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ON A VARIANT OF KORN’S INEQUALITY ARISING
IN STATISTICAL MECHANICS

L. Desvillettes1 and Cédric Villani2

Abstract. We state and prove a Korn-like inequality for a vector field in a bounded open set of RN ,
satisfying a tangency boundary condition. This inequality, which is crucial in our study of the trend
towards equilibrium for dilute gases, holds true if and only if the domain is not axisymmetric. We give
quantitative, explicit estimates on how the departure from axisymmetry affects the constants; a Monge–
Kantorovich minimization problem naturally arises in this process. Variants in the axisymmetric case
are briefly discussed.
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1. Introduction

Korn’s inequality asserts the control of the L2 norm of the gradient of a vector field by the L2 norm of just
the symmetric part of this gradient, under certain conditions. Here is a rather general version: let Ω be a
smooth bounded open set in R

N (N ≥ 2 to avoid trivial situations), then there exists a constant K(Ω) > 0,
such that for all vector fields u : Ω → R

N ,

‖∇symu‖2
L2(Ω) ≥ K(Ω) inf

R∈R(Ω)
‖∇(u−R)‖2

L2(Ω) (1)

(see Friedrichs [6], Eq. (13), Second case, or Duvaut–Lions [5], Eq. (3.49)). Here ∇u and ∇symu are matrix-
valued applications defined by

(∇u)ij =
∂ui

∂xj
, (∇symu)ij =

1
2

(
∂ui

∂xj
+
∂uj

∂xi

)
,

and R(Ω) stands for the finite-dimensional set of rigid motions on Ω, i.e. affine maps R : Ω → R
N whose linear

part is antisymmetric. Moreover, when u = (uj) and M = (mij) are respectively a vector field and a matrix
field on Ω, we use the natural notations

‖u‖Lp(Ω) =
(∫

Ω

|u|p
)1/p

, ‖M‖Lp(Ω) =
(∫

Ω

|M |p
)1/p

,
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where

|u| =

√√√√ N∑
j=1

u2
j , |M | =

√∑
ij

m2
ij .

Note that R is optimal in the right-hand side of (1) if and only if its linear part ∇R is just the average of the
antisymmetric part of ∇u over Ω.

Two commonly used variants of this inequality are the following:

‖u‖2
L2(Ω) + ‖∇symu‖2

L2(Ω) ≥ K ′(Ω)
(
‖u‖2

L2(Ω) + ‖∇u‖2
L2(Ω)

)
, (2)

and

u|Γ = 0 =⇒ ‖∇symu‖2
L2(Ω) ≥ K0(Ω)‖∇u‖2

L2(Ω), (3)

where Γ is a subset of ∂Ω with positive measure. Again, K ′(Ω) and K0(Ω) are positive constants only depending
on Ω. When Γ = ∂Ω, inequality (3) is very simple, as already noticed by Korn himself (see the remark in the
Appendix). In all the other cases, inequalities (1–3) are much more delicate. We note that they still hold true
if the L2 norms are replaced by Lp norms (1 < p <∞). Also a more “global” variant of (1) was established in
a famous study by Kohn [12]:

inf
R∈R(Ω)

‖u−R‖Lq(Ω) ≤ Cp(Ω)‖∇symu‖Lp(Ω),

for any p ∈ [1,+∞), p 6= N , with q = Np/(N − p) (q = ∞ if p > N). Korn’s inequality plays a fundamental
role in elasticity theory (thinking of u as a displacement vector field) and also in hydrodynamics (thinking of u
as a velocity vector field).

There is by now a huge literature on the subject: a research on the electronic database MathSciNet lists
about 300 references directly concerned with Korn’s inequality. Among the topics discussed there, let us only
mention estimates of the best constants in certain situations (see for instance [2]), links with complex variable
theory when N = 2 (see for instance [11]), or generalizations to surfaces (see for instance [1], Vol. III). Ciarlet [1]
(Vol. I, p. 291) enumerates about half a dozen proofs of Korn’s inequality, one of which is detailed, and provides
background on its applications. Horgan [10] summarizes the major known results for bounded domains in two
and three dimensions, with emphasis on the estimates of the constants.

Korn’s original proofs [13] were considered somewhat obscure, and many authors have endeavored to give
simplified and improved arguments. Gobert [8] has proven (2) with the help of the theory of singular integral
operators. The name of J.-L. Lions is attached to a particularly elegant and robust proof ([5], Sect. 3.3), which
we will recall below. An elementary constructive proof of (2), based on extension operators, has been given by
Nitsche [14]. We also mention Oleinik’s beautiful argument [15] towards (2), based on a clever use of elementary
estimates for harmonic functions and Hardy inequalities.

Let us here briefly recall Lions’ argument [5] towards (1) (actually, a very slight variation of it). It is based
on the following two lemmas. The first one has been known since immemorial times, while the second is part
of the theory of distributions.

Lemma 1. Let u ∈ H1(Ω; RN ). Then, for all i, j, k ∈ {1, . . . , N},

∂2uk

∂xi ∂xj
=

∂

∂xi
(∇symu)jk +

∂

∂xj
(∇symu)ik − ∂

∂xk
(∇symu)ij . (4)
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In this lemma, the notation H1(Ω) stood for the usual Sobolev space defined by the norm ‖f‖2
H1 = ‖f‖2

L2

+‖∇f‖2
L2, and derivatives were taken in distributional sense. From Lemma 1 we only retain the

Corollary 1. Each partial derivative of each component of ∇u can be written as a linear combination of partial
derivatives of components of ∇symu.

In short, ∇∇u is a “matrix combination” of ∇∇symu. For the next lemma, we shall introduce the notation

〈f〉 =
1
|Ω|

∫
Ω

f,

where |Ω| stands for the N -dimensional volume of Ω. Of course 〈f〉 is just the L2 projection of f onto the space
of constant functions. We also define the H−1 norm of a given function (or distribution) f in Ω by

‖f‖H−1(Ω) = sup
{∫

Ω

fϕ; ϕ ∈ D(Ω), ‖∇ϕ‖L2(Ω) ≤ 1
}
,

where D(Ω) stands for the space of C∞ functions with compact support in Ω. When v is an L2 vector field
on Ω, we naturally define

‖v‖2
H−1(Ω) =

N∑
i=1

‖vi‖2
H−1(Ω).

Then one has the

Lemma 2. There exists a constant C(Ω), only depending on Ω, such that for all f ∈ L2(Ω),

‖∇f‖2
H−1(Ω) ≤ N‖f − 〈f〉‖2

L2(Ω) ≤ C(Ω)‖∇f‖2
H−1(Ω). (5)

Corollary 2. Let f and gij (1 ≤ i ≤ N , 1 ≤ j ≤ N) be L2 real-valued functions on Ω, such that for all i,

∂f

∂xi
=

∑
j

αij
∂gij

∂xj
·

Then

‖f − 〈f〉‖2
L2 ≤ N2C(Ω)

(
sup
ij

|αij |2
)∑

ij

‖gij‖2
L2(Ω). (6)

Note that the constant C(Ω) in the above formula is invariant by dilation of Ω, but has to depend on the shape
of the domain, as can be seen by looking at the case when Ω is very elongated in one direction. For instance,
in dimension N = 2, choose Ω = {(x1, x2) ∈ R

2; (εx1)2 + (x2/ε)2 ≤ 1}. By considering f(x) = x1, g12(x) = x2,
gij = 0 else, one immediately sees that C(Ω) → +∞ as ε→ 0.

The first inequality in (5) is readily obtained by integration by parts, and only the second one is tricky. It can
be shown by closed graph theorem, or by the construction of an appropriate extension operator. The variant
which is explicitly proven in [5] is

‖f‖L2 ≤ C
(‖f‖H−1 + ‖∇f‖H−1

)
. (7)

We also give the sketch of a simple, constructive proof communicated to us by Meyer. Denoting by ∆−1 the
bijective operator from H−1(Ω) to H1

0 (Ω) corresponding to the solution of the Laplace problem on Ω with
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Dirichlet boundary condition, one has

∆f = ∆


 N∑

j=1

∂j∆−1(∂jf)


 .

Here we use the shorthand ∂j = ∂/∂xj. In particular,

‖f‖L2(Ω) ≤
∥∥∥∥∥

N∑
j=1

∂j∆−1∂jf

∥∥∥∥∥
L2(Ω)

+ ‖wf‖L2(Ω),

where wf is harmonic on Ω. But there exists a constant C, only depending on Ω, such that

∥∥∥∥∥
N∑

j=1

∂j∆−1∂jf

∥∥∥∥∥
L2(Ω)

≤ C

N∑
j=1

‖∂jf‖H−1(Ω);

so it is sufficient to prove Lemma 2 for harmonic functions on Ω. Thus, let f be a harmonic function on Ω. Of
course we have

‖f − 〈f〉‖L2(Ω) ≤ ‖f − 〈f〉∂Ω‖L2(Ω),

where 〈f〉∂Ω stands for the average of the trace of f on ∂Ω. But, since Ω is smooth and connected, there exists
an isomorphism between harmonic functions in Hs(Ω) and their traces in Hs−1/2(∂Ω), for all s ∈ R (here we
only need s = 0 and s = −1). So we just have to prove

‖f − 〈f〉∂Ω‖H−1/2(∂Ω) ≤ C‖∇f‖H−3/2(∂Ω).

And since ∂Ω is a smooth set without boundary, the proof can be carried out by use of local charts, reduction
to R

N−1 and Fourier transform.
It remains to understand why Corollaries 1 and 2 together imply (1). For this, let ∇au stand for the

antisymmetric part of ∇u,

(∇au)ij =
1
2

(
∂ui

∂xj
− ∂uj

∂xi

)
·

From Corollaries 1 and 2 it follows that ‖∇au−〈∇au〉‖L2(Ω) is bounded by a constant multiple of ‖∇symu‖L2(Ω).
Then (1) is a consequence of

‖∇u− 〈∇au〉‖2 = ‖∇symu‖2
L2(Ω) + ‖∇au− 〈∇au〉‖2

L2(Ω).

2. Motivation and main result

We shall now explain our interest in Korn’s inequality. The present work was not motivated by elasticity
or hydrodynamics, but by a different area of applications, namely statistical physics, and more precisely the
kinetic theory of rarefied gases. Let us sketch the problem.

Since the works of Maxwell and Boltzmann more than a hundred years ago, it has been admitted by physicists
that a gas enclosed in a bounded box, undergoing appropriate boundary interaction, should approach a certain
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steady state as time becomes large. Here the gas is modelled by the Boltzmann equation, which is supposed to
accurately describe collisions inside a dilute gas. This steady state would achieve a maximum of the entropy
under the constraints imposed by the physical conservation laws. And at least for generic shape of the box, it
would be a rest state, in the sense that the density and temperature would be constant all over the box, and
that there would be no macroscopic velocity field. Such a statement cannot be true for all boxes: in fact, when
the box has cylindrical shape, and specular boundary condition is enforced (meaning that particles just bounce
on the boundary of the box according to the Snell–Descartes laws), then there are steady states which are not
at rest, and possess a “rotating” velocity field. This does not contradict the principle of maximum entropy,
because the presence of an axis of symmetry induces an additional conservation law, namely the conservation of
a coordinate of the angular momentum. In all other realistic situations (at least when the boundary conditions
do not depend on time), it is expected that the distribution of particles does converge towards a rest state.

The mathematical justification of this guess is rather easy as soon as suitable a priori bounds on solutions
of the Boltzmann equation have been obtained. Such bounds are not trivial at all, and at present seem to have
been established only in a close-to-equilibrium setting for a convex box (this was achieved in the seventies, see
for instance Shizuta and Asano [18]). But once they are settled, then the result of trend to equilibrium is an
immediate consequence of the classification of steady states (see for instance Desvillettes [3]) and an elementary
compactness argument.

Now, what turns out to be much more complicated is to get a quantitative result of convergence to equilibrium,
with explicit rates of convergence. By this we mean the following: let be a solution of the Boltzmann equation,
not necessarily close to equilibrium, satisfying “natural” a priori estimates, uniform in time, then can one find
explicit estimates on how fast it converges towards equilibrium? Among the main causes for this tremendous
increase of difficulty are the intricate nature of the Boltzmann collision operator, the fact that it admits three
conservation laws (mass, momentum and energy) and the degenerate nature of the Boltzmann equation with
respect to the position variable.

In a work in progress [4], we overcome these three difficulties, and obtain explicit rates of convergence to
equilibrium for solutions of the Boltzmann equation satisfying certain strong a priori estimates (smoothness,
decay at infinity, strict positivity). One of the many steps in that work consists in expressing how much the
domain deviates from axisymmetry, in a way which can be used to estimate rates of convergence. By convention,
we say that a domain in R

2 is axisymmetric if it has a circular symmetry around some point; and that a domain
in R

3 is axisymmetric if it admits an axis of symmetry (which means that it is preserved by a rotation of arbitrary
angle around this axis). By abuse of language, for any N ≥ 4, we shall say that a domain is axisymmetric if it
is left invariant by the action of a one-parameter group (etR)t∈R, where R is an affine map with antisymmetric
linear part (see Definition-Lemma 1). It turned out, to our surprise, that the degree of non-axisymmetry of the
domain Ω could be expressed by means of the following Korn-like inequality.

Theorem 3. Let Ω be a C1 bounded, non-axisymmetric open subset of R
N (N ≥ 2). Let u be a vector field on

Ω with ∇u ∈ L2(Ω). Assume that u is tangent to ∂Ω:

∀x ∈ ∂Ω, u(x) · n(x) = 0,

where n(x) stands for the outer unit normal vector to Ω at point x. Then there exists a constant K(Ω) > 0,
only depending on Ω, such that

‖∇symu‖2
L2(Ω) ≥ K(Ω)‖∇u‖2

L2(Ω). (8)

There are two points to be made about Theorem 3. First, as we already mentioned, it is only via the boundary
conditions that it differs from more standard versions of Korn’s inequality, like (3) for instance. Indeed, usually
one would impose that u vanishes on ∂Ω, or at least part of it. In the context of hydrodynamics, this corresponds
to the well-known “no-slip” boundary condition; in elasticity, this reflects the usual assumption that part of the
elastic body is attached to some region of the physical space. Apart from the present work, Ryzhak’s paper
[16] is the only one known to us which has been interested in tangency boundary conditions. From the point of
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view of fluid dynamics, our context of application may seem rather strange, because ‖∇symu‖2
L2 looks like an

energy dissipation term, of the kind encountered in the theory of the Navier–Stokes equations; but the tangency
boundary condition on u is typical of inviscid models, like the Euler equation. There is no contradiction at the
level of the modelling, because in our method the term ‖∇symu‖2

L2 is not obtained as a dissipation term, but
as the leading order, in some sense, of the second derivative of a certain functional.

The second point on which we attract the attention of the reader is the importance which we give to the
value of the positive constant K(Ω) in (8). In our study of trend to equilibrium, the value of the constant K(Ω)
is used to quantify the deviation of Ω from axisymmetry. It is therefore of great interest to have as much insight
as possible in the explicit value of K(Ω), in terms of the geometry of Ω. In fact, the main interest of the present
work is to provide the following estimates on K(Ω).

Theorem 3 (continued). The largest admissible constant K(Ω) in (8) satisfies

K(Ω)−1 ≤ 2N
(
1 + CH(Ω)

)(
1 +K(Ω)−1

)(
1 +G(Ω)−1

)
, (9)

where the various constants above are defined as follows:

• CH = CH(Ω) is a constant related to the homology of Ω and the Hodge decomposition, defined by the
inequality

‖∇symv‖2
L2(Ω)/V0(Ω) ≤ CH

(
‖∇ · v‖2

L2(Ω) + ‖∇av‖2
L2(Ω)

)
, (10)

or (almost) equivalently by inequality (13) below. Here ∇ · v stands for the divergence of the vector field
v, ∇ · v =

∑
i ∂vi/∂xi, and V0(Ω) is the space of all vector fields v0 ∈ H1(Ω; RN ) such that

∇ · v0 = 0, ∇av0 = 0.

We recall that V0 is a finite-dimensional vector space whose dimension depends only on the topology of Ω;

• K(Ω) is the constant in (1);

• and finally, G = G(Ω) is what we shall call Grad’s number:

G(Ω) =
1

2|Ω| inf
Σ∈UAN

inf
v∈VΣ

‖∇symv‖2
L2(Ω). (11)

Here UAN is the space of antisymmetric N ×N real matrices with unit norm:

Σ ∈ UAN ⇐⇒
(
Σ + T Σ = 0 and |Σ| = 1

)
,

and for any N ×N matrix Σ, we define VΣ as the set of all vector fields in H1(Ω) satisfying



∇ · v ≡ 0, ∇av ≡ Σ in Ω,

v · n = 0 on ∂Ω.
(12)

Moreover, G(Ω) > 0 and, at least when N = 2 or 3, an explicit lower bound on G(Ω) can be given in terms of
“basic” geometrical information about how far Ω is from being axisymmetric.
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Remarks.
1. In dimension N = 3, one can identify the space A3 of 3 × 3 antisymmetric matrices to R

3 in the usual way,
via Σx = σ ∧ x. Then, to any Σ ∈ UA3 is associated σ ∈ S2 such that

Σx =
σ ∧ x√

2
·

One then recovers (up to a factor |Ω|) the formula which appears in Grad ([9], p. 274):

G(Ω) =
1
|Ω| inf

σ∈S2
inf

v∈Vσ

‖∇symv‖2
L2(Ω),

where Vσ is defined by the equations

∇ · v = 0, ∇∧ v = σ, v · n = 0 on ∂Ω.

Of course ∇ ∧ v is the curl of v. Also when N = 2, one can identify UA2 with S0 = {−1,+1}.

2. Grad may not have been the first one to consider the quantity G(Ω), but most probably he was the first one
to understand that this number may be useful in the context of the Boltzmann equation. Even more, to our
knowledge his paper is the only one to mention this fact. This justifies our terminology of “Grad’s number”.
The present work drew a lot of inspiration from Grad’s paper [9], which is at the same time quite obscure,
definitely false and really illuminating in certain respects – as we will discuss in [4].

3. If Ω is simply connected, which is presumably the most natural case for applications, then V0 = 0 and VΣ

contains a unique element (we shall show in a moment that VΣ is never empty).

4. Our primary goal was to obtain fully explicit lower bounds forK(Ω) in terms of simple geometrical information
about Ω; to achieve this completely with our method, we would have to give quantitative estimates on CH .
Unfortunately, we have been unable to find explicit estimates about CH in the literature, although it seems
unlikely that nobody has been interested in this problem. Of course, when N = 3 and Ω is simply connected,
estimate (10) is equivalent to

‖∇u‖2
L2(Ω) ≤ CH(Ω)

(‖∇ · u‖2
L2(Ω) + ‖∇ ∧ u‖2

L2(Ω)

)
, (13)

up to possible replacement of CH by CH + 1. This is an estimate which is well-known to many people, but for
which it seems very difficult to find an accurate reference. Inequality (10) can be seen as a consequence of the
closed graph theorem; for instance, in the case of a simply connected domain, one just needs to note that (i)
‖∇au‖2

L2 + ‖∇ · u‖2
L2 is bounded by ‖∇u‖2

L2, (ii) the identities ∇ · u = 0, ∇au = 0, u ·n = 0 (on the boundary),
together imply u = 0; so in fact the norms appearing on the left and on the right-hand side of (10) have to be
equivalent. The proof of point (ii) is as follows: from Poincaré’s lemma in a simply connected domain, there
exists a real-valued function ψ such that ∇ψ = u; then ψ is a harmonic function with homogeneous Neumann
boundary condition, so it has to be a constant, and u = 0.

Of course this argument gives no insight on how to estimate the constants. As pointed out to us independently
by Druet and by Serre, one can choose CH(Ω) = 1 if Ω is convex, but the general case seems to be much harder.
Anyway this is a separate issue which has nothing to do with axisymmetry; all the relevant information about
axisymmetry lies in our estimates on G(Ω)−1.

The organization of the paper is as follows: after a short proof of Theorem 3 in Section 3, we shall give
some quantitative estimates on the positivity of G(Ω) in Section 4, and finally give a brief discussion of the
axisymmetric case in Section 5. In an Appendix, we reproduce a proof of the abovementioned estimate of CH

when Ω is convex, which was communicated to us by Druet.
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3. Proof of Theorem 3

To begin with, let us check that Definition 11 makes sense.

Lemma 4. For any Σ ∈ UAN , the set VΣ is not empty.

Proof. Let Σ ∈ UAN , and let ϕ be a solution of the Laplace problem




∆ϕ = 0 in Ω

∇ϕ · n = −Σ · n on ∂Ω.
(14)

The existence of ϕ is ensured by the identity
∫
Γ
n(x) dσ(x) = 0 for each connected part Γ of ∂Ω. Then define

v(x) = ∇ϕ(x) + Σx; one easily checks that v ∈ VΣ.

Remark. When Ω is simply connected, this is the only solution.

We now proceed to prove Theorem 3.

Proof of Theorem 3. Let us start from inequality (1), in the form

‖∇au− 〈∇au〉‖2
L2(Ω) + ‖∇symu‖2

L2(Ω) ≤ K(Ω)−1‖∇symu‖2
L2(Ω). (15)

If 〈∇au〉 = 0, then we are done. If not, introduce

Σ =
〈∇au〉
|〈∇au〉| ∈ UAN , λ = |〈∇au〉| > 0.

Let v ∈ VΣ, then



∇ · (λv) = 0, ∇a(λv) = 〈∇au〉 in Ω,

v · n = 0 on ∂Ω,
(16)

so that (15) implies

∫
Ω

|∇a(u− λv)|2 ≤ K(Ω)−1‖∇symu‖2
L2(Ω)

and ∫
Ω

|∇a(u − λv)|2 +
∫

Ω

|∇ · (u− λv)|2 ≤ N K(Ω)−1‖∇symu‖2
L2(Ω). (17)

In particular, ∫
Ω

|∇au|2 ≤ 2
∫

Ω

|∇a(u− λv)|2 + 2λ2

∫
Ω

|∇av|2 (18)

≤ 2K(Ω)−1‖∇symu‖2
L2(Ω) + 2λ2|Ω| (19)

(recall that |∇av| ≡ 1).
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To conclude the proof of Theorem 3, it only remains to bound |Ω|λ2 in terms of ‖∇symu‖2
L2. This is the

point where Grad’s number will show up! From (10) and (17) we know that there exists w0 ∈ V0 such that

∫
Ω

|∇sym(u− λv − w0)|2 ≤ CH(Ω)
(∫

Ω

|∇a(u− λv)|2 +
∫

Ω

|∇ · (u− λv)|2
)

≤ N CH(Ω)K(Ω)−1‖∇symu‖2
L2(Ω).

Without loss of generality, we may assume w0 = 0: if this is not the case, replace v by v + w0/λ, which is still
an element of VΣ. So we know that there exists v ∈ VΣ such that∫

Ω

|∇sym(u− λv)|2 ≤ N CH(Ω)K(Ω)−1‖∇symu‖2
L2(Ω). (20)

Then

λ2

∫
Ω

|∇symv|2 ≤ 2
[
N CH(Ω)K(Ω)−1 + 1

]‖∇symu‖2
L2(Ω).

Recalling definition (11), we conclude that

|Ω|λ2 ≤ [
N CH(Ω)K(Ω)−1 + 1

]
G(Ω)−1‖∇symu‖2

L2(Ω).

This combined with (18) concludes the proof.

4. Estimates of Grad’s number

We now proceed to give some estimates from below forG(Ω) under the assumption that Ω is not axisymmetric.
First of all, we give a precise definition, accompanied by a simple lemma, whose proof is omitted.

Definition – Lemma 1. Let Ω be a smooth bounded open subset of R
N , N ≥ 2. By abuse of language, we

say that Ω is axisymmetric if and only if there exists a nontrivial rigid motion R which is tangent to ∂Ω; or
equivalently, which satisfies

∀t ∈ R, etRΩ = Ω;

or, equivalently, which satisfies

∃t0 > 0; ∀t ∈ [0, t0], etRΩ = Ω.

Here etR is the isometry defined via

d
dt

etR(x) = RetR(x),

and we use the shorthand etRx = etR(x).
Next, let us recall some useful concepts from the theory of mass transportation, or Monge–Kantorovich

minimization problems. Whenever µ is a probability measure on R
N and T : R

N → R
N is a measurable map,

one defines the image measure T#µ of µ by T via the identity

T#µ[A] = µ[T−1(A)].
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Whenever µ and ν are two probability measures on R
N , and p ≥ 1 is given, one can define the Wasserstein

distance of order p between µ and ν by the formula

Wp(µ, ν) = inf
π∈Π(µ,ν)

(∫
RN×RN

|x− y|p dπ(x, y)
)1/p

, (21)

where Π(µ, ν) stands for the set of all probability measures on R
N × R

N with marginals µ and ν. In other
words, π belongs to Π(µ, ν) if and only if for all bounded continuous functions ϕ, ψ on R

N ,∫
RN×RN

[ϕ(x) + ψ(y)] dπ(x, y) =
∫

RN

ϕdµ+
∫

RN

ψ dν.

From definition (21) one easily checks the convexity of W p
p with respect to µ and ν. An important thing to know

is that when µ and ν are absolutely continuous with respect to Lebesgue measure, then we have the equivalent
definition

Wp(µ, ν) = inf
T#µ=ν

(∫
RN

|x− T (x)|p dµ(x)
)1/p

, (22)

where the infimum is taken over all maps T : R
N → R

N such that the image measure of µ by T coincides
with ν. This and much more background on Wasserstein distances can be found in [17] for instance.

In the sequel, we shall use Wasserstein distances with particular probability measures, which will be of the
form

LΩ =
1Ω

|Ω| L,

where L stands for the Lebesgue measure on R
N .

We can now state our main estimates. We shall use the standard notation

dist (x,A) = inf
y∈A

|x− y|.

Proposition 5. Let Ω be a smooth bounded open subset of R
N . Then, G(Ω) > 0 if and only if Ω is not

axisymmetric. Moreover, for any T > 0 one has the estimates

G(Ω) ≥ 1
2|Ω|P (Ω)

e−2T

T 3
inf

R∈R1

∫ T

0

W2 (LΩ,LetRΩ)2 dt (23)

and

G(Ω) ≥ 1
2|Ω|P (Ω)

e−2T

T 3
inf

R∈R1

∫ T

0

∫
Ω

dist (etRx,Ω)2 dxdt (24)

where R1 is the set of all rigid motions on R
N of the form R(x) = Σx + b, with |Σ| = 1, and P (Ω) is the

Poincaré–Wirtinger constant, defined as the smallest admissible constant in the functional inequality

‖f − 〈f〉‖2
L2(Ω) ≤ P (Ω) ‖∇f‖2

L2(Ω). (25)

Moreover, when N = 2 or N = 3, a simplified lower bound can be given as follows. Define the center of mass g
of Ω by

g =
1
|Ω|

∫
Ω

xdx.
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Case N = 2: Define Ωθ as the image of Ω by the rotation of angle θ around g, and construct Ωsym by
symmetrizing Ω around g:

Ωsym =
⋃

0≤θ≤2π

Ωθ.

Further define the probability measure Lsym
Ω by symmetrization of LΩ,

Lsym
Ω =

1
2π

∫ 2π

0

LΩθ
dθ.

Then there exists a numeric, explicit constant K such that

G(Ω) ≥ K

|Ω|P (Ω)
1
2π

∫ 2π

0

W2 (LΩ,LΩθ
)2 dθ (26)

≥ K

|Ω|P (Ω)
W2 (LΩ,Lsym

Ω )2 (27)

≥ K

|Ω|P (Ω)

∫
Ωsym\Ω

dist (y,Ω)2 dLsym
Ω (y). (28)

Case N = 3: For any σ ∈ S2 define ∆σ as the line going through g and directed by σ. Then define Ωσ
θ as the

image of Ω by the rotation of angle θ around the axis ∆σ, and define Ωsym;σ, Lsym;σ
Ω by symmetrization of Ω

and LΩ respectively:

Ωsym;σ =
⋃

0≤θ≤2π

Ωσ
θ , Lsym;σ

Ω =
1
2π

∫ 2π

0

LΩσ
θ

dθ.

Then there exists a numeric, explicit constant K such that

G(Ω) ≥ K

|Ω|P (Ω)
inf

σ∈S2

1
2π

∫ 2π

0

W2

(LΩ,LΩσ
θ

)2 dθ (29)

≥ K

|Ω|P (Ω)
inf

σ∈S2
W2 (LΩ,Lsym;σ

Ω )2 (30)

≥ K

|Ω|P (Ω)
inf

σ∈S2

∫
Ωsym;σ\Ω

dist (y,Ω)2 dLsym;σ
Ω (y). (31)

Remarks.

1. Note that Lsym
Ω 6= LΩsym !!

2. Of course, in dimension 2, Ω is axisymmetric if and only if Ω = Ωsym, which is equivalent to LΩ = Lsym
Ω .

Similarly, in dimension 3, Ω is axisymmetric if and only if there exists σ ∈ S2 such that Ω = Ωsym;σ, which
is equivalent to LΩ = Lsym;σ

Ω . The bounds (28) and (31) are of course extremely simple, but sometimes the
bounds (27) and (30) are much more precise. We shall discuss this at the end of the section.

3. It is quite easy to compute Lsym
Ω and Lsym;σ

Ω “explicitly”. For instance, in dimension 2, if we introduce a
system of polar coordinates (r, θ) with center g, then the density of Lsym

Ω at a point (r0, θ0) is given by

1
2π

∣∣∣{θ ∈ [0, 2π]; (r0, θ) ∈ Ω}
∣∣∣·
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A similar expression can be derived in dimension 3 if one introduces a system of cylindrical coordinates with
vertical direction σ.

Proof of Proposition 5. It is immediate to show that G(Ω) = 0 if Ω is axisymmetric. Conversely, let us show
that if Ω is not axisymmetric, then G(Ω) > 0. Assume by contradiction thatG(Ω) = 0, so there exists a sequence
Σn ∈ UAN , vn ∈ VΣn such that ‖∇symvn‖L2 −→ 0 as n → ∞. Then ‖∇vn‖L2 is bounded, since ‖∇avn‖ is
also bounded. By Poincaré–Wirtinger’s inequality (25) the sequence (vn − 〈vn〉) is bounded in H1(Ω; RN ). Up
to extraction of a subsequence, we may assume that it converges towards some v, weakly in H1(Ω; RN ). Since
UAN is compact, we may also assume that Σn converges towards some Σ ∈ UAN as n → ∞. Then it is easily
checked that v ∈ VΣ and ∇symv = 0, so in fact ∇v = Σ and v is a rigid motion. By Lemma 1, Ω is axisymmetric.

Next, we turn to estimates (23) and (24). Let Σ ∈ UAN , and let v ∈ VΣ. Define the rigid motion R by

R(x) = Σx+ b,

where b ∈ R
N will be chosen later on. Introduce the exponential maps, solutions of



d
dt

etv(x) = v(etv(x)),

d
dt

etR(x) = R(etR(x)).

(32)

Then,

d
dt

|etv(x) − etR(x)| ≤ |v(etv(x)) −R(etR(x))|
≤ |v(etv(x)) −R(etv(x))| + |R(etv(x)) −R(etR(x))|.

Since the Lipschitz norm of R is |Σ| = 1, the last term is bounded by |etv(x)−etR(x)|, and by Gronwall’s lemma

|etv(x) − etR(x)| ≤ et

∫ t

0

|v(esv(x)) −R(esv(x))| ds.

Then, a crude estimate yields

1
T

∫ T

0

|etv(x) − etR(x)|2 dt ≤ T e2T

∫ T

0

|v(esv(x)) −R(esv(x))|2 ds.

Integrating over Ω, we find

1
T

∫ T

0

∫
Ω

|etv(x) − etR(x)|2 dxdt ≤ T e2T

∫ T

0

∫
Ω

|v(etv(x)) −R(etv(x))|2 dxdt. (33)

Next, since v is divergence-free, we know that the image measure of the Lebesgue measure on Ω by the map etv

is just the Lebesgue measure. So the right-hand side of (33) is in fact

T e2T

∫ T

0

∫
Ω

|v(x) −R(x)|2 dxdt = T 2e2T

∫
Ω

|v(x) −R(x)|2 dx.

Now we choose b in such a way that 〈v −R〉 = 0. Combining (33) with Poincaré’s inequality (25) we obtain

1
T

∫ T

0

∫
Ω

|etv(x) − etR(x)|2 dxdt ≤ P (Ω)T 2e2T

∫
Ω

|∇v(x) − Σ|2 dx.
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But ∇av = Σ! So this inequality can be rewritten as

1
T

∫ T

0

∫
Ω

|etv(x) − etR(x)|2 dxdt ≤ P (Ω)T 2e2T

∫
Ω

|∇symv|2 dx. (34)

Now, since v is tangent to the boundary of Ω, it follows that for all x ∈ Ω, one has etv(x) ∈ Ω. Thus the
left-hand side of (34) is bounded below by

1
T

∫ T

0

∫
Ω

dist
(
etR(x),Ω

)2 dxdt,

which proves (24).
To prove (23), start again from (34), and use the fact that etv is a measure-preserving diffeomorphism of Ω

(with inverse e−tv) to get ∫
Ω

|etv(x) − etR(x)|2 dx =
∫

Ω

|x− etR ◦ e−tv(x)|2 dx,

next note that (e−tR ◦ e−tv)#LΩ = e−tR#LΩ = Le−tRΩ, because e−tR preserves Lebesgue measure on R
N .

Apply definition (22) to conclude.

We now proceed to establish the simplified expressions when N = 2 or 3. We shall only treat the case N = 2
since the case N = 3 is exactly similar. Without loss of generality, we assume g = 0. Let R be a rigid motion
of R

2 of the form R(x) = Σx+ b, with |Σ| = 1. Then e
√

2θR is the rotation of angle θ around a certain point x0.
One can write

e
√

2θRx = x0 + ρθ(x − x0),

where ρθ stands for the rotation of angle θ around 0. Note that e2
√

2 πR is the identity. We shall show that for
any θ ∈ [0, 2π], ∫

Ω

∣∣e√2θv(x) − e
√

2θR(x)
∣∣2 dx ≥

∫
Ω

∣∣e√2θv(x) − ρθ(x)
∣∣2 dx; (35)

in other words, the left-hand side of (35) can only become smaller if we impose Rg = 0. This will prove that
we only need to consider the symmetrization around g.

To prove (35) we write, using the notation I for the identity,∫
Ω

∣∣e√2θv(x) − e
√

2θR(x)
∣∣2 dx =

∫
Ω

∣∣e√2θv(x) − x0 − ρθ(x − x0)
∣∣2 dx

=
∫

Ω

∣∣e√2θv(x) − ρθ(x)
∣∣2 dx+ |Ω|∣∣(I − ρθ)x0

∣∣2 − 2
〈∫

Ω

[e
√

2θv(x) − ρθ(x)] dx, (I − ρθ)x0

〉
·

Then we notice that, since e
√

2θv is a measure-preserving map from Ω into itself,∫
Ω

e
√

2θv(x) dx =
∫

Ω

xdx = 0,

while ∫
Ω

ρθ(x) dx = ρθ

(∫
Ω

xdx
)

= ρθ(0) = 0.
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Thus ∫
Ω

∣∣e√2θv(x) − e
√

2θR(x)
∣∣2 dx =

∫
Ω

∣∣e√2θv(x) − ρθ(x)
∣∣2 dx+ |Ω|∣∣(I − ρθ)x0

∣∣2,
which proves (35).

Remark. A reader familiar with mass transportation may have recognized the elementary argument used to
prove that the Monge–Kantorovich transportation problem with exponent 2 commutes with translations.

From (35) and (23) we deduce (26). Then, (27) follows by convexity of W 2
2 . Next, by symmetry of the

Wasserstein distances,

W2 (LΩ,Lsym
Ω )2 = inf

T#Lsym
Ω =LΩ

∫
Ωsym

|x− T (x)|2 dLsym
Ω (x).

Of course, if T#Lsym
Ω = LΩ, then necessarily T (Ωsym) ⊂ Ω, so that |x− T (x)| in the integrand is greater than

dist (x,Ω). This proves (28).

We conclude this section with some simple remarks about practical computations. As we said before, formu-
las (28) and (31) are very convenient and can easily be computed numerically. On the other hand, if Ω is very
close to be axisymmetric, these lower bounds may become much smaller than G(Ω). Consider for instance the
situation where Ω is a very slightly elongated ellipse in the plane, something like

E =
{

(x1, x2) ∈ R
2; x2

1 +
x2

2

1 + ε
≤ 1

}
, Ω =

E√|E|

(here we have normalized the volume of Ω to unity) for small ε. Then the symmetrized Lebesgue measure of Ω
takes value 1 within a disc centered at 0, with radius approximately 1, and then decreases to 0 on a thin shell
of thickness O(ε). One can then show that

∫
Ωsym

dist (x,Ω)2 dLsym
Ω (x) = O(ε3).

On the other hand, from elementary mass transportation theory,

W2 (LΩ,Lsym
Ω )2 is at least of the order of ε2. (36)

A way to arrive at (36) is to apply the inequality

W2 (LΩ,Lsym
Ω )2 ≥W1 (LΩ,Lsym

Ω )2 ,

and then to use the identity

W1(µ, ν) = W1([µ− ν]+, [µ− ν]−). (37)

The idea behind (37) is that when the cost function is a distance, then all the mass which can stay in place
in the transportation process (the shared mass between µ and ν) can be required to do so, and this does not
affect the value of the optimal cost. Note that in the right-hand side of (37), we have extended the definition
of W1 to arbitrary nonnegative measures with a common mass, not necessarily normalized to 1. Then it is easy
to convince oneself that transporting [LΩ − Lsym

Ω ]+ onto [LΩ − Lsym
Ω ]− with cost c(x, y) = |x − y| requires at

least a cost of order ε, because at least a mass of order ε has to be moved on a distance of order 1.
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5. Some remarks about the axisymmetric case

What becomes of Theorem 1 when Ω is axisymmetric? The question is of interest for our problem of relaxation
to thermodynamical equilibrium, since it is natural to ask what happens if the gas is enclosed in a cylinder.
Let us concentrate on the case N = 3. First, one should make the distinction between a cylinder with only one
axis of symmetry, and a spherically symmetric domain. Recall that if a domain Ω ⊂ R

3 admits two nonparallel
axes of symmetry, then it is spherically symmetric around some point.

If Ω has spherical symmetry, then we should just be content with inequality (1). The case of a cylinder with
a unique axis of symmetry, is a little bit more involved. Without loss of generality, assume that the axis of
symmetry of Ω passes through g = 0 and is directed by ω ∈ S2. Introduce the orthogonal decomposition

〈∇ ∧ u〉 = λσ + µω, σ⊥ω.

Introduce a rigid rotation R around ω, of the form R(x) = µω ∧ x; then

〈∇ ∧ (u−R)〉 = λσ, ∇sym(u−R) = ∇symu.

Since R is tangent to the boundary of Ω, one can repeat the proof of Theorem 3 and find

‖∇symu‖2
L2(Ω) ≥ K(Ω) inf

R∈Rω(Ω)
‖∇(u− R)‖2

L2(Ω), (38)

where Rω(Ω) stands for the set of all rotations with axis ω. Moreover, R is optimal in the right-hand side
of (38) if and only if ∇∧R is the average of the orthogonal projection of ∇∧ u onto ω, and the constant K(Ω)
is proportional to

Gω(Ω) = inf
σ∈S2; σ·ω=0

inf
v∈Vσ

‖∇symu‖2
L2(Ω).

To summarize the situation in dimension 3: if Ω is a ball, then inequality (1) only shows that ∇symu controls
the departure of u from being a rigid motion; while if Ω is a cylinder with only axis ω, then ∇symu controls the
departure of u from being a rigid motion with axis ω. This is perfectly consistent with the context of trend to
equilibrium for the Boltzmann equation, because the last indeterminacy about u will be compensated for by 3
additional conservation laws (angular momentum) in the case of a ball, and by one additional conservation law
(ω-component of the angular momentum) in the case of a cylinder with only axis ω.

Appendix

Here we reproduce the elegant proof, communicated to us by Druet, of estimate (10) for a convex domain
with CH = 1. It is based on the elementary identity

|∇symu|2 − |∇au|2 = (∇ · u)2 + ∇ · [(u · ∇)u− u(∇ · u)] (39)

with the usual notation

u · ∇ =
N∑

i=1

ui
∂

∂xi
·

In fact, identity (39) is well-known in the theory of the Korn inequality because it provides an elementary proof
of (3) when Γ = ∂Ω: indeed, when u = 0 on ∂Ω, it implies, by divergence theorem,∫

Ω

|∇au|2 =
∫

Ω

|∇symu|2 −
∫

Ω

(∇ · u)2 ≤
∫

Ω

|∇symu|2.
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Let us now turn to (10). The problem is somehow opposite since we have to control the symmetric part instead
of the antisymmetric! Let u be an arbitrary vector field u ∈ H1(Ω; RN ), tangent to the boundary. Again,
identity (39) and use of the divergence theorem imply (remember that u · n = 0 on the boundary)

∫
Ω

|∇symu|2 =
∫

Ω

|∇au|2 +
∫

Ω

(∇ · u)2 +
∫

∂Ω

[
(u · ∇)u − u(∇ · u)] · n (40)

=
∫

Ω

|∇au|2 +
∫

Ω

(∇ · u)2 +
∫

∂Ω

[
(u · ∇)u

] · n. (41)

But, since u is tangent to the boundary, u · ∇ is just the covariant derivative along u, so

[(u · ∇)u] · n = −(u · ∇n) · u = −IIΩ(u, u), (42)

where IIΩ stands for the real-valued second fundamental form of Ω (see for instance [7], p. 217). A well-known
property of the second fundamental form is that it is nonnegative as soon as Ω is convex. Thus in the end∫

Ω

|∇symu|2 =
∫

Ω

|∇au|2 +
∫

Ω

(∇ · u)2 −
∫

∂Ω

IIΩ(u, u) ≤
∫

Ω

|∇au|2 +
∫

Ω

(∇ · u)2, (43)

which immediately implies (10) with CH = 1.
Serre has a slightly different argument (not more complicated), also based on (42), leading to the same result.

We further note that the use of a trace theorem, combined with a Poincaré-like inequality, implies∫
∂Ω

|u|2 ≤ C

∫
Ω

|∇u|2,

and this together with (43) enables one to get estimates of CH when Ω is a C2 perturbation of a convex set.
The general case in which Ω is not close from a convex set looks much more difficult.

Even if the present paper is rather short, it benefited a lot from the kind advice of many colleagues who helped us make
our ideas clear about the inequalities which we discussed above: in particular Guy Bouchitté, Yann Brenier, Philippe
Ciarlet, Olivier Druet, Craig Evans, Giuseppe Geymonat, Étienne Ghys, Yves Meyer, Stefan Müller, Denis Serre, Bruno
Sévennec, Jean-Claude Sikorav. It is a pleasure to warmly thank them all. The support of the European TMR contract
“Asymptotic Methods in Kinetic Theory”, ERB FMBX CT97 0157 is also acknowledged.

Dedication. This work is dedicated to the memory of Jacques-Louis Lions, whose contribution to the theory
of Korn’s inequality was both crucial and beautifully simple. It is also a tribute to the brilliant intuitions of
Harold Grad in the theory of the Boltzmann equation. We are particularly glad to note that our arguments
rest not only on ideas arising from elasticity theory and the kinetic theory of gases, but also from the field of
mass transportation, which was once developed by Kantorovich for its links with economics, and later impulsed
by Brenier for its connections with hydrodynamics. Here Korn’s inequality appears as a beautiful link between
all of these fields.

References

[1] P.G. Ciarlet, Mathematical elasticity. Vol. I. Three-dimensional elasticity. Vol. II: Theory of plates. Vol. III: Theory of shells.
North-Holland Publishing Co., Amsterdam (1988, 1997, 2000).

[2] D. Cioranescu, O.A. Oleinik and G. Tronel, On Korn’s inequalities for frame type structures and junctions. C. R. Acad. Sci.
Paris Sér. I Math. 309 (1989) 591-596.

[3] L. Desvillettes, Convergence to equilibrium in large time for Boltzmann and BGK equations. Arch. Rational Mech. Anal. 110
(1990) 73-91.



ON A VARIANT OF KORN’S INEQUALITY 619

[4] L. Desvillettes and C. Villani, On the trend to global equilibrium in spatially inhomogeneous entropy-dissipating systems: The
Boltzmann equation. Work in progress.

[5] G. Duvaut and J.-L. Lions, Inequalities in mechanics and physics. Springer-Verlag, Berlin (1976). Translated from the French
by C.W. John, Grundlehren der Mathematischen Wissenschaften, 219.

[6] K.O. Friedrichs, On the boundary-value problems of the theory of elasticity and Korn’s inequality. Ann. Math. 48 (1947)
441-471.

[7] S. Gallot, D. Hulin and J. Lafontaine, Riemannian geometry, Second Edition. Springer-Verlag, Berlin (1990).
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