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1. Introduction

Let us consider the following differential stochastic equation on a Hilbert space H (with norm | · | and inner
product 〈·, ·〉)




dX(t) = (AX(t) + F (X(t)) + G(X(t)))dt + BdW (t),

X(0) = x ∈ H,
(1.1)

where A : D(A) ⊂ H → H is self-adjoint and such that A ≤ −ωI with ω > 0, B : H → H is linear bounded,
F : D(F ) ⊂ H → H is m-dissipative2 and G : H → H is Lipschitz continuous and bounded. Moreover W (t) is
a cylindrical Wiener process in H , defined in a probability space (Ω,F , P).

System (1.1) is called quasi dissipative; it is called dissipative if A + F + G is dissipative.
Assume that equation (1.1) has a solution X(t, x). Then we consider the corresponding transition semigroup

in Cb(H) defined by the formula

Ttϕ(x) := E[ϕ(X(t, x))], x ∈ H, t > 0, ϕ ∈ Cb(H), (1.2)

where E denotes the expectation. Here Cb(H) is the Banach space of all uniformly continuous and bounded
mappings ϕ : H → R endowed with the norm ‖ϕ‖0 = supx∈H |ϕ(x)|.

Problem (1.1), which arises in several applications as: Reaction-Diffusion equations, Ginzburg–Landau mod-
els, Spin Systems, has been considered by several authors, see [12] and references therein and [4].

When system (1.1) is dissipative, one can show see [11], that for any x ∈ H there exists the limit

lim
t→+∞L(X(t, x)) = ζ, (1.3)
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where L(X(t, x)) is the law of X(t, x) and ζ is the unique invariant measure of Tt, that is
∫

H

Ttϕ(x)ζ(dx) =
∫

H

ϕ(x)ζ(dx), t ≥ 0, ϕ ∈ Cb(H).

As a consequence of (1.3) we have

lim
t→+∞Ttϕ(x) =

∫
H

ϕ(y)ζ(dy), x ∈ H, ϕ ∈ Cb(H), (1.4)

so that the invariant measure ζ is ergodic and strongly mixing.
When G 6= 0 system (1.1) is not necessarily dissipative, see Examples 1.2 and 1.3 below, and (1.3) does not

hold in general. We notice that for a non dissipative system there is not in general existence and uniqueness of
invariant measures.

In this paper we shall prove that, when G is Lipschitz continuous and bounded and some suitable additional
assumptions are fulfilled, there is an invariant measure ζ for (1.1) such that

∣∣∣∣Ttϕ(x) −
∫

H

ϕ(y)ζ(dy)
∣∣∣∣ ≤ κt−(1+γ)/2e−ωt(1 + |x|)‖ϕ‖0, x ∈ H, ϕ ∈ Cb(H), (1.5)

where κ and γ are positive constants.
An important consequence of (1.5) it that ζ is the unique invariant measure of Tt.

Remark 1.1. (i) If G = 0 estimate (1.5) was proved in [11].

(ii) If B has bounded inverse then the exponential convergence to equilibrium of Tt was proved in [8] by a
different method.

In the last part of the paper, we give an application of estimate (1.5) to the asymptotic behaviour, as t → ∞,
of the following Hamilton–Jacobi equation




Dtu =
1
2

Tr [BB∗D2u] + 〈Ax + F (x) + G(x), Du〉 − 1
2
|B∗Du|2, x ∈ D(A),

u(0) = ϕ ∈ Cb(H),

(1.6)

where B∗ is the adjoint of B. We show that

lim
t→+∞u(t, x) = − log

∫
H

e−ϕ(y) ζ(dy), x ∈ H. (1.7)

We end this section by giving two examples:

Example 1.2. Let us consider the following reaction-diffusion equation on [0, π]




dX(t, ξ) = [D2
ξX(t, ξ) + p(X(t, ξ))]dt + dW (t)(ξ), ξ ∈ [0, π], t > 0,

X(t, 0) = X(t, π) = 0, t > 0,

X(0, ξ) = x(ξ), ξ ∈ [0, π],

(1.8)

where p is a polynomial having odd degree s and negative leading coefficient, x ∈ L2(0, π) and W is a cylindrical
Wiener process in H = L2(0, π).
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Set B = I, and
Ax = D2

ξ , x ∈ D(A) := H2([0, π]) ∩ H1
0 ([0, π]).

As easily checked, system (1.8) is dissipative if and only if p′(ξ) − ω ≤ 0.
We show now, following [8], that there exist F dissipative and G Lipschitz continuous and bounded such that

p(ξ) = F (ξ) + G(ξ), so that (1.8) is of the form (1.1).
Let ξ1, ξ2 ∈ R with ξ1 ≤ ξ2 be such that p(ξ1) = p(ξ2) = 0 and p is decreasing on (−∞, ξ1]∪ [ξ2, +∞). Then,

setting

F (ξ) =
{

p(ξ) if ξ ∈ (−∞, ξ1] ∪ [ξ2, +∞),
0 if ξ ∈ [ξ1, ξ2],

and

G(x) =
{

0 if ξ ∈ (−∞, ξ1] ∪ [ξ2, +∞),
p(ξ) if ξ ∈ [ξ1, ξ2],

we see that F and G have the required properties.

Example 1.3. Consider the following reaction-diffusion equation on D := [0, π]3.


dX(t, ξ) = [∆ξX(t, ξ) + p(X(t, ξ))]dt + (−∆ξ)−δ/2dW (t)(ξ), ξ ∈ D, t > 0,

X(t, ξ) = 0, t > 0, ξ ∈ ∂D,

X(0, ξ) = x(ξ), ξ ∈ D,

(1.9)

where p is a polynomial having odd degree s and negative leading coefficient, δ > 0, x ∈ L2(D) and W is a
cylindrical Wiener process in H = L2(D).

Set
Ax = ∆ξ, x ∈ D(A) := H2(D) ∩ H1

0 (D).
Now, choosing F and G as in Example 1.2, we can write system (1.9) in the form (1.1) with F dissipative and
G Lipschitz continuous and bounded.

2. Hypotheses and preliminaries

In this section we recall some known results about problem (1.1).
Concerning the operators A and B we shall assume

Hypothesis 2.1.
(i) A is a self-adjoint operator in H such that

〈Ax, x〉 ≤ −ω|x|2, x ∈ H, (2.1)

for some ω > 0. Moreover A−1 is compact.
(ii) B ∈ L(H) 3 and for any t > 0 the linear operator Qt, defined as

Qtx =
∫ t

0

esABB∗esA∗
xds, x ∈ H,

is of trace class.
(iii) There exists ρ ∈ (0, 1

2 ) such that

∫ +∞

0

s−2ρ Tr [esABB∗esA∗
]ds < +∞. (2.2)

3L(H) represents the Banach algebra of all linear bounded operators from H into H endowed with the sup norm.
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We set

Qtx =
∫ t

0

esABB∗esA∗
xds, x ∈ H, t ≥ 0. (2.3)

By Hypothesis 2.1 it follows that Qt is of trace class and that the stochastic convolution

WA(t) =
∫ t

0

esABB∗esA∗
dW (s), t ≥ 0,

is a Gaussian random variable with mean 0, covariance operator Qt and continuous paths, see [12].
We notice that the assumption that A is self-adjoint is not essential, it could be replaced by A variational.
Concerning F we need two groups of assumptions, Hypotheses 2.2 and 2.3 below.

Hypothesis 2.2. F is m-dissipative and D(F ) = K, where K is a reflexive Banach space continuously and
densely embedded in H.

We denote by AK and FK the parts of A and F in K:

D(AK) = {x ∈ D(A) ∩ K : Ax ∈ K}, AKx = Ax, x ∈ D(AK),

D(FK) = {x ∈ K : F (x) ∈ K}, FK(x) = F (x), x ∈ D(FK).

The second group of assumptions is:

Hypothesis 2.3.
(i) AK : D(AK) ⊂ K → K generates a strongly continuous semigroup etAK in K. Moreover, there exists

ω1 > 0 such that

‖etAK‖L(K) ≤ e−ω1t, t ≥ 0. (2.4)

(ii) FK is m-dissipative in K.
(iii) F maps bounded subsets of K into bounded subsets of H.
(iv) WA(t) takes values on D(FK) and

sup
t≥0

E
(‖WA(t)‖2

K + ‖F (WA(t))‖2
K

)
< +∞. (2.5)

We shall need two different notions of solutions of problem (1.1), mild solutions and generalized solutions.
Let x ∈ K and T > 0. We say that X(·) = X(·, x) is a mild solution of (1.1) on [0, T ] if
(i) X(·) ∈ CW ([0, T ]; H) 4.
(ii) X(t, x) ∈ K, P-a.s. for all t ∈ [0, T ] and

X(t) = etAx +
∫ t

0

e(t−s)A(F + G)(X(s))ds + WA(t), P − a.s. (2.6)

We say that X(·) = X(·, x) is a generalized solution of (1.1) on [0, T ] if assumption (i) holds and there exists a
sequence {xn} ⊂ K convergent to x in H, such that for any n ∈ N there exists a mild solution X(·, xn) to (1.1)
on [0, T ] and

lim
t→+∞X(·, xn) = X(·, x) in CW ([0, T ]; H).

The following result is proved in [11].
4CW ([0, T ]; H) is the Banach space of all continuous mappings [0, T ] → L2(Ω, H) which are adapted to W (t), endowed with the

norm: ‖X‖CW ([0,T ];H) = supt∈[0,T ]

�
E
�|X(t)|2��1/2

.
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Theorem 2.4. Assume that Hypotheses 2.1, 2.2, and 2.3, hold and that G is Lipschitz continuous.
(i) If x ∈ K, problem (1.1) has a unique mild solution X(·, x).
(ii) If x ∈ H, problem (1.1) has a unique generalized solution X(·, x).

By the Markov property Tt is a semigroup of linear bounded operators in Cb(H). However, it is not strongly
continuous in general. Following [3] we define the infinitesimal generator S of Tt through its Laplace trans-
form F (λ)

F (λ)f(x) :=
∫ +∞

0

e−λtTtf(x)dt, f ∈ Cb(H), λ > 0.

It is easy to check that F (λ) maps Cb(H) into itself for all λ > 0 and that F (λ) is a pseudo-resolvent.
Consequently, there exists a unique closed operator S in Cb(H) such that its resolvent R(λ, S) is given by

R(λ, S) = (λ − S)−1 = F (λ), λ > 0.

S is called the infinitesimal generator of Tt on Cb(H).

Example 2.5. Let us consider equation (1.8) . Define A and F as in Example 1.2. Then A is self-adjoint and
its spectrum σ(A) is given by

σ(A) = {−π2k2 : k ∈ N}·
Moreover

Qt = −1
2

A−1(I − e2tA), t ≥ 0.

Consequently

Tr Qt =
∞∑

k=1

1 − e−tk2

k2
< +∞,

and Assumptions 2.1(i, ii) are fulfilled. Also 2.1(iii) holds provided ρ < 1/4.
Finally, the domain of F is given by K = L2s(0, π) and we have

D(AK) = H2,2s([0, π]) ∩ H1,2s
0 ([0, π]), D(FK) = L2s2

([0, π]).

Now, it is not difficult to see [12] that also Hypotheses 2.2, and 2.3, are fulfilled and so Theorem 2.4 applies.

Example 2.6. Let us consider equation (1.9) and define A, F and B as in Example 1.3. Then A is self-adjoint
and its spectrum σ(A) is given by

σ(A) = {−π2(k2
1 + k2

2 + k2
3) : (k1, k2, k3) ∈ N

3}·

Moreover
Qt =

1
2

(−A)−1−δ(I − e2tA), t ≥ 0.

Consequently

Tr Qt =
∞∑

k=1

1 − e−t((k2
1+k2

2+k2
3)

(k2
1 + k2

2 + k2
3)1+δ

< +∞,

provided δ > 1/2. Therefore Hypotheses 2.1(i, ii) is fulfilled. Moreover, choosing ρ < min{1/2, 2(δ− 1/2)}, also
Hypothesis 2.1(iii) holds.

Finally, the domain of F is given by K = L2s(D) and we have

D(AK) = H2,2s(D) ∩ H1,2s
0 (D), D(FK) = L2s2

(D).

Then, it is easy to see that Hypotheses 2.2, and 2.3, are fulfilled. Therefore, if δ > 1/2, Theorem 2.4 applies.
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3. The main result

In this section we shall assume that Hypotheses 2.1, 2.2, and 2.3, hold.

3.1. Existence of an invariant measure

We first prove two estimates.

Lemma 3.1. Assume that Hypotheses 2.1, 2.2, and 2.3, hold.
(i) Let x ∈ H and let X(t, x) be the generalized solution of (1.1). Then there exists κ1 > 0 such that

E|X(t, x)|2 ≤ κ1(1 + e−2ωt|x|2), t ≥ 0. (3.1)

(ii) Let x ∈ K and let X(t, x) be the mild solution of (1.1). Then there exists a constant κ2 > 0 such that

E|F (X(t, x)|2 ≤ κ1(1 + e−2ωt|x|2K), t ≥ 0. (3.2)

Proof. Let us prove (i). Setting Z(t) = X(t, x) − WA(t), equation (1.1) becomes




d
dt

Z(t) = AZ(t) + F (Z(t) + WA(t)) + G(Z(t) + WA(t)),

Z(0) = x.

(3.3)

Multiplying the first equation in (3.3) by Z(t) and taking into account (2.1) and the dissipativity of F , we
obtain

1
2

d
dt

|Z(t)|2 ≤ −ω|Z(t)|2 + 〈F (Z(t) + WA(t)) − F (WA(t)), Z(t)〉 + 〈F (WA), Z(t)〉 + ‖G‖0|Z(t)|

≤ −ω|Z(t)|2 + 〈F (WA), Z(t)〉 + ‖G‖0|Z(t)|

≤ −ω

2
|Z(t)|2 + c1(|F (WA)|2 + 1),

where c1 is a suitable constant.
By the Gronwall lemma it follows that

|Z(t)|2 ≤ e−ωt|x|2 + 2c1

∫ t

0

e−2ω(t−s)(|F (WA(s))|2 + 1)ds,

and finally, for some positive constant c2

|X(t, x)|2 ≤ c2e−2ωt|x|2 + c2

(∫ t

0

e−2ω(t−s)(|F (WA(s))|2 + 1)ds + |WA(t)|2
)

. (3.4)

Now (3.1) follows taking expectation and recalling (2.5).

Let us now prove (ii). We have

d+

dt
|Z(t)|K ≤ −ω1|Z(t)|K + ‖G‖0 + 〈F (Z(t) + WA(t)), νt〉,
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where d+

dt represents the right derivative and νt belongs to the subdifferential of |Z(t)|K , see [17]. Since F is
dissipative in K (by Hypothesis 2.3(ii)), we obtain

d+

dt |Z(t)|K ≤ −ω1|Z(t)|K + ‖G‖0 + 〈F (Z(t) + WA(t)) − F (WA(t)), νt〉 + 〈F (WA(t)), νt〉

≤ −ω1|Z(t)|K + ‖G‖0 + |F (WA(t))|K .

Now the conclusion follows using the Gronwall lemma and taking into account (2.5). �
We are now in position to prove the existence of an invariant measure for Tt. To this purpose let us first

recall that there exists a positive constant κρ such that

|(−A)ρetAx| ≤ κρt
−ρe−ωt|x|, x ∈ H, t > 0,

where ρ was defined in (2.2).

Proposition 3.2. Assume that Hypotheses 2.1, 2.2, and 2.3, hold. Then there exists an invariant measure ζ
for Tt. Moreover ∫

H

|x|2ζ(dx) < +∞. (3.5)

Proof. Let x ∈ K and let X(t, x) be the mild solution of (1.1). Then we have

(−A)ρX(t, x) = (−A)ρetAx +
∫ t

0

(−A)ρe(t−s)A(F + G)(X(s, x))ds

+ (−A)ρWA(t), t ≥ 0, x ∈ H.

(3.6)

Moreover

E
[|(−A)ρWA(t)|2]=

∫ t

0

Tr
[
(−A)ρesABB∗(−A∗)ρesA∗]

≤ 2κ2
ρ

∫ t

0

t−2ρ Tr [esABB∗esA∗
]ds.

Therefore, in view of Hypothesis 2.1(iii), there exists cρ > 0 such that

E
[|(−A)ρWA(t)|2] ≤ cρ, t ≥ 0. (3.7)

From (3.6) and (3.7) it follows that there exists a constant c1,ρ(x) such that

E|(−A)ρX(t, x)| ≤ t−ρc1,ρ(x), t ≥ 0.

We can now show that the set of the laws of X(t, x), {L(X(t, x))}t≥1, is tight. For any R > 0, denote by Bρ
R

the ball Bρ
R := {y ∈ H : |y|D((−A)ρ) < R}. Then we have

L(X(t, x))((Bβ
R)c) =

∫
|y|D((−A)ρ≥R

L(X(t, x))(dy)

≤ 1
R

∫
H

|y|D((−A)ρ)|L(X(t, x))(dy) = E|(−A)ρX(t, x)| ≤ 1
R

c1,ρ(x).
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This implies tightness of {L(X(t, x))}t≥1, because the embedding D((−A)ρ) ⊂ H is compact by Hypothe-
sis 2.1(i). Therefore, from the Krylov–Bogoliubov theorem it follows that there exists an invariant measure ζ
for Tt.

Let us prove now (3.5). By (3.1) we have in fact, integrating with respect to ζ and taking into account the
invariance of ζ ∫

H

|x|2ζ(dx) ≤ κ1(1 + e−2ωt

∫
H

|x|2ζ(dx)).

Choosing t0 > 0 such that κ1e−2ωt0 < 1 we have∫
H

|x|2ζ(dx) ≤ κ1

1 − κ1e−2ωt0
,

and (3.5) is proved. �

3.2. Strong Feller property

Together with problem (1.1) it is useful to consider the following dissipative problem, obtained by setting
G = 0 in (1.1) 


dY (t) = (AY (t) + F (Y (t)))dt + BdW (t),

Y (0) = x ∈ H.
(3.8)

Again by Theorem 2.4 problem (3.8) has a unique generalized solution Y (t, x) for any x ∈ H. We denote by Pt

the corresponding transition semigroup

Ptϕ(x) := E[ϕ(Y (t, x))], x ∈ H, ϕ ∈ Cb(H), (3.9)

and by N its infinitesimal generator in Cb(H), defined through its resolvent.
We also need to introduce the Yosida approximations of F . For any α > 0 we set

Fα(x) :=
1
α

(Jα(x) − x), x ∈ H,

where
Jα(x) := (I − αF )−1(x), x ∈ H, α > 0.

Fα is Lipschitz continuous, but not differentiable in general. Therefore we introduce a further regularization,
as in [10], by setting

Fα,β(x) :=
∫

H

eβCFα(eβCx + y)N 1
2 C−1(e2βC−1)(dy), α, β > 0, (3.10)

where C : D(C) ⊂ H → H is a self-adjoint negative definite operator such that C−1 is of trace class and
N 1

2 C−1(e2βC−1) is the Gaussian measure with mean 0 and covariance operator 1
2 C−1(e2βC − 1).

Fα,β is dissipative and of class C∞ with bounded derivatives of all orders. Moreover, as α, β → 0, Fα,β → F
pointwise, see [12].

Now we consider, for any α > 0, β > 0, the approximating problems


dXα,β(t) = [AXα,β(t) + (Fα,β + G)(Xα,β(t)]dt + BdW (t),

Xα,β(0) = x ∈ H,
(3.11)
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and 


dYα,β(t) = (AYα,β(t) + Fα,β(Yα,β(t))dt + BdW (t),

Yα,β(0) = x ∈ H.
(3.12)

We denote by Xα,β(t, x) and Yα,β(t, x) the mild solutions of (3.11) and (3.12) respectively. It is easy to check,
arguing as in [7], that for any x ∈ H and T > 0 we have,

lim
α→0,β→0

Xα,β(·, x) = X(·, x) in CW (0, T ; H), (3.13)

and
lim

α→0,β→0
Yα,β(·, x) = Y (·, x) in CW (0, T ; H),

where X(·, x) and Y (·, x) are the generalized solutions of (1.1) and (3.8) respectively.
We shall denote by T α,β

t and Pα,β
t the transition semigroups

T α,β
t ϕ(x) = E[ϕ(Xα,β(t, x))], t ≥ 0, ϕ ∈ Cb(H), (3.14)

P α,β
t ϕ(x) = E[ϕ(Yα,β(t, x))], t ≥ 0, ϕ ∈ Cb(H), (3.15)

respectively, and by Sα,β and Nα,β their infinitesimal generators in Cb(H).
Since Fα,β is regular, it is easy to see that Yα,β(t, x) is Gateaux differentiable with respect to x and setting

ηh
α,β(t, x) = DYα,β(t, x) we have




Dtη
h
α,β(t, x) = Aηh

α,β(t, x) + DFα,β(Xα,β(t, x))ηh
α,β(t, x),

ηh
α,β(0, x) = h.

(3.16)

The following result will be useful later.

Proposition 3.3. Assume that Hypotheses 2.1, 2.2 and 2.3 hold. Let h ∈ H and let ηh
α,β be the solution

of (3.16). Then for any γ ∈ [0, 1] we have

∫ T

0

|(−A)γ/2ηh
α,β(t, x)|2dt ≤ 2−γT 1−γ|h|2, T > 0. (3.17)

Proof. We first notice that, since Fα,β is dissipative, we have

〈DFα,β(y)z, z〉 ≤ 0, y, z ∈ H.

Therefore, multiplying the first equation in (3.16) by ηh
α,β(t, x), yields

1
2

d
dt

|ηh
α,β(t, x)|2 ≤ 〈Aηh

α,β(t, x), ηh
α,β(t, x)〉 = −|(−A)1/2ηh

α,β(t, x)|2, (3.18)

for x ∈ H, and t ≥ 0. It follows

1
2

d
dt

|ηh
α,β(t, x)|2 ≤ −ω|ηh

α,β(t, x)|2, x ∈ H, t ≥ 0,



596 G. DA PRATO

which yields, by a standard comparison result,

|ηh
α,β(t, x)|2 ≤ e−2ωt|h|2, x ∈ H, t ≥ 0. (3.19)

Now, by (3.18) we find for any T > 0

1
2
|ηh

α,β(T, x)|2 +
∫ T

0

|(−A)1/2ηh
α,β(t, x)|2dt ≤ 1

2
|h|2,

and consequently

∫ T

0

|(−A)1/2ηh
α,β(t, x)|2dt ≤ 1

2
|h|2. (3.20)

By using the well known interpolatory estimate

|(−A)γ/2x| ≤ |x|1−γ |(−A)1/2x|γ , x ∈ D((−A)1/2), γ ∈ [0, 1],

we find, using the Hölder inequality,

∫ T

0

|(−A)γ/2ηh
α,β(t, x)|2dt ≤

∫ T

0

|ηh
α,β(t, x)|2(1−γ)|(−A)1/2ηh

α,β(t, x)|2γdt

≤
(∫ T

0

|(−A)1/2ηh
α,β(t, x)|2dt

)γ (∫ T

0

|ηh
α,β(t, x)|2dt

)1−γ

·

Now (3.17) follows from (3.19) and (3.20). �

Corollary 3.4. Assume that Hypotheses 2.1, 2.2, and 2.3 hold. Let ϕ ∈ C1
b (H) 5 and let α > 0, β > 0. Then

we have

|DP α,β
t ϕ(x)| ≤ e−ωt‖ϕ‖1, x ∈ H. (3.21)

Proof. Let Let ϕ ∈ C1
b (H), t ≥ 0 and x ∈ H. Then by (3.15) we have for any h ∈ H,

〈DPα,β
t ϕ(x), h〉 = E

[〈Dϕ(Xα,β(t, x)), ηh
α,β(t, x)〉] ,

and so the conclusion follows from (3.19) and the arbitrariness of h. �
We give now an infinite dimensional generalization of the Bismut–Elworthy formula [1, 15], which we shall

use later. For this we need another assumption on B.

Hypothesis 3.5. We have Ker B = {0}. Moreover there is γ ∈ [0, 1) and a linear operator V ∈ L(H) such
that B−1 = V Aγ/2.

Notice that Hypothesis 3.5 is obviously fulfilled in the Example 2.5, whereas it is fulfilled in the Example 2.6
provided 1/2 < δ < 1.

The following result was proved in [9] when B = 1 and in [3] in the case of general reaction-diffusion systems.

5C1
b (H) is the space of all mappings ϕ : H → R which are uniformly continuous and bounded together with their first derivatives.

For any C1
b (H) we set ‖ϕ‖1 = ‖ϕ‖0 + supx∈H |Dϕ(x)|.
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Proposition 3.6. Assume that Hypotheses 2.1, 2.2, 2.3 and 3.5 hold. Let α > 0, β > 0. Then for any
ϕ ∈ Cb(H) and any t > 0 we have Pα,β

t ϕ ∈ C1
b (H) and, for any h ∈ H,

〈DP α,β
t ϕ(x), h〉 =

1
t

E

[
ϕ(Yα,β(t, x))

∫ t

0

〈B−1ηh
α,β(s, x), dW (s)〉

]
, x ∈ H, (3.22)

where Yα,β(t, x) and ηh
α,β(s, x) are the mild solutions of (3.8) and (3.16) respectively.

Corollary 3.7. Assume that Hypotheses 2.1, 2.2, 2.3 and 3.5 hold. Then there exists a constant kγ > 0 such
that for any ϕ ∈ Cb(H), t > 0, α > 0, β > 0 and for any h ∈ H, we have

|DPα,β
t ϕ(x)| ≤ kγt−(1+γ)/2e−ωt‖ϕ‖0, x ∈ H, t > 0. (3.23)

Proof. By (3.22), using the Hölder inequality, we have

|〈DP α,β
t ϕ(x), h〉|2 ≤ 1

t2
‖ϕ‖2

0‖V ‖2

∫ t

0

E|(−A)−γ/2ηh
α,β(s, x)|2ds. (3.24)

Now, by Proposition 3.3 it follows that

|〈DP α,β
t ϕ(x), h〉|2 ≤ 2−γ

t1+γ
‖V ‖2‖ϕ‖2

0|h|2,

and so, by the arbitrariness of h, we find

|DP α,β
t ϕ(x)| ≤ 2−γ/2t−(1+γ)/2‖V ‖2‖‖ϕ‖2

0, x ∈ H, t > 0. (3.25)

Now let t ≥ ε > 0. Then DPα,β
t ϕ = DPα,β

t−εPα,β
ε ϕ. By Proposition 3.6 we have Pα,β

ε ∈ C1
b (H), so that, in view

of (3.21),
|DP α,β

t ϕ(x)| ≤ e−ω(t−ε)‖Pα,β
ε ϕ‖1, x ∈ H t ≥ ε.

Finally, by (3.25),

|DP α,β
t ϕ(x)| ≤ 2−γ/2ε−(1+γ)/2e−ω(t−ε)‖V ‖2‖ ‖ϕ‖0, x ∈ H, t ≥ ε. (3.26)

The conclusion follows by (3.25), and (3.26). �

3.3. A perturbation result

Here we assume that Hypotheses 2.1, 2.2, 2.3 and 3.5 hold and that G is Lipschitz continuous and bounded.
Moreover we fix α > 0, β > 0 and ϕ ∈ Cb(H)

The goal of this subsection is to obtain an estimate for DT α,β
t ϕ independent of α and β, similar to the

estimate (3.23) proved in Corollary 3.7 (where is essential the factor e−ωt). This estimate will be needed to
prove (1.5), see next section.

To this purpose we cannot follow the method used to prove Corollary 3.7. Assume in fact, to simplify, that
G ∈ C1

b (H ; H). Then, by proceeding as before we arrive at the following estimate

|DT α,β
t ϕ(x)| ≤ kγt−(1+γ)/2e(‖F‖1−ω)t‖ϕ‖0, ϕ ∈ Cb(H), x ∈ H, t ≥ 0. (3.27)

If ‖F‖1 − ω > 0 we cannot conclude that |DT α,β
t ϕ(x)| vanishes as t → +∞, which is essential to prove (1.5).
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For this reason we use a different method by considering the following Kolmogorov equation (that was
introduced in a different setting in [11]).




Dtvα,β(t, x) = Nα,βvα,β(t, x) + 〈G(x), Dvα,β(t, x)〉, t > 0, x ∈ H,

vα,β(0, x) = ϕ(x), ϕ ∈ Cb(H), x ∈ H,
(3.28)

which can be written in the following integral form

vα,β(t, ·) = Pα,β
t ϕ +

∫ t

0

Pα,β
t−s (〈G(·), Dvα,β(s, ·)〉)ds. (3.29)

We shall solve equation (3.29) by a fixed point argument n the space ZT consisting of the set of all mappings
u : [0, T ]× H → R such that

(i) u ∈ Bb([0, T ] × H) 6.
(ii) u(t, ·) ∈ C1

b (H) for all t > 0.

(iii) sup
t∈(0,T ]

t(1+γ)/2‖u(t, ·)‖1 < +∞.

(iv) for all x ∈ H, Du(·, x) is measurable.
Then we shall show that

vα,β(t, x) = T α,β
t ϕ(x), x ∈ H, t ≥ 0. (3.30)

It is easy to check that ZT , endowed with the norm

‖u‖ZT := ‖u‖0 + sup
t∈(0,T ]

t(1+γ)/2‖u(t, ·)‖1,

is a Banach space.

Proposition 3.8. Assume that Hypotheses 2.1, 2.2, 2.3 and 3.5 hold and that G is Lipschitz continuous and
bounded. Then for any ϕ ∈ Cb(H) there is a unique solution vα,β ∈ ZT of equation (3.29). Moreover

vα,β(t, x) = T α,β
t ϕ(x), x ∈ H, t ≥ 0.

Proof. We write equation (3.29) as
vα,β = Pα,β

t ϕ + γ(vα,β),

where

γ(v)(t, ·) =
∫ t

0

Pα,β
t−s (〈G(·), Dv(s, ·)〉)ds, t ≥ 0, v ∈ ZT .

We first notice that P α,β
t ϕ belongs to ZT in view of (3.22). Now we are going to show that γ is a contraction

on ZT , provided T is sufficiently small. Then the conclusion will follow by a standard fixed point argument.
We have in fact

|γ(v)(t, x)| ≤ ‖G‖0

∫ t

0

|Dv(s, ·)(x)|ds ≤ 2t(1+γ)/2‖v‖ZT , x ∈ H, t ≥ 0,

6Bb([0, T ] × H) is the space of all mappings u : [0, T ] × H → R which are Borel and bounded.
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and, since

Dγ(v)(t, x) =
∫ t

0

D[Pα,β
t−s (〈G(·), Dv(s, ·)(x)〉)]ds, x ∈ H, t ≥ 0,

we have

t(1+γ)/2|Dγ(v)(t, x)| ≤ t(1+γ)/2

∫ t

0

‖D[Pα,β
t−s (〈G(·), Dv(s, ·)〉)‖0ds

≤ t(1+γ)/2‖G‖0

∫ t

0

(t − s)−(1+γ)/2s−(1+γ)/2ds ‖v‖ZT

= t(1+γ)/2‖G‖0

∫ 1

0

(1 − s)−(1+γ)/2s−(1+γ)/2ds ‖v‖ZT .

Thus γ maps ZT into ZT and it is a contraction, provided T is sufficiently small, as required.
The last statement follows by a standard argument, see [7]. �

Corollary 3.9. Assume that Hypotheses 2.1, 2.2, 2.3 and 3.5 hold and that G is Lipschitz continuous and
bounded. Then there exists c1,γ > 0 such that for any ϕ ∈ Cb(H) and any t > 0 we have T α,β

t ϕ ∈ C1
b (H) and

|DT α,β
t ϕ(x)| ≤ c1,γt−(1+γ)/2e−ωt‖ϕ‖0, x ∈ H, t > 0. (3.31)

Proof. Let ϕ ∈ Cb(H), then by (3.29) we have

DT α,β
t ϕ = DPα,β

t ϕ +
∫ t

0

DPα,β
t−s (〈G(·), DT α,β

s ϕ〉)ds.

Taking into account (3.23) it follows that for any x ∈ H

|DT α,β
t ϕ(x)| ≤ κγt−(1+γ)/2e−ωt‖ϕ‖0 + dsκγ‖G‖0

∫ t

0

e−ω(t−s)(t − s)−(1+γ)/2‖DT α,β
s ϕ‖0 ds.

Then, setting
g(t) = eωt‖DT α,β

t ϕ‖0, t ≥ 0,

we have

g(t) ≤ κγt−(1+γ)/2‖ϕ‖0 + κγ‖G‖0

∫ t

0

(t − s)−(1+γ)/2 g(s)ds.

By a well known generalization of the Gronwall lemma there exists cγ > 0 such that

g(t) ≤ ct−(1+γ)/2, t > 0.

Thus the conclusion follows. �

Proposition 3.10. Assume that Hypotheses 2.1, 2.2, 2.3 and 3.5 hold and that G is Lipschitz continuous and
bounded. Then there exists c > 0 such that for any x, y ∈ H, and any ϕ ∈ Cb(H) we have

|Ttϕ(x) − Ttϕ(y)| ≤ ct−(1+γ)e−ωt‖ϕ‖0|x − y|. (3.32)
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Proof. By (3.13) it follows that

lim
α,β→0

T α,β
t ϕ(x) = Ttϕ(x), ϕ ∈ Cb(H), x ∈ H.

On the other hand, by (3.31) it follows that for any x, y ∈ H, and any ϕ ∈ Cb(H) we have

|T α,β
t ϕ(x) − T α,β

t ϕ(y)| ≤ ct−(1+γ)e−ωt‖ϕ‖0|x − y|.

Therefore the conclusion follows letting α and β tend to zero. �

Remark 3.11. By Proposition 3.10 it follows that Tt is strong Feller. This result was proved by Cerrai [4] for
general reaction-diffusion systems.

3.4. Asymptotic behaviour of Tt

We can prove now the main result of the paper.

Theorem 3.12. Assume that Hypotheses 2.1, 2.2, 2.3, and 3.5, hold and that G is Lipschitz continuous and
bounded. Then there exists κ > 0 such that for any ϕ ∈ Cb(H) we have

∣∣∣∣Ttϕ(x) −
∫

H

ϕ(y)ζ(dy)
∣∣∣∣ ≤ κt−(1+γ)/2e−ωt(1 + |x|)‖ϕ‖0, x ∈ H. (3.33)

Moreover ζ is the unique invariant measure for Tt.

Proof. Let ϕ ∈ Cb(H). Then, taking into account the invariance of ζ, we obtain

∣∣∣∣Ttϕ(x) −
∫

H

ϕ(y)ζ(dy)
∣∣∣∣ =

∣∣∣∣
∫

H

[Ttϕ(x) − Ttϕ(y)]ζ(dy)
∣∣∣∣ ·

Now by (3.32) we find

∣∣∣∣Ttϕ(x) −
∫

H

ϕ(y)ζ(dy)
∣∣∣∣ ≤ ct−(1+γ)/2e−ωt

∫
H

|x − y|ζ(dy)‖ϕ‖0.

But ∫
H

|x − y|ζ(dy) ≤ |x| +
∫

H

|y|ζ(dy) < +∞

in virtue of (3.5). Therefore (3.33) is proved.
Finally, let η be another invariant measure for Tt. Then by (3.33) we find,

lim
t→+∞

∫
H

Ttϕ(x)η(dx) =
∫

H

ϕ(x)dη(dx) =
∫

H

ϕ(x)dζ(dx),

so that η = ζ. �
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4. Application to Hamilton–Jacobi equations

We are here concerned with the following Hamilton–Jacobi equation


Dtu =
1
2

Tr [BB∗D2u] + 〈Ax + F (x) + G(x), Du〉 − 1
2
|B∗Du|2, x ∈ D(A)

u(0) = ϕ ∈ Cb(H)

(4.1)

where A, B, F and G fulfill Hypotheses 2.1, 2.2, 2.3, and 3.5 and G is Lipschitz continuous and bounded.
Equation (4.1) is related with the following optimal control problem:
minimize

J(x, z) := E

(∫ T

0

[
1
2
|z(t)|2

]
dt + ϕ(X(T, x; z))

)
, (4.2)

over all z ∈ L2
W (0, T ; L2(Ω, H)) (the Hilbert space of all square integrable processes adapted to W defined on

[0, T ] and with values in H), subject to the state equation


dX = (AX + F (X) + G(X) + z(t))dt + BdWt, t ≥ 0,

X(0) = x ∈ H.
(4.3)

In fact, as proved in [5], if ϕ ∈ C1
b (H) and T > 0, equation (4.1) has a mild solution u and there is a unique

optimal control z∗ related to the optimal state X∗ by the feedback formula

z∗(t) = −Du(T − t, X∗(t, x)), t ∈ [0, T ], (4.4)

where X∗ is the solution of the closed loop equation


dX = (AX + F (X) + G(X) − Du(T − t, X))dt + Q1/2dW (t), t ∈ [0, T ]

X(0) = x ∈ H.
(4.5)

Finally, the optimal cost is given by

J∗(x) = u(T, x), x ∈ H. (4.6)

In [6] the control problem with infinite horizon but with a discount factor in the cost functional, is also solved.
In this section we want to show the existence of the limit of the solution u(t, x) as t → +∞. This result can

be used to study the infinite horizon problem without discount factor.
First we find an explicit solution of (4.1) by exploiting the special form of the Hamiltonian and using the

well known Hopf transform. We notice that, in different situations, this method was used in [13]..
Namely we set u(t, x) = − log v(t, x), t ≥ 0, x ∈ H , so that (4.1) becomes


Dtv =

1
2

Tr [BB∗D2u] + 〈Ax + F (x) + G(x), Du〉, x ∈ D(A)

v(0) = e−ϕ.

(4.7)

Now the solution v of (4.7) can be expressed in terms of the transition semigroup Tt introduced in Section 3 as

v(t, x) = Tt[e−ϕ](x), t ≥ 0, x ∈ H. (4.8)
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Finally by Theorem 3.12 we find the following result:

Theorem 4.1. Assume that Hypotheses 2.1, 2.2, 2.3, and 3.5 hold and that G is Lipschitz continuous and
bounded. Let u(t, x) be the solution of the Hamilton–Jacobi equation (4.1). Then for any ϕ ∈ Cb(H) we have

lim
t→+∞u(t, x) = − log

∫
H

e−ϕ(y)ζ(dy), x ∈ H, (4.9)

where ζ is the unique invariant measure for Tt.
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