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ON THE STRUCTURE OF LINEAR RECURRENT ERROR-CONTROL CODES

MicHEL FLIESS! 2

Abstract. We are extending to linear recurrent codes, i.e., to time-varying convolutional codes, most
of the classic structural properties of fixed convolutional codes. We are also proposing a new connection
between fixed convolutional codes and linear block codes. These results are obtained thanks to a
module-theoretic framework which has been previously developed for linear control.
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1. INTRODUCTION

This paper is devoted to various aspects of convolutional codes which are with linear block codes the most
popular class of error-control codes (see, e.g. [2,4,30,31]). It is based on the well known ties between convolutional
codes and linear automatic control (see, e.g. [21-23,25-27,33, 34, 38]).

Our aim is twofold:

e we are extending to linear recurrent codes, i.e., to time-varying convolutional codes, most of the classic
structural properties of fixed, i.e., time-invariant, convolutional codes (see, e.g. [6,26,34,37]). Although
Shannon’s channel coding theorem has been extended to time-varying convolutional codes (see [42]) and
not to fixed ones, those time-varying codes were much less utilized in practice than the time-invariant
ones (see, nevertheless [26]);

e the connection between fixed convolutional codes and special types of linear block codes, like cyclic codes,
which has been the subject of many investigations (see, e.g. [31,37,40] and the references therein), is here
approached from a new perspective. Our main theorem states that for an arbitrary block code there exists
a convolutional code such that all its frames (see Sect. 4.2 for a precise definition) are isomorphic to this
block code. This leads to families of convolutional codes and to a feedback decoding procedure, which
seem to be novel.

The relationship between those two rather independent subjects is a module-theoretic approach to linear con-
trol [9,11,12,15,18-20] 3, which has been quite useful in practice [16-19,36] 2. We are utilising some elementary
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notions of difference algebra [5], homological algebra [41], and non-commutative algebra [29,35], which is most
natural in the time-varying case (see, e.g. [9,11,12,15]).

In the first part we define, following [26], transducers, i.e., input-output systems, and study their main
properties: state-variable representation, controllability, observability, transfer matrices, input-output inversion.
In particular, an encoder is a right invertible transducer. The second part is devoted to codes. A code, here,
is an equivalence class between encoders having the same output. We derive syndrome formers, dual codes,
parity check matrices, polynomial and basic encoders, and Forney’s theory in a manner which is often very
short thanks to our algebraic setting. We end with the connection with block codes.

The following topics will be developed in future publications:

e constructions of cyclic-like convolutional codes, i.e., convolutional codes which thanks to the results of

Section 4 will also benefit from the properties of some types of cyclic codes;

e turbo-codes [1]. They are often given by two convolutional encoders in parallel with an interleaver, and

are known to be related to time-varying convolutional codes;

e non-linear tree codes, which correspond to non-linear encoders, i.e., to right invertible non-linear input-

output systems [8] (see Sect. 2.6.2);
e cryptography is already known to be related to error-control codes (see, e.g. [45]). Encrypters will be
associated to invertible square input-output systems (see Sect. 2.6.2).

2. LINEAR RECURRENT TRANSDUCERS

2.1. Algebraic preliminaries

2.1.1. Difference fields

A difference field [5] is a commutative field F, equipped with a transformation 6 : F — F, i.e., a monomor-
phism. Here § should be understood as the delay operator of one unit of time. A constant is an element ¢ € F,
such that ¢§ = ¢ (mappings are written on the right). The subfield of constants of F' is the subfield of all
constant elements of F'. A field of constants is a difference field which coincide with its subfield of constants.
The inversive closure F*® [5] of F, which is unique up to isomorphism, is the smallest difference overfield of F
such that ¢ is an automorphism. The difference field F is said to be inversive if, and only if, F = F*¥.

Example 2.1. Let F(¢) be the field of rational functions in the indeterminate ¢ over the field F, a finite field
for instance. With the F-automorphism § : F(¢) — F(t), t — ¢ — 1, F(t) becomes an inversive difference field,
where the subfield of constants is F.

2.1.2. A principal right ideal ring

The set of polynomials of the form
3 5, 21)
finie
as € F, is a principal right ideal ring F[]. Tt is commutative if, and only if, F' is a field of constants.

2.2. Input-output system

A linear system is a finitely generated right F[§]-module, where F is an inversive difference field®. A linear
recurrent transducer, or a time-varying convolutional transducer, or a linear input-output system, 7 is a system
with the following properties:

e there is an input, i.e., a finite subset u = (u1,...,uy) of 7, such that the quotient module 7 /spanp s (u)

is torsion. The input will be assumed to be independent, i.e., the module spanps (u) is free, of rank k;

5This assumption on F' being inversive will simplify several further developments. It does not seem to bring any limitation from
a practical viewpoint (see, e.g. [26]).
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e there is an output, i.e., a finite subset y = (y1,...,yn) of T;
e T is causal (cf. [11]), or nonanticipative, i.e., the semi-linear [3] mapping 0 : 7 /spangp s (w) — 7 /spanps(w)
is injective.

Example 2.2. The transducer yd = u, i.e., y(t — 1) = u(t), where k = n = 1, should obviously be viewed as
non-causal. It is also non-causal in our abstract setting. As a matter of fact the quotient module 7 /span Flo] (u)
is a 1-dimensional F-vector space spanned by an element corresponding to u(t + 1), which is mapped to 0 by 4.

When F is a field of constants, a linear recurrent transducer is called a fized, or time-invariant, convolutional

transducer.

2.3. State-variable representation

When viewed as a F-vector space, the finitely generated torsion module 7 /span Fo] (u) is of finite dimension,
m. Take a basis & = (§1,...,&n). The next lemma is clear.

Lemma 2.3. £0 is also a basis.
Corollary 2.4. £ =¢£5 A, Ae F™*™ det(A) #0.

Take in 7" a m-tuple 9§ = (1, ..., nm) the image of which in 7 /spangs(u) is §& Then Corollary 2.4 yields a
generalised state-variable representation of the transducer 7

n=mn6 A+ Zué“ B, (2.2)
n=0

y=¢C+ > ud' D, (2.3)
finite

B, € Fkxm C e Fm™xn D, € FF*". Let ¢ be another basis of T /spanps(u). Thus ¢ =¢pP, P c Fmxm,
det(P) # 0. Take a m-tuple n" = (n{,...,n;,) in 7 the image of which in 7 /spangs(u) is ¢’. Then

n=n+ ) usqQ, (2.4)

finite
Q € F**™_ Note that (2.4) is input-dependent. If, in (2.2), v > 2 and B, # 0, set

n=mn-ué""" (B,A'5").

It yields
v—1
=m0 A+ > ud" B,
=0
If By # 0, setting
nN=m+u BO
yields
v—1
n=n6+ Y ud" B,
p=1

We have proved the following theorem which is a time-varying generalisation of [11].
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Theorem 2.5. A causal linear recurrent transducer may be given the Kalman state-variable representation

r=x A+ud B (2.5)
y=x C+ Zué‘ D, (2.6)
finite

where x = (21,...,2m), m = dimp(7 /spanpg(u)), A € F™*™, det A # 0, B € Fkxm ¢ e Fmxn D, €
Fkxm‘

Remark 2.6. Setting z =% —u (BA~1671) yields £ = 2§ A +u (BA~16~!) which might also be interesting
in some applications.

2.4. Controllability and observability

2.4.1. Controllability

The transducer 7 is called controllable if, and only if, the module 7 free. The next result is an extension
to (2.5) of the classic Kalman controllability criterion (compare with [43]):

Proposition 2.7. The transducer T is controllable if, and only if, the matriz
(B,BSA,...,BA)™ 1)

s of rank m.

Proof. Tt is easy to check that rk(B, BA,..., B(6A)™ 1) < m is equivalent to the existence of a nontrivial
torsion submodule of 7. O

2.4.2. Observability

The transducer 7 is called observable if, and only if, the modules 7 and span gy (u,vy) coincide. The next
result is an extension to (2.5, 2.6) of the classic Kalman observability criterion (compare with [43]):

Proposition 2.8. The transducer T is observable if, and only if, the matriz
(tC,tCé ATt tA_l)m_l)

where te indicates the transpose matriz, is of rank m.

Proof. Utilize 6 = & A~' — ud BA™! for expressing yé*, t = 1,...,m — 1, as F-linear combinations of the
components of x and ud", k > 0. O

Remark 2.9. By utilizing the inverse A6~! of §A~!, Proposition 2.8 becomes
rk (tC,tCtA(S_l, . ,tC’(tA(S_l)m_l) =m.

2.5. Transfer matrices

2.5.1. Definition

Let F(8) be the quotient field of F[§] which is a right Ore ring. The right F(8)-vector space 7 = T @p5 F'(0)

is called the transfer vector space of T [12]. The F[d]-linear mapping 7 — T,7—7=1®1,is the (formal)
Laplace transform [12]. Its kernel is the torsion submodule of T'. It is thus injective if, and only if, the module 7

is free. As w is independent, @ = (41, ..., U) is a basis of 7. 1t yields
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where G € F(0)™*"™ is the rational transfer matriz, or the rational generating matriz, of the transducer (compare
with [28]). When k =n =1, G is called a rational transfer, or generating function.

Remark 2.10. Note that the dimension of 7 is equal to the rank of 7.

Any element of F(6) may be written as a Laurent series Zu>uo 0va,, a, € F, vy € Z. 1t is said to be causal
if, and only if, vy > 0. The matrix G is said to be causal if, and only if, all its entries are causal.

Theorem 2.11. Any causal linear recurrent transducer possesses a rational causal transfer matriz. Conversely,
any rational causal matriz is the transfer matrix of a causal linear recurrent transducer, which is controllable
and observable.

Proof. The first part is an immediate consequence of the definition of causality in Section 2.2 and of the input-
output relation (2.7). For the second part, utilize the right coprime factorization G = ND~!, N € F[§]**",
D € F[6]™*™, where D is invertible (see [12]). The transfer matrix of the transducer yD = wN, which is both
controllable and observable (see [12]), is G. O

2.5.2. Interconnection

Let h, : ¥ — Sy, v € T, be a morphism of systems, i.e., of finitely generated right F[0]-modules. The
corresponding fibered sum is a system interconnection (cf. [14]). The parallel interconnection

_| Transducer

1
u Y

Transducer

2
and the series interconnection
Transducer Transducer
u g 1 2 —)

are particular instances of system interconnections. The proof of the following result is straightforward.

Proposition 2.12. The transfer matriz of the parallel (resp. series) interconnection of linear recurrent trans-
ducers is the sum (resp. product) of the transfer matrices.

Remark 2.13. Interconnections as simple as those in Proposition 2.12 may lead to a lost of controllability or
observability® which is not readable via transfer matrices [14].
2.6. Input-output inversion

2.6.1. General results
The output rank [8] of the transducer 7 is ¢ = rk(spanp(s)(y)). Obviously 0 < ¢ < min(k,n). The transducer
7 is said to be right invertible (resp. left invertible) if, and only if, o = k (resp. 0 = n).

6The continuous-time examples and the results in [14] (see also the references therein) may trivially be adapted to our discrete-
time context.
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Proposition 2.14. 7 is right invertible, if and only if, the quotient module T/spanF[(;] (y) is torsion.

Proof. tk(T /spanps)(y)) = 1k(7) — 0. Since 7 /spanps(u) is torsion, rk(7) = rk(spanpp(u) = k. Thus
rk(7 /spanps)(y)) = 0 if, and ouly if, o = k. O

In a more down to earth language, Lemma 2.14 means that w4 may be obtained from y thanks to difference
equations. The example y = ud, where k& = n = 1, shows that the right inverse transducer is not generally
causal. Left invertibility means that the components of y are F'[d]-linearly independent.

The next proposition is an immediate consequence of Remark 2.10.

Proposition 2.15. The linear recurrent transducer T is right (resp. left) invertible if, and only if, its transfer
matriz is right (resp. left) invertible.

Corollary 2.16. If the linear recurrent transducer T is right (resp. left) invertible, then n >k (resp. n < k).

If £ = n, the transducer is said to be square. Then right and left invertibilities coincide. An invertible square
transducer is right and left invertible.

2.6.2. Encoders

A linear recurrent transducer, which is right invertible, is called a linear recurrent encoder, or a (time-varying)
convolutional encoder. If F is a field of constants, it is called a (fived) convolutional encoder”. A square encoder
is called a linear recurrent encrypter.

2.7. Some useful constructions

2.7.1. Blocking

For any integer Q > 1, F[0*)] C F[§]. Thus any right F[§]-module M may also be viewed as a right
F[6%]-module Mg, called the Q" -blocking, or Q" -interleaving, module.
Lemma 2.17. tk(M,) = Q rk(M).

Proof. If &1, ..., & are F[d]-linearly independent elements in M, then &1,&10,...,&6%7 ... €0, &0, ..., &0t
are F[0*]-linearly independent. O

The Qt"-blocking transducer, or Q*-interleaving transducer, g, of 7 is the linear recurrent transducer defined by

e its module is the Q*"-blocking module 7q;
e its input and output are respectively (u,ud, ..., ué*"1) and (y,yd, ...,y 1).

The next result is clear:

Proposition 2.18. If T is controllable (resp. observable, right invertible, left invertible), then Tq is also
controllable (resp. observable, right invertible, left invertible).

2.7.2. Puncturing

Puncturing a linear recurrent transducer 7 means taking a linear recurrent transducer 7p defined by the
same module, the same input and by an output which is a subset of y. The next result is clear:

Proposition 2.19. If T is controllable (resp. left invertible), then Tp is also controllable (resp. left invertible).
If T is observable (resp. right invertible), then Tp is not necessarily observable (resp. right invertible).

"Even if F is a finite field, there exists several definitions of convolutional encoders in the existing literature.
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3. SOME PROPERTIES OF LINEAR RECURRENT CODES

3.1. Equivalence of encoders and codes

3.1.1. Equivalence

Two linear recurrent encoders with inputs w = (u1,...,ux), v’ = (u1,...,u},) and outputs y = (y1,...,Yn),
v = (y1,...,y,,) are said to be equivalent if, and only if, the following conditions are satisfied:
(1) n=n/;
(2) there exists o € S,,, where S,, is the symmetric group over {1,...,n}, such that the mapping y, — v/,
t=1,...,n, defines an isomorphism between the modules spanps(y) and spanps)(y').

Proposition 3.1. The inputs of two equivalent linear recurrent encoders possess the same number of components.

Proof. Let p and ¢’ be the output ranks of the encoders 7 and 7. The right invertibility of 7 and 7’ implies
0=k and ¢’ = k’. The equivalence of 7 and 7' implies o = ¢'. O

3.1.2. Codes

A linear recurrent code, or a (time-varying) convolutional code is an equivalence class between linear recurrent
encoders. From Proposition 3.1, we know already two integers k, n, 0 < k < n which are attached to the code,
which is therefore called a (n, k) linear recurrent code. Its rate is % By a slight abuse of language, span (y)
is sometimes called a linear recurrent code, or a (time-varying) convolutional code. When F' is a finite field of
constants, a linear recurrent code is called a (fized) convolutional code. A code is said to be free, or controllable,
if, and only if, the module span g5 (y) is free.

3.2. Syndrome formers

Let F, be the free right F[d]-module, with basis #1,...,%,. The mapping g, — y,, ¢t = 1,...,n, defines an
epimorphism JF, — spanps (y) and the short exact sequence

0 — Fn—k — Fn — spanpp)(y) — 0 (3.1)

where F,,_, a free right F[6]-module of rank n — k. A syndrome former of the code is a presentation matrix of
spanpjs (y), which corresponds here to the monomorphism F,,_ — F,.
The sequence (3.1) splits, i.e., Fp, ~ Fr_i ® spanpjy] (y), if, and only if, the code is free.

3.3. Some properties of free codes

From now on and until the end of the paper codes are assumed to be free8. When F is a finite field
of constants, a (fixed) convolutional code may be defined as a certain F[d]-submodule of the F[6]-module
L= {szo 01y, -, szo 8%y} of n-tuple of formal power series. The relationship with our approach? is

given the F[d]-module Hom (spanF[(g] (y), E) of F[6]-module morphisms ® = (¢1,...,¢n) : spanpy(y) — L,
Y1y Yn) — (Y10, ..., Ynd) (compare with [38]).
3.3.1. Dual codes and parity check matrices

The image of F,,_ in F,, is called the dual code. A syndrome former of the dual code is called a parity check
matriz of the code.

Remark 3.2. When F is a finite field of constants, the dual code of a convolutional code is usually defined
as for block codes via an orthogonality relation. We leave to the reader to construct explicitly the relationship
with our definition.

8When F is a finite field of constants, a (fixed) convolutional code is often defined as a vector subspace of F(§)'X™ (see,
e.g. [26,34]). With respect to this transfer matrix setting the freeness may always be assumed.
9This is more generally the relationship (see [10]) between our module-theoretic setting and Willems’ behavioral approach [44].



710 M. FLIESS

3.3.2. Polynomial and basic encoders

A controllable and observable encoder £ is said to be polynomial if, and only if, u is a basis of the free
module £. The next property is an immediate consequence of Theorem 2.11:

Proposition 3.3. A controllable and observable encoder is polynomial if, and only if, the entries of its transfer
matriz are polynomial, i.e., belong to F[0].

The polynomial encoder £ is said to be basic if, and only if, £ = spanps (y). By taking for u any basis of
the free module spanp5(y) we obtain the

Proposition 3.4. Any free code admits a basic encoder.

3.3.3. Systematic encoders

Proposition 3.5. Any free code admits a systematic encoder, i.e., an encoder where k components of the output
are identical to the k components of the input.

Proof. The result is clear if K = n; y is a basis of span F[o] (y) and can be taken as an input. Assume that the
result holds for n = ng > k. Take n = ng + 1. Since the components of y are F'[0]-linearly dependent we may
write

Vit Yno+1Yno+1 =0 (3.2)
where v1,...,Yno+1 € F[0] are right coprime. At least one of the coeflicients v,, ¢ = 1,...,n0 + 1, Yno4+1 for
instance, when expressed as a sum (2.1), is such that ap # 0. Apply the assumption to the code spanned
by y1,...,Yn, and utilise the causal relation y,,+1 = —(¥171 + *** + YngVno )’y,?olﬂ. O

3.3.4. Non-catastrophic encoders

The ring of Laurent polynomials F[d, 1] is the localized ring of F[§] by the multiplicative monoid {6° | s
> 0}, which satisfies the right Ore condition. The corresponding localized right F[4, 6 ~!]-module £® rlo) F[0, 571
of span s (w) is free, if £ is controllable. The canonical mapping & — E® (s F[6, 571, v — v®1, being injective,
& may be considered as a subset of £® g5 F'[0, 571]. A controllable encoder is said to be non-catastrophic if, and
only if, u belongs to span Fls] (y) @Fs F'[0,0 ~1]. The next result is an immediate consequence of Proposition 3.4.

Proposition 3.6. Any free code admits a non-catastrophic encoder.

3.4. Forney’s theorem

3.4.1. An important filtration

Define a filtration of F[0] by setting F, = {Pd*}, o > 0, P € F[§]. Thus F[§] = Fo D F1 D .... The
corresponding filtration for the free module spanps(y) is obtained by setting Co = spang(s(y)Fo. Thus
spangs)(y) = Co D C1 D.... Any element x € spany5(y) may be written uniquely as a finite sum

I
z= a6 (3.3)

where £,0¢ is homogeneous, of weight a (o is homogeneous of weight 0). The element z is said to be of order v
(resp. degree ) if, and only if, &, # 0 (resp. £, # 0). It is homogeneous if, and only if, ¥ = p. The next results
are clear.

Lemma 3.7. The semi-linear linear mapping 6° : Co — Ceqyyg, £ > 0, is bijective.

Corollary 3.8. For any homogeneous element xq+¢ of order a+ € there exists a homogeneous element xo of
order a such that £o6° = Tay.
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Lemma 3.9. Homogeneous elements of order v are F[0]-linearly independent if, and only if, they are F-linearly
independent.
Corollary 3.10. The F-vector space Cy/Cyyt1 is of dimension k.
3.4.2. The result

Let £1 be the highest degree of the components of y, when written as in (3.3). Let V4 be the w;-dimensional
F-vector space spanned by the corresponding homogeneous elements. Choose according to Corollary 3.8 ho-

mogeneous elements uy, . .., Uy, , of degree 0, such that V4 = span(u16°!,. .., ug,6°'). Let e2 < 1 be the first
integer such that u10%2, ..., uy, 6°2 does not span the F-vector space spanned by the homogeneous components
of order e in y. Complete then wuq, ..., uy, as above. We obtain a basis u = (u1, ..., un) and a corresponding

polynomial transfer matrix with lines of degrees'®

We must show that the above basic encoder is minimal, i.e., that the degrees f1 < fo < -+ < fi of the
lines of any polynomial generating matrix verify e, < f,, ¢ = 1,...,k. The next lemma, which is obvious,
demonstrates that this result holds true if k = 1.

Lemma 3.11. Take a free F[§]-module M of rank 1. Two bases b and b’ are related by b =10y, v € F, v # 0.
Let N D M be another free F[0]-module of rank 1. Then, for any basis ¢ of N, b=br, m € F[d].

e1 <exy <o <eg.

By considering the quotient module spanps)(y)/spangs(u1), which is free of rank k — 1, we obtain the
minimality for any k > 2, assuming that it holds true for k£ — 1.
We have proved:

Theorem 3.12. For any free linear recurrent code, there exists a basic encoder, called minimal, such that the
degrees of the lines of its transfer matriz are e1 < eg < --- < eg. The degrees f1 < fo < --- < fi of the lines of
a transfer matriz of any equivalent polynomial encoder verify e, < fr, k=1,...,k.

A corresponding input is called a Forney input.

4. A CONNECTION BETWEEN CONVOLUTIONAL AND BLOCK CODES

From now on F' is a finite field F, of constants. We will therefore be working with free (fixed) linear
convolutional codes.

4.1. Sliding block codes

A sliding presentation of a free (n, k) linear convolutional code is given by a submodule C of rank k of a free
F,[0]-module E of rank n such that the quotient module E/C is free’'. The sliding (linear) block code of order
Q of a given sliding presentation is given by the Fg-vector subspace C/ C5*? of the F,-vector space E/ E&C. Tt
is obviously a (n€2, k) block code.

Theorem 4.1. For integers n,k,Q, 1 < k < n, Q > 1, there exists a free (n,k) convolutional code with a
sliding presentation such that its sliding block code of order Q is an arbitrary (nf), kQ) block code.

Proof. Take an arbitrary (n€), k£2) block code defined by a kQ-dimensional subspace U of a nf)-dimensional
of a F,-vector space Y. For any integer v > 0, set Y§"* = {yd"? | y € E}. Define the free F,[0**]-modules
U=@,-, U CY=@,-, Y. Consider now the free F,[§]-modules F,[d] Qr, 52 U C Fol0] Qp, 50 Y-

Any basis u = (uq,...,uq) of U may be viewed as a basis of U. By considering a systematic presentation
of the block code, we may complete some basis u as a basis y = (gl, e ,gnﬂ) of Y; y may also be viewed as a
basis of Y. Take a partition of u consisting of £ disjoint sets of {2 elements. Complete it as a partition of y of
n disjoint sets of Q elements. For the subsets {(24,...,24) | ¢ = 1,...,n of the partition, define the submodule
P =spang 5({zk0 — 25 [e=1,... ,mr=1,...,Q = 1}) of Fy[0] ®p, (52) U C Fy[6] Q501 Y-

10The degree of a line is the maximum degree of its entries.
1 This is an immediate consequence of the splitting property of the short exact sequence (3.1).
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Lemma 4.2. The quotient Fq[6]-module E = Fq[6] Qg 50 Y/ P is free of rank n. The canonical image C of
Fq[0] ®p, 52 U into Fq[6] Qp,(s0) Y/ P is free of rank k.

Proof. Abasisof Eis {2} |t =1,...,n}. O

The solution is given by the sliding presentation C C E. O

4.2. Sketch of a feedback decoding procedure

The Fy[0,6~-modules Fy[6, 6] ®p,[5) C and Fy[5, 6] @, 5] E may be seen as Fy[6]-modules C and E. For
any integer a > 0, the (a + 1) frame!? is the block code is given by the F,-vector subspace Colt=a=) /05—
of the F4-vector space E§(—o=) /E§—. It is clear that all those frames are isomorphic to the sliding block code
of order Q.

A decoding procedure of any frame will of course take advantage of the nature of the sliding block code.
Comparing the results for the 8" and (8 + £)*®, 8, > 1, permits some checking if ¢ < Q. This feedback type
decoding of the convolutional code may be enriched by some concatenations (see, e.g. [2,4,30]) of the frames.
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