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REGULARITY IN KINETIC FORMULATIONS VIA AVERAGING LEMMAS

Pierre-Emmanuel Jabin
1

and Benôıt Perthame
1

Abstract. We present a new class of averaging lemmas directly motivated by the question of regu-
larity for different nonlinear equations or variational problems which admit a kinetic formulation. In
particular they improve the known regularity for systems like γ = 3 in isentropic gas dynamics or in
some variational problems arising in thin micromagnetic films. They also allow to obtain directly the
best known regularizing effect in multidimensional scalar conservation laws. The new ingredient here is
to use velocity regularity for the solution to the transport equation under consideration. The method
of proof is based on a decomposition of the density in Fourier space, combined with the K-method of
real interpolation.
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1. Introduction

Kinetic formulations allow to consider nonlinear problems (balance laws or variational problems) and, using
a nonlinear function f of the unknown, to transform these problems in a singular linear transport equation
on f . The simplest example is that of the entropy solution u ∈ C(R+;L1(Rd)) to a multidimensional scalar
conservation law

∂tu(t, x) + divA(u) = 0, t > 0, x ∈ R
d,

∂tS(u(t, x)) + div ηS(u) ≤ 0, (1.1)

for all convex function S(·) with S(0) = 0 and using the notations ηS(u) =
∫ u

0
S′(·)a(·), a = A′ : R → R

d.
Then, we define, for v ∈ R, the “equilibrium” function f(t, x, v) thanks to

f(t, x, v) =




+1, for 0 < v < u(t, x),
−1, for u(t, x) < v < 0,
0, otherwise.

(1.2)

The theory of kinetic formulations states that (1.1) is equivalent to write the kinetic equation on f

∂tf + a(v) · ∇xf = ∂vm(t, x, v), (1.3)
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1 École Normale Supérieure, Département de Mathématiques et Applications, UMR 8553 du CNRS, 45 rue d’Ulm, 75230 Paris
Cedex 05, France; e-mail: jabin@dma.ens.fr, perthame@dma.ens.fr

c© EDP Sciences, SMAI 2002



762 P.-E. JABIN AND B. PERTHAME

for some unknown nonnegative bounded measurem. The derivation is obtained by integrating (1.3) against S′(v),
and since we have

S(u) =
∫

R

S′(v) f(t, x, v) dv, ηS(u) =
∫

R

S′(v) a(v) f(t, x, v) dv,

the kinetic formulation turns out to provide the inequalities

∂tS(u(t, x)) + div ηS(u) = −
∫

R

S′′(v)m(t, x, v) dv.

Therefore the inequalities in the second equation of (1.1) are equivalent to the positivity of m. Also a control
of the total mass of the measure is obtained using S(v) = v2/2 in the above inequality∫ ∞

0

∫
R×Rd

m(t, x, v) dt dv dx ≤ 1
2
‖u0‖2

L2(Rd).

This method turns out to provide a tool for studying regularizing effects for the hyperbolic equation (1.1), when

a non-degeneracy condition on the fluxes A is satisfied. Indeed, averaging lemmas may be applied to the linear
transport equation (1.3) and provide regularity in low order Sobolev spaces (it is known that BV regularity is
the best that can be expected) for averages like (1.5) below.

Several other examples of such a kinetic formulation, and of related regularizing effects, have been derived
and are recalled below.

The purpose of this paper is to show that the known regularizing effects for these examples can be improved
using an additional information on the function f , namely its v regularity. This motivates to first study a new
class of averaging lemmas.

In the end of this introduction, we first state our averaging results and then we give three examples of
applications to regularizing effects.

In the second and third sections, we prove the results and in a last section we treat cases (higher v derivability
on f) which require another method of proof.

1.1. The averaging results

We consider the following equation

v · ∇xf = ∆α/2
x g, x ∈ R

d, v ∈ R
d. (1.4)

Now we choose any φ ∈ C∞
c (Rd) and define

ρ(x) =
∫

Rd

f(x, v)φ(v)dv. (1.5)

Assume that

g ∈ Lp(Rd, W β,p
v (Rd)), 1 < p ≤ 2, β ≤ 1

2
,

f ∈ Lq(Rd, W γ,q
v (Rd)), 1 < q ≤ 2, 1 − 1

q
< γ ≤ 1

2
·

(1.6)

We also point out that the results and proofs extend in the same way for exponents p or q larger than 2. Then,
we have to replace p and q by min(p, p̄) and min(q, q̄) in formula (1.7) below (p̄ denotes here the conjugate
exponent to p). It is also possible to deal with exponents β or γ larger than 1/2 but the question is more
delicate. We restrict ourselves to β, γ < 1/2 for the moment and leave the other cases to the last section of the
paper.
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As usual for averaging lemmas, we state that the average ρ is in fact more regular than f itself. This can be
quantified as follows

Theorem 1.1. (Case 0 ≤ α < 1) Let f , g satisfy (1.4) and (1.6), then we have for s′ < s = θ(1 − α) and
r′ < r with 1

r = θ
p + 1−θ

q ,

‖ρ‖
W s′,r′

loc

≤ C
(
‖g‖Lp

xW β,p
v

+ ‖f‖Lq
xW γ,q

v

)
,

with θ =
1 + γ − 1/q

1 + γ − β + 1/p− 1/q
· (1.7)

Remark 1.1. 1. The constant C appearing in Theorem 1.1 depends on the size of the domain on which we
estimate ρ, on the size of the support of φ and on its regularity.

2. For γ = 0, β ≤ 0, we are in a case included in standard averaging lemmas (see in particular [10]). However
our result is a bit weaker since it is known in this case that ρ ∈ W s,r with s and r given by the formulas of
Theorem 1.1.

The fact that we do not reach s′ = s and r′ = r is due to a choice in our method of proof. We decided, for the
sake of simplicity, to reduce it to classical interpolation between Lq and W 1,p through Lions–Peetre K-method.
This looses a little compared to a dyadic decomposition. Nevertheless when p = q, the previous theorem may
be precised and we obtain ρ in a Besov space but still not the optimal Sobolev space.

Theorem 1.2. (Case 0 ≤ α < 1, p = q) Let f , g satisfy (1.4) and (1.6) with p = q. Assume β, γ ≤ 0 or
q = p = 2, then for s = θ(1 − α), θ given by (1.7), we have

‖ρ‖Bs,p
∞ ≤ C

(
‖g‖Lp

xW β,p
v

+ ‖f‖Lp
xW γ,p

v

)
.

It is also possible to work with α = 1 and we obtain:

Theorem 1.3. (Case α = 1) Let f , g satisfy (1.4) and (1.6). Assume β, γ ≥ 0, then we have for 1
r = θ′

p + 1−θ′
q

and θ′ < θ given by (1.7) (with equality if p = q = 2)

‖ρ‖Lr∞ ≤ C‖g‖θ′

Lp
xW β,p

v
‖f‖1−θ′

Lq
xW γ,q

v
.

Moreover for p = q, then for any β, γ (possibly negative), we have with θ′ < θ given by (1.7) and with equality
for β, γ ≤ 0 or p = q = 2

‖ρ‖Lp ≤ C‖g‖θ′

Lp
xW β,p

v
‖f‖1−θ′

Lq
xW γ,q

v
.

Remark 1.2. 1. Here also the constants C depend on the size of the supports of f and g and on φ.

2. The case p = q, β ≤ 0 and γ = 0 was treated in [24]. We find here almost the same exponent θ: our exponent
is precisely the limit case in [24]. The reason why we obtain it is only because we use product Hardy spaces as
in [6] where the limit case was also obtained, our method being exactly the same as in [24] in this case.

3. For p 6= q and β or γ negative, we are unable to obtain more than the weak inequality

‖ρ‖Lr∞ ≤ C (‖g‖Lp + ‖f‖Lq) .

4. The main interest of the theorem is to prove that if a sequence fn satisfies (1.4) with right hand side gn

which are compact then fn is also compact.
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To conclude, let us mention that these theorems are also true for the evolution equation

∂tf + a(v) · ∇xf = ∆α/2
x g, (1.8)

when the field v → a(v) satisfies the strongest non degeneracy condition, namely: for all R > 0, there is a
constant C(R) such that for ξ ∈ R

d, τ ∈ R with |ξ| + |τ | ≤ 1, then

meas{v s. th. |v| ≤ R, and‖a(v).ξ − τ | ≤ ε} ≤ Cε. (1.9)

The regularity on the average ρ is then a regularity in time and space but all the formulas given above for the
exponents are exactly the same. Weaker non-degeneracy conditions can also be used (see [10, 13, 24]). Also
optimal Sobolev spaces can be reached in some situations (see [4, 8, 28]) and better adapted Besov-type spaces
can also be used as in [25].

1.2. Applications to kinetic formulations

Possible applications include in particular kinetic formulations for scalar conservation laws (see [20] or [15]
for the case with dispersion), multibranch systems like isentropic gas dynamics with a pressure law p(ρ) = κ ρ3

(see [3, 21, 27]) and thin micromagnetic films (see [1, 7, 16, 17, 26]). We refer to the given references and [23] for
more details on the kinetic formulations.

Firstly, we wish to give a direct proof of the following:

Theorem 1.4. Let u(t, x) ∈ C(R+;L1(Rd)) an entropy solution to a nondegenerate (in the sense of(1.9))
multidimensional scalar conservation law (1.1), with u(t = 0) ∈ L1 ∩ L∞(Rd), then locally we have

u ∈ W s,r
t,x for all s <

1
3
, r <

3
2
·

This regularity was obtained in [21] with a more complicate argument which involves a bootstrap of averaging
lemmas combined with the L1 contraction property. Notice that the optimal regularizing effect, from u0 ∈ L∞

to u(t) ∈ BV is an open question in more than one space dimension. On the other hand two different methods
lead to the same exponents s < 1

3 . Also our proof below has he advantage to extend to in homogeneous problems
like

∂tu(t, x) + divA(u) = f(t, x) ∈ L1(R+ × R
d), (1.10)

and yields the same regularity. An example in Section 1.3 below shows that the BV regularity fails for this
problem.

Proof of Theorem 1.4. We define, for v ∈ R, the function f(t, x, v) in (1.2) and use its kinetic formulation (1.3).
We know that the right hand side is the derivative in v of a bounded Radon measure in (t, x, v). A measure
belongs to any Sobolev space W−α,(1−α/(d+2))−1

with α > 0. Therefore, we may also write the equation (1.8),
and choose in (1.4, 1.6) any α > 0, β = −α− 1, p = (1−α/(2d+1))−1. On the other hand, since the derivative
in v of f is a bounded measure and f belongs to L∞, by interpolation we know that f belongs to Lq

t,xW
γ,q
v for

any q < 2 and γ < 1
2 . Applying Theorem 1.1, with γ ≈ 1

2 , q ≈ 2, α ≈ 0, p ≈ 1, β ≈ −1, we immediately deduce
the regularity result in Theorem 1.4. �

As a second example, we consider a solution (ρ, ρu) to one dimensional isentropic gas dynamics with a
polytropic pressure law p(ρ) = κ ρ3 (more generally we could consider a multibranch system). This class of
systems admits a pure kinetic formulation. As for scalar conservation laws, we may define an equilibrium
function f as the indicator function in v of an interval depending on the solution to the system. This function
f again satisfies a transport equation (1.8) where the right hand side is now the second derivative in v of a
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bounded measure. By the same method we now apply Theorem 1.1, with γ ≈ 1
2 , q ≈ 2, α ≈ 0, p ≈ 1, β ≈ −2,

and obtain that, locally,

u ∈W s,r
t,x for all s <

1
4
, r <

8
5
,

which improves the W 1/7,7/4 regularity proved in [20]. Notice that it is an open problem to obtain regularity
for other pressure laws.

As a third and final example, we consider a variational problem. In some theories of line energies Ginzburg–
Landau for thin micromagnetic films (see [16] and [26]), it is possible to show that a function f of the magnetiza-
tion u(x) ∈ R

2, x ∈ R
2, satisfies the kinetic equation (1.4) in two space dimensions where the right hand side is

again the divergence in v ∈ R
2 of a bounded measure. The equilibrium function is defined as f(x, v) = Iu(x)·v>0

and thus we are again in the same situation as for scalar conservation laws. We can choose the same parameters
in Theorem 1.1 and thus the magnetisation satisfies locally

u ∈W s,r
x for all s <

1
3
, r <

3
2

whereas in [16] we had only W 1/5,5/3 using the classical averaging lemmas of [10]. Here the BV threshold turns
out to be fundamental in the counterexample of [1] and it would be useful to determine the optimal regularity
of the solution.

1.3. Examples and counterexamples of optimality

We discuss here two examples: for optimality of the averaging result itself and for its application to scalar
conservation laws.

We do not know in general if the estimates given in Theorems 1.1, 1.2 and 1.3 are optimal or not, except in
the case β = γ = 1/2, p = q = 2. Indeed define f(x, v) = Iu(x)·v>0 on R

2 × R
2 as in the third example of the

previous subsection with u the vortex centered at the origin

u(x) =
x⊥

|x| , ∀ x 6= 0.

Then f is solution to the equation (in the theory of line energies Ginzburg–Landau for micromagnetic films, it
corresponds to zero energy states, see [17])

v · ∇xf = 0, ∀(x, v) ∈ R
4.

The function f belongs to L2
xH

β
v for any β < 1/2 and so does of course the right-hand side, so Theorem 1.1

implies that any moment of f belongs to Hs
loc for any s < 1. We thus obtain that u belongs to Hs

loc for any
s < 1, which is the best range of exponent since u does not belong to H1

loc.
Next, we discuss optimality for scalar conservation laws. In one dimension, for Burgers–Hopf equation (1.1)

with A(u) = u2/2, Olĕınik’s regularizing effect proves that u becomes BV immediately (see [22] and [29] for a
multidimension extension). Our result only gives W s,3/2

loc , s < 1/3. Notice however that if we add source terms

∂tu+ ∂x
u2

2
= f(t, x), f ∈M1(R+ × R),

u(t = 0, x) = 0,

then, Olĕınik’s result and method do not apply. For instance take f = mδ(t = 0)δ(x = 0), the solution u is then

u(t, x) =
x

t
, for 0 ≤ x <

√
2mt,

u(t, x) = 0, for x < 0 or x ≥
√

2mt.
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Now we superpose such source terms, taking f = 1
2N2

∑N
i=1

∑N
j=1 δ(t = i/N)δ(x = j/N). Since the waves

interactions are very weak, we infer the following estimate for the Sobolev norm of the solution

‖u‖Lp
t W s,p

x
≥
∫ 1/4

0

N−1∑
j=1

∫ (j+1)/N

j/2N

∫ j/2N

(j−1)/N

|u(x) − u(y)|p
|x− y|sp+1

dxdydt

∼
N/4∑
i=0

∫ (i+1)/N

i/N

N × 1
N2

× 1
Np

× 1
tp/2

×Nsp+1

∼ Nsp−p/2.

Therefore the norm of u in Lp
tW

s,p
x can remain bounded as N → ∞ only for s ≤ 1/2. Of course u does not

belong to L∞ so although the kinetic formulation still applies, u is not an average of f as defined by (1.5) (a
cut-off in velocity is needed). However the above estimate remains valid for uIu<10 for instance which is a true
average and it is worth noticing that for a function g ∈ L1

t,x,v, Theorem 1.1 shows that the average belongs to
W s,1 with the same scaling s < 1/2.5

2. Proof of Theorems 1.1–1.3

2.1. Formulation in Fourier space

Since we average in velocity against φ, we only have to take into account the velocities in the support of φ
and hence we may assume that f and g have compact support in velocity.

We work in the Fourier space and we denote by f̂(ξ, v) and ĝ(ξ, v) the Fourier transforms in the x variable
of f and g. Equation (1.4) becomes

iξ · vf̂ = |ξ|αĝ. (2.1)

Following the method introduced in [24], we write for any λ > 0 (λ may be very large or very small)

f̂ =
λ|ξ|

λ|ξ| + iξ · v f̂ +
|ξ|α

λ|ξ| + iξ · v ĝ. (2.2)

And thus, we obtain

ρ(x) = T1(f) + T2(g), (2.3)

with (F−1 denoting the inverse Fourier transform)

T1(f) = F−1

(∫
Rd

λ|ξ|
λ|ξ| + iξ · v f̂(ξ, v)φ(v)dv

)
,

T2(g) =
1
λ

∆(α−1)/2
x T1(g).

(2.4)

2.2. Estimates for the norms of T1 in Lp spaces

We now compute the norm of the operators T1 (and the norms of T2 follows) from Lp
x(W s,p

v ) to Lp. We begin
with the simpler case p = 2.

Lemma 2.1. for any real number s, T1 : L2
x(Hs

v) −→ L2, with norms

for s ≤ 0, ‖T1‖s,2 ≤ C(λ1/2+s + λ1/2),
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for 0 ≤ s < 1/2, ‖T1‖s,2 ≤ C(s) λ1/2+s,

for 1/2 < s ≤ 1, ‖T1‖s,2 ≤ C(s) λ.

We give a proof of this lemma below and we first state the general result in more general Lp spaces. The proof
of the following proposition requires more technical tools and it is given in next section.

Proposition 2.1. ∀ 1 < p ≤ 2, T1 : Lp
x(W s,p

v ) → Lp
x, with norm

‖T1‖s,p ≤ C(λs+1−1/p + λ1−1/p), for s ≤ 0,

‖T1‖s,p ≤ Cλr, r < r∗ = s+ 1 − 1
p

(r = r∗ for p = 2), for 0 < s < 1/2,

‖T1‖s,p ≤ Cλr, r < r∗ = 2 − s+ 2
s− 1
p

(r = r∗ for p = 2), for s > 1/2.

Proof of Lemma 2.1. The Fourier transform in v, for a fixed ξ 6= 0, of λ|ξ|/(λ|ξ| + iξ · v) is exactly

Cλe−λζ· ξ
|ξ|H

(
ζ · ξ|ξ|

)
δξ(ζ),

where C is a given constant independent of λ, H is the heavy side step function and δξ is the Dirac mass on the
line parallel to ξ. We choose a function ψ ∈ C∞

c (Rd−1) such that ψ(P Rξv)φ(v) = φ(v) with P the projection
on the hyperplane v1 = 0 (Pv = v′ = (v2, . . . , vd)) and Rξ the rotation such that Rξξ = (|ξ|, 0, . . . , 0). If φ has
compact support in the ball B(0, R) of R

d then for ψ we may take, for instance, any function with constant
value 1 in the ball B(0, R) of R

d−1.
As a consequence, we claim that for any 0 ≤ s < 1/2, there is a constant C with∥∥∥∥λ|ξ|ψ(P Rξv)

λ|ξ| + iξ · v
∥∥∥∥

H−s
v

≤ Cλ1/2+s. (2.5)

Indeed, since ξ is kept fixed for the moment, we may choose a basis for v where ~v1 is parallel to ξ. In this case,
we have, thanks to the localization in velocity, the inequality∥∥∥∥λ|ξ|ψ(P Rξv)

λ|ξ| + iξ · v
∥∥∥∥

2

H−s
v

≤ Cλ2

∫
(1 + |ζ|2)−se−2λζ1H(ζ1)|ψ̂(ζ2, . . . , ζd)|2dζ

≤ Cλ2‖ψ(v′)‖2
H−s

v′
×
∫ ∞

0

(1 + |ζ1|2)−se−λζ1dζ1

≤ Cλ2

∫ ∞

0

ζ−2s
1 e−2λζ1dζ1

≤ Cλ

∫ ∞

0

(
ζ1
λ

)−2s

e−2ζ1dζ1 ≤ C′λ1+2s.

With the same computation, we have the bound for s < 0 (notice that it only holds in the homogeneous
space Ḣ−s) ∥∥∥∥λ|ξ|ψ(P Rξv)

λ|ξ| + iξ · v
∥∥∥∥

Ḣ−s
v

≤ Cλ1/2+s. (2.6)

Now for s > 1/2, we trivially obtain ∥∥∥∥λ|ξ|ψ(P Rξv)
λ|ξ| + iξ · v

∥∥∥∥
H−s

v

≤ Cλ, (2.7)
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because, assuming again that ξ is parallel to the first coordinate axis,

∥∥∥∥λ|ξ|ψ(P Rξv)
λ|ξ| + iξ · v

∥∥∥∥
2

H−s
v

≤ Cλ2

∫ ∞

0

e−2λζ1

(1 + ζ2
1 )s

dζ1 ≤ Cλ2

∫ ∞

0

1
(1 + ζ2

1 )s
dζ1 ≤ Cλ2.

To conclude, for s < 0, for any f ∈ L2
xH

s
v , because of estimate (2.6)

‖T1(f)‖L2 ≤ ‖fφ‖L2
xHs

v

∥∥∥∥λ|ξ|ψ(P Rξv)
λ|ξ| + iξ · v

∥∥∥∥
L∞

x H−s
v

≤ C‖f‖L2
xHs

v
×
(∥∥∥∥λ|ξ|ψ(P Rξv)

λ|ξ| + iξ · v
∥∥∥∥

L∞
x Ḣ−s

v

+
∥∥∥∥λ|ξ|ψ(P Rξv)
λ|ξ| + iξ · v

∥∥∥∥
L∞

x L2
v

)

≤ Cφ(λ1/2+s + λ1/2) ‖f‖L2
xHs

v
.

And for s ≥ 0, for any f ∈ L2
xH

s
v ,

‖T1(f)‖L2 ≤ ‖fφ‖L2
xHs

v

∥∥∥∥λ|ξ|ψ(P Rξv)
λ|ξ| + iξ · v

∥∥∥∥
L∞

x H−s
v

.

The combination of this last inequality and of estimates (2.5) and (2.7) finishes the proof of the lemma (we
recall that we work with compactly supported functions in x). �
Remark. We do not know what is the best estimate for the critical exponent s = 1/2. A variant of the previous
proof gives

‖T1‖1/2,2 ≤ −Cλ lnλ.

2.3. Conclusion of the proof

We now consider g ∈ Lp
xW

β,p
v and f ∈ Lq

xW
γ,q
v as given by (1.6) and satisfying equation (1.4).

We have obtained a decomposition of ρ into a sum of two terms T1(f) and T2(g) in Lq and in W 1−α,p, depend-
ing on a parameter λ. We use this decomposition through Lions and Peetre’s K-method of real interpolation
(see in particular Lions and Peetre [18], Bergh and Löfström [2]). We define

K(t, ρ) = inf
ρ1 ∈ Lq

x, ρ2 ∈ W 1−α,p
x

ρ = ρ1 + ρ2

(‖ρ1‖Lq + t‖ρ2‖W 1−α,p),

and
Φθ,∞(ρ) = ‖t−θK(t, ρ)‖L∞

t
.

By standard interpolation results, if Φθ,∞(ρ) <∞ then ρ belongs to the interpolation space (Lq,W 1−α,p)θ,∞.

2.3.1. The case of Theorem 1.1

For t > 1, then since we know that ‖ρ‖Lq ≤ C‖f‖Lq
x,v

, we pose

ρ1 = ρ, ρ2 = 0.

Therefore t−θK(t, ρ) is bounded uniformly for t ∈ [1, ∞ [ for any θ ≥ 0.
For t < 1 we use the natural decomposition given by the equation, i.e. we pose

ρ1 = T1(f), ρ2 = T2(g). (2.8)
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Of course it remains to choose λ: thanks to Proposition 2.1, we have

‖T1(f)‖Lq + t‖T2(g)‖W 1−α,p ≤ Cλr1 + Ctλr2 ,

for any r1, r2 strictly less than r∗1 , r∗2

r∗1 = γ + 1 − 1
p
, r∗2 = β − 1

q
,

because the parameters λ, which we will consider, are bounded from above, and thus we neglect the terms in
λ1−1/p or λ1−1/q in the bounds for the case β or γ < 0. Minimizing in λ, we take

λ = Ct1/(r1+r2),

and obtain for t < 1 the estimate
K(t, ρ) ≤ Ctθ

′
,

for any θ′ strictly less than the exponent θ given by the formula (1.7).
We eventually deduce that ρ belongs to the space (Lq, W 1−α,p)θ′,∞ for any θ′ < θ given by (1.7).
This space is included in any W s′,r

loc for s′ < s = θ(1 − α), 1/r′ > 1/r = (1 − θ)/q + θ/p, thus proving
Theorem 1.1. Indeed, locally in x, it is included in (B0

q′q′ , B
1−α
p′p′ )θ′,r for q′ < q, p′ < p, θ′ < θ.

2.3.2. The case of Theorem 1.2

The proof is exactly the same as for Theorem 1.1. But since we also know that β and γ are non negative
or that p = q = 2, we may take the limit values r1 = r∗1 and r2 = r∗2 and therefore we know that ρ belongs to
(Lq, W 1−α,p)θ,∞ with θ given by (1.7). This space turns out to be exactly the Besov space Bs

r∞ if p = q = r.

2.3.3. The case of Theorem 1.3

The subcase p 6= q in Theorem 1.3 is the more complicated because it is the only one where we have to use
the decomposition (2.8) also for large t. By comparison the subcase p = q in Theorem 1.3 is the easiest because
we do not need the interpolation argument there and so we will not treat it (the argument would the same as
in [24]).

For α = 1, and 0 ≤ β, γ < 1/2, we define ρ1 and ρ2 by (2.8) for any t. Because of Proposition 2.1, we have
for any 0 < δ1 < γ + 1 − 1/q, δ2 < β − 1/p, for any λ > 0

K(t, ρ) ≤ Cλδ1‖f‖Lq
xW γ,q

v
+ Ctλδ2‖g‖Lp

xW β,p
v
.

Thus choosing λδ1−δ2 = t‖g‖/‖f‖, we obtain

K(t, ρ) ≤ Ctδ1/(δ1−δ2)‖f‖1−δ1/(δ1−δ2)

Lq
xW γ,q

v
‖g‖δ1/(δ1−δ2)

Lp
xW β,p

v
.

The exponent δ1/(δ1 − δ2) being as close as we wish to (but less than) θ = (1+γ−1/q)/(1+γ−1/q−β+1/p),
we obtain ρ in the spaces (Lp, Lq)θ′,∞ = Lr∞ (the Lorentz spaces) with 1/r = θ′/p+ (1 − θ′)/q for any θ′ < θ

and with normless than ‖t−θ′
K(t, ρ)‖L∞

t
. This exactly gives the corresponding inequality in Theorem 1.3, thus

concluding the proof.
As a last remark, notice that we cannot treat the case β < 0 or γ < 0 in Theorem 1.3, only because there

the operator T1 (or T2) does not have the same behaviour in λ for large and small λ.

3. Proof of Proposition 2.1 and the H1
bound

Proposition 2.1 is obtained thanks to standard interpolation results between the L2 case which has already
been proved and a similar estimate in Hardy spaces. This requires some preliminary lemmas (Lems. 3.1, 3.3,
3.4 below). Combined with Lemma 2.1, they prove the proposition.
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3.1. The product Hardy spaces

The estimate on T1 from Lp
xW

s,p
v to Lp for p < 2 is obtained by interpolation. However as it is usual in this

case, the operator T1 is not bounded from L1
xW

s,1
v to L1 and as a consequence we need to work on some kind

of Hardy space. Because the term ξ · v yields an operator which is not in Calderon–Zygmund class, we use here
the product Hardy spaces which has been used in this context by Bézard in [4] and Bouchut [6].

We do not recall the definition of product Hardy spaces and refer the reader to [4] or [6] for details. What
we only need is that these spaces, denoted H1(Rd−1 × R,W s,1), satisfy the two following lemmas:

Lemma 3.1. (Interpolation) Let T be bounded on

Hs
v(Rd, L2

x(Rd)) −→ L2
x(Rd), ; with norm ‖T ‖s,2,

W s,1
v (Rd, H1

x(Rd−1 × R)) −→ H1
x(Rd), with norm|T ‖s,1,

then for any 1 < p ≤ 2, T is bounded on

W s,p
v (Rd,  Lp

x(Rd)) −→ Lp
x(Rd), with norm|T ‖s,p ≤ ‖T ‖2/p−1

s,1 ‖T ‖2−2/p
s,2 .

This lemma is a direct consequence of Proposition 3.12 in [4] and of standard results on the interpolation of Lp

spaces (see [2]). Next we need a sufficient condition for a Fourier multiplier to be bounded on H1(Rd−1 × R),
which is exactly Proposition 3.10 in [4] or Lemma 1.8 in [6].

Lemma 3.2. Let K(ξ′, ξd) ∈ C∞ (
R

d \ ((0 × R) ∪ (Rd−1 × 0)
))

such that for all α1 ∈ N
d−1, α2 ∈ N,

|∂α1
ξ′ ∂

α2
ξd
K(ξ′, ξd)| ≤ Cα1,α2

|ξ′|α1 |ξd|α2
,

then K is a bounded Fourier multiplier on H1(Rd−1 × R).

3.2. Estimates for the norms of T1 in Lp spaces

We now denote by Rv the rotation in R
d such that Rvv = |v|ed, where ed is the last coordinate vector. We

perform the change of variable x→ Rvx in definition (2.4) of T1. We obtain that

T1f = T̄1(f(R−1
v x, v)), (3.1)

with

T̄1(f) = F−1

(∫
Rd

λ|ξ|
λ|ξ| + iξd|v| f̂(ξ, v)φ(v)dv

)
. (3.2)

Obviously, the norms of T1 from W s,p
v (Rd, Lp

x(Rd)) into Lp
x(Rd)) are exactly the same as the norms of T̄1. For

this last operator, with the help of Lemma 3.2, we prove the

Lemma 3.3. (s ≤ 0) T̄1 : W s,1
v (Rd, H1(Rd−1 × R)) −→ H1(Rd) with norm

‖T̄1‖s,1 ≤ C(λs + 1).

Proof. We cannot use here any Fourier transform in v, unlike in the proof of Lemma 2.1. Since we only know
explicitly the s derivative in v of the kernel λ|ξ|/(λ|ξ|+ ξd|v|) for numbers s which are integers, we also perform
some interpolation here.
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For any −s ∈ N, we have of course

λ−s∂−s
|v|

(
λ|ξ|

λ|ξ| + iξd|v|
)

= (−s) !
(−iξd)−sλ1−s |ξ|
(λ|ξ| + iξd|v|)1−s

·

It is easy to check that this last kernel satisfies the condition in Lemma 3.2 with constants Cα1,α2 independent
of λ and vd. Hence for any nonpositive integers s, T̄ is bounded from W s,1

v (Rd, H1(Rd−1 ×R)) to H1(Rd) with
norm

‖T̄1‖s,1 ≤ C(λs + 1).

Now we interpolate between the spaces W−n,1
v H1

x(Rd−1 × R
d) and W−n−1,1

v H1
x(Rd−1 × R

d), we obtain all the
spaces W s,1

v H1(Rd−1 × R
d) for any −n − 1 ≤ s ≤ n. So the last inequality is also true for any nonpositive s

and the lemma is proved. �
We next consider the case where f is more regular in v, i.e. s > 0. Integrating by parts in T1, we find with K

the diameter of the support of φ

T1(f) = F−1

(∫
Rd

λ|ξ|
λ|ξ| + iξ · v

∫ 0

−∞

(
φ

(
v + t

ξ

|ξ|
)
ξ

|ξ| · ∇v f̂

(
ξ, v + t

ξ

|ξ|
)

+f̂
(
ξ, v + t

ξ

|ξ|
)
ξ

|ξ| · ∇vφ

(
v + t

ξ

|ξ|
))

dtdv
)

T1(f) = F−1

(∫
Rd

(∫ 0

−2K

λ|ξ|dt
λ|ξ| + iξ · v − it|ξ|

) (
φ(v)

ξ

|ξ| · ∇v f̂(ξ, v)

+f̂(ξ, v)
ξ

|ξ| · ∇vφ(v)
)

dv
)
.

The function ∇vφ has exactly the same properties as φ. After performing the change of variable x → Rvx, we
thus consider the following operator

T ′
1(f) = F−1

(∫
Rd

(∫ 0

−2K

λ|ξ|dt
λ|ξ| + iξd|v| − it|ξ|

)
ξ

|ξ| f̂(ξ, v)φ(v)dv
)
.

We prove that

Lemma 3.4. T ′
1 : L1

v(R
d, H1(Rd−1 × R)) → H1(Rd) with norm

‖T ′
1‖ ≤ Cλ ln λ.

Proof. We only have to check that the kernel in the operator T ′
1 satisfies the conditions in Lemma 3.2. Indeed,

we compute

∣∣∣∣∣ |ξ′|α1 |ξd|α2∂α1
ξ′ ∂

α2
ξd

∫ 0

−2K

λ|ξ|dt
λ|ξ| + iξd|v| − it|ξ|

∣∣∣∣∣ ≤
∫ 0

−2K

λ|ξ|dt
λ|ξ| + ∣∣ξd|v| − t|ξ|∣∣

≤ Cλ lnλ,

which proves the lemma. �
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4. The case of higher regularity in velocity

In Theorems 1.1, 1.2 or 1.3 we have only considered functions f or g with less than half a derivative in
velocity. From the proof of Proposition 2.1, it seems that formula (1.7) is not correct for β or γ larger than 1/2
and should be modified according to the corresponding estimates in Proposition 2.1 for the operators. However,
at least in the L2 case, such a method does not lead to an optimal result. Notice also that when β > 1/2 with
p = 2 (i.e. g is very regular in velocity), Theorem 1.1 already gives the best regularity we may hope for, because
θ = 1 and so we gain a full 1 − α derivative for the average. Throughout all this section, we thus consider the
cases p = q = 2, β < 1/2 and γ > 1/2 in (1.6).

In fact, in such a situation, the operator decomposition leading to Proposition 2.1 is unable to take advantage
of the additional regularity of f and Theorem 1.1 gives the same result as for f ∈ L2

xH
1/2
v .

Using another decomposition than in Section 2, we can prove the

Theorem 4.1. Let 0 ≤ α < 1, let f , g satisfy(1.4) and (1.6) with p = q = 2 and β < 1/2, then for s = θ(1−α),

‖ρ‖Hs
loc

≤ C
(
‖g‖L2

xHβ
v

+ ‖f‖L2
xHγ

v

)
,

with θ =
1/2 + γ

1 + γ − β
· (4.1)

The values of θ given in (4.1) and in(1.7) with p = q = 2 are the same. The new point here is the extension to
values γ > 1/2.

Proof of Theorem 4.1. We introduce a new decomposition of the average which depends on the point ξ considered
in the Fourier space.

For the moment, we keep this point fixed and we may thus assume that ξ = (|ξ|, 0, . . . , 0). Equation (2.1)
becomes simply

iv1f̂ = |ξ|α−1ĝ.

We denote by f̃ and g̃ the Fourier transform of f and g in the x and v variables and by η the dual variable of
v1, and by η′ the dual variable of v′ = (v2, . . . , vd). We then have for any 0 < λ ≤ 1 (here we only need the
case λ small) and for an even exponent k larger than γ − 1/2

−ληkf̃ + ∂ηf̃ = −ληkf̃ + |ξ|α−1g̃.

We therefore obtain a decomposition (compare with (2.2))

ρ̂ = |ξ|α−1T̃ξĝ + λT̃ξ(∂k
v1
f̂), (4.2)

with

T̃ k
ξ (h(v)) =

∫
Rd

Fv1φ(η, η′)
∫ ∞

η

Fvh(µ, η′)e−
λ

k+1 (µk+1−ηk+1)dµdηdη′. (4.3)

The operator T̃ k
ξ is as a matter of fact a linear form, the variable ξ being only a parameter, with the following

estimate:

Lemma 4.1. for any real number s < 1/2, T̃ k
ξ : Hs

v1
→ R with norm

‖T̃ k
ξ ‖s,2 ≤ Cλ(s−1/2)/(k+1). (4.4)
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Proof. It is a direct computation from formula (4.3). Since the function φ has compact support and belongs to
any Hs′

, we have, first for s ≥ 0

|T̃ k
ξ h|2 ≤ C‖φ‖L2

v′H1
v1

×
∫

Rd−1
sup

η

(∫ ∞

η

Fvh(µ, η′)e−
λ

k+1 (µk+1−ηk+1)dµ
)2

dη′

≤ C

∫
Rd−1

sup
η

(∫ ∞

η

|µ|2s|Fvh(µ, η′)|2dµ
)

×
(∫ ∞

η

|µ|2se−
2λ

k+1 (µk+1−ηk+1)dµ
)

dη′

≤ C

(∫
Rd

|µ|2s|Fvh(µ, η′)|2dµdη′
)

× λ(2s−1)/(k+1) sup
η

∫ ∞

λ1/(k+1)η

|µ|−2se−
2

k+1 (µk+1−ηk+1)dµ

≤ Cλ(2s−1)/(k+1)‖h‖2
Hs .

For the case s < 0, a similar computation leads to

|T̃ k
ξ h|2 ≤ Cλ−1/(k+1)(1 + λ2s/(k+1))‖h‖2

Hs ≤ Cλ(2s−1)/(k+1)‖h‖2
Hs ,

since we only consider parameters λ ≤ 1. �
The function ∂k

v1
f̂ belongs to L2

ξH
γ−k
v . Since k > γ − 1/2, we may apply Lemma 4.1 and find

ρ̂(ξ) = C|ξ|α−1λ(β−1/2)/(k+1)‖ĝ(ξ, .)‖Hβ
v

+ Cλ(γ+1/2)/(k+1)‖f̂(ξ, .)‖Hγ
v
.

We minimize in λ. The aim is of course to control ρ̂(ξ) for large ξ. Also notice that because of the localization
in x, we may take f and g in L1

xH
γ
v and L1

xH
β
v with consequently f̂ and ĝ in C0

ξH
γ
v and C0Hβ

v . Since α < 1, it
is enough to consider parameters λ ≤ 1 and we obtain

ρ̂(ξ) ≤ C|ξ|(α−1) 1/2+γ
1+γ−β (‖ĝ(ξ, .)‖Hβ

v
+ ‖f̂(ξ, .)‖Hγ

v
).

And finally
‖ρ‖Hs

loc
≤ C(‖g‖L2

xHβ
v

+ ‖f‖L2
xHγ

v
),

with s given by Theorem 4.1.
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[25] M. Porthileiro, Compactness of velocity averages. Preprint.
[26] T. Rivière and S. Serfaty, Compactness, kinetic formulation, and entropies for a problem related to micromagnetics. Preprint

(2001).
[27] A. Vasseur, Time regularity for the system of isentropic gas dynamics with γ = 3. Comm. Partial Differential Equations 24

(1999) 1987-1997.
[28] M. Westdickenberg, some new velocity averaging results. SIAM J. Math. Anal. (to appear).
[29] C. Cheverry, Regularizing effects for multidimensional scalar conservation laws. Ann. Inst. H. Poincaré Anal. Non Linéaire
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