it here to show how involved the arguments
can be.

Definition 7.9 [27]. Let η ≥ 1. A domain O in RN is an (α, β) η−John-domain (0 < α ≤ β) , provided there
exist a point x ∈ O (denoted a center) and, for every point y ∈ O a rectifiable curve in O joining x to y with
length `(γ) ≤ β, and along which the following holds:

inf
z∈γ

d(z, ∂O)
`(γ(z, y)η

≥ α.

The corresponding result is:

Theorem 7.10 [27]. Let 1 ≤ p < ∞. If O ⊂ RN is an η−John-domain with 1 ≤ η < 1 + p
N−1 , then O is a

p-Poincaré domain. In particular this hold for every p when η < N
N−1 .

To close this section, we indicate that there exists an example in dimension 3 of a 2-Poincaré–Wirtinger
domain O (satisfying the separation hypothesis) for which the embedding from H1(O) to L2(O) is not compact.
This precludes that O have the 2-extension property, hence is an example of a John-domain which is not a Jones-
domain! For this, we refer to [27] where the construction of O is done by adding to the unit ball a suitable
sequence of “rooms” and “corridors” with size converging to zero.

Appendix

We give here the proof of Proposition 5.13.
Lemma A.1. Under Assumption 5.12, for all v ∈ H1(Yε ∪ τbj (Yε)), one has:

‖τbj (v|Yε) − v|Yε‖L2(Yε) ≤
√

2C′‖∇vε‖L2(Yε∪τbj
(Yε)).

Proof. We have

‖τbj (v|Yε) − v|Yε‖L2(Yε) ≤ ‖τbj (v|Yε) −M
Y

+
j

(v)‖L2(Yε) + ‖M
Y

+
j

(v) − v|Yε‖L2(Yε)

≤ C′‖∇vε‖L2(τbj
(Yε)) + C′‖∇vε‖L2(Yε).

�
Proof of Proposition 5.13. Without loss of generality, one can assume that

ṽε ⇀ v weakly in L2(Ω).

Due to the regularity of the boundary, it is enough to show that the extension by zero of v to RN is in H1(RN ).
To do so, we use the classical characterization of H1(RN ) as the set of the elements v of L2(RN ) such that

for same constant C,
1
|h| ||τh(v) − v||L2(RN ) ≤ C (A.1)

for every h ∈ RN \ {0}, where
τh(v)(x) .= v(x − h).
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Actually, in this characterization, it suffices to take h of the form

h = lbj, j = 1, . . . , N, (A.2)

where l is arbitrary in R. Set l = εκε + rε, with κε ∈ Z, 0 ≤ rε < ε and write:

||τ`bj (ṽε) − ṽε||L2(RN ) ≤ ||τεκεbj (ṽε) − ṽε||L2(RN ) + ||τrεbj (ṽε) − ṽε||L2(RN ),

since the second term of the right hand side equals ||τ`bj (ṽε)−τεκεbj (ṽε)||L2(RN ), due to the translation invariance
of the norm. Similarly,

||τεκεbj (ṽε) − ṽε||L2(RN ) ≤
κε∑
t=1

||τεtbj (ṽε) − τε(t−1)bj
(ṽε)||L2(RN ) ≤ κε||τεbj (ṽε) − ṽε||L2(RN )

so that
||τ`bj (ṽε) − ṽε||L2(RN ) ≤ |κε| ||τεbj (ṽε) − ṽε||L2(RN ) + ||τrεbj (ṽε) − ṽε||L2(RN ). (A.3)

We proceed by getting bounds for each term in (A.3).
Observe that RN can be represented as the union of the following four disjoint sets:

RN \ (Ωε ∪ τ−εbj (Ωε)) on which both τεbj (ṽε) and ṽε vanish,

Ωε ∩ (RN \ τ−εbj (Ωε)) on which τεbj (ṽε) vanishes,

τ−εbj (Ωε) ∩ (RN \ Ωε) on which ṽε vanishes,

Ωε ∩ τ−εbj (Ωε).

(A.4)

We now compute ||τεbj (ṽε) − ṽε||2L2(RN ) on each of these subsets.
First, ||τεbj (ṽε) − ṽε||2L2(RN\(Ωε∪τ−εbj

(Ωε)) = 0.

Next,
||τεbj (ṽε) − ṽε||2L2(τ−εbj

(Ωε)∩(RN\Ωε)) = ||τεbj (vε)||2L2(τ−εbj
(Ωε)∩(RN\Ωε)),

and similarly,

||τεbj (ṽε) − ṽε||2L2(Ωε∩(RN\τ−εbj
(Ωε)) = ||vε||2L2(Ωε∩(RN\τ−εbj

(Ωε)).

These two terms are equal and can be estimated by 2||vε||2L2(Dε) where Dε is the ε|bj| neighborhood of ∂Ω.
Because the boundary is lipschitz-continuous, this term is bounded above, via the Poincaré inequality, by
(c ε|bj |)2||∇vε||2L2(Dε), where c depends on ∂Ω.

To estimate the last term, for k = (ki)i=1,... ,N ∈ ZN , set Yε,k = ε(Yε +
∑N

i=1 kibi) and write

ṽε =
∑

k∈ZN

vε|Yε,k
χ

Yε,k
, τεbj (ṽε) =

∑
k∈ZN

τεbj (vε|Yε,k
)χ

τ−εbj
(Yε,k)

and
τεbj (ṽε) − ṽε =

∑
k∈ZN

(τεbj (vε|Yε,k′ ) − vε|Yε,k
)χ

Yε,k
,

where (k − k′)i = (δij) for i = 1, . . . , N . From Lemma A.1 and by scaling we obtain

‖τεbj (vε|Yε,k′ ) − vε|Yε,k
‖L2(Yε,k) ≤

√
2ε C′‖∇vε‖L2(Yε,k∪Yε,k′).
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By summing we have
‖τεbj (vε) − vε‖L2(Ωε∩τ−εbj

(Ωε)) ≤ 2ε C′‖∇vε‖L2(Ωε),

which implies
‖τεbj (ṽε) − ṽε‖L2(RN ) ≤ 2ε (C′ + c)‖∇vε‖L2(Ωε). (A.5)

A similar computation shows that

||τrεbj (ṽε) − ṽε||L2(RN ) ≤ 2ε (C′ + c)‖∇vε‖L2(Ωε). (A.6)

Finally, using (A.5) and (A.6) in (A.3) yields

||τ`bj (ṽε) − ṽε||L2(RN ) ≤ 2ε(1 + |κε|)(C′ + c)‖∇vε‖L2(RN ).

Letting ε go to zero, and using the hypotheses on vε, we get

||τ`bj (v) − v||L2(RN ) ≤ 2|lbj|C1.
�
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