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ASYMMETRIC HETEROCLINIC DOUBLE LAYERS

Michelle Schatzman1

Abstract. Let W be a non-negative function of class C3 from R
2 to R, which vanishes exactly at two

points a and b. Let S1(a,b) be the set of functions of a real variable which tend to a at −∞ and to
b at +∞ and whose one dimensional energy

E1(v) =

Z
R

�
W (v) + |v′|2/2� dx

is finite. Assume that there exist two isolated minimizers z+ and z− of the energy E1 over S1(a,b).
Under a mild coercivity condition on the potential W and a generic spectral condition on the lineariza-
tion of the one-dimensional Euler–Lagrange operator at z+ and z−, it is possible to prove that there
exists a function u from R

2 to itself which satisfies the equation

−∆u + DW (u)T = 0,

and the boundary conditions

lim
x2→+∞

u(x1, x2) = z+(x1 − m+), lim
x2→−∞

u(x1, x2) = z−(x1 − m−),

lim
x1→−∞

u(x1, x2) = a, lim
x1→+∞

u(x1, x2) = b.

The above convergences are exponentially fast; the numbers m+ and m− are unknowns of the problem.
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1. Introduction and notations

I definitely learnt variational problems from J.-L. Lions; I cannot but recall the graduate course (attestation
d’études approfondies) that he taught in 1969-1970: the subject matter was non linear boundary value problems,
and the style of exposition made the contents look deceptively simple. Of course, they were not; I carefully kept
the notes, written in a rigid cover exercise book, which I can locate in about 10 seconds in my office.

I learnt that a good way to catch a mathematical object is to patiently set up a functional trap, tailored to
its size and to its behavior, and when everything is ready, you trail the animal, you set up the mechanism, and
you catch it so fast that it does not even realize that it is caught before it is too late. Most probably, J.-L. Lions
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would not have compared mathematics to hunting: it was not his style. All differences in style being put apart,
I learnt quite a few things from him, and I gratefully acknowledge my debt toward him.

In this article I describe how I caught a very elusive animal: a solution of an elliptic system of two equations
in full two-dimensional space with given asymptotic behavior at infinity. This solution is a “minimizer” of a
Landau functional of the theory of phase transition. The word minimizer is between quotes, because the Landau
functional is infinite on any solution of interest; therefore, it has to be renormalized for the problem to make
sense.

The renormalized functional and hence the corresponding elliptic system are translation invariant: the direct
method of the calculus of variation does not work. The concentration-compactness method also fails because
of the rigidity of the problem: left to itself the solution “wants” to behave in a definite way, approximating a
one-dimensional behavior. The solution is also smooth: no fancy behavior is permissible once we know that the
solution is bounded.

The animal is a fish which may well slip to infinity if we do not use very precise tools: asymptotics at infinity
and detailed exploitation of the energy functional. In turn, the energy functional can be exploited if the behavior
of the one-dimensional problem is understood in depth.

The problem stems from the Landau theory of second order phase transitions [5]. This theory introduces an
energy functional of the form

E(u) =
∫ [

W (u) + |gradu|2 /2] dx (1)

where u is an order parameter, and W is a real valued potential which describes the physics of the system under
consideration.

If u is scalar valued, much is known about the minimizers of the above energy, and about limits as ε tends
to 0 of scaled problems whose energy is given by

Eε(u) =
∫

Ω

[
ε−nW (u) + ε2−n |gradu|2 /2] dx. (2)

[2, 3, 7–9] have given significant results on the case of a potential with two wells.
However, when u takes its values in R

2, the minimization problem is not understood very well. When the
spatial variable is one-dimensional, and the potential has two wells of equal depth at a and b the variational
argument given in [9, 11] provides a solution of the Euler–Lagrange equations whose limits are a at −∞ and b
at +∞.

The study of minimizers of the scaled Landau functional (2) under appropriate boundary conditions requires
the study of full-space problems: the functional (1) can be retrieved by blowing up the coordinates according
to the transformation x 7→ x/ε.

Therefore, the study of the minimizers of the full-space problem for (1) is an elementary brick for the
convergence of the minimizers of (2) in a bounded set.

Let me be more precise, defining notations and assumptions.
The potential W is a function of class C3 from R

2 to R, and it has minima at a and b; these minima are
non-degenerate, i.e. D2W (a) and D2W (b) are strictly positive in the sense of quadratic forms. The potential
W vanishes at a and b, and is strictly positive elsewhere. We also assume that there exists R > 0 such that

|ξ| ≥ R⇒ DW (ξ)ξ > 0. (3)

Without loss of generality, we may assume that a = (−1, 0) and b = (1, 0).
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The set S(a,b) is the set of locally absolutely continuous functions v from R to R
2 whose one-dimensional

energy is finite

E1(v) =
∫

R

[
W (v) + |v′|2/2] dx < +∞

and which have the following behavior at infinity:

lim
x→−∞ v(x) = a, lim

x→∞ v(x) = b.

A function z is called a (minimal) heteroclinic connection if it minimizes E1 over S(a,b).
The minimal heteroclinic connections E1 over S(a,b) satisfy the Euler–Lagrange equation over R

−z′′ + DW (z)T = 0. (4)

Since W is of class C3, DW is of class C2 and therefore a solution of (4) is of class C4. At infinity, any minimizer
of E1 over S(a,b) tends exponentially fast to its limits a and b. Moreover, z(j) belongs to L1(R)2 ∩L∞(R)2 for
j = 1, . . . , 4.

The set of minimizers of E1 over S(a,b) will be called Z. Clearly, Z is translation invariant, and for each z
in Z, the operator A defined in L2(R)2 by

D(A) = H2(R), Av = −v′′ +
(
D2W (z)v)T (5)

is non negative; by the non degeneracy of D2W (a) and D2W (b), the essential spectrum of A is bounded away
from 0; ζ = z′ is an eigenvector of A relative to the eigenvalue 0. It is convenient to denote by C(z) the set of
translates z(· −m),m ∈ R of a minimizer z.

We assume that there are two distinct heteroclinic connections, i.e. minimizers z+ and z− of the one-
dimensional energy which cannot be deduced by translation one from another. The operators A+ and A− are
defined by (5), with z replaced respectively by z+ and z−.

The main non-degeneracy assumption is:

the kernels of A+ and A− are one-dimensional, (6)

and it turns out to be generic, i.e. for any non negative potential W with at least two wells of equal depth,
and at least two distinct minimal heteroclinic connections, there is an arbitrarily close potential W + δW which
has exactly two potential wells of equal depth and exactly two distinct minimal heteroclinic connections (see
Th. 4.3 and Rem. 4.4).

The two-dimensional energy of any interesting function is infinite: let indeed z be a minimal heteroclinic
connection and take u(x1, x2) = z(z1): E(u) is clearly infinite. This observation means that we have to
renormalize the energy. For this purpose, we let e1 be the minimum of the energy of one dimensional heteroclinic
connections:

e1 = min{E1(v) : v ∈ S(a,b)} ·

Then, the renormalized energy is

E2(u) =
∫

R

(∫
R

(
1
2

∣∣∣∣ ∂u∂x1

∣∣∣∣
2

+
1
2

∣∣∣∣ ∂u∂x2

∣∣∣∣
2

+W (u)

)
dx1 − e1

)
dx2. (7)
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We seek minimizers u of the renormalized energy belonging to the set S2 defined by the following conditions:

lim
x1→−∞ u(x1, x2) = a, lim

x1→+∞u(x1, x2) = b, (8)

and there exist m+ and m− such that

lim
x2→±∞u(x1, x2) = z±(x1 −m±). (9)

A substantial difficulty immediately appears in the above statement: the translation parameters are unknowns
of the problem.

A change of coordinates shows that we must be concerned only with m+−m−, and the essential step consists
in proving that it is bounded.

When the potential is invariant by the reflexion which exchanges a and b, the analogous study has been
performed in [1], yielding a two-dimensional heteroclinic connection between two minimal one-dimensional
heteroclinic connections. The symmetry assumption enabled the authors to control the translation parameter,
since they considered only solutions which were equivariant by the reflexion.

The solution of the minimization problem will be a solution of the elliptic system

−∆u+ DW (u)T = 0,

where it is important to transpose the derivative DW of W , which is a row vector, to obtain a column vector.
So how does the proof work? Though it is expressed in analytic language, the method is geometric in essence,

and its argument can be given as follows: the cost of the phase transition is asymptotically proportional to
the length of the layer, provided that the solution looks like a one dimensional connection in the transversal
direction.

Given Dirichlet data, it is always possible to solve a minimization problem in the half-plane x2 > 0, using
the direct method of the calculus of variations (Sect. 7).

On the other hand Assumption (6) suffices to prove that if the data are close enough to z+ or z−, then for all
x2 > 0, u(·, x2) is close to z± or rather to one of its translate; the translation parameter converges exponentially
fast to its limit as x2 tends to infinity, as is proved in Section 6. One might think that this result is a simple
application of a fixed point argument; however, it is a rather tricky result, because the näıve formulation leads
to loss of regularity. The first step consists in solving the linearized problem in a half plane (Sect. 5): an overly
simplified explanation is that we can decompose the space into the sum of a stable, an unstable and a neutral
linear manifold: functional trickery is needed to give a sense to this idea, since it is impossible to define the
action of the semi-group in the unstable direction: it acts there more or less like the backward heat equation.
The nonlinear step combines metric estimates and topological arguments.

That the solutions obtained by these two different methods coincide when the data are close enough to C(z±)
is proved thanks to a number of estimates given also in Section 7; exponential decay estimates on local norms
must be obtained, so as to prove that the minimizer is indeed a solution of the fixed point problem, whose
uniqueness is only local. In those proofs, estimates based on one-dimensional results play a prominent rôle.

The construction of the minimizer of the two-dimensional energy is done as follows: we start with a minimizing
sequence (vn) and we replace it by a smoother one, patched from minimizers in two half-planes x2 ≥ Xn,+ and
x2 ≤ Xn,− and in the strip in between; the strip is chosen so that on its upper and lower boundaries, the
trace of vn is close respectively to C(z+) and C(z−). For the new sequence of minimizers, (un), we choose a
minimal strip Yn,− ≤ x2 ≤ Yn,+ on which un(·, x2) is bounded away from C(z+) ∪ C(z−). The height of this
strip is bounded independently of n, thanks to the local coercivity of the energy in one dimension. At the
strip boundaries, ux(·, Yn,±) is close to z±(· −mn,± and another energy argument shows that |mn,+ −mn,−| is
bounded independently of n. After applying a translation, and replacing again vn by the half-plane minimizers
outside of the strip Yn,− ≤ x2 ≤ Yn,+, the passage to the limit is then straightforward.
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The fundamental one-dimensional result is what I call the local coercivity of the one-dimensional transition
energy: if E1(u) denotes the one-dimensional energy and e1 its lower bound on the set on functions tending
to a and b respectively at −∞ and at +∞, and if z is minimizer satisfying the spectral assumption, then in a
translation invariant neighborhood of C(z), E1(u) − e1 is greater than or equal to a constant times the square
of the H1 distance from u to C(z).

This is a very technical result which is proved in many steps, starting from Section 2 where we study the
properties of curves of minimizers through Section 3 dedicated to the compactness of sequences of minimizers,
and the consequences of the spectral assumption in Section 4. These results are interesting in themselves, since
they give some very precise informations on the properties of the energy functional in one dimension.

2. Projection on curves of minimizers

Define for each measurable subset I of R

E1(u, I) =
∫

I

( |u′|2
2

+W (u)
)

dt. (10)

If I = R, we will simply write E1(u) instead of E1(u,R).
Let ψ be any function of class C∞ which is constant for large values of its argument and equal to a in a

neighborhood of −∞ and to b in a neighborhood of +∞. For s ≥ 0, let Ss(a,b) be the set

Ss(a,b) = Hs(R)2 + ψ.

The definition of Ss(a,b) is clearly independent of the exact choice of the function ψ. For simplicity, we will
write S(a,b) instead of S1(a,b). As the difference of elements of S(a,b) belongs to Hs(R)2, the set S1(a,b) is
equipped with the topology defined by the distance in H1(R)2.

Denote by ‖ ‖s the Hs(R) norm of a function and by ( , )s the scalar product in Hs(R). We do not use
different notations for the norm and scalar product of vector valued Hs functions.

Let u belong to Ss(a,b) and let F be a subset of Ss(a,b); the distance from u to F in the s-norm is

ds(u, F ) = inf{‖u− v‖s, v ∈ F} ·

Let z be a minimizer of E1 over S(a,b); we define

C(z) = {z(· −m) : m ∈ R} ·

The curve C(z) can be seen as a curve in the affine functional space S(a,b), and by analogy to the finite
dimensional case, if u is close enough to C, we prove now that there exists a unique projection of u on C(z):

Lemma 2.1. For all s ∈ [0, 2] there exists β(s) > 0 such that if u belonging to Ss(a,b) satisfies ds(u, C(z))
< β(s) there exists a unique real number ms(u) such that

ds(u, C(z)) = ‖u− z(· −ms(u))‖s.

Moreover, if s is one of the integers 0, 1, 2, ms is a function of class C3−s of u, and Dms satisfies the estimate

|Dmsv| ≤ ‖v‖s‖ζ‖s

‖ζ′‖s

(
β(s) − ds(u, C(z))

) · (11)

Proof. It is clear that we have the following equivalent as |m| tends to infinity:∫
R

|z(t−m) − z(t)|2 dt ∼ |b− a|2|m|.
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Define a function y by

y(m, s) = ‖u− z(· −m)‖2
s. (12)

The inequality √
y(m, s) ≥ ‖z(· −m) − z‖0 − ‖z − u‖s

shows that the set of parameters m at which y(·, s) reaches its minimum is compact. Since y(·, s) is continuous,
it is plain that it reaches its lower bound. There remains to prove that if the distance of u to C(z) is small
enough, this minimum is unique, which we will prove with the help of an appropriate differential inequality.

The first two derivatives of y(m, s) with respect to m are

∂y(m, s)
∂m

= 2(u− z(· −m), ζ(· −m))s,

∂2y(m, s)
∂m2

= 2‖ζ‖2
s + 2(u− z(· −m),−ζ′(· −m))s

(13)

and these expressions make sense: we have seen that z(4) belongs to L1(R)2 ∩ L∞(R)2, so that ζ belongs to
H3(R)2; therefore ζ and ζ′ belong to Hs(R)2 for s ∈ [0, 2]. Therefore, for all a > 0,

∂2y(m, s)
∂m2

≥ 2‖ζ‖2
s −

‖ζ′‖2
s

a2
− y(m, s)a2.

We choose a = ‖ζ′‖s/‖ζ‖s; the differential inequality becomes

∂2y(m, s)
∂m2

+ a2y(m, s) ≥ ‖ζ‖s.

We integrate this differential inequality; assuming that the minimum is attained at m̄, we have ∂y(m̄, s)/∂m = 0.
Thus for |m− m̄| ≤ π/2a

y(m, s) ≥ ds(u, C(z))2 cos((m− m̄)a) +
‖ζ‖4

s

‖ζ′‖2
s

(
1 − cos(a(m− m̄))

)
. (14)

Therefore, if ds(u, C(z)) < ‖ζ‖2
s/‖ζ′‖s, the minimum of y(·, s) on [m̄ − π/2a, m̄ + π/2a] is attained at m̄. On

the other hand

y(m, s) ≥ (‖z(· −m) − z(· − m̄)‖s − ds(u, C(z))
)2
.

If ds(u, C(z)) is strictly inferior to the lower bound of the right hand side of the above equation over R \ [m̄ −
π/2a, m̄+ π/2a], the minimum of y(·, s) is attained on [m̄− π/2a, m̄+ π/2a]. If

ds(u, C(z)) < min
(

1
2

inf{‖z(·+m) − z‖s : |m| ≥ π/2a}, ‖ζ‖
2
s

‖ζ′‖s

)
= β(s)

there is a unique ms at which y(·, s) attains its minimum over R.
We observe that for s = 0, s = 1 or s = 2 and u satisfying ds(u, C(z)) < β(s), ms is the solution of the

implicit equation (
u, ζ(· −ms)

)
s

= (z, ζ)s. (15)
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As we have seen above, z(j) belongs to L1(R)2 ∩ L∞(R)2 for j = 1, . . . , 4; therefore, the following regularity
results hold:

m 7→ (
u, ζ(· −m)

)
0

is of class C3 if u ∈ S(a,b),

m 7→ (
u′, ζ′(· −m)

)
0

is of class C2 if u ∈ S2(a,b),

m 7→ (
u′′, ζ′′(· −m)

)
0

is of class C1 if u ∈ S3(a,b).

This shows that the left hand side of (15) is of class C3−s; therefore, for ds(u, C(z)), u 7→ ms(u) is of class C3−s.
We have also an estimate on Dms(u): if we differentiate (15) with respect to u, we find that

(v, ζ(· −ms))s − (u, ζ′(· −ms))sDmsv = 0.

But

(u, ζ′(· −ms)) = (u− z(· −ms), ζ′(· −ms)) − ‖ζ‖2
s;

therefore,

|(u, ζ′(· −ms))| ≥ ‖ζ‖2
s − ‖ζ′‖sds(u, C(z))

never vanishes if ds(u, C(z)) ≤ β(s). This implies relation (11).

If we already know that ‖u− z(· − t)‖s is small, we can estimate t−ms(u), thanks to the following result:

Lemma 2.2. There exist positive numbers β0(s) and θ(s) such that if t satisfies

‖u− z(· − t)‖s ≤ β0(s),

then it satisfies also

|t−ms(u)| ≤ θ(s)‖u − z(· − t)‖s.

Proof. Without loss of generality, assume that t = 0. Let y be as in (12); the computation of (13) implies that

∂2y(m, s)
∂m2

≥ 2‖ζ‖2
s − 2‖ζ′‖s

(‖u− z‖s + |m|‖ζ‖s

) ·
If we assume that ‖u−z‖s ≤ ‖ζ‖2

s/3‖ζ′‖s, and |m|‖ζ‖s/3‖ζ′‖s = m̄, then ∂2y(m, s)/∂m2 ≥ 2‖ζ‖2
s/3. Therefore

0 ≤ m ≤ m̄⇒ ∂y(m, s)
∂m

≥ ∂y(0, s)
∂m

+
2m‖ζ‖2

s

3
,

−m̄ ≤ m ≤ 0 ⇒ ∂y(m, s)
∂m

≤ ∂y(0, s)
∂m

+
2m‖ζ‖2

s

3
·

If we assume that ‖u− z‖s ≤ ‖ζ‖2
s/9‖ζ′‖s, there exists a unique m in [−m̄, m̄] such that ∂y(m, s)/∂m vanishes.

Moreover, we have the estimate

|m| ≤ 3‖u− z‖s/‖ζ‖s. (16)

Therefore, if β0(s) < min
(
β(s), ‖ζ‖2

s/9‖ζ′‖s

)
and θ(s) = 3/‖ζ‖s, the statement of the lemma holds.
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We will need the following corollary of Lemma 2.2:

Corollary 2.3. If d1(u, C(z)) ≤ β0(0), then |m0(u) −m1(u)| is at most equal to θ(0)d1(u, C(z)).

Proof. Under the assumptions of the corollary, ‖u− z(· −m1(u)‖0 ≤ ‖u− z(· −m1(u))‖1 = d1(u, C(z)) ≤ β0(0);
therefore, according to Lemma 2.2, |m1(u)−m0(u)| ≤ θ(0)d0(u, C(z)), which is at most equal to θ(0)d1(u, C(z)).

3. Compactness of sequences of minimizers in dimension one

We show now that minimizing sequences for E1 are in fact compact in S(a,b) up to translations. This
technical result will be essential in the sequel.

Theorem 3.1. Let (un)n be a minimizing sequence for E1 over S(a,b). Then there exists an extracted sub-
sequence still denoted by un and a sequence of numbers xn such that the sequence un(· − xn) converges to a
minimizer of E1 in the strong topology of S(a,b).

Proof. We start by studying three auxiliary problems, for which we will need the constants α0, α1, δ0 and `,
defined as follows. Since D2W is continuous and non degenerate at a and b, there exist δ0 > 0 and α0 > 0 such
that

min(|y − a|, |y − b|) ≤ δ0 =⇒ ∀ξ ∈ R
2, D2W (y)ξ ⊗ ξ ≥ α2

0|ξ|2. (17)

The positive number ` is defined by

`2 = sup{|D2W (y)ξ ⊗ ξ| : min(|y − a|, |y − b|) ≤ 1, |ξ| ≤ 1} (18)

and it is finite, thanks to the continuity of D2W . Finally, as W vanishes only at a and b, there exists α1 > 0
such that

min(|y − a|, |y − b|) ≤ 1 =⇒W (y) ≥ α2
1 min

(|y − a|2, |y − b|2)/2. (19)

We start by studying two auxiliary minimization problems, where δ belongs to the interval (0, 1):

φ1(δ) = inf
{
E1(v,R−) : v(−∞) = a, |v(0) − b| ≤ δ

}
φ2(δ) = inf {E1(v, [0, r]) : |v(0) − b| ≤ δ, (v(r))1 = 0, r ≥ 0} ·

It is plain that each function φj(δ) is finite.
Let un be a minimizing sequence for φ1(δ). We define xn as the smallest number such that |un(xn)−b| = δ.

Let vn be the restriction to R
− of the sequence un(· − xn): it is also a minimizing sequence, and it satisfies the

inequality

∀x ≤ 0, |vn(x) − b| ≥ δ.

Since v′n is bounded in L2(R−) and vn(0) is bounded, we extract a subsequence such that v′n converges to v′ in
the weak L2 topology and vn converges to v uniformly on compact subsets of R

−. In particular, we must have
|v(x) − b| ≥ δ for all x ≤ 0. Thanks to Fatou’s lemma and the properties of weak convergence, we must have

lim inf E1(vn) ≥ E1(v).

As x tends to −∞, W (v) tends to 0, since it is integrable and Lipschitz continuous; as v stays bounded away
from b, it must tend to a. This shows that the limit of a minimizing sequence is indeed a minimizer. In
particular, we have found a minimizer such that |v(0) − b| = δ.
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Let us estimate the energy of such a minimizer from below: extend v to R
+ as v(x) = (v(0) − b)e−`x + b.

Then its energy can be decomposed as

E1(v,R) = E1(v,R−) + E1(v,R+) ≥ e1 + E1(v,R+).

We can estimate E1(v,R+), with the help of the definition (18) of ` and of a Taylor expansion:

E1(v,R+) ≤
∫ ∞

0

`2|v(0) − b|2e−2`x dx = δ2`/2.

We see now that

φ1(δ) ≥ e1 − δ2`/2. (20)

For the second minimization problem, let un be a minimizing sequence; assume that x′n is the largest number
for which |un(x′n) − b| = δ and that x′′n is the smallest number larger than x′n for which (un(x′′n))1 vanishes. If
rn is equal to x′′n − x′n and if vn is the restriction of un(· − x′n) to [0, rn], then vn is also a minimizing sequence
which satisfies for all x ∈ [0, rn]

(vn(x))1 ≥ 0, |vn(x) − b| ≥ δ.

We have the estimate ∫ rn

0

|v′n|2
2

dx ≥ |vn(0) − vn(rn)|2
2rn

≥ (1 − δ)2

2rn
·

As φ2(δ) is finite, this means that rn is bounded from below. On the other hand

ω = inf{W (y) : y1 ≥ 0, |y − b| ≥ δ}

is strictly positive, which implies that

ωrn ≤ E1(vn, [0, rn]).

Hence rn is also bounded from above, and we may extract a convergent subsequence, still denoted by rn, whose
limit is r > 0. Extend vn by the constant vn(rn) for x ≥ rn; we can extract a subsequence such that the
restriction of vn to [0, r] tends to a certain v, which realizes the desired minimum.

Let now x̂ be the smallest number in [0, r] for which |v(x) − b| = 1. We use the definition (19) of α1 to
estimate φ2(δ) from below:

φ2(δ) ≥ E1(v, [0, x̂]) ≥
∫ x̂

0

|v′(x)|2 + α2
1|v(x) − b|2
2

dx

≥ α1

∫ x̂

0

|v′(x)||v(x) − b| dx

≥ α1

2

∫ x̂

0

d
dx

|v(x) − b|2 dx =
α1(1 − δ2)

2
·

Therefore, we have found the estimate

φ2(δ) ≥ α1(1 − δ2)
2

· (21)
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Let (un)n be a minimizing sequence for E1; there exists an xn such that (un(xn))1 vanishes. Then, (un(·−xn))n

is also a minimizing sequence; therefore, without loss of generality, we may assume that (un(0))1 vanishes for
all n. It is plain that the derivatives u′n are bounded in L2(R)2; therefore, un and W (un) are uniformly Hölder
continuous, with exponent 1/2. We infer from this fact and from assumption (3) that un is uniformly bounded
in L∞(R)2. In particular, we may extract a subsequence still denoted by (un)n which converges uniformly on
compact subsets of R to a certain Hölder continuous limit u, and whose first derivatives converges weakly in
L2(R)2 to u′. By Fatou’s lemma and the properties of weak convergence, E1(u) is at most equal to e1 and in
particular, W (u) is integrable, and u tends to a or b at ±∞. Let us prove that u tends to a at −∞, arguing by
contradiction. If u tended to b at −∞, we could find for all δ ∈ (0, 1) an x0 < 0 such that |u(x0) − b| ≤ δ/2.
Then, for all large enough n, |un(x0 − b| ≤ δ. But we can use inequalities (20) and (21) to estimate E1(un)
from below: indeed,

E1(un) ≥ E1(un, (−∞, x0]) + E1(un, [x0, 0]) ≥ φ1(δ) + φ2(δ).

Choosing δ so small that

φ1(δ) + φ2(δ) ≥ e1 + α1/4,

bounds E1(un) away from e1, which is a contradiction. Thus, we have proved that u(x) tends to a at −∞. A
similar argument shows that u(x) tends to b at +∞.

We infer from the integrability of W (u) over R that z−ψ belongs to L2(R); we already knew that u′ is square
integrable; therefore u belongs to S(a,b). As E1(u) is equal to e1, u must be a minimizer of E1 over S(a,b).

We will show now that the sequence un converges uniformly to u. Let η < e1 be given, and let x1 be such
that

E1(u, (−∞, x1]) = η/2. (22)

General theorems of analysis imply that

lim inf
n→∞ E1(un, [x1,+∞)) ≥ E1(z, [x1,+∞)) = e1 − η/2.

As the limit of E1(un) is precisely equal to e1, there exists N such that for all n ≥ N

E1(un, (−∞, x1]) ≤ η.

Let x2 be the largest number in (−∞, x1] such that |u(x2)− a| = min(1, |u(x1,a)|); then the energy of un over
(−∞, x2] can be estimated with the help of (19): with the same argument as for estimate (21),

∫ x2

−∞

( |u′n|2
2

+W (un)
)

dx ≥ α1 min(1, |un(x1) − a|2)
2

·

Therefore, if η < α1/2, we must have

|un(x1) − a| ≤
√

2η/α1.

The same inequality holds for u:

|u(x1) − a| ≤
√

2η/α1.
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Given δ ∈ (0, 2], we choose η = δ2α1/8 and the corresponding x1 satisfying (22). For n large enough, we have
over (−∞, x1]

|un(x) − u(x)| ≤ 2
√

2δ2α1/8α1 = δ.

By uniform convergence over compact sets of un to u, for n large enough, sup{|un(x) − u(x)| : x1 ≤ x ≤ 0} is
at most equal to δ. This proves the uniform convergence over R

−; the uniform convergence of un to u over R
+

is proved identically.
We can prove now the strong convergence of un − u to 0 in H1(R)2. Define rn = un − u. We may write the

energy of un with the help of a Taylor formula with integral remainder:

E1(un) = e1 +
∫

R

(
u′ · r′n +DW (u)rn

)
dx+

∫ ( |r′n|2
2

+
∫ 1

0

(1 − s)D2W (u)rn ⊗ rn ds
)

dx. (23)

The first integral term in the right hand side of (23) cancels out by integration by parts, because u satisfies the
Euler–Lagrange equation (4). We choose x1 > 0 in such a way that for |x| ≥ x1, min(|u(x)−a|, |u(x)−b|) ≤ δ0/2,
where δ0 has been defined at (17). Then, for |x| ≥ x1 and n large enough, min(|un(x) − a|, |un(x) − b|) ≤ δ0.
The integral

∫ x1

−x1

∫ 1

0

(1 − s)D2W (u)rn ⊗ rn ds dx

converges to 0 as n tends to infinity, thanks to the uniform convergence of rn to 0. We see now that

1
2

∫
|r′n|2 dx+

α2
0

2

∫
|x|≥x1

|rn|2 dx

converges to 0, and the theorem is proved.

Let us prove now a corollary which relates the energy of u ∈ S(a,b) and the distance d1(u,Z):

Corollary 3.2. For all β > 0 the following inequality holds:

inf{E1(u) : u ∈ S(a,b), d1(u,Z) ≥ β} > e1. (24)

Proof. Assume that the lower bound in the statement of Lemma 3.2 is equal to e1 and let (un)n∈N be a
minimizing sequence. Theorem 3.1 implies that there exists a sequence xn and an element z of Z such that
un(· − xn) − z converges to 0 in the strong topology of H1(R)2. Therefore, for n large enough, d1(un,Z) is at
most equal to β/2, which contradicts our assumption.

Another useful information is the following bound on the values taken by any minimizer of E1 over S(a,b):

Lemma 3.3. The minimizers of E1 over S(a,b) take their values in the closed ball of radius R about 0.

Proof. Let z be a minimizer of E1 over S(a,b); define for x in R
2

z̃(x) =

{
Rz(x)/|z(x)| if |z(x)| > R,
z(x) if |z(x)| ≤ R.

Assumption (3) implies that for all x ∈ R
2

W (z̃(x)) ≤W (z(x)),
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and the inequality is strict on the set {x : |z(x)| > R}. As the mapping z 7→ z̃ is a contraction, we have

|z̃′| ≤ |z′| a.e. on R.

Therefore, E1(z̃) ≤ E1(z), and there is equality only if∫
|z|>R

(
W (z) −W (z̃)

)
dx = 0.

This, together with the continuity of z and assumption (3) implies the conclusion of the lemma.

4. The spectral assumption

We define now the spectral assumption: let z be a minimizer of E1 over S(a,b). The unbounded operator A
in L2(R)2 is defined by

D(A) = H2(R)2, Ay = −y′′ + (D2W (z)y)T. (25)

We shall say that A is the linearization operator at z of the Euler–Lagrange operator at z. It is easy to see
that A is self-adjoint since it is a symmetric bounded perturbation of − d2/ dt2. Let M be the minimum of the
lowest eigenvalues of D2W (a) and D2W (b); then, according to a theorem of Volpert et al. [12], the essential
spectrum of A is [M,+∞).

Let us verify that A is a non negative operator: if v belongs to H2(R)2,

0 ≤ d2

dt2
E1(z + tv)

∣∣
t=0

=
∫

R

(|v′|2 + D2W (z)v ⊗ v
)

dx

so that by an integration by parts∫
R

(−v′′ + (D2W (z)v)T
) · v dx = (Av, v) ≥ 0.

The function z is of class C4; under the assumption of non degeneracy of D2W (a) and D2W (b), z and all its
derivatives tend exponentially to their limits at ±∞. Therefore, ζ = z′ is an eigenfunction for A, relative to the
eigenvalue 0. The above considerations on the essential spectrum of A imply that the kernel of A is of finite
dimension.

We say that the spectral assumption is satisfied for z if

the kernel of A is of dimension 1. (26)

We will show that this property is generic, i.e. it holds in an open dense set: first, if the spectral assumption is
satisfied for a given potential, it holds also in a neighborhood of that potential, thanks to standard results on
the perturbation of the isolated eigenvalues of unbounded operators. Moreover, for any W , and any minimizer
of W there exists an arbitrary small perturbation δW of W such that for the new potential W + δW , z is still a
minimizer with the same energy as before, and it satisfies the spectral assumption. Moreover, if z is an isolated
minimizer, we can choose the perturbation δW so that it will vanish in the neighborhood of the union of the
images z(R) for ẑ ∈ Z \ C(z).

The proof of this result depends on two lemmas which give detailed information on the minimizers of E1

over S(a,b):

Lemma 4.1. Let z be a minimizer of E1 over S(a,b); then z is injective, it never takes the values a and b
and z′ never vanishes. Let ẑ and z̄ be minimizers of E1; if ẑ(R) intersects z̄(R) then ẑ can be deduced from z̄
by a translation.
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Proof. Let z be a minimizer of E1 over S(a,b) which takes the value a at some x̄ ∈ R. Then if we define

ẑ(x) =

{
a if x ≤ x′,
z(x) otherwise,

we can see that ẑ belongs also to S(a,b) and that E1(ẑ) is at most equal to E1(z). Thus ẑ is a minimizer of
E1 over S(a,b). Therefore, it satisfies the Euler–Lagrange equation (4). Moreover, we can see that

z(x̄) = a, z′(x̄) = 0. (27)

The constant function a satisfies equation (4) with the initial conditions (27); therefore, by uniqueness of
solutions of smooth differential equations, ẑ must be equal to a, which contradicts the assumption z ∈ S(a,b).

Assume that z is a minimizer of E1 over S(a,b) which has a self-intersection: there exists x′ and x′′ > x′

such that z(x′) = z(x′′); define

ẑ(x) =

{
z(x) if x ≤ x′,
z(x− x′′ + x′) if x ≥ x′.

It is clear that ẑ belongs to S(a,b) and that

E1(z) − E1(ẑ) =
∫ x′′

x′

( |z′|2
2

+W (z)
)

dx

is strictly positive since W (z) is strictly positive on (x′, x′′). Therefore E1(z) > E1(ẑ) ≥ e1 which contradicts
the assumption that z was a minimizer of E1 over S(a,b).

Let z be a minimizer of E1 over S(a,b); it satisfies the Euler–Lagrange equation (4); multiply this equation
scalarly by z′ in R

2 and integrate with respect to x: we obtain the first integral

−|z′|2
2

+W (z) = constant.

By passing to the limit at infinity, we infer that the constant vanishes in the above equation. If there exists a
number x̄ ∈ R where z′(x̄) vanishes, then W (z(x̄)) must also vanish; this means that z(x̄) takes the value a or
b and we have already seen that this is impossible.

If there exists x′ and x′′ such that ẑ(x′) is equal to z̄(x′′) we observe that

E1(ẑ, (−∞, x′]) ≤ E1(z̄, (−∞, x′′]) iff E1(ẑ, [x′,+∞)) ≥ E1(z̄, [x′′,+∞)).

Assume for instance that E1(ẑ, (−∞, x′]) is at most equal to E1(z̄, (−∞, x′′]). Define a function z by

z(x) =

{
ẑ(x) if x ≤ x′,
z̄(x− x′ + x′′) if x ≥ x′.

Then z also belongs to S(a,b) and is a minimizer of E1(u); thus it satisfies the Euler–Lagrange equation (4)
which implies that

ẑ(x′) = z̄(x′′) = z(x′), ẑ′(x′) = z̄′(x′′) = z′(x′).

Therefore, by uniqueness of the solutions of smooth differential equation, ẑ = z̄(· − x′′ + x′).
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We will say that a minimizer z of E1 is isolated if

d0(z,Z \ C(z)) > 0.

Lemma 4.2. Let z be an isolated minimizer of E1. For all x ∈ R, there exists δ > 0 such that the ball of center
z(x) and radius δ does not intersect the graph of any other minimizer of E1 over S(a,b).

Proof. Assume that there exists x̄ and a sequence of minimizers zn and of numbers xn such that

lim
n→∞ zn(xn) = z(x̄).

Thanks to Theorem 3.1, there exists a subsequence, still denoted b y zn, and a minimizer z∞ such that zn(·−xn)
converges to z∞ in the strong topology of S(a,b). But z∞(0) is equal to z(x̄) and Lemma 4.1 implies that z∞
belongs to C(z), which precludes z from being isolated.

We can prove now the genericity of the spectral assumption.

Theorem 4.3. Let z be a minimizer of E1 over S(a,b) and let A be the linearization at z of the Euler–Lagrange
operator. There exists a non negative function δW ≥ 0 of class Cp vanishing on z(R) such that for all s > 0, z
is a minimizer of

E1(u) + sδE1(u) = E1(u) +
∫

R

δW (u) dx

over S(a,b); moreover, if z is an isolated minimizer of E1 over S(a,b), it is possible to choose the perturbation
δW so that it will vanish on Z \ C(z).

Proof. We treat first the case when ζ is parallel to a given direction, throughout the real line. Then, the
conditions at infinity imply that ζ2 vanishes over R; in particular, ∂2W (z1(x), 0) vanishes, and therefore, for all
y1 ∈ z1(R), the cross derivative ∂1∂2W (y1, 0) vanishes. The positivity of the operator A can be expressed as
follows: for all w ∈ H1(R),∫ (|w′|2 + ∂2

1W (z)w2) dx ≥ 0, and
∫ (|w′|2 + ∂2

2W (z)w2) dx ≥ 0. (28)

Let f and g be two non negative functions of class C∞; assume that f is equal to 1 on an interval [−x1, x1] and
that g is equal to 1 on an interval [−x2, x2]. We define

δW (y) = f(y1)y2
2g(y2).

If z is isolated among the minimal heteroclinic connections, we may always assume that δW vanishes on the
images of the other heteroclinic connections, by choosing suitably small values for x1 and x2; we use of course
Lemmas 4.1 and 4.2. Assume that v is an eigenvector of A+ sδA defined by

D(A+ sδA) = H2(R)2, (A+ sδA)v = −v′′ + (D2W (z)v + sD2δW (z)v)T.

The remark on the vanishing of the cross derivative of W along the image of z shows that if v is an eigenvector
of A+ δA, then

−v′′1 + ∂2
1W (z)v1 = 0 and − v′′2 + ∂2

2W (z)v2 + sf(z1)v2 = 0. (29)

We multiply the v2 equation by v2, we integrate over R and we find that∫ (|v′2|2 + ∂2
2W (z)v2

2 + sf(z)v2
2

)
dx = 0;
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we infer from the second inequality in (28) that v2 vanishes on the support of f ; therefore, according to
the classical theory of linear ordinary differential equations, v2 vanishes everywhere. Consider now the first
component of v: it solves the first ordinary differential equation in (29) and its tends at ±∞ to ±1. The
Wronskian of v1 and ζ1 is constant; its value is found by letting x tend to infinity: it is thus clear that it
vanishes, and that v1 is proportional to ζ1. Therefore, in the case where ζ is parallel to a constant direction,
we have proved that an arbitrary small modification of W satisfies the conditions of the theorem.

Assume now that ζ does not have a constant direction. We can thus find an interval of R such that ζ does not
have a constant direction on any sub-interval of that interval. Without loss of generality, we may translate the
space variable in such a way that this interval is of the form (−x1, x1), with x1 some strictly positive number.

Let ν(x) be a unit vector of class C4 defined in (−x1, x1) and such that the vector product ν(x) ∧ ζ(x) stays
bounded away from 0 on that interval. Define a transformation

Φ(x, λ) = z(x) + λν(x).

The implicit function theorem implies that Φ is a diffeomorphism of class C3 in a neighborhood of 0 ∈ R
2; we

choose x̄ > 0 and λ̄ > 0 small enough for Φ to be a diffeomorphism from R = (−x̄, x̄) × (−λ̄, λ̄) to its image.
If z is an isolated minimizer, we also choose R so small that Φ(R) has an empty intersection with the union of
the images z(R), for z ∈ Z \ C(z); in particular, it does not contain a or b. This last condition can be satisfied
thanks to Lemma 4.2. Denote by Ψ the inverse diffeomorphism of Φ; it is defined on Φ(R).

Let now f and g be two non negative functions of class C∞ with support respectively in (−x̄, x̄) and (−λ̄, λ̄);
assume that f is equal to 1 over (−x̄/2, x̄/2) and that g is equal to 1 over (−λ̄/2, λ̄/2). We let

Z(x, λ) = f(x)λ2g(λ)

and

δW (y) =

{
Z(Ψ(y)) if y ∈ Φ(R)
0 otherwise.

The potential δW is of class C4, and it vanishes on z(R); it also vanishes on the image of the other minimizers
if z is isolated. Therefore the energy of z for the new potential W + sδW is equal to e1. The new linearized
operator is A+ sδA defined by

D(A+ sδA) = H2(R)2, A+ sδAv = −v′′ +
[
(D2W (z) + sD2δW (z))v]T.

We do not have to consider the essential spectrum of A+ sδA: by construction, δW vanishes in a neighborhood
of a and of b; therefore, A+sδA is a relatively compact perturbation of A and it has the same essential spectrum
as A which is [M,+∞), M > 0.

We have to calculate the second derivative D2δW (z); if y belongs to Φ(R) and ŷ to R
2,

D2δW (y)ŷ⊗2 = D2Z ◦ Ψ(y)(DΨ(y)ŷ)⊗2 + DZ ◦ Ψ(y)D2Ψ(y)ŷ⊗2.

When λ vanishes, DZ(x, 0) vanishes and D2Z(x, 0)(x̂, λ̂)⊗2 is equal to 2f(x)λ̂2. On the other hand,

(
DΨ(z(x))ŷ

)
2

=
ζ ∧ ŷ
ζ ∧ ν ·

Therefore, we find that if v is an eigenvector of A+ sδA relative to the eigenvalue 0,∫
R

(|v′|2 + D2W (z)v ⊗ v + 2s(ζ ∧ v)2(ζ ∧ ν)−2 f
)

dx = 0.
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The positivity properties of A imply that∫
(z′ ∧ v)2(z′ ∧ ν)−2 f dx ≤ 0

if s > 0; all the eigenfunctions of A are of class C3; therefore z′ × v vanishes on the interval (−x̄, x̄); this shows
that there exists a scalar function µ such that v′ = µζ on the support of f . As ζ never vanishes (see Lem. 4.1),
µ is of class C2; we substitute µζ in the equation for v, and we find that

µ′′ζ + 2µ′ζ′ = 0. (30)

If v is not proportional to ζ, µ′ cannot vanish: indeed, if there existed x0 in the support of f such that µ′(x0)
vanishes, we could write the relations

v(x0) = µ(x0)ζ(x0) and v′(x0) = µ(x0)ζ′(x0).

The classical theory of ordinary differential equations implies immediately that v = µ(x0)ζ, which is a contra-
diction. Without loss of generality, we may assume that µ′ is strictly positive over the interior of the support
of f . Then, we divide (30) by

√
µ′ and we find the following equality√

µ′ζ = constant

but this cannot be true, since ζ is never parallel to any direction on any subinterval of [−x1, x1].

Remark 4.4. Given W with N ≥ 2 wells of equal depth at a1, . . . ,aN , and at least n distinct minimal hetero-
clinic connections from a1 to a2, it is quite clear that an arbitrarily small addition to W in the neighborhood of
aj for j ≥ 3 makes W into a potential with only two deeper wells. It is an obvious consequence of Theorem 4.3
that we can apply an arbitrarily small modification of W , so that it will have exactly k ≤ n distinct minimal
heteroclinic connections from a1 to a2.

If the spectral assumption is satisfied for a minimizer z of E1 then z is isolated; more precisely we can
estimate E1(u) − e1 from below in terms of d1(u, C(z)). We will denote by ν > 0 the square root of the lower
bound of the spectrum of A without 0:

ν =
√

inf spec(A) \ {0} · (31)

We need the modulus of continuity of D2W ; since we shall need later other moduli of continuity, we define them
together here. The assumption that W is of class C3 implies that there exist two continuous increasing functions
$1 and $2 from R

+ to itself and a continuous function $3 from {(r,R) : 0 ≤ r ≤ 2R} to R
+, increasing with

respect to its two arguments, which have the following property:

for all ξ1 and ξ2 in R
2 satisfying max(|ξ1|, |ξ2|) ≤ R,

|DW (ξ1) − DW (ξ2)| ≤ $1(R)|ξ1 − ξ2|; (32)∣∣D2W (ξ1) − D2W (ξ2)
∣∣ ≤ $2(R)|ξ1 − ξ2|; (33)∣∣D3W (ξ1) − D3W (ξ2)
∣∣ ≤ $3(|ξ1 − ξ2|, R). (34)

Moreover, the function $3 vanishes at (0, 0).
We relate now the spectral assumption to the coercivity of the energy, starting with a local result.

Lemma 4.5. Assume that z is a minimizer of E1 which satisfies the spectral assumption. Then, z is isolated
in Z and there exist two strictly positive numbers α2 and β2 such that if d1(u, C(z)) ≤ β2, then

E1(u) − e1 ≥ α2d1(u, C(z))2.
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Proof. The number β2 will be less than or equal to min(β(1), β0(1)) defined at Lemma 2.2; therefore, there
exists a unique m1 such that d1(u, C(z)) = ‖u − z(· −m1)‖1. Without loss of generality, we may assume this
m1 vanishes. There exists also an unique m0 such that

(u− z(· −m0), ζ(· −m0)) = 0.

The following estimate is a consequence of (16):

|m0| ≤ 3β2‖ζ‖L1

‖ζ‖2
0

·

Define r = u(· +m0) − z; then r satisfies the estimates

‖r‖L∞ ≤ ‖u− z‖L∞ + |m0|‖ζ‖L∞ ≤ β2

(
1 +

3‖ζ‖L1‖ζ‖L∞

‖ζ‖2
0

)
= γ2β2.

We expand E1(u) as in (23), and we obtain

E1(u) = e1 +
∫ ( |r′|2

2
+
∫ 1

0

(1 − s)D2W (z + sr)r ⊗ r ds
)

dx. (35)

The first way to estimate the integral term from below is as follows: we observe that

|(D2W (z + sr) −D2W (z)
)
r ⊗ r| ≤ $2(‖z‖L∞ + γ2β2)γ2β2|r|2.

According to the definition (31), we have the inequality

E1(u) ≥ e1 +
ν2 − γ2β2$2(‖z‖L∞ + γ2β2)

2

∫
|r|2 dx. (36)

We choose β2 small enough to have the inequality

γ2β2$2(‖z‖L∞ + γ2β2) ≤ ν2

2
·

On the other hand, if we denote by γ3 the norm of D2W (0), i.e.

γ3 = sup{|D2W (0)ξ ⊗ ξ| : |ξ| ≤ 1}, (37)

we have

|D2W (z + rs)r ⊗ r| ≤ (γ3 + γ2β2$2(‖z‖L∞ + γ2β2)|r2| = γ1|r2|.

Then, we have the other inequality for E1:

E1(u) ≥ e1 +
1
2

∫
|r′|2 dx− γ1

2

∫
|r|2 dx. (38)

We can find a convex combination of (36) and (38) such that the coefficient of the term in r and the coefficient
of the term in r′ are both strictly positive, yielding the inequality

E1(u) ≥ e1 + α2‖u− z(· −m)‖2
1,

and the conclusion is readily obtained since ‖u− z(· −m)‖1 ≥ d1(u, C(z)).
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The following corollary gives a more global result.

Corollary 4.6. Assume that the spectral assumption for z holds. For all β ∈ (0, d1(z,Z \ C(z))), there exists
α such that

d1(u,Z \ C(z)) ≥ β =⇒ E1(u) ≥ e1 + αmin(1, d1(u, C(z))2). (39)

Proof. The proof is an immediate corollary of Corollary 3.2 and Lemma 4.5.

The inequality opposite to (39) is an easy result, proved at the following lemma:

Lemma 4.7. Let γ3 be as in (37). The following inequality holds:

E1(u) ≤ e1 +
max(1, γ3 + d1(v,Z)$2(R+ d1(v,Z)))d1(v,Z)2

2
· (40)

Proof. We let d1(u,Z) = ‖u− z‖1 and r = u− z. We use the expression (35) of E1(u), and we observe that

∣∣∣∣
∫ 1

0

(1 − s)D2W (z + sr)r ⊗ r ds
∣∣∣∣ ≤ |r|2

2
(
γ3 +$2(R+ ‖r‖L∞)

)
.

The conclusion is then immediate.

5. A linear elliptic problem

We assume in this section that the spectral assumption (26) holds. We need some analytic information on A
and the semi-group generated by

√
A in different functional spaces. Define for s ≥ 0 the space

Vs = {v ∈ Hs(R)2 : (v, ζ) = 0} ·

The operator A0 is an unbounded operator in V0 defined by

D(A0) = D(A) ∩ V0, A0y = Ay.

It is clear that A0 is self adjoint and that A0 − ν2 is non negative, where ν has been defined by (31).

Lemma 5.1. Assume that the spectral assumption (26) is satisfied. For all s ∈ [0, 1], the expressions ‖u‖s and
‖As/2

0 u‖0 define equivalent norms on Vs.

Proof. The proof of this result is by interpolation. We use one of the simplest cases of interpolation theory,
namely Theorem 15.1 of [6]. The content of this result is the following: let X and Y be Hilbert spaces such
that X is continuously and densely embedded in Y ; let Λ be the self-adjoint positive operator in Y defined by

D(Λ2) =
{
u ∈ X : sup

(|(u, v)|X/|v|Y ) <∞}, (Λ2u, v)Y = (u, v)X ∀v ∈ X.

The interpolation space [X,Y ]θ is defined as the domain of Λ1−θ and it is equipped with the norm ‖Λ1−θ‖Y .
Moreover, if X is equipped with two equivalent Hilbertian norms, corresponding to operators Λ1 and Λ2, the
interpolation spaces can be identified, and their norms are equivalent. We apply this toX = H2(R)2, Y = L2(R)2

and to the following operators: Λ1 is 1 +A and the operator Λ2 is defined as follows:

D(Λ2) = H2(R)2, Λ2v = −v′′ + v.
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It is well known that the domain of Λ1−θ
2 is the space H2(1−θ)(R)2. Therefore, we have proved that for all

s ∈ [0, 2], there exists k(s) such that for all v ∈ Hs(R)2

k(s)−1‖v‖s ≤ ‖(1 +A)s/2v‖0 ≤ k(s)‖v‖s. (41)

To conclude the proof of the lemma, we use the spectral theorem. Recall that a resolution of the identity in a
Hilbert space H is defined by the data of orthogonal projections P (λ) parameterized by λ ∈ R; it is assumed
that λ 7→ ImP (λ) is increasing; this is equivalent to P (λ)P (λ′) = P (λ) whenever λ′ ≥ λ. It is also assumed
that P is continuous on the right and that

⋂
λ∈R

ImP (λ) = {0},
⋃
λ∈R

ImP (λ) = H.

With these definitions we can see that the function λ 7→ (P (λ)u, u) is increasing and right continuous for all
u ∈ H and d(P (λ)u, u) is a non-negative Stieltjes measure. The function (P (λ)u, v) is the difference of two
increasing function so that d(P (λ)u, v) is also a Stieltjes measure. Define

D(L) =
{
u ∈ H :

∫
λ2 d

(
P (λ)u, u

)
< +∞

}
; (42)

if u belongs to D(L), Lu is defined by the condition

∀v ∈ H, (Lu, v) =
∫
λd
(
P (λ)u, v

)
. (43)

The spectral theorem (see for instance [4], VI Paragraph 5 or [10], VII for a full description of the theory)
asserts that for all self-adjoint operator L in H there exists a resolution of the identity for which the domain of
L and L are given by (42) and (43). If φ is a continuous function defined on the spectrum of L, the operator
φ(L) is defined by

D(φ(L)) =
{
u ∈ H :

∫
φ(λ)2 d(P (λ)u, u) < +∞

}
,

(
φ(A)u, v

)
=
∫
φ(λ) d

(
P (λ)u, v

)
.

In particular, if φ is bounded on the spectrum of L then φ(L) is bounded and

‖φ(L)‖L(H) ≤ sup{|φ(λ)| : λ ∈ spec(L)} ·

The most important property of these operator functions are that φ1(A)φ2(A) is identical to (φ1φ2)(A) and
φ1(φ2(L)) is identical to (φ1 ◦ φ2)(L).

In our special case, the projection P (0) is equal to the projection on the kernel of A, Rζ. Let I be the
injection V0 → L2(R)2 and let I∗ be its adjoint, i.e. the projection L2(R)2 → V0. The resolution of the identity
associated to A0 is I∗P (λ)I = P0(λ) and its support is included in [ν2,∞). If v belongs to Vs, we can write

A
s/2
0 v =

∫
λs/2 dP0(λ)v

and thanks to the inequalities

λ ≥ ν2 ⇒ νs

(1 + ν)s
(1 + λ)s/2 ≤ λs/2 ≤ (1 + λ)s/2
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we can see that

νs

(1 + ν)s
‖(1 +A)s/2v‖0 ≤ ‖As/2

0 v‖0 ≤ ‖(1 +A)s/2v‖0.

This relation together with (41) enables us to conclude.

Henceforth, Vs is equipped with the norm ‖Asv‖0 = ‖v‖Vs . The number τ(s) is such that for all v ∈ Vs

τ(s)−1‖v‖s ≤ ‖v‖Vs ≤ τ(s)‖v‖s. (44)

It should be noted that for all s ≥ 0, τ(s) ≥ 1 = τ(0)

Lemma 5.2. Assume that the spectral assumption (26) is satisfied. Then the following assertions hold:
(1) The operator

√
A0 is an unbounded self-adjoint operator in V0 with domain V1; the inverse of

√
A0 is

bounded and of norm at most equal to ν−1 as an operator from V0 to itself.
(2) The operator

√
A0 generates a holomorphic semi-group of contractions in V0, which satisfies the estimate

∥∥∥exp
(−t√A0

)∥∥∥
L(V0)

≤ exp(−νt). (45)

(3) For all s ∈ [0, 2], A−1/2
0 is a bounded operator from Vs into itself.

(4) The operator exp
(−t√A0

)
maps Vs into itself and satisfies the estimate

∥∥∥exp
(−t√A0

)∥∥∥
L(Vs)

≤ exp(−νt). (46)

For all v ∈ Vs the mapping t 7→ exp
(−t√A0

)
v is continuous at 0.

Proof. The proof is an exercise in spectral representations, and left to the reader.

We will use these functional results to solve a linear problem in a half-plane: given g ∈ Vs and a bounded
f ∈ C0(R+, Vs), we would like to find a solution of

−∆y + (D2W (z)y)T + f = 0, y(·, 0) = g (47)

which is a continuous bounded function of x2 with values in Vs.

Lemma 5.3. For all g ∈ Vs and all bounded f ∈ C0(R+, Vs), there exists a unique bounded solution y ∈
C0(R+, Vs) of (47); it is given explicitly by

y(·, x2) = exp
(−x2

√
A0

)(
g +

(
2
√
A0

)−1
∫ ∞

0

exp
(−t√A0

)
f(·, t) dt

)

− (2√A0

)−1
∫ x2

0

exp
(−(x2 − t)

√
A0

)
f(t) dt

− (2√A0

)−1
∫ ∞

x2

exp
(
(x2 − t)

√
A0

)
f(t) dt.

Proof. Define

(B1g)(·, x2) = exp
(−x2

√
A0

)
g (48)
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and

(B2f)(·, x2) =
(
2
√
A0

)−1
(

exp
(−x2

√
A0

) ∫ ∞

0

exp
(−t√A0

)
f(·, t) dt

−
∫ x2

0

exp
(−(x2 − t)

√
A0

)
f(t) dt

−
∫ ∞

x2

exp
(
(x2 − t)

√
A0

)
f(t) dt

)
.

(49)

The following estimate is plain:

‖(B1g)(·, x2)‖Vs ≤ exp(−νx2)‖g‖Vs .

If we let

‖f‖L∞(Vs) = sup{‖f(·, x2)‖Vs : x2 ∈ R
+},

we have also

‖(B2f)(·, x2)‖Vs ≤ ν−2‖f‖L∞(Vs).

Therefore (B1g + B2f)(·, x2) is bounded in Vs uniformly with respect to x2 ≥ 0. The continuity of B1g with
respect to x2 with values in Vs is a consequence of the semi-group property. The continuity of the term

(
2
√
A0

)−1

exp
(
−x2

√
A0

)∫ ∞

0

exp
(
−t
√
A0

)
f(t) dt

is clear. The continuity of the other terms is more delicate: if x2 is fixed, the set f([0, x2]) = {f(t) : 0 ≤ t ≤ x2} is
compact in Vs and therefore as h decreases to 0, the convergence of

[
exp(−(x2−t−h)

√
A0

)−exp
(−(x2−t)

√
A0

)]
v

toward 0 in Vs is uniform with respect to t in [0, x2]; therefore∫ x2

0

[
exp

(
−(x2 − t− h)

√
A0

)
− exp

(
−(x2 − t)

√
A0

)]
f(t) dt

tends to 0 as h decreases to 0; the term

∫ x2+h

x2

exp
(
−(x2 + h− t)

√
A0

)
f(t) dt

can be treated immediately. If h increases to 0 there is an analogous treatment of the two different terms. For
the term integrated on a semi-infinite interval, we have to argue differently: given x2 > 0 and δ > 0, we find
x′2 > x2 such that for all h ∈ [0, 1]∥∥∥∥∥

∫ ∞

x′
2

(
exp

(
(x2 + h− t)

√
A0

)
− exp

(
(x2 − t)

√
A0

))
f(t) dt

∥∥∥∥∥
Vs

≤ δ

2
·

It is possible to find such an x′2 because of the exponential estimate on the semi-group, which implies that∫ ∞

x′
2

∥∥∥exp
(
(x2 − t)

√
A0

)
f(t)

∥∥∥
s

dt ≤ ‖f‖L∞(Vs) exp(−ν(x′2 − x2))
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with a similar estimate for the other term. Fix this x′2, and now the compactness argument shows that it is
possible to choose h so small that the remaining terms are less than δ/2 in the norm of Vs. An adequately
modified argument holds in the case h ≤ 0.

We prove that B1g +B2f is a solution of (47) in the most direct fashion: we differentiate twice (B1g)(·, x2)
with respect to x2; since exp

(−t√A0

)
is a holomorphic semi-group, it is clear that for all x2 > 0

−∂
2B1g

∂x2
2

+A0B
1g = 0. (50)

Similarly, we differentiate (B2f)(·, x2) twice; using arguments similar to those of the proof of continuity, we find
that

d2

dx2
2

(
2
√
A0

)−1
(∫ x2

0

exp
(
−(x2 − t)

√
A0

)
f(t) dt

+
∫ x2

0

exp
(
(x2 − t)

√
A0

)
f(t) dt

)

= −f(x2) +
1
2

∫ x2

0

√
A0 exp

(
−(x2 − t)

√
A0

)
f(t) dt

+
1
2

∫ ∞

x2

√
A0 exp

(
(x2 − t)

√
A0

)
f(t) dt.

(51)

Therefore, B2f satisfies the relation

−∂
2B2f

∂x2
2

+A0B2f = f. (52)

It should be observed that the integral terms on the right hand side of (51) make sense in Hs−1: therefore (52)
is satisfied in the sense of distributions with values in Vs−1. The boundary condition are obviously satisfied. If
we put together (50) and (52) we can see that B1g +B2f solves (47).

There remains to prove the uniqueness of bounded solutions of (47). It suffices to prove that when g and f
vanish, the only bounded solution of (47) vanishes. Let us assume therefore that u is continuous with values in
V0, that u(·, x2) is bounded in V0 independently of x2 ≥ 0 and that u satisfies in the sense of distributions the
equation

−∂
2u

∂x2
2

+Au = 0, u(·, 0) = 0. (53)

Define v = A−1
0 u; then v satisfies the same relations as u, and moreover, since ∂2v/∂x2

2 is equal to A0v = u, v
is of class C2 with values in V0. In particular, the boundary value (∂v/∂x2)(·, 0) is well defined and belongs to
V0. Assume that y0 belongs to V2; two integrations by parts show that∫ ∞

0

(
∂2v

∂x2
2

, exp
(
−t
√
A0

)
y0

)
dt =

∫ ∞

0

(
v,A0 exp

(
−t
√
A0

)
y0

)
dt−

(
∂v

∂x2
(·, 0), y0

)
.

If we use (53), we can see that (∂v/∂x2)(·, 0) is orthogonal to V2; as V2 is dense in V0, this proves that
(∂v/∂x2)(·, 0) vanishes. The function v has a partial Laplace transform with respect to x2 denoted by V (x1, p)
and defined by the formula

V (x1, p) =
∫ ∞

0

exp(−px2)v(x1, x2) dx2.
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For <p > 0, p 7→ V (·, p) is holomorphic with values in Vs, and it satisfies the relation

−p2V +A0V = 0.

But for 0 < <p < ν, A0 − p2 has an inverse in V0; therefore V vanishes identically on the strip 0 < <p < ν.
Thus, we can see that V vanishes identically and the uniqueness is proved.

We prove another lemma which gives more precise estimates in the space

Vs = {u ∈ C0(R+;Vs) : sup exp(γx2)‖u(·, x2)‖s < +∞},

where γ is chosen in the interval (0, ν). Observe that here we take the ‖ ‖s norm on Vs and not the ‖ ‖Vs norm.

Lemma 5.4. For all s ∈ [0, 2], B1 maps continuously Vs into Vs and B2 maps continuously Vs into itself. More
precisely, there exists K1(s) such that for all g ∈ Vs

‖B1g‖Vs ≤ K1(s)‖g‖Vs , (54)

and there exists K2(s) such that for all f in Vs

‖B2f‖Vs ≤ K2(s)‖f‖Vs . (55)

Proof. We use the definition (48) of B1, and we find immediately that

sup
x2≥0

exp(−γx2)‖(B1g)(·, x2)‖Vs ≤ ‖g‖Vs ,

and with the help of the definition (44) of τ(s), we infer that

K1(s) = τ(s)2

answers the question.
We estimate term by term B2f as defined by (49): observe first that

∥∥∥∥
∫ ∞

0

exp
(
−t

√
A0

)
f(·, t) dt

∥∥∥∥
Vs

≤
∫ ∞

0

exp(−tν)τ(s)‖f‖Vs exp(−γt) dt

≤ τ(s)‖f‖Vs

γ + ν
·

Therefore
∥∥∥∥(2(√A0

)−1
∫ ∞

0

exp
(
−t
√
A0

)
f(·, t) dt

∥∥∥∥
s

exp(γx2) ≤
τ(s)2‖f‖Vs exp

(
(γ − ν)x2

)
2ν(γ + ν)

·

The second term in the expression of B2f is estimated similarly:

∥∥∥∥
∫ x2

0

exp
(
−(x2 − t)

√
A0

)
f(·, t) dt

∥∥∥∥
Vs

≤
[
exp
(−γx2

)− exp
(−νx2

)]
τ(s)‖f‖Vs

ν − γ
,
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so that ∥∥∥∥(2(√A0

)−1
∫ x2

0

exp
(
−(x2 − t)

√
A0

)
f(·, t) dt

∥∥∥∥
s

exp
(
γx2

)

≤ τ(s)2
[
1 − exp

(
(γ − ν)x2

)]‖f‖Vs

ν − γ
·

The computation is analogous for the third term in the expression of B2f :
∥∥∥∥
∫ ∞

x2

exp
(
(x2 − t)

√
A0

)
f(·, t) dt

∥∥∥∥
Vs

≤ τ(s) exp
(−γx2

)
)‖f‖Vs

ν + γ
,

so that ∥∥∥∥(2√A0

)−1
∫ ∞

x2

exp
(
−(x2 − t)

√
A0

)
f(·, t) dt

∥∥∥∥
s

exp
(
γx2

) ≤ τ(s)2‖f‖Vs

2ν(ν + γ)
·

Write α = exp
(−(ν − γ)x2

)
; from the elementary calculation

α

γ + ν
+

1 − α

ν − γ
+

1
γ + ν

≤ 2ν
ν2 − γ2

,

we infer that

‖B2f‖Vs
≤ τ(s)2

ν2 − γ2
‖f‖Vs

.

Thus

K2(s) =
τ(s)2

ν2 − γ2
(56)

satisfies the announced properties and our proof is complete.

Remark 5.5. Without loss of generality, we may assume that

K1(0) ≤ K1(1). (57)

6. An elliptic problem in a half-plane

In this section we show that if z is a minimizer of E1 over S(a,b) satisfying the spectral condition and if
d1(g, C(z)) is small enough we can construct a solution of

−∆u+ DW (u)T = 0 in R × (0,∞), (58)

u(·, 0) = g (59)

such that u(·, x2) converges exponentially as x2 tends to infinity to some z(· −m).
The idea is to use the implicit function theorem and a monotonicity argument. For this purpose, we define

the functional space

W =
{
λ ∈ C0(R+) : sup

x2≥0
exp(γx2)|λ(x2)| <∞

}
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and the operator B3 on W

(B3λ)(x2) =
∫ ∞

x2

∫ ∞

s

λ(σ) dσ ds.

The reader will check that for K3 = γ−2 and for all λ ∈ W

‖B3λ‖W ≤ K3‖λ‖W .

We introduce new unknowns v ∈ V1, λ ∈ W and m ∈ R; we write

u(· +m, ·) = z + v + λζ.

We will assume that v is orthogonal to ζ. Equation (58) can be rewritten

−∂
2v

∂x2
2

− d2λ

dx2
2

ζ +Av +Q(v + λζ) = 0, (60)

provided that we define for all y ∈ H1(R)2

Q(y) =
(
DW (z + y) − DW (z) − D2W (z)y

)T
.

The boundary data for (60) becomes

v(·, 0) + λ(0)ζ = g(· +m) − z. (61)

We define a function F from Vs ×W × H1(R)2 × R to Vs ×W × R by

F (X) =


F1(X)
F2(X)
F3(X)


 , X =



v
λ
g
m


 ,

and

F1(X) = v −B1(1 − P (0))
(
g(· +m) − z

)
+B2(1 − P (0))Q(v + λζ),

F2(X) = λ−B3(Q(v + λζ), ζ)/‖ζ‖2
0,

F3(X) = λ(0) − (g(· +m) − z, ζ)/‖ζ‖2
0.

Lemma 5.3 implies that it is equivalent to solve F (·, ·, g,m) = 0 and to find a solution of a solution of (60) with
boundary data (61).

It is impossible to apply directly the implicit function theorem to F because F is not of class C1 from
V1 ×W ×H1(R2)×R to V1 ×W ×R: when we differentiate with respect to m, one degree of differentiability is
lost in the F1 equation. However this defect cannot be taken care of by considering that F takes its values in
V0 ×W × R, since in that case, the derivative of F with respect to (v, λ,m) stops being invertible at (0, 0, 0).

In order to get around this difficulty, we proceed as follows: we first solve the first two equations for v
and λ in terms of m and g; since we need uniform estimates locally in m and g, we do not use the general
implicit function theorem and we write the conditions under which we can use the strict contraction theorem.
Denoting the solution obtained by v(m), λ(m), we solve for m by finding a zero of F (v(m), λ(m), g,m): the
lower regularity with respect to m is enough to differentiate F (v(m), λ(m), g,m) with respect to m, and for m
and ‖g‖1 small enough, we find a solution.
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We estimate now the norm of DQ(y)ŷ in H1(R)2 with the help of the moduli of continuity defined at (33)
and (34):

Lemma 6.1. There exists an increasing continuous function $ from R
+ to itself and vanishing at 0 such that

for all y and ŷ in H1(R)2

‖DQ(y)ŷ‖0 ≤ $(‖y‖1)‖ŷ‖0 (62)

‖DQ(y)ŷ‖1 ≤ $(‖y‖1)‖ŷ‖1. (63)

Proof. The proof is immediate; recall the definition (33) of $2 and (34) of $3 and the inequality ‖y‖L∞ ≤ ‖y‖H1

for all function y ∈ H1(R)2; we may take

$(r) = $2(R+ r) + r sup{|D3W (y)ξ⊗3| : |y| ≤ R+ r, |ξ| ≤ 1} +$3(R + r)‖ζ‖L∞ .

Equip the space V1 ×W with the norm

‖(v, λ)‖V1×W = max(‖v‖V1 , ‖λ‖W)

and define the mapping

G(v, λ; g,m) =
(
B1(1 − P (0))(g(· +m) − z) −B2(1− P (0))Q(v + λζ)

B3

(
Q(v + λζ), ζ

)
/‖ζ‖2

0

)
.

Next lemma proves that for (m, g) close enough to (0, z), it is possible to find a fixed point of G(., .; g,m)
in a small enough ball about 0 in V1 × W ; it is also possible to estimate the derivatives ∂v/∂m and ∂λ/∂m
respectively in V0 and W .

Lemma 6.2. There exist ρ > 0 and ρ1 > 0 such that if

max(‖g − z‖1, |m|) ≤ ρ1, (64)

G maps the ball of radius ρ about 0 of V1 ×W into itself and is a strict contraction on that ball. Moreover, the
unique fixed point (v(m), λ(m)) of G in the ball satisfies the estimate

max(‖v(m)‖V1 , ‖λ(m)‖W ≤ 2τ(1)K1(1)
(‖g − z‖1 + |m|‖ζ‖1

)
. (65)

The derivatives ∂v/∂m and ∂λ/∂m are well defined as respective elements of V0 and W and they satisfy the
estimates

max

(∥∥∥∥ ∂v∂m (m)
∥∥∥∥
V0

,

∥∥∥∥ ∂λ∂m(m)
∥∥∥∥
W

)
≤ K1(0)(‖g′ − ζ‖0 + |m|‖ζ′‖0)

1 −$(κρ)(K2(0) +K3)
· (66)

Proof. Thanks to Lemma 6.1, Q is locally Lipschitz continuous, and for all y1 and y2 in H1(R)2,

‖Q(y2) −Q(y1)‖1 ≤ $(max(‖y1‖1, ‖y2‖1)‖y2 − y1‖1.

Since Q(0) vanishes, we have in particular ‖Q(y)‖1 ≤ $(‖y‖1)‖y‖1. Assume max(‖v‖V1 , ‖λ‖W) ≤ ρ and define
κ = 1 + ‖ζ‖1. Then, we may estimate the first component of G, under assumption (64):

‖B1(1− P (0))(g(· +m) − z)‖V1 ≤ K1(1)τ(1)κρ1,

‖B2(1− P (0))Q(v + λζ)‖V1 ≤ K2(1)$(κρ)κρ,
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and similarly the second component of G:

‖B3

(
Q(v + λζ), ζ

)
/‖ζ‖2

0‖W ≤ K3$(κρ)κρ.

Therefore, if

κρ1K1(1)τ(1) +K2(1)$(κρ)κρ ≤ ρ and K3$(κρ)κρ/‖ζ‖0 ≤ ρ,

the ball of radius ρ about 0 in V1 ×W is invariant by G. The Lipschitz constant of G is estimated as follows:

‖B2(1 − P (0))(Q(v1 + λ1ζ) −Q(v2 + λ2ζ))‖V1 ≤ K2(1)$(κρ)(‖v2 − v1‖V1 + ‖λ2 − λ1‖W),

‖B3

(
Q(v1 + λ1ζ) −Q(v2 + λ2ζ), ζ

)
/‖ζ‖2

0

)‖W ≤ K3$(κρ)(‖v2 − v1‖V1 + ‖λ2 − λ1‖W)/‖ζ‖0.

The mapping G will be a contraction of ratio 1/2 in V1 ×W if

max(K2(1),K3/‖ζ‖0)max(1, ‖ζ‖1)$(κρ) ≤ 1/2. (67)

At this point, we require therefore (67) and

K1(1)τ(1)κρ1 ≤ ρ/2. (68)

Conditions (67) and (68) imply that there exists a unique fixed point (v(m), λ(m)) of G(·, ·, ; g,m) in the ball of
radius ρ about 0. This fixed point satisfies the estimate (65), according to a classical argument. Consider now
the system in (v̂, λ̂):

v̂ = B1

(
1− P (0)

)
g′(· +m) −B2(1− P (0))DQ(v + λζ)(v̂ + λ̂ζ)

λ̂ = B3

(
DQ(v + λζ)(v̂ + λ̂ζ), ζ

)
/‖ζ‖2

0.
(69)

If (v, λ) belongs to the ball of radius ρ about 0 in V1 ×W , the following estimate holds:

‖v̂‖V0 + ‖ζ‖0‖λ̂‖W ≤ K1(0)‖g′(· +m) − ζ‖0 +$(κρ)(K2(0) +K3),

where we have used the identity (1 − P (0))ζ = 0. We infer from condition (67) that

$(κρ)(K2(0) +K3) ≤ K2(0)
2K1(0)

+
‖ζ‖0

2‖ζ‖1

which is strictly less than 1 thanks to assumption (57) and the obvious inequality ‖ζ‖0 < ‖ζ‖1. This shows that
there exists a unique solution of system (69). Its solution can be classically identified to the partial derivatives
of v and λ with respect to m. Estimates (66) are deduced by a straightforward calculation.

We are able now to solve F (X) = 0 when the data g is close enough to z.

Theorem 6.3. There exist ρ′1 ∈ (0, ρ1], ρ2 ∈ (0, ρ′1] and K4 such that if ‖g − z‖1 ≤ ρ2, there exists a unique
solution (v, λ,m) of F (v, λ, g,m) = 0 such that ‖v‖V1 ≤ ρ, ‖λ‖W ≤ ρ and |m| ≤ ρ′1. Moreover, this solution
satisfies the estimate

max
(‖v‖V1 , ‖λ‖W , |m|)≤ K4‖g − z‖1. (70)
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Proof. Let us calculate the derivative of F3(v(m), λ(m),m, g) with respect to m:

∂F3

∂m
(v(m), λ(m), g,m) =

∂λ

∂m

∣∣∣
0
− (g′(· +m), ζ)

‖ζ‖2
0

·

We have the estimate∣∣∣∣∂F3

∂m
(v(m), λ(m), g,m) + 1

∣∣∣∣ ≤ K1(0)
(‖g′ − ζ‖0 + |m|‖ζ′‖0

)
1 −$(κρ)(K2(0) +K3)

+
‖g′ − ζ‖0 + |m|‖ζ′‖0

ζ0
·

We choose ρ′1 ∈ (0, ρ1] such that(
K1(0)

1 −$(κρ)(K2(0) +K3)
+

1
‖ζ‖0

)
(1 + ‖ζ′‖0)ρ′1 ≤ 1

2
·

Then, F3(v(m), λ(m), g,m) satisfies the inequalities

0 ≤ m ≤ ρ′1 =⇒ F3(v(m), λ(m), g,m) ≥ F3(v(0), λ(0), g, 0) +
m

2
,

−ρ′1 ≤ m ≤ 0 =⇒ F3(v(m), λ(m), g,m) ≤ F3(v(0), λ(0), g, 0) +
m

2

which imply that if |F3(v(0), λ(0), g, 0)| ≤ ρ′1/2, the equation F3(v(m), λ(m), g,m) = 0 possesses a unique
solution in the interval |m| ≤ ρ′1. We use now (65):

|F3(v(0), λ(0), g, 0)| ≤ 2τ(1)K1(1)‖g − z‖1 +
‖g − z‖0

‖ζ‖0
·

We choose ρ2 ∈ (0, ρ′1] such that

2τ(1)K1(1)ρ2 +
ρ2

‖ζ‖0
≤ ρ′1

2
·

Choose ρ2 ∈ (0, ρ1] so small that

ρ2

2K1(1)‖ζ‖0
+

$(κρ2)K1(0)‖g‖1

κ
(
2$(κρ) −$(κρ2)

≤ 1
2
·

If ‖g−z‖1 ≤ ρ2, it is clear now that the conclusion of the lemma is verified; estimate (70) is now a straightforward
consequence of (65) and the obvious inequality |m| ≤ 2|F3(v(0), λ(0), g, 0)|.

7. A minimization problem in a half-plane

We can also solve (58) by minimizing an appropriately renormalized energy on the half-plane x2 ≥ 0, with
boundary data g. The existence of a minimizer is straightforward; the main result of this section is that this
minimizer coincides with the solution we just found by a fixed point argument, provided that g is close enough
to z.

Let I be an interval of R; define the class S2(I) by

S2(I) =
{
u ∈ H1

loc(R × I)2 :
∂u

∂x2
∈ L2(R × I)2;

for almost every x2 ∈ I, u(·, x2) ∈ S(a,b);

E1(u(·, x2)) − e1 belongs to L1(I)
}
·

(71)
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For u ∈ S2(I) we define a renormalized energy

E2(u, I) =
∫

I

[
E1(u(·, x2)) − e1 +

∫
R

1
2

∣∣∣∣ ∂u∂x2

∣∣∣∣
2

dx1

]
dx2.

Given z ∈ Z and g ∈ H1(R)2 we consider the minimization problem

Minimize E2(u,R+) over S2(R+) under the boundary condition

u(·, 0) = g.
(72)

Lemma 7.1. For all g ∈ H1(R)2, problem (72) possesses a solution.

Proof. Observe first that for all u ∈ S2(R+), E1(u(·, x2)) − e1 is nonnegative; therefore, for all u ∈ S2(R+),
E2(u,R+) is nonnegative. We exhibit an element of S2(R+) satisfying the boundary condition for which
E2(u,R+) is bounded: let z be an element of Z such that

d1(g,Z) = ‖g − z‖1.

We define the test function

u(x1, x2) = g(x1) + (1 − x2)+
(
z(x1) − g(x1)).

With the help of inequality (40), we see immediately that

E2(u,R+) ≤ χ(d1(g,Z))2d1(g,Z),

where the function χ is defined as

χ(r) =
(

1
2

+
max(1, γ3 +$2(r +R)

2

)1/2

· (73)

Define

e2(g,R+) = inf{E2(u,R+) : u ∈ S2(R+), u(·, 0) = g} · (74)

We have just proved that

e2(g,R+) ≤ χ(d1(g, z))2d1(g,Z)2. (75)

Let (un)n be a minimizing sequence; without loss of generality, we may assume that for all n ≥ 0

E2(un,R
+) ≤ e2(g,R+) + 1 = η.

The following estimates hold:∫
R×R+

∣∣∣∂un

∂x2

∣∣∣ dx1 dx2 ≤ 2η; ∀L > 0,
∫

R×(0,L)

(∣∣∣∂un

∂x2

∣∣∣2 + 2W (u)
)

dx1 dx2 ≤ 2(η + Le1),

∀L > 0,
∫

R×(0,L)

|un(x1, x2) − g(x1)|2 dx1 ≤ L2η.
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Thus, we may extract a subsequence, still denoted by un which converges to a certain function u, in the following
sense:

∀L > 0, (un − z)
∣∣
R×(0,L)

converges weakly in H1(R × (0, L)) to (un − z)
∣∣
R×(0,L)

,

∂un/∂x2 converges weakly in L2(R × R
+)2 to ∂u/∂x2,

un converges to u almost everywhere in R × R
+.

In particular, for almost every x2, u(·, x2) − z belongs to H1(R)2, and therefore u(·, x2) belongs to S(a,b).
Therefore, E1(u(·, x2)) − e1 is non-negative for almost every x2. A classical passage to the limit gives

e2(g,R+) ≥ lim inf
n→∞ E2(un, [0, L]) ≥

∫
R×(0,L)

∣∣∣ ∂u
∂x2

∣∣∣2 dx1 dx2 +
∫ L

0

(
E1(u(·, x2)) − e1

)
dx2.

As L is arbitrary, u belongs to S2(R+) and E2(u, I) ≤ e2(g,R+); moreover, it is clear that the boundary
condition is satisfied, and the lemma is proved.

In order to show that this u coincides with the solution found in Section 6, we must obtain some regularity
results on u. We start by proving that the minimizers are bounded; it could be thought that the maximum
principle applied to |u|2 gives the answer; however, this argument is valid only if we have obtained the Euler–
Lagrange equation; but this is a very delicate step if we know only that u is locally in H1 and W (u) is locally
in L1. This explains the strategy used here.

Lemma 7.2. Let R be as in (3); then if u solves (72) it satisfies

‖u‖L∞ ≤ max(R, ‖g‖L∞). (76)

Proof. Let

R′ = max(R, ‖g‖L∞)

and define a new function ũ by

ũ(x) =

{
u(x) if |u(x)| ≤ R′,
R′u(x)/|u(x)| otherwise.

It is immediate that ũ belongs to S2(R+) and that almost everywhere on R × R
+

|Dũ(x)| ≤ |Du(x)|, W (ũ(x)) ≤W (u(x)).

Therefore, E2(ũ,R+) ≤ E2(u,R+). It is also clear that ũ satisfies the boundary condition. Therefore ũ is also
a minimizer and we must have ∫

|u|>R

[
W (u) −W (ũ)

]
dx = 0.

But assumption (3) implies that the integrand in the above expression is strictly positive; therefore, the set
{|u| > R′} is negligible and (76) is proved.

The Euler–Lagrange equation is obtained now in a straightforward fashion: let φ belong to C∞
0 (R × (0,∞))

and assume that its support is included in [−L,L) × [0, L]. We have for all t > 0∫ L

0

∫ L

−L

[
Du · Dφ+

t

2
|Dφ|2 +

W (u + tφ) −W (u)
t

]
dx1 dx2 ≥ 0.
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As u is bounded we have uniformly on [−L,L]× [0, L]

lim
t→0

W (u+ tφ) −W (u)
t

= DW (u)φ.

Now it is clear that by classical arguments, u satisfies the Euler–Lagrange equation (58). It is also clear that it
satisfies the boundary condition (59).

The local regularity is easy to obtain: as u is bounded, DW (u) is also bounded, and by classical interior
estimates, for all q ∈ (1,∞), u is locally in the Sobolev space W 2,q. As W is at least of class C3, this means
that locally DW (u) is in W 2,q and therefore, u is locally in W 4,q. By interior Schauder estimates, u is locally
in C3,α for all α ∈ (0, 1).

Let us obtain now some uniform estimates on strips of fixed height; for this purpose, we first prove an
auxiliary estimate:

Lemma 7.3. For all a > 0 and for all ε ∈ (0, a/2) there exists K > 0 such that for all y satisfying

y ∈ L2(R × (0, a)), ∆y ∈ L2(R × (0, a)) (77)

the following estimate holds:

max
(
‖y‖H2(R×(ε,a−ε)), max

x2∈[ε,a−ε]
‖y(·, x2)‖H3/2(R)

)
≤ K

(‖y‖L2(R×(0,a)) + ‖∆y‖L2(R×(0,a))

)
. (78)

Under assumption (77), x2 7→ y(·, x2) is continuous from (0, a) to H1(R).
For all a > 0 and all ε ∈ (0, a), there exists K > 0 such that for all y satisfying (77) and

y(·, 0) ∈ H1(R) (79)

the following estimate holds:

max
(
‖y‖H3/2(R×(0,a−ε)), max

x2∈[0,a−ε]
‖y(·, x2)‖1

)
≤ K

(‖y‖L2(R×(0,a)) + ‖∆y‖L2(R×(0,a)) + ‖y(·, 0)‖H1(R)

)
.

(80)

Under assumptions (77) and (79), x2 7→ y(·, x2) is continuous from [0, a) to H1(R).

Proof. This result is almost in [6], but I did not find it; so I sketch the proof, which is obtained by performing
a partial Fourier transform in x1:

ŷ(ξ1, x2) =
∫

e−ix1ξ1u(x1, x2) dx1.

Our assumptions imply that ŷ satisfies the ordinary differential equation

∂2ŷ

∂x2
2

=
(
1 + |ξ1|2

)
ŷ + ĥ(ξ1, x2). (81)

The function h = y − ∆y belongs to L2(R × (0, a)); define σ(ξ1) =
√

1 + ξ21 ; the general solution of (81) is

ŷ(ξ1, x2) = A(ξ1)e−σ(ξ1)x2 + B̂(ξ1)eσ(ξ1)(x2−a) − ŷ1(ξ1, x2) − ŷ2(ξ1, x2),
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with ŷ1 and ŷ2 given by

ŷ1(ξ1, x2) =
∫ a

x2

e−(t−x2)σ(ξ1)ĥ(ξ1,t)

2σ(ξ1)
dt, ŷ2(ξ1, x2) =

∫ x2

0

e(t−x2)σ(ξ1)ĥ(ξ1,t)

2σ(ξ1)
dt.

We use a Cauchy–Schwartz inequality with the weight e−tσ/σ to estimate ŷ1, assuming that h is extended by
0 for negative values of its argument:

∫ a

0

|ŷ1(ξ1, x2)|2 dx2 =
∫ a

0

∣∣∣∣∣
∫ a

0

e−tσ1R+(t)ĥ(ξ1, t− x2)
2σ

dt

∣∣∣∣∣
2

dx2 ≤
(∫ a

0

e−tσ

2σ
dt
)2 ∫ a

0

|ĥ(ξ1, s)|2 ds.

This inequality enables us to see that

∫ a

0

∫
R

|ŷ1(ξ1, x2)|2ξ41 dξ1 ≤
∫ a

0

∫
R

ξ41
8σ4

|h(ξ1, x2)|2 dξ1 dx2 ≤
‖ĥ‖2

L2(R×(0,a))

8
·

The derivative ∂ŷ1/∂x2 is treated in an analogous fashion, and we use equation (81) to estimate ∂2ŷ1/∂x
2
2.

Thus, we proved

‖y1‖H2(R×(0,a)) ≤ C‖y − ∆y‖L2 and analogously ‖y2‖H2(R×(0,a)) ≤ C‖y − ∆y‖L2 .

The uniform estimate on the norm of y1(·, x2) in H3/2(R) is obtained as follows: by Cauchy–Schwarz inequality,
we have

|ŷ(ξ1, x2)| ≤ 1
2σ

(∫ a

x2

e−2(t−x2)σ dt
)1/2(∫ a

x2

∣∣∣ĥ(ξ1, t)∣∣∣2 dt
)1/2

≤ 1√
8σ3

(∫ a

x2

∣∣∣ĥ(ξ1, t)∣∣∣2 dt
)1/2

.

Then, it is clear that y1 belongs to L∞(0, a; H3/2(R)). The continuity is proved by a repeated application of
Lebesgue’s theorem. The same results also hold for y2. If y belongs to L2(R × (0, a)), the function p̂(ξ1, x2)
= Â(ξ1)e−x2σ + B̂(ξ1)e(x2−a)σ belongs to L2(R× (0, a)). We differentiate p̂ to x2, we multiply it by σ and using
linear combinations, we can check that σÂe−x2σ and σB̂e(x2−a)σ belong to the Fourier transform of the space
H1(R× (0, a)). Therefore, Âe−x2σ and B̂e(x2−a)σB̂ belong to L2(R× (0, a)), from which we deduce immediately
that ∫ (|Â(ξ1)|2 + |B̂(ξ1)2|

)1 − e−2aσ

2σ
dξ1 <∞. (82)

Relation (82) also implies

∫ a−ε

ε

∫ (|p̂(ξ1, x2)|σ4 + |∂2p̂(ξ1, x2)|σ2 + |∂2
2 p̂(ξ1, x2)|2

)
dξ1 dx2 <∞.

It can be seen easily that u has a trace on {x2 = 0} which belongs to H−1/2(R); its Fourier transform is given by

ŷ(ξ1, 0) = Â(ξ1) + B̂(ξ1)e−aσ − ŷ1(ξ1, 0). (83)

Finally, if y(·, 0) belongs to H1(R), relation (83) implies that A belongs to H1(R) and it is then clear that y
belongs to C0([0, a− ε); H1(R)).
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We are able to give now some important regularity properties of a solution of (72).

Lemma 7.4. Let d1(g,Z) = δ. All solutions of (72) are continuous from R
+ to S(a,b). Moreover, there exists

a continuous function M(δ) from R
+ to R

+ such that for all solution u of (72), the following estimates hold:

∀x2 ∈ [0, 1], d1(u(·, x2),Z) ≤M(δ)δ, (84)

∀x2, x̄2 ∈ [1,+∞), ‖∂1u(·, x̄2) − ∂1u(·, x2)‖1 ≤M(δ) |x̄2 − x2| , (85)

∀x2, x̄2 ∈ [1,+∞), ‖∂2u(·, x̄2) − ∂2u(·, x2)‖1 ≤ δM(δ) |x̄2 − x2| . (86)

Proof. Let z ∈ Z be such that d1(g,Z) = ‖g − z‖1. We estimate the L2 norm of u− z over the strip [0, 2]× R:
from the inequality

|u(x1, t) − u(0, t)|2 ≤ t

∫ t

0

|∂2u(x1, s)|2 ds (87)

we infer ∫ 2

0

∫
|u(x1, x2) − g(x2)|2 dx1 dx2 ≤ 2

∫ 2

0

∫
|∂2u|2 dx1 dx2 ≤ 4δ2χ(δ)2.

Thanks to the triangle inequality,

‖u− z‖L2(R×(0,a)) ≤
(√

2 + 2χ(δ)
)
δ.

We subtract from (58) the identity

−∆z + DW (z)T = 0,

and we obtain the equation

−∆(u− z) + DW (u)T − DW (z)T = 0.

We use the modulus of continuity $1 defined by (32):

‖DW (u) −DW (z)‖L2(R×(0,a)) ≤ $(R + δ)‖u− z‖L2(R×(0,a));

as g − z belongs to H1(R)2, we may apply estimate (80), i.e.

max
0≤x2≤1

‖u(·, x2) − z‖1 ≤ Kδ
(
1 +$(R+ δ)

)(√
2 + 2χ(δ)

)
. (88)

We differentiate now the Euler–Lagrange equation (58) with respect to x1 and x2:

−∆∂ju+
(
D2W (u)∂ju

)T = 0.

We have already the following estimates∫
R×R+

|∂2u|2 dx1 dx2 ≤ 2χ(δ)2δ2 and
∫

R×(L−1/2,L+3/2)

|∂1u|2 dx1 dx2 ≤ 2χ1(δ)2δ2 + 4e1.
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This is a situation in which we may apply (78), and we obtain for all L ≥ 1/2

‖∂1u‖H2(R×(L,L+1)) ≤ K
(
1 + γ3 +$2(R + δ)

)√
2χ(δ)2δ2 + 1,

‖∂2u‖H2(R×(L,L+1)) ≤ K
(
1 + γ3 +$2(R + δ)

)√
2χ(δ)δ.

The conclusion of the lemma is now clear.

An important corollary is the following:

Corollary 7.5. Let δ = d1(g,Z). For all solution u of (72) the function x2 7→ d1(u(·, x2),Z) is Lipschitz
continuous over [1,∞), with Lipschitz constant δM(δ).

Proof. Let x2 and x̄2 be given in [1,∞); there exist z and z̄ in Z such that

d1(u(·, x2),Z) = ‖u(·, x2) − z‖1, d1(u(·, x̄2),Z) = ‖u(·, x̄2) − z̄‖1.

In the right hand side of the identity d1(u(·, x̄2),Z) − d1(u(·, x2),Z) = ‖u(·, x̄2) − z̄‖1 − ‖u(·, x2) − z‖1, we
substitute ‖u(·, x̄2) − z̄‖1 by ‖u(·, x̄2) − z‖1 which is larger, we apply the triangle inequality, obtaining thus
d1(u(·, x̄2),Z)− d1(u(·, x2),Z) ≤ ‖u(·, x̄2)− (·, x2)‖1; we obtain the conclusion of the lemma by exchanging the
rôles of x2 and x̄2.

We can prove now that if z is an isolated minimizer of E1 and if g is small enough, then u(·, x2) remains
bounded away from Z \ C(z) for all x2 > 0:

Theorem 7.6. Assume that z is an isolated minimizer of E1 over S(a,b). There exists δ1 > 0 such that for
all g satisfying d1(g, C(z)) ≤ δ1, any minimizer of (72) is in fact the unique solution of (58) and (59) obtained
at Theorem 6.3.

Proof. Take β = 3 min(1, d1(C(z),Z \ C(z)))/4; we know from Corollary 4.6 that there exists α > 0 such that if
d1(v,Z \ C(z)) ≥ d1(C(z),Z \ C(z))/4, then

E1(v) − e1 ≥ αmin
(
1, d1(v, C(z))2

)
.

Define

h(x2) = d1(u(·, x2), C(z)).

The first assumption we make on δ1 is

M(δ1)δ1 < β, (89)

and therefore, relation (84) implies h(x2) ≤ β for 0 ≤ x2 ≤ 1.
Let us prove that for δ1 small enough, h(x2) is at most equal to β for all x2. Define indeed

x̄2 = inf{x2 ≥ 1 : h(x2) = β}.

By continuity of h, h(x̄2) = β. We infer from the inequality E2(u,R+) ≤ δ2χ(δ)2 and from the definition of α
that

α

∫ x̄2

0

h(x2)2 dx2 ≤ δ2χ(δ)2.



ASYMMETRIC HETEROCLINIC DOUBLE LAYERS 999

Let h̃ be the maximum of h(x2) over [0, x̄2]; as h is Lipschitz continuous with Lipschitz constant δM(δ), we
have the estimate ∫ x̄2

0

h(x2)2 dx2 ≥ h̃3/(3δM(δ)),

and therefore

h̃ ≤ δ 3
√

3M(δ)χ(δ)2.

If we choose δ1 so small that

δ1
3
√

3M(δ1)χ(δ1)2 < β, (90)

we obtain a contradiction, and thus h(x2) < β for all x2 ≥ 0.
We minimize now E2(v, [x2,∞)) over S2([x2,∞)) with boundary data u(·, x2). It is clear that

e2(u(·, x2), [x2,∞)) ≤ χ(h(x2))2h(x2)2

and that the restriction of u to R × [x2,∞) provides a solution of this minimization problem. Therefore, we
must have

α

∫ ∞

x2

h(t)2 dt ≤ χ(β)2h(x2)2. (91)

We choose

3γ ∈ (0,min(ν, α/χ(β)2). (92)

If we let

H(x2) =
∫ ∞

x2

h(t)2 dt,

we observe that (91) implies H ′(x2) + 3γH(x2) ≤ 0, a differential inequality which is immediately integrated:

H(x2) ≤ H(0) exp(−3γx2).

But

H(0) =
∫ ∞

0

d1(u(·, x2), C(z))2 dx2 ≤ e2(g,R+)/α ≤ δ2/3γ.

Therefore, we have found the estimate for all t ≥ 0:

H(t) ≤ δ2 exp(−3γt)/γ. (93)

We use again the fact that h is Lipschitz continuous to infer from (93) that h decreases exponentially fast to 0.
Indeed, if h̃(x2) is the maximum of h over the interval [x2,∞), we must have

h̃(x2)3 ≤ 3δM(δ)H(x2). (94)



1000 M. SCHATZMAN

Define

C0 = 3
√

3M(β)/γ.

We infer from (94):

∀x2 ≥ 0, h(x2) ≤ C0δe−γx2. (95)

We will obtain now an exponential bound for ‖∂2u(·, x2)‖1: for x2 ≥ 1, we have the estimates

‖∂2u‖L2(R×(x2−1,x2+1)) ≤ δe−γx2
√

2χ(β)eγ/2C0,

and

‖∂2∆u‖L2(R×(x2−1,x2+1)) ≤ (γ3 +$2(R+ β))‖∂2u‖L2(R×(x2−1,x2+1)).

According to (78), there exists a constant K such that for all x2 ≥ 1:

‖∂2u(·, x2)‖1 ≤ K(1 + γ3 +$2(R + β))‖∂2u‖L2(R×(x2−1,x2+1)),

and therefore, if

C1 = K(1 + γ3 +$2(R + β))χ(β)eγ
√

2C0,

we have

∀x2 ≥ 1, ‖∂2u(·, x2)‖1 ≤ C1δe−γx2 . (96)

Assume that

δ1 max(1, C1) ≤ β(0)/2, (97)

then we may define for all x2 ≥ 1 the function

µ(x2) = m0(u(·, x2));

this function is continuously differentiable and we infer from (11) the inequality

∀x2 ≥ 1, |µ′(x2)| ≤ C′
2δe

−γx2

with

C′
2 = 2C1‖ζ‖0/(‖ζ′‖0β(0)).

This implies in particular that µ(x2) tends to a limit µ(∞) as x2 tends to infinity.
We have to estimate µ(x2) − µ(0) for 0 ≤ x2 ≤ 1: if we assume

2M(δ1)δ1 ≤ β(0), (98)

µ(x2) is well defined on [0, 1], and thanks to (87),

‖u(·, x2) − z(· − µ(0))‖0 ≤ ‖g − z(· − µ(0))‖0 + δχ(δ)
√

2 ≤ δ(1 + χ(δ)
√

2).
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Therefore, if we assume

δ1(1 + χ(δ1)
√

2) ≤ β0(0). (99)

Lemma 2.2 implies |µ(x2) − µ(0)| ≤ δθ(0)(1 + χ(δ)
√

2), and therefore |µ(x2) − µ(1)| ≤ 2δθ(0)(1 + χ(δ)
√

2). If
we define

C2 = 2θ(0)(1 + χ(β)
√

2) + C′
2/γ

we obtain the inequality

∀x2 ≥ 0, |µ(x2) − µ(∞)| ≤ C2δe−γx2.

We define now

λ(x2) =
(
u(· + µ(∞) − z, ζ)/‖ζ‖2

0, v(·, x2) = (1− P (0))(u(· + µ(∞), x2) − z),

which we will estimate respectively in W and V1, and this depends on the following estimates on ‖u(· +
µ(∞), x2)−z‖1. Indeed, ‖u(·+µ(∞), x2)−z‖1 = ‖u(·, x2)−z(·−µ(∞)‖1 and thanks to the triangle inequality,

‖u(·, x2) − z(· − µ(∞)‖1 ≤ ‖u(·, x2) − z(· −m1(u(·, x2)))‖1 + ‖z(· −m1(u(·, x2))) − z(· − µ(x2)‖1

+ ‖z(· − µ(x2)) − z(· − µ(∞))‖1.

If we assume that

δ1C0 ≤ β0(0), (100)

we may apply Corollary 2.3, obtaining thus the estimate

‖u(· + µ(∞)) − z‖1 ≤ C3δe−γx2

with

C3 = C0 + ‖ζ‖1(θ(0)C0 + C2).

If the following conditions are satisfied:

δ1‖1− P (0)‖L(H1,H1)C3 ≤ ρ, δ1C3/‖ζ‖0 ≤ ρ, C2δ1 ≤ ρ′1, δ1 ≤ ρ2, (101)

we are in the conditions of application of Theorem 6.3 and Theorem 7.6 is proved. Observe that δ1 must satisfy
only a finite number of inequalities, namely (89, 90, 97–100) and (101).

We will need an corollary on the continuity with respect to boundary data:

Corollary 7.7. Given a sequence of elements gn of S1(a,b) satisfying ‖gn − z‖1 ≤ δ1 and such that gn − g
tends to 0 in the weak topology of H1, the corresponding sequence of solutions un of the minimization problem
in R×R

+ defined at Theorem 7.6 converges to the solution u of the same problem with data g, in the following
sense: un converges to u almost everywhere and weakly in H1(R × (0, L)) for all L <∞.

Proof. It is clear that we can extract a subsequence which converges almost everywhere and weakly in H1(R ×
(0, L))2 for all L < ∞; we still denote this sequence by (un); it is quite clear that all the inequalities satisfied
by un pass to the limit, namely (84–86, 95), and the estimates on vn, λn and mn:

‖vn‖V1 ≤ δ1C3‖1− P (0)‖L(H1,H1), ‖λn‖W ≤ δ1C3/‖ζ‖0 and |mn| ≤ C2δ1.
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It is quite easy to see that lim inf E2(un,R
+) ≥ lim inf E2(u,R+). As u satisfies the conditions of Theorem 6.3, it

solves the elliptic problem in the half-plane, with boundary data g and by uniqueness, all the sequence converges
to u.

8. Construction of a heteroclinic connection

We assume here that there are exactly two minimizers of E1 over S(a,b), up to translation; these minimizers
are denoted by z+ and z−.

We denote by the common energy of z+ and z−

e1 = E1(z+) = E1(z−). (102)

We denote by ζ± the derivative of z±. We also assume that z+ and z− satisfy the spectral assumption. Finally,
δ1 is chosen so as to satisfy the conditions of Theorem 7.6 relatively to z+ and z−. Without loss of generality,
we may assume that δ1 < d1(C(z+), C(z−)).

Theorem 8.1. There exists a solution of

−∆u+ DW (u)T = 0

in the plane R
2 with the following behavior at infinity:

lim
x1→−∞u(x1, x2) = a, lim

x1→∞ u(x1, x2) = b,

uniformly in x2 and there exists m+ and m− such that

lim
x2→−∞‖u(·, x2) − z−(· −m−)‖1 = 0, lim

x2→∞‖u(·, x2) − z+(· −m+)‖1 = 0,

the convergence being exponentially fast.

Proof. It is clear that the renormalized energy of any element of S2(R) is non-negative; moreover, the element
u(x1, x2) = z−(x1) + (x+

2 − (x2 − 1)+)(z+(x1) − z−(x1)) has finite renormalized energy. Define

S̄2 =
{
u ∈ S2 : lim

x→±∞ d0(u(·, x2), C(z±)) = 0
}
,

and let

e2 = inf{E2(u,R) : u ∈ S̄2} ·

Observe that the definition of S̄2 makes sense, since u(x1, x2)−z(x1) has H1/2 traces on every line x2 = constant.
Let (un)n be a minimizing sequence; we shall construct a smoother minimizing sequence. By definition of

S2(R), we know that for almost every x2 ∈ R, un(·, x2) − z belongs to H1(R)2; we know also that there exist
sequences x2,k and x′2,k tending to infinity such that d1(u(·, x2,k)C(z+)) and d1(u(·,−y2,k), C(z−) tend to 0 as k
tends to infinity.

Therefore, we may choose Xn,+ and Xn,− such that

d1(un(·, Xn,±)), C(z±)) ≤ δ1/2,

and we replace un by a smoother function defined as follows: for ±x2 ≥ ±Xn,±, vn is the solution of the half-
plane minimization problem with boundary data un(·, xn,±); in the strip R × (Xn,−, Xn,+), vn is a minimizer
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of E2(u, (Xn,−, Xn,+)) with boundary data un(·, xn,±). We have not treated this problem, but it is almost
classical, and certainly easier to solve than the problem in the half-plane. Details are left to the reader. In
particular, the renormalized energy of vn is at most equal to the renormalized energy of un and vn is also
a minimizing sequence. The function vn(·, x2) is continuous from R to H1(R)2 thanks to Lemma 7.4, which
applies also to the problem in the strip, after appropriate modifications.

Without loss of generality, we may always assume that

E2(vn,R) ≤ e2 + 1.

Define now

Yn,+ = inf{x2 : d1(vn(·, x2), C(z+)) ≤ δ1},
Yn,− = sup{x2 ≤ Yn,+ : d1(vn(·, x2), C(z−)) ≤ δ1} ·

Thanks to our assumptions relative to δ1, we know that Yn,− < Yn,+. Since, on the interval [Yn,−, Yn,+],
d1(un(·, x2),Z) ≥ δ1, Lemma 3.2 implies the existence of an η > 0 such that for all n:

∀x2 ∈ [Yn,−, Yn,+], E1(u(·, x2)) ≥ e1 + η.

Therefore,

η(Yn,+ − Yn,−) ≤ 2(e2 + 1).

This inequality implies that Yn,+ − Yn,− is bounded independently of n; without loss of generality, we may
translate in the x2 variable and assume

0 ≤ Yn,+ = −Yn,− = Yn ≤ (e2 + 1)/η.

On the other hand, we have the inequality

∫
|un(x1, Yn) − un(x1,−Yn)|2 dx1 ≤ 2Yn

∫ Yn

−Yn

∫
|∂2un|2 dx1 dx2 ≤ 4Yn(e2 + 1), (103)

and we may also estimate from below the first expression in (103): define d1(u(·,±Yn), C(zpm) = ‖u(·,±Yn) −
z±(· −mn,±)‖1; then∫

|un(x1, Yn) − un(x1,−Yn)|2 dx1 ≥ 1
2

∫
|z+(x1 −mn,+) − z−(x1 −mn,−)|2 dx1

− 2
∫ (|un(·, Yn) − z+(· −mn,+)|2 + |un(·,−Yn) − z+(· −mn,−)|2) dx1,

so that

1
2

∫
|z+(x1 −mn,+) − z−(x1 −mn,−)|2 dx1 − 4δ21 ≤ 4Yn(e2 + 1). (104)

But we have the equivalent for |m| � 1:∫
|z+(x1) − z−(x1 −m)|2 dx1 ∼ |a − b|2|m|. (105)
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Relations (104) and (105) imply that |mn,+ −mn,−| is bounded independently of n. Without loss of generality,
we may assume that mn,+ = −mn,− = mn which is bounded independently of n.

We perform a last modification of the sequence of minimizers: we replace un by the half-space minimizers for
|x2| ≥ Yn, with boundary data un(·,±Yn). Define gn,+ = un(· −mn, Yn) and gn,− = un(· +mn,−Yn). We are
in the conditions of application of Corollary 7.7, and thanks to Corollary 7.7, we can pass safely to the limit in
both half planes after extraction as n tends to infinity. The passage to the limit in the strip is easy. It is then
clear that the limiting u is a minimizer of E2(·,R) over S̄2, and that d1(u(·, x2), C(z±)) tends to 0 exponentially
fast as ±x2 tends to infinity.

We establish now some interesting identities:

Lemma 8.2. Let u be a solution as constructed at Theorem 7.6. The following identities hold for all x2:∫
∂u(x1, x2)

∂x1
· ∂u(x1, x2)

∂x2
dx1 = 0, (106)

E1(u(·, x2)) =
1
2

∫ ∣∣∣∣∂u(x1, x2)
∂x2

∣∣∣∣
2

dx1. (107)

Proof. For the first identity, we define

ũ(x1, x2) = u(x1 − tφ(x2), x2)

and we write that for all t > 0 and all φ with compact support in (0,∞) we have

E2(ũ,R+) ≥ E2(u,R+).

By differentiating the inequality with respect to t at t = 0 we find that∫
φ′(x2)

∫
∂u

∂x1
· ∂u
∂x2

dx1 dx2 = 0

This implies that

d
dx2

∫
∂u

∂x1
· ∂u
∂x2

dx1 = 0.

But at infinity, this quantity vanishes thanks to estimate (96); we have proved (107).
For any smooth φ with compact support in (0,∞) we define
the flow X(x2, t) of the differential equation

∂X(x2, t)
∂x2

= φ(X(x2, t)), X(x2, 0) = x2.

This time, we define ũ by

ũ(x1, x2) = u(x1, X(x2, t)).

The same type of argument as above enables us to conclude (107).

It is a pleasure to thank Stan Alama and Lia Bronsard for company and discussions during a very studious summer in
Lyon, which led to the present article.
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Recherches Mathématiques, No. 17.
[7] L. Modica, The gradient theory of phase transitions and the minimal interface criterion. Arch. Rational Mech. Anal. 98 (1987)

123-142.
[8] L. Modica, Gradient theory of phase transitions with boundary contact energy. Ann. Inst. H. Poincaré Anal. Non Linéaire 4
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