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ON THE STRUCTURE OF LINEAR RECURRENT ERROR-CONTROL CODES
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Abstract. We are extending to linear recurrent codes, i.e., to time-varying convolutional codes, most
of the classic structural properties of fixed convolutional codes. We are also proposing a new connection
between fixed convolutional codes and linear block codes. These results are obtained thanks to a
module-theoretic framework which has been previously developed for linear control.
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1. Introduction

This paper is devoted to various aspects of convolutional codes which are with linear block codes the most
popular class of error-control codes (see, e.g. [2,4,30,31]). It is based on the well known ties between convolutional
codes and linear automatic control (see, e.g. [21–23,25–27,33,34,38]).

Our aim is twofold:
• we are extending to linear recurrent codes, i.e., to time-varying convolutional codes, most of the classic

structural properties of fixed, i.e., time-invariant, convolutional codes (see, e.g. [6, 26, 34, 37]). Although
Shannon’s channel coding theorem has been extended to time-varying convolutional codes (see [42]) and
not to fixed ones, those time-varying codes were much less utilized in practice than the time-invariant
ones (see, nevertheless [26]);
• the connection between fixed convolutional codes and special types of linear block codes, like cyclic codes,

which has been the subject of many investigations (see, e.g. [31,37,40] and the references therein), is here
approached from a new perspective. Our main theorem states that for an arbitrary block code there exists
a convolutional code such that all its frames (see Sect. 4.2 for a precise definition) are isomorphic to this
block code. This leads to families of convolutional codes and to a feedback decoding procedure, which
seem to be novel.

The relationship between those two rather independent subjects is a module-theoretic approach to linear con-
trol [9, 11,12,15,18–20] 3, which has been quite useful in practice [16–19,36] 4. We are utilising some elementary
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notions of difference algebra [5], homological algebra [41], and non-commutative algebra [29,35], which is most
natural in the time-varying case (see, e.g. [9, 11,12,15]).

In the first part we define, following [26], transducers, i.e., input-output systems, and study their main
properties: state-variable representation, controllability, observability, transfer matrices, input-output inversion.
In particular, an encoder is a right invertible transducer. The second part is devoted to codes. A code, here,
is an equivalence class between encoders having the same output. We derive syndrome formers, dual codes,
parity check matrices, polynomial and basic encoders, and Forney’s theory in a manner which is often very
short thanks to our algebraic setting. We end with the connection with block codes.

The following topics will be developed in future publications:
• constructions of cyclic-like convolutional codes, i.e., convolutional codes which thanks to the results of

Section 4 will also benefit from the properties of some types of cyclic codes;
• turbo-codes [1]. They are often given by two convolutional encoders in parallel with an interleaver, and

are known to be related to time-varying convolutional codes;
• non-linear tree codes, which correspond to non-linear encoders, i.e., to right invertible non-linear input-

output systems [8] (see Sect. 2.6.2);
• cryptography is already known to be related to error-control codes (see, e.g. [45]). Encrypters will be

associated to invertible square input-output systems (see Sect. 2.6.2).

2. Linear recurrent transducers

2.1. Algebraic preliminaries

2.1.1. Difference fields

A difference field [5] is a commutative field F , equipped with a transformation δ : F → F , i.e., a monomor-
phism. Here δ should be understood as the delay operator of one unit of time. A constant is an element c ∈ F ,
such that cδ = c (mappings are written on the right). The subfield of constants of F is the subfield of all
constant elements of F . A field of constants is a difference field which coincide with its subfield of constants.
The inversive closure Fz [5] of F , which is unique up to isomorphism, is the smallest difference overfield of F
such that δ is an automorphism. The difference field F is said to be inversive if, and only if, F = Fz.

Example 2.1. Let F(t) be the field of rational functions in the indeterminate t over the field F, a finite field
for instance. With the F-automorphism δ : F(t) → F(t), t 7→ t − 1, F(t) becomes an inversive difference field,
where the subfield of constants is F.

2.1.2. A principal right ideal ring

The set of polynomials of the form ∑
finie

δsas (2.1)

as ∈ F , is a principal right ideal ring F [δ]. It is commutative if, and only if, F is a field of constants.

2.2. Input-output system

A linear system is a finitely generated right F [δ]-module, where F is an inversive difference field5. A linear
recurrent transducer, or a time-varying convolutional transducer, or a linear input-output system, T is a system
with the following properties:
• there is an input, i.e., a finite subset u = (u1, . . . , uk) of T , such that the quotient module T /spanF [δ](u)

is torsion. The input will be assumed to be independent, i.e., the module spanF [δ](u) is free, of rank k;

5This assumption on F being inversive will simplify several further developments. It does not seem to bring any limitation from
a practical viewpoint (see, e.g. [26]).
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• there is an output, i.e., a finite subset y = (y1, . . . , yn) of T ;
• T is causal (cf. [11]), or nonanticipative, i.e., the semi-linear [3] mapping δ : T /spanF [δ](u)→ T /spanF [δ](u)

is injective.

Example 2.2. The transducer yδ = u, i.e., y(t − 1) = u(t), where k = n = 1, should obviously be viewed as
non-causal. It is also non-causal in our abstract setting. As a matter of fact the quotient module T /spanF [δ](u)
is a 1-dimensional F -vector space spanned by an element corresponding to u(t+ 1), which is mapped to 0 by δ.

When F is a field of constants, a linear recurrent transducer is called a fixed, or time-invariant, convolutional
transducer.

2.3. State-variable representation

When viewed as a F -vector space, the finitely generated torsion module T /spanF [δ](u) is of finite dimension,
m. Take a basis ξ = (ξ1, . . . , ξm). The next lemma is clear.

Lemma 2.3. ξδ is also a basis.

Corollary 2.4. ξ = ξδ A, A ∈ Fm×m, det(A) 6= 0.

Take in T a m-tuple η = (η1, . . . , ηm) the image of which in T /spanF [δ](u) is ξ. Then Corollary 2.4 yields a
generalised state-variable representation of the transducer T

η = ηδ A+
ν∑
µ=0

uδµ B̄µ (2.2)

y = ξ C̄ +
∑
finite

uδι D̄ι (2.3)

B̄µ ∈ F k×m, C̄ ∈ Fm×n, D̄ι ∈ F k×n. Let ξ′ be another basis of T /spanF [δ](u). Thus ξ′ = ξP , P ∈ Fm×m,
det(P ) 6= 0. Take a m-tuple η′ = (η′1, . . . , η

′
m) in T the image of which in T /spanF [δ](u) is ξ′. Then

η′ = η +
∑
finite

uδι Qι (2.4)

Q ∈ F k×m. Note that (2.4) is input-dependent. If, in (2.2), ν ≥ 2 and B̄ν 6= 0, set

η = η̃ − uδν−1 (B̄νA−1δ−1).

It yields

η̃ = η̃δ A+
ν−1∑
µ=0

uδµ B̃µ.

If B̄0 6= 0, setting
η̃ = η + u B̄0

yields

η = ηδ +
ν−1∑
µ=1

uδµ Bµ.

We have proved the following theorem which is a time-varying generalisation of [11].
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Theorem 2.5. A causal linear recurrent transducer may be given the Kalman state-variable representation

x = xδ A+ uδ B (2.5)

y = x C +
∑
finite

uδι Dι (2.6)

where x = (x1, . . . , xm), m = dimF (T /spanF [δ](u)), A ∈ Fm×m, detA 6= 0, B ∈ F k×m, C ∈ Fm×n, Dι ∈
F k×m.

Remark 2.6. Setting x = x̄−u (BA−1δ−1) yields x̄ = x̄δ A+ u (BA−1δ−1) which might also be interesting
in some applications.

2.4. Controllability and observability

2.4.1. Controllability

The transducer T is called controllable if, and only if, the module T free. The next result is an extension
to (2.5) of the classic Kalman controllability criterion (compare with [43]):

Proposition 2.7. The transducer T is controllable if, and only if, the matrix(
B,BδA, . . . , B(δA)m−1

)
is of rank m.

Proof. It is easy to check that rk(B,BδA, . . . , B(δA)m−1) < m is equivalent to the existence of a nontrivial
torsion submodule of T .

2.4.2. Observability

The transducer T is called observable if, and only if, the modules T and spanF [δ](u,y) coincide. The next
result is an extension to (2.5, 2.6) of the classic Kalman observability criterion (compare with [43]):

Proposition 2.8. The transducer T is observable if, and only if, the matrix(
tC, tCδ tA−1, . . . , tC(δ tA−1)m−1

)
where t• indicates the transpose matrix, is of rank m.

Proof. Utilize xδ = x A−1 − uδ BA−1 for expressing yδι, ι = 1, . . . ,m − 1, as F -linear combinations of the
components of x and uδκ, κ ≥ 0.

Remark 2.9. By utilizing the inverse Aδ−1 of δA−1, Proposition 2.8 becomes

rk
(
tC, tCtAδ−1, . . . , tC(tAδ−1)m−1

)
= m.

2.5. Transfer matrices

2.5.1. Definition

Let F (δ) be the quotient field of F [δ] which is a right Ore ring. The right F (δ)-vector space T̂ = T ⊗F [δ]F (δ)
is called the transfer vector space of T [12]. The F [δ]-linear mapping T → T̂ , τ 7→ τ̂ = τ ⊗ 1, is the (formal)
Laplace transform [12]. Its kernel is the torsion submodule of T . It is thus injective if, and only if, the module T
is free. As u is independent, û = (û1, . . . , ûk) is a basis of T̂ . It yields

ŷ = (ŷ1, . . . , ŷn) = û G (2.7)
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where G ∈ F (δ)m×n is the rational transfer matrix, or the rational generating matrix, of the transducer (compare
with [28]). When k = n = 1, G is called a rational transfer, or generating function.

Remark 2.10. Note that the dimension of T̂ is equal to the rank of T .

Any element of F (δ) may be written as a Laurent series
∑
ν≥ν0

δνaν , aν ∈ F , ν0 ∈ Z. It is said to be causal
if, and only if, ν0 ≥ 0. The matrix G is said to be causal if, and only if, all its entries are causal.

Theorem 2.11. Any causal linear recurrent transducer possesses a rational causal transfer matrix. Conversely,
any rational causal matrix is the transfer matrix of a causal linear recurrent transducer, which is controllable
and observable.

Proof. The first part is an immediate consequence of the definition of causality in Section 2.2 and of the input-
output relation (2.7). For the second part, utilize the right coprime factorization G = ND−1, N ∈ F [δ]k×n,
D ∈ F [δ]n×n, where D is invertible (see [12]). The transfer matrix of the transducer yD = uN , which is both
controllable and observable (see [12]), is G.

2.5.2. Interconnection

Let hυ : Σ → Sυ , υ ∈ Υ, be a morphism of systems, i.e., of finitely generated right F [δ]-modules. The
corresponding fibered sum is a system interconnection (cf. [14]). The parallel interconnection

Transducer
1

Transducer
2

+u y

and the series interconnection

Transducer
1

Transducer
2u y

are particular instances of system interconnections. The proof of the following result is straightforward.

Proposition 2.12. The transfer matrix of the parallel (resp. series) interconnection of linear recurrent trans-
ducers is the sum (resp. product) of the transfer matrices.

Remark 2.13. Interconnections as simple as those in Proposition 2.12 may lead to a lost of controllability or
observability6 which is not readable via transfer matrices [14].

2.6. Input-output inversion

2.6.1. General results

The output rank [8] of the transducer T is % = rk(spanF [δ](y)). Obviously 0 ≤ % ≤ min(k, n). The transducer
T is said to be right invertible (resp. left invertible) if, and only if, % = k (resp. % = n).

6The continuous-time examples and the results in [14] (see also the references therein) may trivially be adapted to our discrete-
time context.
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Proposition 2.14. T is right invertible, if and only if, the quotient module T /spanF [δ](y) is torsion.

Proof. rk(T /spanF [δ](y)) = rk(T ) − %. Since T /spanF [δ](u) is torsion, rk(T ) = rk(spanF [δ](u) = k. Thus
rk(T /spanF [δ](y)) = 0 if, and only if, % = k.

In a more down to earth language, Lemma 2.14 means that u may be obtained from y thanks to difference
equations. The example y = uδ, where k = n = 1, shows that the right inverse transducer is not generally
causal. Left invertibility means that the components of y are F [δ]-linearly independent.

The next proposition is an immediate consequence of Remark 2.10.

Proposition 2.15. The linear recurrent transducer T is right (resp. left) invertible if, and only if, its transfer
matrix is right (resp. left) invertible.

Corollary 2.16. If the linear recurrent transducer T is right (resp. left) invertible, then n ≥ k (resp. n ≤ k).

If k = n, the transducer is said to be square. Then right and left invertibilities coincide. An invertible square
transducer is right and left invertible.

2.6.2. Encoders

A linear recurrent transducer, which is right invertible, is called a linear recurrent encoder, or a (time-varying)
convolutional encoder. If F is a field of constants, it is called a (fixed) convolutional encoder7. A square encoder
is called a linear recurrent encrypter.

2.7. Some useful constructions

2.7.1. Blocking

For any integer Ω > 1, F [δΩ] ⊂ F [δ]. Thus any right F [δ]-module M may also be viewed as a right
F [δΩ]-module MΩ called the Ωth-blocking, or Ωth-interleaving, module.

Lemma 2.17. rk(MΩ) = Ω rk(M).

Proof. If ξ1, . . . , ξ` are F [δ]-linearly independent elements in M, then ξ1, ξ1δ, . . . , ξ1δΩ−1, . . . , ξ`, ξ`δ, . . . , ξ`δ
Ω−1

are F [δΩ]-linearly independent.

The Ωth-blocking transducer, or Ωth-interleaving transducer, TΩ of T is the linear recurrent transducer defined by

• its module is the Ωth-blocking module TΩ;
• its input and output are respectively (u,uδ, . . . ,uδΩ−1) and (y,yδ, . . . ,yδΩ−1).

The next result is clear:

Proposition 2.18. If T is controllable (resp. observable, right invertible, left invertible), then TΩ is also
controllable (resp. observable, right invertible, left invertible).

2.7.2. Puncturing

Puncturing a linear recurrent transducer T means taking a linear recurrent transducer TP defined by the
same module, the same input and by an output which is a subset of y. The next result is clear:

Proposition 2.19. If T is controllable (resp. left invertible), then TP is also controllable (resp. left invertible).
If T is observable (resp. right invertible), then TP is not necessarily observable (resp. right invertible).

7Even if F is a finite field, there exists several definitions of convolutional encoders in the existing literature.
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3. Some properties of linear recurrent codes

3.1. Equivalence of encoders and codes

3.1.1. Equivalence

Two linear recurrent encoders with inputs u = (u1, . . . , uk), u′ = (u1, . . . , u
′
k′) and outputs y = (y1, . . . , yn),

y′ = (y′1, . . . , y
′
n′) are said to be equivalent if, and only if, the following conditions are satisfied:

(1) n = n′;
(2) there exists σ ∈ Sn, where Sn is the symmetric group over {1, . . . , n}, such that the mapping yι 7→ y′ισ,

ι = 1, . . . , n, defines an isomorphism between the modules spanF [δ](y) and spanF [δ](y
′).

Proposition 3.1. The inputs of two equivalent linear recurrent encoders possess the same number of components.

Proof. Let % and %′ be the output ranks of the encoders T and T ′. The right invertibility of T and T ′ implies
% = k and %′ = k′. The equivalence of T and T ′ implies % = %′.

3.1.2. Codes

A linear recurrent code, or a (time-varying) convolutional code is an equivalence class between linear recurrent
encoders. From Proposition 3.1, we know already two integers k, n, 0 < k ≤ n which are attached to the code,
which is therefore called a (n, k) linear recurrent code. Its rate is k

n . By a slight abuse of language, spanF [δ](y)
is sometimes called a linear recurrent code, or a (time-varying) convolutional code. When F is a finite field of
constants, a linear recurrent code is called a (fixed) convolutional code. A code is said to be free, or controllable,
if, and only if, the module spanF [δ](y) is free.

3.2. Syndrome formers

Let Fn be the free right F [δ]-module, with basis ȳ1, . . . , ȳn. The mapping ȳι 7→ yι, ι = 1, . . . , n, defines an
epimorphism Fn → spanF [δ](y) and the short exact sequence

0→ Fn−k → Fn → spanF [δ](y)→ 0 (3.1)

where Fn−k a free right F [δ]-module of rank n− k. A syndrome former of the code is a presentation matrix of
spanF [δ](y), which corresponds here to the monomorphism Fn−k → Fn.

The sequence (3.1) splits, i.e., Fn ' Fn−k ⊕ spanF [δ](y), if, and only if, the code is free.

3.3. Some properties of free codes

From now on and until the end of the paper codes are assumed to be free8. When F is a finite field
of constants, a (fixed) convolutional code may be defined as a certain F [δ]-submodule of the F [δ]-module
L = {

∑
υ≥0 δ

υa1υ, . . . ,
∑
υ≥0 δ

υanυ} of n-tuple of formal power series. The relationship with our approach9 is

given the F [δ]-module Hom
(

spanF [δ](y),L
)

of F [δ]-module morphisms Φ = (φ1, . . . , φn) : spanF [δ](y) → L,
(y1, . . . , yn) 7→ (y1φ, . . . , ynφ) (compare with [38]).

3.3.1. Dual codes and parity check matrices

The image of Fn−k in Fn is called the dual code. A syndrome former of the dual code is called a parity check
matrix of the code.

Remark 3.2. When F is a finite field of constants, the dual code of a convolutional code is usually defined
as for block codes via an orthogonality relation. We leave to the reader to construct explicitly the relationship
with our definition.

8When F is a finite field of constants, a (fixed) convolutional code is often defined as a vector subspace of F (δ)1×n (see,
e.g. [26, 34]). With respect to this transfer matrix setting the freeness may always be assumed.

9This is more generally the relationship (see [10]) between our module-theoretic setting and Willems’ behavioral approach [44].
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3.3.2. Polynomial and basic encoders

A controllable and observable encoder E is said to be polynomial if, and only if, u is a basis of the free
module E . The next property is an immediate consequence of Theorem 2.11:

Proposition 3.3. A controllable and observable encoder is polynomial if, and only if, the entries of its transfer
matrix are polynomial, i.e., belong to F [δ].

The polynomial encoder E is said to be basic if, and only if, E = spanF [δ](y). By taking for u any basis of
the free module spanF [δ](y) we obtain the

Proposition 3.4. Any free code admits a basic encoder.

3.3.3. Systematic encoders

Proposition 3.5. Any free code admits a systematic encoder, i.e., an encoder where k components of the output
are identical to the k components of the input.

Proof. The result is clear if k = n; y is a basis of spanF [δ](y) and can be taken as an input. Assume that the
result holds for n = n0 ≥ k. Take n = n0 + 1. Since the components of y are F [δ]-linearly dependent we may
write

y1γ1 + · · ·+ yn0+1γn0+1 = 0 (3.2)

where γ1, . . . , γn0+1 ∈ F [δ] are right coprime. At least one of the coefficients γι, ι = 1, . . . , n0 + 1, γn0+1 for
instance, when expressed as a sum (2.1), is such that a0 6= 0. Apply the assumption to the code spanned
by y1, . . . , yn0 and utilise the causal relation yn0+1 = −(y1γ1 + · · ·+ yn0γn0)γ−1

n0+1.

3.3.4. Non-catastrophic encoders

The ring of Laurent polynomials F [δ, δ−1] is the localized ring of F [δ] by the multiplicative monoid {δs | s
≥ 0}, which satisfies the right Ore condition. The corresponding localized right F [δ, δ−1]-module E⊗F [δ]F [δ, δ−1]
of spanF [δ](u) is free, if E is controllable. The canonical mapping E → E⊗F [δ]F [δ, δ−1], υ 7→ υ⊗1, being injective,
E may be considered as a subset of E⊗F [δ]F [δ, δ−1]. A controllable encoder is said to be non-catastrophic if, and
only if, u belongs to spanF [δ](y)⊗F [δ]F [δ, δ−1]. The next result is an immediate consequence of Proposition 3.4.

Proposition 3.6. Any free code admits a non-catastrophic encoder.

3.4. Forney’s theorem

3.4.1. An important filtration

Define a filtration of F [δ] by setting Fα = {Pδα}, α ≥ 0, P ∈ F [δ]. Thus F [δ] = F0 ⊃ F1 ⊃ . . . . The
corresponding filtration for the free module spanF [δ](y) is obtained by setting Cα = spanF [δ](y)Fα. Thus
spanF [δ](y) = C0 ⊃ C1 ⊃ . . . . Any element x ∈ spanF [δ](y) may be written uniquely as a finite sum

x =
µ∑

α=ν

ξαδ
α (3.3)

where ξαδα is homogeneous, of weight α (ξ0 is homogeneous of weight 0). The element x is said to be of order ν
(resp. degree µ) if, and only if, ξν 6= 0 (resp. ξµ 6= 0). It is homogeneous if, and only if, ν = µ. The next results
are clear.

Lemma 3.7. The semi-linear linear mapping δ` : Cα → Cα+`, ` > 0, is bijective.

Corollary 3.8. For any homogeneous element xα+` of order α + ` there exists a homogeneous element xα of
order α such that xαδ` = xα+`.
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Lemma 3.9. Homogeneous elements of order ν are F [δ]-linearly independent if, and only if, they are F -linearly
independent.

Corollary 3.10. The F -vector space Cα/Cα+1 is of dimension k.

3.4.2. The result

Let ε1 be the highest degree of the components of y, when written as in (3.3). Let V1 be the $1-dimensional
F -vector space spanned by the corresponding homogeneous elements. Choose according to Corollary 3.8 ho-
mogeneous elements u1, . . . , u$1 , of degree 0, such that V1 = span(u1δ

ε1 , . . . , u$1δ
ε1). Let ε2 < ε1 be the first

integer such that u1δ
ε2 , . . . , u$1δ

ε2 does not span the F -vector space spanned by the homogeneous components
of order ε2 in y. Complete then u1, . . . , u$1 as above. We obtain a basis u = (u1, . . . , um) and a corresponding
polynomial transfer matrix with lines of degrees10 e1 ≤ e2 ≤ · · · ≤ ek.

We must show that the above basic encoder is minimal, i.e., that the degrees f1 ≤ f2 ≤ · · · ≤ fk of the
lines of any polynomial generating matrix verify eι ≤ fι, ι = 1, . . . , k. The next lemma, which is obvious,
demonstrates that this result holds true if k = 1.

Lemma 3.11. Take a free F [δ]-module M of rank 1. Two bases b and b′ are related by b = b′γ, γ ∈ F , γ 6= 0.
Let N ⊇M be another free F [δ]-module of rank 1. Then, for any basis c of N , b = bπ, π ∈ F [δ].

By considering the quotient module spanF [δ](y)/spanF [δ](u1), which is free of rank k − 1, we obtain the
minimality for any k ≥ 2, assuming that it holds true for k − 1.

We have proved:

Theorem 3.12. For any free linear recurrent code, there exists a basic encoder, called minimal, such that the
degrees of the lines of its transfer matrix are e1 ≤ e2 ≤ · · · ≤ ek. The degrees f1 ≤ f2 ≤ · · · ≤ fk of the lines of
a transfer matrix of any equivalent polynomial encoder verify eκ ≤ fκ, κ = 1, . . . , k.

A corresponding input is called a Forney input.

4. A connection between convolutional and block codes

From now on F is a finite field Fq of constants. We will therefore be working with free (fixed) linear
convolutional codes.

4.1. Sliding block codes

A sliding presentation of a free (n, k) linear convolutional code is given by a submodule C of rank k of a free
Fq[δ]-module E of rank n such that the quotient module E/C is free11. The sliding (linear) block code of order
Ω of a given sliding presentation is given by the Fq-vector subspace C/CδΩ of the Fq-vector space E/EδΩ. It
is obviously a (nΩ, kΩ) block code.

Theorem 4.1. For integers n, k,Ω, 1 ≤ k < n, Ω ≥ 1, there exists a free (n, k) convolutional code with a
sliding presentation such that its sliding block code of order Ω is an arbitrary (nΩ, kΩ) block code.

Proof. Take an arbitrary (nΩ, kΩ) block code defined by a kΩ-dimensional subspace U of a nΩ-dimensional
of a Fq-vector space Y . For any integer ν ≥ 0, set Y δνΩ = {yδνΩ | y ∈ E}. Define the free Fq[δΩ]-modules
U =

⊕
ν≥0 Uδ

νΩ ⊂ Y =
⊕

ν≥0 Y δ
νΩ. Consider now the free Fq[δ]-modules Fq[δ]

⊗
Fq[δΩ] U ⊂ Fq[δ]

⊗
Fq[δΩ] Y.

Any basis u = (u1, . . . , ukΩ) of U may be viewed as a basis of U. By considering a systematic presentation
of the block code, we may complete some basis u as a basis y = (y

1
, . . . , y

nΩ
) of Y ; y may also be viewed as a

basis of Y. Take a partition of u consisting of k disjoint sets of Ω elements. Complete it as a partition of y of
n disjoint sets of Ω elements. For the subsets {(zι1, . . . , zιΩ) | ι = 1, . . . , n of the partition, define the submodule
P = spanFq[δ]({zικδ − zικ+1 | ι = 1, . . . , n;κ = 1, . . . ,Ω− 1}) of Fq[δ]

⊗
Fq[δΩ] U ⊂ Fq[δ]

⊗
Fq[δΩ] Y.

10The degree of a line is the maximum degree of its entries.
11This is an immediate consequence of the splitting property of the short exact sequence (3.1).
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Lemma 4.2. The quotient Fq[δ]-module E = Fq[δ]
⊗
Fq[δΩ] Y/P is free of rank n. The canonical image C of

Fq[δ]
⊗
Fq[δΩ] U into Fq[δ]

⊗
Fq[δΩ] Y/P is free of rank k.

Proof. A basis of E is {zι1 | ι = 1, . . . , n}.

The solution is given by the sliding presentation C ⊂ E.

4.2. Sketch of a feedback decoding procedure

The Fq[δ, δ−1]-modules Fq[δ, δ−1]⊗Fq[δ] C and Fq[δ, δ−1]⊗Fq[δ] E may be seen as Fq[δ]-modules C̄ and Ē. For
any integer α ≥ 0, the (α + 1)th frame12 is the block code is given by the Fq-vector subspace C̄δ(−α−Ω)/C̄δ−α

of the Fq-vector space Ēδ(−α−Ω)/Ēδ−α. It is clear that all those frames are isomorphic to the sliding block code
of order Ω.

A decoding procedure of any frame will of course take advantage of the nature of the sliding block code.
Comparing the results for the βth and (β + `)th, β, ` ≥ 1, permits some checking if ` < Ω. This feedback type
decoding of the convolutional code may be enriched by some concatenations (see, e.g. [2, 4, 30]) of the frames.
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