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ON THE STRUCTURE OF LAYERS FOR SINGULARLY PERTURBED
EQUATIONS IN THE CASE OF UNBOUNDED ENERGY

E. Sanchez–Palencia1

Abstract. We consider singular perturbation variational problems depending on a small parameter ε.
The right hand side is such that the energy does not remain bounded as ε → 0. The asymptotic behavior
involves internal layers where most of the energy concentrates. Three examples are addressed, with
limits elliptic, parabolic and hyperbolic respectively, whereas the problems with ε > 0 are elliptic. In
the parabolic and hyperbolic cases, the propagation of singularities appear as an integral property after
integrating across the layers.
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1. Introduction

We shall consider several types of singular perturbation problems which may be taken as mathematical model
problems to understand the asymptotic behaviour of thin shells as the thickness tends to zero.

Classical abstract singular perturbation theory for symmetric variational problems in real Hilbert spaces is
concerned with the following situation:

Let V be a real Hilbert space, and a and b two symmetric forms on V satisfying

| a(u,w) |≤ C‖v‖‖w‖ (1.1)

| b(u,w) |≤ C‖u‖‖w‖ (1.2)

a(w,w) ≥ 0 ; b(w,w) ≥ 0 , w ∈ V (1.3)

w ∈ V , a(w,w) = 0 =⇒ w = 0 (1.4)

a(w,w) + b(w,w) ≥ C‖w‖2 , w ∈ V (1.5)

where ‖.‖ denotes the norm of V and C, c are constants. Let V ′ be the dual of V. We then consider the variational
problems Pε {

uε ∈ V
a(uε, w) + ε2b(uε, w) = 〈f, w〉 ∀w ∈ V

(1.6)
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where ε > 0 is a parameter tending to zero and f is a fixed (i.e., independent of ε) element of V ′. It follows
from the above hypotheses that Pε is a Lax–Milgram problem, so that the solution uε is well defined.

We note that, according to (1.3, 1.4)

‖.‖Va = a(., .)1/2 (1.7)

is a norm on V. We may consider the completion Va of V with that norm. Clearly

V ⊂ Va , V ′ ⊃ V ′
a (1.8)

with dense and continuous inclusions. Obviously, f ∈ V ′ but it is not necessarily in V ′
a. When this happens,

the “limit problem” P0: {
u ∈ Va

a(u,w) = 〈f, w〉 ∀w ∈ Va
(1.9)

makes sense as a Lax–Milgram problem and u is well defined.
The main abstract classical result in this theory is:

Theorem 1.1. Under the previous hypotheses, let f ∈ V ′
a and let uε and u be the solutions of (1.6) and (1.9)

respectively. Then,

uε → u strongly in Va. (1.10)

We shall not give here the proof of this theorem, which may be seen for instance in [7] and is analogous to
Theorem 2.3 here after. In the case when f is not in V ′

a, the only general result is:

Proposition 1.2. Under the previous hypotheses, if f �∈ V ′
a the energy

1
2

[
a(uε, uε) + ε2b(uε, uε)

]
(1.11)

of the solution uε tends to infinity as ε→ 0.

Proof. If there exists a subsequence such that the energy (1.11) remains bounded, we have

a(uε, uε) ≤ C , b(uε, uε) ≤ Cε−2 (1.12)

so that extracting again a subsequence

uε → u∗ weakly in Va. (1.13)

Let us fix v ∈ V in (1.6). Using (1.12, 1.13) we pass to the limit:

a(u∗, v) = 〈f, v〉 (1.14)

where the left hand side is obviously continuous in the Va topology, so that the right hand side is too, and this
amounts to f ∈ V ′

a, whence the conclusion. �
Obviously when f ∈ V ′

a, the energy (1.11) remains bounded (as follows immediately from (1.6) with w = uε)
so that f ∈ V ′

a is a necessary and sufficient condition for the energy (1.11) to remain bounded.
In thin shell theory, the structure of the space Va and the type of boundary value problem involved in P0

(1.9) is highly dependent of the geometric properties of the middle surface of the shell and of the kinematic
boundary conditions. More precisely, in shell theory hypothesis (1.4) amounts to the geometric rigidity (in the
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linearized sense) of the middle surface submitted to boundary (fixation) conditions on the boundary or a part of
it. The limit problem P0 (1.9) is of the same type (elliptic, hyperbolic or parabolic) as the points of the middle
surface, whereas the sequence of problems Pε (1.6) are elliptic problems. This implies that boundary conditions
are not always adapted to the limit problem, P0 which is often ill-posed. It follows that Va is very “large”
(in certain cases, said “sensitive” Va is not contained in distribution spaces, see for instance [9] and [3]) and
consequently V ′

a is very “small”. As a consequence, “usual” loadings f which belongs to V, i.e. are admissible
for Pε are not for P0 as f �∈ V ′

a. The specific behaviour of the asymptotics was considered in several cases
(see for instance [5, 6] using formal methods for asymptotic expansions (see [1] for instance). It appears that
the asymptotic structure is highly dependent of the loading. Moreover, not only the energy tends to infinity
according to Proposition 1.2 but in addition it often concentrates along curves (in particular the characteristics
of the limit problem) forming internal (or boundary) layers of high intensity.

The mathematical theory of such problems, including rigorous proof of the convergence to the asymptotic
structure is far from well developped. Certain examples with elliptic and parabolic limit problem where consid-
ered in [10] and [11]. In the present paper we continue that research which is applied to three model problems
with elliptic, parabolic and hyperbolic limits, respectively. They are concerned with an equation (whereas shell
theory involves a system) but the total order of the problems Pε and P0 as well as the multiplicities of the
characteristics are chosen as in shell theory. The methods are analogous to those of [11] which contains model
problems of lower orders than those considered here, in the cases of elliptic and parabolic limits. In fact, [11]
may be considered as an elementary version of the present paper, but both papers are in fact independent.

In order to choose a diversity of examples of loadings more or less singular (then belonging to V ′ but not
to V ′

a), along x2 = 0 in the plane x1, x2 for instance, we consider the classical sequence of distribution of x2

with increasing singularity.

...x2Y (x2), Y (x2), δ(x2), δ′(x2)... (1.15)

where Y and δ denote the Heaviside step function and the Dirac mass. Then loadings will be chosen of the
form :

...Y (x2)F (x1), δ(x2)F (x1), ... (1.16)

with F of class L2 in most cases.
In order to study the phenomenon of formation of a layer along a curve in the solution uε as ε tends to zero,

we perform a dilatation of the normal coordinate to the curve. The problem Pε becomes another one, noted Pη

in the new coordinate system. The dilatation is obviously anisotropic, so that the asymptotic behaviour of the
energies is different in both problems, as boundedness deals with different terms of the expression of the energy.
With an appropriate choice of the scaling of the dilatation the “new energy” remains bounded and we have a
“limit problem” P0 of Pη. This process, which is specific to each problem and each loading, may be interpreted
in terms of the inner and outer matched asymptotic expensions (see [1,4,12] for instance). Pε and Pη are then
the expression of the exact ε > 0 problem in the outer and inner variables, respectively whereas P0 and P0 are
the outer and inner limits respectively.

The three model problems (with elliptic, parabolic and hyperbolic limits, respectively) are addressed in
Sections 2, 3 and 5. Sections 4 and 6 are devoted to the phenomenon of propagation of singularities along the
characteristics, which appears in the layer as a global property for an expression which involves integration of
the solution across the layer. Finally, Section 7 is devoted to some complements, comments and open problems.

Notations are usual. The convention of summation of repeated indices is used.
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2. Model problem for Pε and P0 elliptic of order 8 and 4 respectively

In this section we consider elliptic problems in the domain

Ω = (0, π) × (−1,+1) (2.1)

of the variable x = (x1, x2). The bilinear forms are

a(u,w) =
∫

Ω

∂iju ∂ijw dx (2.2)

b(u,w) =
∫

Ω

∂ijkhu ∂ijkhw dx. (2.3)

When ε > 0, the energy space is

V = H4
0 (Ω). (2.4)

The classical formulation of Pε (1.6) is:

(∆2 + ε2∆4)uε = f in Ω (2.5)

uε = ∂nu
ε = ∂2

nu
ε = ∂3

nu
ε on ∂Ω (2.6)

where ∂n denotes differentiation with respect to the normal.
Classically, using the Poincaré inequality for the function and the derivatives of order 1, 2 and 3, we have:

C‖w‖2
V ≥ a(w,w) + ε2b(w,w) ≥ cε2‖w‖2

V w ∈ V (2.7)

so that the coerciveness constant tends to zero at the ratio ε2. Obviously, a(w,w)1/2 is a norm on V and the
completion of V with this norm is

Va = H2
0 (Ω). (2.8)

The classical formulation of P0 (1.9) is

∆2u = f in Ω (2.9)

u = ∂nu = 0 on ∂Ω. (2.10)

We shall consider two possibilities of right hand sides, chosen in the hierarchy (1.16):

a) f = δ′′(x2) F (x1) (2.11)

b) f = δ′′′(x2) F (x1) (2.12)

where F is taken in L2(0, π). We have

a) 〈f, w〉 =
∫ π

0

F (x1)∂2
2w(x1, 0)dx1 (2.13)

b) 〈f, w〉 = −
∫ π

0

F (x1)∂3
2w(x1, 0)dx1 (2.14)
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and it follows from the trace theorem that in the case a (resp. b) (2.13) (resp. (2.14)) is continuous on Hs if
and only if s > 5/2 (resp. 7/2). In both cases we have:

f ∈ H−4(Ω) = V ′; f �∈ H−2(Ω) = V ′
a (2.15)

and we are in the framework of Proposition 1.2.
Let us consider, for ε > 0 the change of variables:

x1 = y1, x2 = ηy2, η = ε1/2 (2.16)

and of functions

a) uε(x) = ηvη(y) (2.17)

b) uε(x) = vη(y). (2.18)

Denoting

Di = ∂/∂yi, i = 1, 2 (2.19)

and using the classical relations issued from (2.16):

δ′′(x2) = η−3δ′′(y2); δ′′′(x2) = η−4δ′′′(y2). (2.20)

Problem Pε (1.6) with (2.2, 2.3) and (2.11) or (2.12) becomes the new problem on Pη:




Find vη ∈ H4
0 (Bη), Bη = (0, π) × (−1/η,+1/η)

such that ∀w ∈ H4
0 (Bη)

a0(vη, w) + η2a1(vη, w) + η4a2(vη, w) + η6a3(v
η
1 , w) + η8a4(vη, w) = 〈Φ, w〉

(2.21)

where:




a0(v, w) =
∫

B0

D2
2v D

2
2w dy +

∫
B0

D4
2v D

4
2w dy

a1(v, w) = 2
∫

B0

D1D2vD1D2w dy + 4
∫

B0

D3
2D1vD

3
2D1w dy

a2(v, w) =
∫

B0

D2
1vD

2
1w dy + 6

∫
B0

D2
1D

2
2vD

2
1D

2
2w dy

a3(v, w) = 4
∫

B0

D3
1D2v D

3
1D2w dy

a4(v, w) =
∫

B0

D4
1vD

4
1w dy

(2.22)

and

a) 〈Φ, w〉 =
∫ π

0

F (y1)D2
2w(y1, 0)dy1 (2.23)

b) 〈Φ, w〉 = −
∫ π

0

F (y1)D3
2w(y1, 0)dy1. (2.24)
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Here and in the sequel, vη as well as test functions w are considered to be extended with value 0 for | y2 |> 1/η,
so that they belong to H4

0 (B0) as well, where obviously

B0 = (0, π) × R

and the integrals in (2.22) may be considered either on B0 or Bη.

Remark 2.1. The scaling (2.16) was defined in order to have in a0 (2.22), i.e. in the bilinear form at the
leading order as η → 0, two terms coming from the forms a and b of (1.6, 2.2, 2.3). Analogously the scalings
(2.17) and (2.18) of the unknowns were defined in order to have in (2.21) a right hand side of the same order
(as η → 0) as the leading term of the left hand side. These kind of scalings are classical in formal matched inner
and outer asymptotic expansion procedures (see for instance [1, 4]). Moreover, equations (1.6) and (2.21) may
be considered as the “outer” and “inner” descriptions of the problem. �

We are now constructing an energy space suited for the “limit problem” of (2.21) as η → 0. We observe that
the left hand side of (2.21) with η = 0 only involves derivatives with respect to y2, of order ≥ 2, so that it
“ignores” additive functions of the form

α(y1) + β(y1)y2. (2.25)

The same holds true for the right hand side (see (2.23, 2.24)). Let us now consider the space H4
0 (−1/η, 1/η) of

the variable y2. Each function v is extended as above, with value zero for | y2 |> 1/η. We then construct the
space of the equivalence classes ṽ of functions defined up to an additive affine function of y2. Let us denote by
H4

0 (−1/η, 1/η)/R2 the above defined space of equivalence classes. We then construct the space of functions of
class L2 of the variable y1 with values in that space; the new space is obviously noted

L2
(
(0, π)y1 ; H

4
0 (−1/η, 1/η)/R2

)
. (2.26)

We then consider the union of that spaces for η < 1, and finally we define its completion

V = C
⋃
η<1

L2
(
(0, π)y1 ; H

4
0 (−1/η, 1/η)/R2

)
. (2.27)

Here the completion is for the norm:

‖ṽ‖V = a0(ṽ, ṽ)1/2 (2.28)

which makes sense, as its expression in (2.22) shows that it takes the same value for any element of the
equivalence class.

We may now define the limit problem P0:{
Find ṽ ∈ V such that ∀w̃ ∈ V :
a0(ṽ, w̃) = 〈Φ, w̃〉 (2.29)

where the right hand side is the expression (2.23, 2.24) for any element w of the equivalence class w̃. Obviously

| 〈Φ, w̃〉 |≤ C‖F‖L2(0,π) ‖w̃‖V (2.30)

so that (2.29) is a variational problem in the Lax–Milgram framework. Then, the solution ṽ is uniquely defined
as an element of V (and equivalently, as a function it is only defined up to additive functions of the form (2.25)).
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Remark 2.2. Given an element v of H4
0 (Bη), we may construct its extension with value zero to the strip B0

and consider it up to additive functions of the form (2.25). The equivalence class constructed in this way will
be noted ṽ and is obviously an element of V .

The convergence of the solutions vη of (2.21) to the solution ṽ of (2.29) then takes the following form:

Theorem 2.3. Let vη be the solution of Pη (2.21) and ṽη the corresponding equivalence class defined according
to Remark 2.2. Then

ṽη → ṽ strongly in V (2.31)

where ṽ is the solution of (2.29).

Proof. Let us take in (2.21) w = vη. According to the above mentioned property that the right hand side is a
continuous functional on V we obtain the estimates

‖ṽη‖V = a0(vη, vη)1/2 ≤ C (2.32)

a1(vη, vη)1/2 ≤ Cη−1 (2.33)

a2(vη, vη)1/2 ≤ Cη−2 (2.34)

a3(vη, vη)1/2 ≤ Cη−3 (2.35)

a4(vη, vη)1/2 ≤ Cη−4. (2.36)

It follows from (2.32) that there exist ṽ∗ ∈ V such that (at lest for a subsequence)

ṽη → ṽ∗ weakly inV . (2.37)

Let us check that ṽ∗ is precisely the solution ṽ of (2.29). Let us fix w belonging to H4
0 (Bη) for some η = η1.

After extending it with value zero, it also belongs to H4
0 (Bη) with η < η1 and it may be taken as test function

for the corresponding problem Pη. From (2.37) and (2.33–2.36) we pass to the limit, so that

a0(ṽ∗, w) = 〈Φ, w〉 (2.38)

with the fixed w. Obviously, we may write w̃ instead of w in (2.38) (see Rem. 2.2). It follows from (2.27) that
such test functions are arbitrary in a dense set of V , so that (2.38) also holds for w̃ ∈ V and this proves that ṽ∗

is the solution of (2.29).
In order to prove the strong convergence, we write the expression:

a0(vη − ṽ, vη − ṽ) + η2a1(vη, vη) + ηεa2(vη, vη) + η6a3(vη, vη) + η8a4(vη, vη) (2.39)

which, using (2.21) with w̃ = vη and (2.29) with w = vη and w = v equals:

〈Φ, vη〉 + 〈Φ, ṽ〉 − 2 〈Φ, ṽη〉

which tends to zero by virtue of (2.37). In particular, the term a0 of (2.39) tends to zero and (2.31) is proved.
�

Remark 2.4. In order to size the geometric interpretation of the convergence Theorem 2.3, it will prove
useful to have an “heuristic picture” of the solution of the limit problem in the variable x (for instance in the
case a) (2.11)):

∆2u0 = F (x1)δ′′(x2).
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It is apparent that fourth order derivatives of u0 will be singular as Fδ′′(x2) along the line x2 = 0. This
corresponds to a jump F (x1) of ∂2u

0 at x2 = 0. In the same way, in case b) (2.12), u0 exhibits a jump of value
F (x1) at x2 = 0.

Let us now solve the limit problem (2.29). Obviously it is an ordinary differential equation in y2 with
parameter y1. Denoting ˜̃v = D2

2ṽ, the equation associated with (2.29) is

(
D2

2 +D6
2

) ˜̃v =
{
F δ′′ a)
F δ′′′ b)

or

(
1 +D4

2

) ˜̃v =
{
F δ + α+ βy2 a)
F δ′ + α+ βy2 b) (2.40)

but ˜̃v ∈ L2(R) and it follows from (2.40) with y2 > 0 and y2 ≤ 0 that necessarily α = β = 0. It then follows
again from (2.40) that D3

2
˜̃v (resp. D2

2
˜̃v) presents a jump of value F at y2 = 0 in the case a) (resp. b). It is not

hard to prove that ˜̃v is completely determined by (2.40) and the condition ˜̃v ∈ L2(R) as this property implies
four conditions (two of decreasing at +∞ at two at −∞) to the solution of a fourth order equation. This leads
immediately to:

• Case a (2.11): ˜̃v is even and

D3
2
˜̃v(0+) = F/2 , D2

˜̃v(0+) = 0 , ˜̃v(+∞) = 0

• Case b (2.12): ˜̃v is odd and

D2
2
˜̃v(0+) = F/2 , ˜̃v(0+) = 0 , ˜̃v(+∞) = 0

which determines uniquely ˜̃v = D2
2 ṽ. The very unknown ṽ may then by obtained by integration, and is obviously

defined up to arbitrary functions of the form (2.25). Nevertheless, certains “jumps between −∞ and +∞” of ṽ,
very illuminating in relation with Remark 2.4, are well determined.

Indeed, in case a (2.11), because of the exponential decreasing of V = D2
2ṽ at ±∞, the action of this

distribution on the test function equal to 1 makes sense. Using (2.40) this gives:〈 ˜̃v, 1
〉

=
〈
Fδ −D4

2
˜̃v, 1

〉
= F − 〈 ˜̃v,D4

21
〉

= F

so that

F =
〈 ˜̃v, 1

〉
=

〈
D2

2ṽ, 1
〉

=
∫ +∞

−∞
D2

2ṽdy2 = D2 ṽ|+∞
−∞ (2.41)

and F is the jump between −∞ and +∞ of the derivative D2ṽ.
In case b(2.12) we have in the same way:〈 ˜̃v, y2

〉
=

〈
Fδ′ −D4

2
˜̃v, y2

〉
= −F − 〈 ˜̃v,D4

2y2
〉

= −F

so that

F = − 〈 ˜̃v, y2
〉

= − 〈
D2

2ṽ, y2
〉

= 〈D2ṽ, 1〉 =
∫ +∞

−∞
D2ṽdy2 = ṽ|+∞

−∞ (2.42)

and F is the jump between −∞ and +∞ of ṽ.
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Coming back to Remark 2.4, we see that ṽ describes the way where the jump of ∂2u
0(x) (resp. u0(x)) is

replaced by a smooth function of y2 (as y1 = x1 is in fact a parameter). This function is only defined up to a
function of the form (2.25), but it may “match” the values of ∂2u

0(0±) (resp. u0(0±)) with those of ṽ(±∞).
This is the classical property of formal matched asymptotic expansions (see [1, 4] for instance).

Remark 2.5. We saw in (2.42) that ṽ tends to two different limits as y2 tends to +∞ and −∞. There is
no contradiction between this property and the fact that ṽ belongs to V defined in (2.27). The functions of
H4

0 (−1/η, 1/η)/R2 are equal to the same affine function in neighbourhoods of −∞ and +∞, but this property
is lost in the completion process involved in the definition of V as one may check easily (see Sect. 7.2 hereafter
for other related topics). The same comment applies to the even more singular behaviour (2.41) where ṽ tends
to asymptotes of different slope as y2 tends to +∞ and −∞.

3. Model problem for Pε elliptic of order 8 and P0 parabolic of order 4

In this section we consider problems analogous to the previous ones for ε > 0, but the limit problem is
parabolic with characteristics (of order of multiplicity four) x2 = const. The singular right hand side is applied
along the characteristic x2 = 0. The domain Ω is, as before, equation (2.1), but the bilinear forms are:

a(u,w) =
∫

Ω

∂2
1u∂

2
1w dx (3.1)

b(u,w) =
∫

Ω

∂ijkhu∂ijkhw dx. (3.2)

The energy spaces and its duals are:

V = H4
0 (Ω)

Va = L2
(
(−1,+1)x2; H

2
0 (0, π)x1

)
V ′ = H−4(Ω)

V ′
a = L2

(
(−1,+1)x2; H

−2(0, π)x1

)
.

The classical formulations of Pε is (
∂4
1 + ε2∆4

)
uε = f in Ω (3.3)

uε = ∂nu
ε = ∂2

nu
ε = ∂3

nu
ε = 0 on ∂Ω (3.4)

whereas P0 is:

∂4
1u = f in Ω (3.5)

u = ∂1u = 0 on x1 = 0 and x1 = π. (3.6)

As for the right hand side, there are four possibilities in the hierarchy (1.15), namely δ(x2), δ′(x2), δ′′(x2),
δ′′′(x2) such that, multiplied by functions F (x1) (in L2 for instance) give functionals belonging to V ′ but not
belonging to V ′

a. We shall write them in the condensated form:

f = F (x1)δ(p)(x2) ; p = 0, 1, 2, 3 (3.7)

where δ(p) = ∂pδ and F ∈ L2(0, π).
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We then consider the change of variables

x1 = y1, x2 = ηy2, η = ε1/4 (3.8)

and of functions

uε(x) = ηp+1uη(y), p = 0, 1, 2, 3 (3.9)

so that, using again the notation (2.19), the problem Pε becomes Pη:


Find vη ∈ H4
0 (Bη), Bη = (0, π) × (−1/η,+1/η)

such that ∀w ∈ H4
0 (Bη)

a0(vη, w) + η2a1(vη, w) + η4a2(vη, w) + η6a3(v
η
1 , w) + η8a4(vη, w) = 〈Φ, w〉

(3.10)

where

a0(v, w) =
∫

B0

D2
1vD

2
1w dy +

∫
B0

D4
2vD

4
2w dy (3.11)

a1(v, w) = 4
∫

B0

D3
2D1vD

3
2D1w dy (3.12)

a2(v, w) = 6
∫

B0

D2
1D

2
2vD

2
1D

2
2w dy (3.13)

a3(v, w) = 4
∫

B0

D3
1D2v D

3
1D2w dy (3.14)

a4(v, w) =
∫

B0

D4
1vD

4
1w dy (3.15)

〈Φ, w〉 = (−1)p

∫ π

0

F (y1)D
p
2w(y1, 0)dy1, p = 1, 2, 3, 4. (3.16)

Obviously, the choice of the change of variables and functions was done according to Remark 2.1; as before,
functions are extended to B0 = (0, π) × R with value zero for | y2 |> 1/η. Oppositely, the choice of the energy
space V for the limit problem is very different from sect. 2, and even simpler. Indeed, in the present case the
limit form a0 contains derivatives D1 as well as D2. Then we shall not take equivalence classes and V will be
defined merely as:

V = C
⋃
η<1

H4
0 (Bη) (3.17)

where C denotes completion for the norm (2.28), i.e. the energy norm of the limit problem defined by (3.11).
Before going on we need certain properties of V .

Lemma 3.1. In V holds true the equivalence of norms

‖.‖2
V � ‖.‖2

L2(Ry2 ;H2
0 (0,π))y1

+ ‖.‖2
L2((0,π)y1;H4(Ry2 )). (3.18)

Proof. The square of the norm of V is obviously less than a constant multiplied by the right hand side of (3.18);
let us prove the opposite. Using the Poincaré inequality in H2

0 (0, π), its norm is equivalent to the norm of the
second derivative in L2, so that the first term of the right hand side in (3.18) is majorized by the left hand side.
It only remains to prove that

‖.‖2
L2((0,π)y1 ;H4(Ry2 )) ≤ C‖.‖2

V . (3.19)
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From the previous argumentation it follows in particular that

‖.‖2
L2((0,π)y1 ;L2(Ry2)) ≤ C‖.‖2

V . (3.20)

and obviously:

∥∥D2
2w

∥∥2

L2(Ry2 ;L2(0,π)y1 )
≤ ‖w‖2

V . (3.21)

Moreover, it is classical even for unbounded intervals (see for instance [8], Th. 2.3, p. 19) that the norms

‖w‖2
H2(Ry2) and ‖w‖2

L2(Ry2) +
∥∥D2

2w
∥∥2

L2(Ry2 )

are equivalent. Then, equations (3.20) and (3.21) imply (3.19). �
Lemma 3.2. Space V coincides with

L2
(
Ry2 ; H

2
0 (0, π)y1

)⋂
L2

(
(0, π)y1 ; H

4(Ry2)
)
. (3.22)

Proof. Classical techniques of convolution and translation (see for instance [8], p. 14) show that smooth functions
with compact support are dense in V . The conclusion then follows from the definition of V (see (3.17)). �

The limit problem P0 is then: {
Find v ∈ V such that ∀w ∈ V
a0(v, w) = 〈ϕ,w〉 (3.23)

where the right hand side is defined by (3.16). Obviously, P0 is a variational problem in the lax-Milgram
framework, as (3.16) is a continuous functional on V . The solution v is then uniquely defined.

The convergence theorem, which is proved exactly as Theorem 2.3 is:

Theorem 3.3. Let vη and v be the solutions of Pη (3.10) and P0 (3.23) respectively. Then,

vη → v strongly in V . (3.24)

Remark 3.4. The completion process to construct V implies a loss of boundary conditions at y1 = 0 and
y1 = π. Indeed, for η > 0, the solution uη of Pη vanishes as well as its derivatives up to the third order at
y1 = 0 and y1 = π (see (3.10) as well as (3.4) for the equivalent problem in x), whereas the solution v of P0

only satisfies v = D1v = 0 at y1 = 0 and y1 = π (see Lem. 3.2). This phenomenon is probably associated with
an interaction of the layer under study (in the neighbourhood of x2 = 0) and a boundary layer at x1 = 0 and
x1 = π. Obviously, the dilatation (3.8) is suited for the first one, but the second may give some trouble. This
is also the reason why the previous developments work well with F ∈ L2(0, π) as we took, whereas the limit
problem (3.5, 3.6) makes sense with F ∈ H−2(0, π) in (3.7).

The classical formulation of P0 (3.23) is

(
D4

1 +D8
2

)
v = F (y1)δ(p)(y2) in B0 p = 0, 1, 2, 3 (3.25)

v = D1v = 0 for y1 = 0 and y1 = π (3.26)

v → 0 as | y2 |→ ∞. (3.27)

Obviously (3.25) and (3.26) follow from the formulation of the variational problem and the properties of V .
Condition (3.27) should be understood in the sense of the exponential decreasing of the Fourier components
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involved in the separation of variables process. Indeed, this problem in the strip B0 is easily solved by expanding
the solution in the basis formed by the eigenfunctions of the bilaplacian in (0, π) with Dirichlet boundary
conditions (3.26). The coefficients, as functions of y2, solve an eight order differential equation and (3.27) comes
from the finite energy condition. We shall not give here the explicit solution of this problem which is analogous
to another one which may be found in [11], Section 3. We shall only point out for ulterior utilization, the
fact that the derivatives with respect to y2 of v of orders from 0 to 7 are continuous at the origin, with the
exception of

D
8−(p+1)
2 v

which has a jump of value F (y1) at y2 = 0. This fact follows easily from (3.25).

4. Propagation phenomena in the previous problem

The limit problem in x (3.5, 3.6) is parabolic in x1, x2 but in fact x2 appears as a parameter and the very
structure is that of an elliptic problem in x1 with a parameter. The solution is obviously

u = δ(p)(x2)U(x1) p = 0, 1, 2, 3 (4.1)

where U is the solution of

∂4
1U = F in (0, π) (4.2)

U(0) = D1U(0) = U(π) = D1U(π) = 0. (4.3)

Equation (4.2) (as well as the boundary condition (4.3)) may be seen as a propagation phenomenon of the
singularities of a solution of the parabolic problem (3.5, 3.6) along the characteristic x2 = 0. The fourth order
equation (4.2) accounts for the multiplicity of order four of the characteristic. Clearly, support (U) is generically
larger than support (F ) so that a propagation phenomenon holds along the characteristic.

On the other hand, the solution v of the limit problem in y, equations (3.25–3.27) may be considered as
an “infinitely dilated in the normal direction” version of the one-dimensional problem (4.2, 4.3). But (3.25)
is a parabolic equation with characteristics y1 = const. of multiplicity eight, so that there are certainly not
propagation phenomena in the longitudinal direction y1 = const. This slightly padoxical situation is explained
by the fact that, as we shall see in the sequal, propagation phenomena in (3.25) are not local properties, but
global properties obtained after integration in y2, i.e. normally to the layer. This is perfectly consistent with
the fact that (4.2, 4.3) is an “infinitely contracted” version of (3.25–3.27).

Let v be the solution of (3.25–3.27). Let us define certain integrals with respect to y2 inspirated by the
distributions δ(p), p = 0, 1, 2, 3 in (4.1). Let

v̂(y1) = (−1)p

∫ +∞

−∞

yp
2

p!
v(y1, y2)dy2 p = 0, 1, 2, 3 (4.4)

which make sense because of the exponential decay of v as | y2 | tends to infinity. For the same reason we may
consider the integral (4.4) as the action of the distribution v(y1, .) on the test function yp

2(p!)−1:

v̂(y1) = (−1)p

〈
v(y1, y2),

yp
2

p!

〉
· (4.5)
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Let us consider the sections at y1 = const. of the various terms in (3.25) as distributions which we apply to the
test function yp

2 . We have:

〈
D4

1v, (−1)p y
p
2

p!

〉
= D4

1 v̂(y1)〈
D8

2v, (−1)p y
p
2

p!

〉
=

〈
D8−p

2 v, 1
〉

= D8−p−1
2 v

∣∣∣+∞

−∞
= 0〈

F (y1)δ(p)(y2), (−1)p y
p
2

p!

〉
= F (y1)

where the exponential decay of v and its derivatives was used. We then obtain:

D4
1v̂(y1) = F (y1). (4.6)

Obviously we also have

v̂(0) = D1v̂(0) = v̂(π) = D1v̂(π) = 0 (4.7)

which is the (global) propagation property of v. We also observe that v̂(y1) coincides with U(y1) (see (4.2, 4.3)).
Moreover, let us define:

v̂q(y1) = (−1)q

∫ +∞

−∞

yq
2

q!
v(y1, y2)dy2 q < p. (4.8)

Exactly as before we obtain:

D4
1v̂

q(y1) = 0

v̂q(0) = D1v̂
2(0) = v̂q(π) = D1v̂

q(π) = 0

so that

v̂q(y1) = 0. (4.9)

In other words, the moments of order q < p of v(y1, .) vanish, whereas the moment of order p, which we called
v̂(y1) is in general different from zero (see (4.6, 4.7)). It is then a classical exercise in distribution theory that
as η → 0:

1
ηp+1

v(y1, ηq2) −→ v̂(y1)δ(p)(y2) in D′(Ry2). (4.10)

On account of the change (3.8, 3.9) this means that, coming back to the initial variables and functions from the
limit v(y) of vη(y) (and not from the exact solution vη) we have a sequence which tends as η tends to zero to
the solution of the limit problem in x (4.1–4.3).

5. Model problem for Pε elliptic of order 8 and P0 hyperbolic of order 4

We now consider problems analogous to the previous ones for ε > 0, but the limit problem is hyperbolic of
order 4, with two families of characteristics y1 = const. and y2 = const., each with multiplicity 2. The singular
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right hand side is applied on the (double) characteristic x2 = 0. The domain Ω is again given by (2.1) and the
bilinear forms are

a(u, v) =
∫

Ω

∂1∂2u∂1∂2v dy (5.1)

b(u, v) =
∫

Ω

∂ijkhu∂ijkhv dy. (5.2)

The energy space for ε > 0 and its dual are

V = H4
0 (Ω), V ′ = H−4(Ω). (5.3)

In order to characterize the space Va, we note that, denoting w = ∂2v, v ∈ Va implies ∂1w ∈ L2(Ω) and using
the Poincaré inequality on (0, π) for functions v ∈ V we have

w ∈ L2
(
(−1,+1)y1; H

1
0 (0, π)y2

)
and applying again the Poincaré inequality on (−1,+1)

u ∈ H1
0

(
(−1,+1)y1; H

1
0 (0, π)y2

)
.

Moreover, V is dense in that space, so that:

Va = H1
0

(
(−1,+1)y1; H

1
0 (0, π)y2

)
(5.4)

V ′
a = H−1

(
(−1,+1)y1; H

−1(0, π)y2

)
(5.5)

where evidently y1 and y2 with their intervals may be exchanged.
The classical formulation of Pε is: (

∂2
1∂

2
2 + ε2∆4

)
uε = f in Ω (5.6)

uε = ∂nu = ∂2
nu = ∂3

nu = 0 on ∂Ω (5.7)

whereas P0 is

∂2
1∂

2
2u = f in Ω (5.8)

u = 0 on ∂Ω (5.9)

which is a hyperbolic problem with non-classical boundary conditions: they look a little as Dirichlet conditions,
but there is only one condition for a fourth order equation.

As for the right hand side, there are three possibilities in the hierarchy (1.15), namely δ′(x), δ′′(x), δ′′′(x)
such that their product by sufficiently smooth functions F (x1) give functionals belonging to V ′ but not to V ′

a.
We shall consider

f = F (x1)δ(p)(x2); p = 1, 2, 3 (5.10)

with F ∈ L2(0, π).
In the present case, the change of variables is

x1 = y1, x2 = ηy2, η = ε1/3 (5.11)



LAYERS FOR SINGULARLY PERTURBED EQUATIONS 955

whereas a formal study of the solutions of (5.8) leads immediately to a behaviour in δ(p−2) for u (with p = 1 a
“singularity in δ(−1)” obviously means a jump singularity in Y ) which suggest the change on functions

uε(x) = ηp−1vη(y) , p = 1, 2, 3 (5.12)

and the problem (1.6) with ε > 0 becomes the new problem Pη:




Find vη ∈ H4
0 (Bη), Bη = (0, π) × (−1/η,+1/η)

such that ∀w ∈ H4
0 (Bη)

a0(vη, w) + η2a1(vη, w) + η4a2(vη, w) + η6a3(v
η
1 , w) + η8a4(vη, w) = 〈Φ, w〉

(5.13)

where:

a0(v, w) =
∫

B0

D1D2vD1D2w dy +
∫

B0

D4
2vD

4
2w dy (5.14)

a1(v, w) = 4
∫

B0

D3
2D1vD

3
2D1w dy (5.15)

a2(v, w) = 6
∫

B0

D2
1D

2
2vD

2
1D

2
2w dy (5.16)

a3(v, w) = 4
∫

B0

D3
1D2vD

3
1D2v dy (5.17)

a4(v, w) =
∫

B0

D4
1vD

4
1w dy (5.18)

〈Φ, w〉 = (−1)p

∫ π

0

F (y1)D
p
2w(y1, 0)dy1, p = 1, 2, 3. (5.19)

An inspection of the bilinear form a0 defined in (5.14) shows that it has an “intermediate” character between
(2.22) and (3.11). It vanishes on functions depending only on y2 (which is a little less than on (2.25)) but involve
derivatives with respect to both y1 and y2 as (3.11). So, the construction of the energy space V for the limit
problem in the variables y recalls a little (2.27) but after taking equivalence classes, leads to partial differential
equations in y1, y2, as in Section 3.

Let us define the space of functions of y2:

H4
0 (−1/η,+1/η)/R (5.20)

as the space of the equivalence classes of functions defined up to an additive constant from the functions of
H4

0 (−1/η,+1/η) which we always consider extended with value zero for | y2 |> 0. We then construct the space
of functions of y1 with values in the previous space

L2
(
(0, π)y1 ; H

4
0 (−1/η,+1/η)/Ry2

)
. (5.21)

Obviously for fixed η the set of equivalence classes obtained from the element H4
0 (Bη) by adding arbitrary

functions of y1 is dense in the space (5.21). Finally, we construct the union of the spaces with η < 1 and we
define V as the completion:

V = C
⋃
η<1

L2
(
(0, π)y1 ; H

4
0 (−1/η, 1/η)/Ry2

)
(5.22)
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with the norm

‖w‖2
V = a0(w,w) =

∫
B0

[
(D1D2w)2 + (D4

2w)2
]
dy. (5.23)

It follows from the previous considerations that:

Lemma 5.1. The set of equivalence classes obtained from the elements of
⋃

η<1H
4
0 (Bη) by adding arbitrary

functions of y1 is dense in V .
There is also a property analogous to Lemma 3.2, but it involves D2w instead of w:

Lemma 5.2. Let v ∈ V . Then, v̄ = D2v belongs to

L2
(
Ry2 ;H

1
0 (0, π)y1

) ⋂
L2

(
(0, π)y1 ;H

3(Ry2)
)

(5.24)

and the operator D2 is continuous from V to (5.24).

Proof. It follows from (5.23) that w ∈ V implies that defining v̄ = D2v, we have,

v̄ ∈ L2(B0) and D3
2 v̄ ∈ L2(B0) (5.25)

with the corresponding inequalities for norms. From Lemma 5.1, we may only consider smooth (in fact of
class H3) function w̄ vanishing at y1 = 0 and y1 = π. It then follows from the Poincaré inequality on the
interval (0, π) of y1 that

w̄ ∈ L2
(
Ry2 ; H

1
0 (0, π)y1

)
(5.26)

and in particular, after exchanging variables:

w̄ ∈ L2
(
(0, π)y1 ; L

2(Ry2)
)
. (5.27)

But from (5.23)

D3
2w̄ ∈ L2

(
(0, π)y1 ; L

2(Ry2)
)

(5.28)

and using the fact that in H3(Ry2) the norms

‖w̄‖2
H3(Ry2 ) and ‖w̄‖2

L2(Ry2) +
∥∥D3

2w̄
∥∥2

L2(Ry2 )

are equivalent (see [8], Th. 2.3, p. 19), we see that

w̄ ∈ L2
(
(0, π)y1 ; H

3(Ry2)
)
. (5.29)

The lemma follows from (5.26) and (5.29) (Note that all the inclusions imply the corresponding inequalities for
the norms). �

As for the functional Φ, we have:

Lemma 5.3. The expression 〈Φ, w〉 in (5.19) defines a continuous functional on V .
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Proof. Expression (5.19) vanishes on functions depending only on y1, so that it defines a functional on the space
of equivalence classes. As for the continuity, it follows immediately from Lemma 5.2 by using the trace theorem
in H3(Ry2). �

The limit problem P0 is then defined by:{
Find ṽ ∈ V such that∀w̃ ∈ V
a0(ṽ, w̃) = 〈Φ, w̃〉 (5.30)

which is clearly in the Lax-Milgram framework. This defines uniquely the solution ṽ as an element of V , but of
course, as a function, it is only defined up to an additive function of y1.

Remark 5.4. The analogous of Remark 2.2 with functions which are constant with respect to y2 holds true in
the present case. Any v ∈ H1

0 (Bη) extended with value zero and considered up to additive functions of y1 is an
element of V .

The convergence theorem, which is proved exactly as Theorem 2.3 is:

Theorem 5.5. Let vη be the solution of (5.13). We then construct the corresponding equivalence class ṽη

according to Remark 5.4. We have:

ṽη → ṽ strongly in V (5.31)

where ṽ is the solution of (5.30).

In order to solve explicitly the limit problem (5.30) we obtain immediately the corresponding equation in the
distribution sense for any element of the equivalence class ṽ:(

D2
1D

2
2 +D8

2

)
v = F (x1)δ(p)(x2), p = 1, 2, 3. (5.32)

Denoting

D2v = v̄ (5.33)

it may be written

D2

(
D2

1 +D6
2

)
v̄ = F (x1)δ(p)(x2), p = 1, 2, 3

and integrating with respect to y2 we have(
D2

1 +D6
2

)
v̄ = F (y1)δ(p−1)(y2) + α(y1), p = 1, 2, 3 (5.34)

where α(y1) is an unknown function. In fact it vanishes as follows from (see (5.24)):

v̄ ∈ L2
(
(0, π)y1 ; H

3(Ry2)
)
. (5.35)

Indeed, from (5.24) we also have the boundary conditions

v̄(0, y2) = v̄(π, y2) = 0 (5.36)

and we develop v(y1, y2) taking y2 as a parameter in the basis ϕn of eigenfunctions of the Dirichlet problem for
the Laplacian in the interval (0, π):

v̄ = ϕn(y1)v̄n(y2). (5.37)
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The differential equation for v̄n(y2) is

(−n2 +D6
2)v̄n(y2) = Fnδ

(p−1)(x1) + αn, p = 1, 2, 3. (5.38)

On the other hand writing (5.35) under to form

v̄ ∈ H3(Ry2 ; L
2(0, π)y1)

we see that each component v̄n belongs to H3(Ry2). This implies decreasing properties for y2 tending to +∞
and −∞ which may only be satisfied by a solution of (5.38) with αn = 0.

Finally the problem for v̄ becomes

(D2
1 +D6

2)v̄ = F (y1)δ(p−1)(y2), p = 1, 2, 3 (5.39)

with (5.36) and exponential decreasing for |y2| tending to infinity. This problem is exactly analogous to (3.25–
3.27) and solved in the same way using the separation of variables (5.37).

Once v̄ is known, the function v(y1, y2) may be obtained by integration with respect to y2 (see (5.33)) but of
course it is only defined up to an additive function of y1.

Remark 5.6. As we pointed out, the solution of the problem for v̄ (defined by (5.33) is uniquely defined. This
is a genuine partial differential equation with respect to y1 and y2, analogous to the equation for v of Section 3
(see (3.25–3.27)). But in the present case the unknown is the derivative D2v so that in this concern, the problem
is analogous to that of Section 2.

6. Propagation properties for the previous problem

Let us first consider the limit problem (5.8, 5.9). The singularity along y2 = 0 may be developed in terms of
the sequences (1.16), namely

u ∼ δ(p−2)(x2) U(x1) + ..., p = 1, 2, 3 (6.1)

(where δ(−1) is obviously the step function Y ). Substituting in (5.8) and (5.9) we have:

D2
1U(x1) = F (x1) on (0, 1) (6.2)

U(0) = U(π) = 0 (6.3)

which determines the leading order of the singularity in (6.1). It should be noticed that, for p = 2 and 3, this
is the exact solution; oppositely, for p = 1, the leading term of the right hand side of (6.1) is just the jump of
the solution at y2 = 0.

Coming back to the solution v̄ of (5.34) (which is exponentially decreasing as |y2| → +∞) we may define

ˆ̄v(y2) = (−1)p−1

∫ +∞

−∞

yp−1
2

(p− 1)!
v̄(y1, y2)dy2, p = 1, 2, 3 (6.4)
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which makes sense as the action of the distribution v̄(y1, .) on the test function yp−1
2 while y1 being considered

as a parameter. Taking the action of the different terms of (5.38) on that test functions, we obtain:〈
D2

1v̄, (−1)p−1 yp−1
2

(p− 1)!

〉
= D2

1
ˆ̄v(y1)〈

D6
2v̄, (−1)p−1 yp−1

2

(p− 1)!

〉
=

〈
D

6−(p−1)
2 v̄, 1

〉
= D6−p

2 v̄|+∞
−∞ = 0〈

F (y1)δ(p−1)(y2), (−1)p−1 yp−1
2

(p− 1)!

〉
= F (y1)

so that

D2
1
ˆ̄v(y1) = F (y1) (6.5)

and obviously

ˆ̄v(0) = ˆ̄v(π) = 0 (6.6)

which is the global propagation property for v(y1, y2). It is concerned with v̄ = D2v and then uniquely defined.
In particular, for p = 1, ˆ̄v(y1) is merely the integral of v̄, in other words the jump of v between −∞ and +∞. For
p = 2 and p = 3 they account for δ′(y2) and δ′′(y2) -like singularities of v̄, i.e. δ(x2) and δ′(x2) -like singularities
of v, respectively, according to considerations analogous to those of Section 4.

7. Complements, open problems and comments

7.1. Layers along free boundaries

As in [11], Section 4, problems analogous to those of Sections 2, 3 and 5 may be handled using the same
kind of methods in the case when the curve x2 = 0 where the singular right hand side is applied is a boundary
of Ω without “principal boundary conditions” prescribed in the space V. More precisely, we may consider the
domain

Ω = (0, π) × (0, 1) (7.1)

and the boundary conditions (2.6, 3.4) or (5.7) are only prescribed for x1 = 0, x1 = π and x2 = 1. Clearly
the singular loading must be considered in the sense of (2.13, 2.14), and the analogous expressions in the other
cases. This amounts to singular right hand sides in the natural boundary conditions on x2 = 0.

The solution of these problems is analogous to that of Sections 2, 3 and 5, but obviously the half-axis y2 > 0
replaces Ry2 .

There is a variant of the problem of Section 2 in this context that deserves attention. If the bilinear form a
of (2.2) us replaced by

a(u, v) =
∫

Ω

∆u.∆v dx (7.2)

the problem in H4
0 (Ω) does not change. Oppositely in the case when there is a “free boundary” (as x2 = 0 in

(7.1), without principal boundary conditions in the space V), the limit problem for ε = 0 is not well posed as
an elliptic problem because the natural boundary conditions do not satisfy the Shapiro–Lopatinskii condition.
The structure of the Pη problem (2.21) is different involving other terms than the “sum of squares” of (2.22)
for vη = w. It appear that Va is then a “very large space” going out of the distribution space. The problem for
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ε = 0 is said to be “sensitive”. Not very much is known on the asymptotic behaviour as ε tends to zero in this
case. It is nevertheless likely that loadings as (2.13, 2.14) may be handled by the methods of the present paper.

7.2. A comment on the equivalence classes

Let us consider the case of Section 2 (Sect. 5 is analogous). The expression of a0 in (2.22) of the limit energy
form defines the square of a norm on

⋃
η<1

H4
0 (Bη) (7.3)

as the elements of (7.3) vanish for | y2 | sufficiently large. One may think that taking equivalence classes up
to (2.25) is useless, and even leads to some loss of information. In fact this is not the case, as we are seeing
that the associated topology on functions of the form (2.25) is “very poor” and they should be assimilated to
the zero function in the completion process.

To be convinced of it, let us first consider the completion with the Dirichlet norm

‖u‖2 =
∫ +∞

−∞
|du/dy|2dy (7.4)

of the space

⋃
η<1

H1
0 (−1/η, 1/η) (7.5)

where, as usual, the functions are extended with value zero for |y |> 1/η.
Let us consider the continuous function uL taking the value 1 (resp. 0) for | y |< L (resp. | y |> 2L) which

depends linearly on y for L <| y |< 2L. Its norm (7.4) tends to zero as L tends to ∞. Obviously uL tends to
the function equal to 1 in the distribution sense, but to the zero function in the completion of (7.5) for the
norm (7.4).

It is easily seen that the above example may be adapted to the case when H1
0 is replaced by H4

0 in (7.5) with
the norm

‖u‖2 =
∫ +∞

−∞

(|du/dy|2 + |d2u/dy2|2) dy (7.5)

instead of (7.4): we may, for instance, introduce small “curved regions” of length O(1) in the neighbourhoods
of |y| = 1, 2.

This shows that, in the convergence of the limit space V , functions of the form (2.25) should be assimilated
to zero. We preferred to avoid these functions by using equivalence classes in order to use in the sequal L2−like
“good topologies”.

7.3. Right hand sides tending to singular functions

Instead of singular right hand sides as (2.11, 2.12), we may consider sequences of smooth functions depending
on η with limits of the form (2.11, 2.12). For instance, if ψ(y1, y2) is a function such that

∫ +∞

−∞
ψ(y1, y2)dy =

∫ +∞

−∞
y2y(y1, y2)dy2 = 0 (7.6)

∫ +∞

−∞

y2
2

2
ψ(y1, y2)dyε = F (y1) (7.7)
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we have

1
η3
ψ

(
x1,

x2

η

)
−→ F (x1)δ′′(x2). (7.8)

We may then take instead of (2.11):

f(x1, x1) =
1
η3
ψ

(
x1,

x2

η

)
· (7.9)

All the developments are the same as in Section 2, but (2.23) becomes

〈Φ, w〉 =
∫

B0

ψ(y1, y2)w(y1, y2)dy. (7.10)

7.4. Open problems with interacting layers

Let us consider for instance the problem of Section 5 with (instead of (5.10)):

f(x1, x2) = δ′(x1)δ′(x2) (7.11)

i.e. (5.10) with p = 1 but the function F is in its turn singular. It is easily seen that f defined by (7.11) belongs
to V = H−4 but not to Va.

Because of the symmetry of the problem by exchanging x1 and x2, it is clear that there will be two layers
more or less analogous to that of Section 5 in the neighbourhoods of x1 = 0 and x2 = 0. But it is not possible
to study each of these layers by the method of Section 5. Indeed, the right hand side of problem P0 should be

〈Φ, w〉 = D1D2w(0, 0) (7.12)

instead of (5.19), and the right hand side of (7.11) is not a continuous functional on V (see (5.22, 5.23)). Clearly,
there is an interaction of the two layers near the origin.

7.5. Indications on systems of equations

In the case when the limit problem P0 is given by a system of equations with different orders for the different
unknowns (this is the case of shell theory) the singularities may have a very high intensity.

Let us consider a system of n equations with constant coefficients with n unknowns uj in the variables x1, x2:

aij(∂1, ∂2)uj = fi i = 1, ..., n (7.13)

with the indices (for equations as well as unknowns):

s1 ≥ s2 ≥ ... ≥ sn ≥ 0. (7.14)

This means that the aij are polynomials in ∂1, ∂2 of order si +sj. For the sake of simplicity (this is not essential)
we shall consider the case when aij is formed only by terms of the leading order si + sj

Let

D(∂1, ∂2) = det(aij(∂1, ∂2)), (7.15)
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which is a homogeneous polynomial in ∂1, ∂2 of degree 2N (called the total order of the system) where

N =
n∑

i=1

si. (7.16)

Let Aij(∂1, ∂2) be the cofactor of aij ; it is a homogeneous polynomial of degree 2N − (si + sj) in ∂1, ∂2.
In order to study the singularities of an unknown uk, we may eliminate the other unknowns (note that this

process ignores the boundary conditions, so that, in principle, it may only be used to study local properties).
Multiplying (7.13) by Aik (and adding in i, of course) we have

D(∂1, ∂2)uk = Aik(∂1, ∂2)fi. (7.17)

It is then apparent that uk is a solution of an equation of order 2N , but the right hand side contains derivatives
of the fi, so that it is much more singular than the fi themselves.

Let us consider singularities along x2 = 0. In the case when this curve is a characteristic of degree m (i.e.
D(ξ1, ξ2) vanishes m times at ξ = (0, 1)). The left hand side of (7.17) takes the form:

D(∂1, ∂2) = E(∂1, ∂2)∂m
1 (7.18)

where E(ξ1, ξ2) is microlocally elliptic at ξ = (0, 1), i.e. does not vanish at (0, 1). Then, the order of the
singularity (in the sense of (1.15)) is 2N −m times lower than the order of the right hand side. When the order
of transversal differentiation in the Aik is higher than 2N −m, uk is more singular than the data fi.

Let us give an example of this phenomenon. The system{−∆u1 + ∂2u2 = 0
−∂2u1 + u2 = f2

(7.19)

is in the above framework with s1 = 1, s2 = 0. We have by elimination

−∂2
1u2 = −∆f2 (7.20)

so that x2 = 0 is a double characteristic. We have 2M = m = 2 and the right hand side of (7.20) contains
transversal derivatives of order 2. The singularity of u2 is two orders higher that the singularity of f2. For
instance, for f2 having a step Y (x2) at x2 = 0, u2 is singular as δ′(x2).

7.6. Case when P0 is microlocally elliptic

All the developments of Section 2 hold true in the case when the limit problem is not elliptic, but only
microlocally elliptic with respect to ξ = (0, 1) normal to the curve bearing the singularity. In fact, the only
essential hypothesis is that the limit problem contains derivatives of the highest order transversal to the curve
x2 = 0. For instance, we may take

a(u,w) =
∫

Ω

∂2
2u∂

2
2w dy (7.21)

instead of (2.2.).

7.7. Comment on the applied singularities

We saw that the asymptotic behavior depends highly on the type of the singular right hand side that we took
as an element of the hierarchy (1.15) (see also (1.16)). By the linearity of the problem, right hand sides which
are finite sums of terms in (1.15) are also allowed. But this is not very general, as certain singular loadings
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cannot be separated out of non-singular parts. We may for instance think about the distributions associated
with

Y (x2)xα
2 , Y (x2)xα−1

x , Y (x2)xα−2
2

with non-integer α (see [2] for instance) which have at x2 = 0 singularities with intermediate intensity with
respect to those of (1.15) but cannot be separated from their smooth parts for x2 > 0. The corresponding
problems are open.
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