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THE OUTPUT LEAST SQUARES IDENTIFIABILITY OF THE DIFFUSION
COEFFICIENT FROM AN H1–OBSERVATION

IN A 2–D ELLIPTIC EQUATION �

Guy Chavent1 and Karl Kunisch2

Abstract. Output least squares stability for the diffusion coefficient in an elliptic equation in dimen-
sion two is analyzed. This guarantees Lipschitz stability of the solution of the least squares formulation
with respect to perturbations in the data independently of their attainability. The analysis shows the
influence of the flow direction on the parameter to be estimated. A scale analysis for multi-scale
resolution of the unknown parameter is provided.
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1. Introduction

We consider in this paper the identification of the diffusion coefficient a in an elliptic equation on a bounded,
two-dimensional domain Ω with appropriate boundary conditions:

−div (a grad u) = f in Ω. (1.1)

Known are the set C of admissible parameters for a, and a measurement

z = Ou (1.2)

of u, where O denotes the observation operator.
The identifiability of the diffusion coefficient a in C is usually understood as the injectivity of the a → Oua

mapping on C, where ua denotes the solution to (1.1) as a function of a.
The stronger notion of parameter stability is used for the continuous dependence of the inverse of a→ Oua.
Identifiability and stability of a in (1.1) have been treated in several papers. We mention [17] and [10], where

the analysis is based on the method of characteristics for the hyperbolic equation for a, which arises from (1.1)
when f and u are given functions. The analysis in [15] is based on variational techniques. All these results
refer to the case of distributed observation. Many current research efforts focus on identifiability in the case of
boundary observations. Relevant references can be found in [14], for example.
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In practice however the measurement z may typically not belong to the set of attainable outputs D = {Oua :
a ∈ C}, and one has to estimate a in the least squares sense:

minimize
1
2
|Oua − z|2 over C. (1.3)

Identifiability and stability have of course to hold if one wants the optimization problem (1.3) to be well behaved,
but these properties are far from being sufficient.

A still stronger definition was introduced in [2]: the parameter a ∈ C is called Output Least Squares (OLS-)
identifiable if there exists a neighborhood V of D such that for every z ∈ V the least squares problem (1.3)
has no local minima and a unique solution in C depending Lipschitz-continuously on z ∈ V . The precise
definition of this concept is recalled in Section 2. OLS-identifiability takes into account the situation relevant
in practice where due to errors in the data and in the model, the data z may not be contained in the attainable
set D. As a consequence the problem of unique and continuous projection of z onto the nonconvex set D
must be considered. This makes OLS-identifiability quite difficult to establish. It was analysed so far only for
the determination of coefficients in lower order terms by means of regularized least squares formulations and
observation in L2(Ω) [6], and for the diffusion coefficient in a one-dimensional version of equation (1.1) with
distributed H1 observation [5].

We consider in this paper the OLS-identifiability of the diffusion coefficient a in the two-dimensional
equation (1.1) in the case of a distributed H1 observation, where Oua = grad ua. Of course, it can seem
unrealistic that one can observe or measure the gradient of u throughout Ω. However, the results of this paper
can be combined with the technique of state-space regularization of [7] to handle the somewhat more realistic
case of a distributed L2 observation. Let us mention also that our results can easily be extended to equations
containing lower order terms.

OLS-identifiability with boundary measurement is a completely open problem.
The paper and the results are organized as follows:
In Section 2 we define the inverse problem under consideration, and set up conditions on f and Ω which will

ensure the identifiability of a.
We introduce in Section 3 a div/rot decomposition of vector fields in L

2(Ω) which will be used throughout
the paper.

Sections 4 and 5 are devoted to the stability analysis of a in C ⊂ L2(Ω) from ua in H1(Ω): in Section 4 we
shall observe that even such a strong observation does not control the variations of a perpendicular to the flow
lines, and conclude that stability does not hold when C is infinite dimensional. Then we show in Section 5 that
stability is restored in finite dimensional subsets Cn of C, with a stability constant which blows up to infinity
when the dimension of Cn increases.

In Section 6, we establish the sensitivity, deflection and curvature estimates which are needed for the theory
of strictly quasiconvex sets [3, 4] to guarantee that the projection on the sets Dn of attainable outputs is well
behaved. When the dimension of Cn increases, the sensitivity decreases toward zero, the deflection remains
bounded, and the curvature tends to infinity. This generalizes to the two dimensional case the results of [16].

The main OLS-identifiability result for a ∈ Cn ⊂ L2(Ω) from a measure z of grad u in H1(Ω) is stated and
proved in Section 7: at each scale n, the diffusion coefficient a is OLS-identifiable in Cn over a neighborhood Vn

of the output set D. When the parameterization of a is refined, i.e. when n goes to infinity, the neighborhood
Vn shrinks around D, and the Lipschitz constant of the z → â mapping explodes. These theoretical results are
coherent with the nice properties of multiscale parameterization which have been observed numerically in [16].

2. The inverse problem

We consider a domain Ω ⊂ R
2 such that its boundary ∂Ω is partitioned into ΓD, ΓN , and Γi, i = 1, · · · , N .

Here Γi represent the boundaries of holes, which will be used to model source and sink terms, and ΓD and ΓN

are a partition of the outer boundary of Ω corresponding to Dirichlet and Neumann boundary conditions.
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We define the Hilbert space

V = {v ∈ H1(Ω): v|ΓD = 0, v|Γi = vi = const , i = 1, · · · , N}
‖v‖V = |∇v|L2 ,

(2.1)

where in case ΓD = φ the condition v|ΓD = 0 is replaced by
∫
Ω
v = 0. It is supposed that Ω satisfies

Ω is bounded and connected; ∂Ω ∈ C1,1; Γ̄N , Γ̄D and
Γ̄i, i = 1, · · · , N are pairwise disjoint. (2.2)

On V we define the linear form L by

L(v) =
∫
Ω f v +

∫
ΓN

g v +
∑N

i=1Qivi, for v ∈ V,

where f ∈ Lp(Ω), g ∈ Lp(ΓN ), for some p > 2, Qi ∈ R, i = 1, · · · , N, (2.3)

with the additional condition that ∫
Ω

f +
∫

ΓN

g +
N∑

i=1

Qi = 0 if ΓD = φ.

Henceforth we denote by C the set of admissible parameters a. The precise conditions on C we be given further
below. In particular they will allow to associate to every a ∈ C the solution u = ua ∈ V defined by

(Q)
∫

Ω

a∇u∇v = L(v) for all v ∈ V,

which is the variational formulation of the elliptic equation
−div (a grad u) = f in Ω

u|ΓD = 0, a
∂u

∂n
|ΓN = g∫

Γi
a
∂u

∂n
= Qi, u = unknown constant on Γi, i = 1, · · · , N.

(2.4)

We shall be concerned with the inversion of the mapping a→ grad ua from L2(Ω) to L
2(Ω) in the least-squares

sense:

(P) minimize
1
2
| grad ua − z|2

L2 over a ∈ C,

where z ∈ L
2(Ω) is a given observation.

Definition 2.1. The parameter a is OLS-identifiable in C from the measurement z of gradu if and only if the
nonlinear least squares problem (P) is quadratically (Q-) wellposed in the sense that:

D = {gradua ∈ L
2(Ω): a ∈ C}

possesses a neighborhood V such that
1. for every z ∈ V problem (P) has a unique solution â;
2. for every z ∈ V problem (P) has no parasitic local minima;
3. the mapping z → â is Lipschitz continuous from L

2(Ω) to L2(Ω).
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Our objective is to find conditions on C such that the parameter a is output least squares OLS-identifiable
on C. For this purpose we require first that the parameters belong to the space

E = {a ∈ C0,1(Ω): a|Γi = unknown constant ai = i = 1, · · · , N}, (2.5)

equipped with the norm ‖ · ‖C0,1 . The set of admissible parameters C is assumed to satisfy:

C ⊂ {a ∈ E : am ≤ a(x) a.e. in Ω, ‖a‖C0,1 ≤ aM}, (2.6)

and

C is convex and closed in L2(Ω), (2.7)

where 0 < am ≤ aM are given constants. Note that the image in C(⊂ E) of the mapping z → â is considered
in the L2-norm, whereas the set C is endowed with the norm of E . Condition (2.6) ensures that (Q) has a
unique solution for all a ∈ C. Moreover, the requirement that a is Lipschitz continuous, together with the
modelling of source and sink terms by holes, and the regularity hypotheses (2.2, 2.3) for Ω, f , and g imply that
{|ua|W 2,p : a ∈ C} is bounded, (see [18], p. 180). Since W 2,p(Ω) is continuously embedded into C1(Ω) for every
p > 2, then exist uM and γM such that

|ua|L∞ ≤ uM , |grad ua|L∞ ≤ γM for all a ∈ C. (2.8)

The hypothesis that the parameters satisfy a|Γi = ai = unknown constant is the 2-D generalization of the
hypothesis that a is constant on some neighborhood of each Dirac source term, which was required in the 1-D
case to ensure OLS–identifiability [5]. It is also physically not too restrictive, as one can assume that the size
of Γi’s, which model the well boundaries, are small compared to the size of Ω. The convexity and closedness
condition (2.7) are required for the study of OLS–identifiability by the geometric techniques for nonlinear least
squares developed in [3, 4].

As a first step towards OLS–identifiability we shall analyse in Section 3 inverse stability estimates of the form

(S) |(a− b) grad ua|L2 ≤ k |b(grad ua − grad ub)|L2 ,

for k ≥ 0. As this stability estimate ought to hold for perturbations a − b in any direction b ∈ E , we attempt
to prove (S) only at points a ∈ C which are identifiable:

Definition 2.2. The parameter a ∈ C is identifiable in E if, for every b ∈ E which admits a solution ub ∈ V to
(Q) one has

ub = ua implies b = a. (2.9)

However, we shall see in Section 3 that one cannot find for any k > 0 an infinite set C satisfying (2.5–2.7) on
which (S) holds uniformly. Therefore we reduce in Section 4 our attention to finite dimensional parameter sets:
for this purpose let En, n ∈ N be a family of subspaces such that

E0 = {constant functions} ⊂ E1 ⊂ E2 · · · ⊂ E ⊂ C0,1(Ω̄)
dim En <∞ for each n⋃
n∈N

En = L2(Ω),
(2.10)

where the closure is taken in L2(Ω), and define for all n:

Cn = C ∩ En. (2.11)
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In order to have a chance for (S) to hold uniformly on Cn we require that the data of the problem, i.e.
(Ω,ΓD,ΓN ,Γi, f, g,Qi, am, aM , En), are chosen such that

(H)
{

for all n ∈ N one has
a ∈ Cn implies that a is identifiable in En.

For the definition of identifiability of a ∈ Cn in En one simply replaces C, E in Definition 2.2 by Cn, En. Under
condition (H) we shall be able to prove in Section 4 the inverse stability estimate (S) on Cn for all n ∈ N,
for some k = kn, with lim

n→∞ kn = ∞, and to estimate, in Section 5, sensitivity, deflection and curvature of
the a → grad ua mapping. These estimates will be used to prove, in Section 6, that a is OLS–identifiable on
Cn for each n, provided the diameter of C in L∞(Ω), denoted by diam∞, is small enough. The last section
will be devoted to the analysis of the advantages and disadvantages of parameterizing the problem by b = 1/a
instead of a.

Before proceeding to the next section we make sure that our theory is not empty by giving an example for
sufficient conditions which ensure that (H) holds. We require two technical lemmas.

Lemma 2.1. The parameter a ∈ C is identifiable in E if and only if

h ∈ E and
∫

Ω

h grad ua grad v = 0 for all v ∈ V implies h = 0.

As a consequence we observe that if a ∈ C is identifiable in E and h 6= 0, h ∈ E , then necessarily h grad ua 6= 0.

Lemma 2.2. For a ∈ C and h ∈ E define u = ua and v = hu
a . Then v ∈ V and

∫
Ω

h grad u · grad v =
1
2

∫
Ω

h2

a
| grad u|2 +

1
2

∫
Ω

h2

a2
u f +

1
2

∫
ΓN

h2

a2
u g +

N∑
i=1

h2
i

a2
i

uiQi.

Proof. Since C ⊂ E ⊂ C0,1(Ω̄) one has v = hu
a ∈ H1(Ω). Moreover v satisfies the boundary conditions

defining V and hence v ∈ V . It follows that

∫
Ω

h grad u · grad v =
∫

Ω

h2

a
| grad u|2 +

1
2

∫
Ω

u

a
grad u · grad h2 −

∫
Ω

h2u

a2
grad a · grad u.

Integrating by parts the second term on the right hand side implies

∫
Ω

h grad u · grad v =
1
2

∫
Ω

h2

a
| grad u|2 − 1

2

∫
Ω

h2
(u
a

∆u+
u

a2
grad a · grad u

)

+
1
2

∫
ΓN

u g
h2

a2
+

1
2

N∑
i=1

uiQi
h2

i

a2
i

,

which, utilizing −a∆u− grad a· grad u = f gives the desired result. �
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Theorem 2.1. Let the data of the problem satisfy
• f = g = 0;
• Qi, i = 1, · · · , N are not all zero;
• 0 < am ≤ aM ;
• |Γi|, i = 1, · · · , N , are sufficiently small.

Then for all n, all a ∈ Cn are identifiable in En and (H) holds.

Proof. Let n ∈ N be given. Let a ∈ Cn and ua denote the solution to (2.4). We argue that grad u(a) cannot
vanish on a set I of positive measure. Let γ denote a curve in Ω connecting the inner boundaries Γi to ΓD ∪ΓN

such that Ω\γ is simply connected and meas γ = 0.
Then Iγ = (Ω\γ) ∩ I satisfies meas Iγ > 0. From [1], Theorem 2.1 and Remark it follows that either ua is

constant on Ω\γ and hence on Ω or ua has only isolated critical points, i.e. points z satisfying ∇u(z). But ua

cannot equal a constant over Ω since this violates the boundary conditions at the wells Γi at which Qi 6= 0. On
the other hand the number of isolated critical points in Iγ can be at most countable, and hence meas Iγ = 0.
Consequently meas {x : ∇ua(x) = 0} = 0.

Suppose that Γi surrounds for each i = 1, · · · , N , a fixed source/sink location xi. If |Γi| → 0, for all
i = 1, · · · , N , the solution ua converges towards the weak solution associated to a right-hand side with Dirac

source term
N∑

i=1

Qiδ(x − xi), which is singular at xi. Hence ua|Γi = ua,i → ∞ if Qi > 0 and ua|Γi → −∞ if

Qi < 0. Since Cn is compact and a→ ua,i is continuous, we conclude that for |Γi| sufficiently small the solution
ua satisfies

ua,iQi ≥ 0 for i = 1, · · · , N, and all a ∈ Cn.

Henceforth it is assumed that |Γi|, i = 1, · · · , N , is sufficiently small. For each a ∈ Cn, Lemma 2.2 implies that
for each h ∈ En and v =

hua

a∫
Ω

h grad ua · grad v ≥ 1
2

∫
Ω

h2

a
|grad ua|2.

Since |grad ua(x)| > 0 a.e. on Ω, ∫
Ω

h grad ua · grad w = 0 for all w ∈ V

implies, by choosing w = hua

a , that h2 = 0 a.e. on Ω and hence a is identifiable in En by Lemma 2.1.

3. Decomposition of L
2(Ω)

It will be convenient to denote by (·, ·) the scalar products in L2(Ω) and L
2(Ω). Then for every a, b ∈ C we

obtain from the variational formulation (Q) defining ua and ub that

((a− b) grad ua, grad v) = (b( grad ub − grad ua), grad v), (3.1)

for all v ∈ V . This suggests to associate to V an equivalence relation ∼ of vectorfields in L
2(Ω) according to

~q ∼ ~q′ if ~q · grad v = ~q′ · grad v for all v ∈ V, (3.2)
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to denote by {
G = L2(Ω)/∼ the quotient space
G⊥ the orthogonal complement (3.3)

and by

P and P⊥ the orthogonal projection in L
2(Ω) onto G and G⊥. (3.4)

The decomposition

L
2(Ω) = G⊕G⊥

is, by construction, adapted to the elliptic problem (Q). We further introduce

W = {ψ ∈ H1(Ω): ψ|ΓN = 0},

where the condition
∫
Ω ψ = 0 is added to the definition of W if ΓN = φ. For ϕ ∈ H1(Ω) and ~ψ ∈ H1(Ω)×H1(Ω)

we define

~rot ϕ =


∂ϕ

∂x2

− ∂ϕ

∂x1

 and rot ~ψ =
∂ψ2

∂x1
− ∂ψ1

∂x2
·

The following representation for G and G⊥ can be obtained.

Proposition 3.1.

G = {grad ϕ : ϕ ∈ V }
G⊥ = {rot ψ : ψ ∈W}·

Moreover, for every ~q ∈ L
2(Ω) one has

P~q = gradϕ, P⊥~q = ~rotψ,

where ϕ ∈ V and ψ ∈W are given by

(gradϕ, grad v) = (~q, grad v) for all v ∈ V,

( ~rotψ, ~rot v) = (~q, ~rot v) for all v ∈ W.

Except for the atypical boundary conditions this decomposition is rather standard. For convenience an outline
of the proof is given in the Appendix. The identifiability condition can now be reformulated as

Proposition 3.2. A parameter a ∈ C (respectively Cn) is identifiable in E (resp. En) if and only if:

h 6= 0 and h ∈ E (resp. En) imply P (h grad ua) 6= 0.

The proposition follows directly from Proposition 3.1 and Lemma 2.1.
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4. From which direction can an identifiable parameter be recovered
in a stable way?

Let a ∈ C be a given reference parameter and let b ∈ C be a possibly different parameter. We investigate in
this section conditions on b for which the stability estimate (S) holds.

From (3.1) we have

(a− b) grad ua ∼ b( grad ub − grad ua), (4.1)

so that

‖(a− b) grad ua‖G = ‖b( grad ub − grad ua)‖G ≤ |b( grad ub − grad ua|L2 . (4.2)

We decompose (a− b) grad ua on G⊕G⊥:

(a− b) grad ua = grad ϕ+ ~rot ψ, (4.3)

where ϕ ∈ V and ψ ∈ W are given according to Proposition 3.1 by

(grad ϕ, grad v) = ((a− b) grad ua, grad v) for all v ∈ V, (4.4)

( ~rot ψ, ~rot v) = ((a− b) grad ua, ~rot v) for all v ∈W. (4.5)

Clearly one has

grad ϕ = P ((a− b) grad ua), ~rot ψ = P⊥((a− b) grad ua). (4.6)

Moreover

‖(a− b) grad ua‖G = |P ((a− b) grad ua)|L2

which together with (4.2) implies

|P ((a− b) grad ua|L2 ≤ |b(gradub − grad ua)|L2 . (4.7)

Defining for M > 0 the set

SM (a) = {b ∈ C : |P⊥((b − a) grad ua)|L2 ≤M |P ((b− a) grad ua)|L2}, (4.8)

we conclude that

|(b− a) grad ua|L2 ≤ (1 +M2)1/2|P ((b− a) grad ua)|L2 , (4.9)

for all b ∈ SM (a). Combining (4.7) and (4.9) implies

Proposition 4.1. Let M > 0 and a ∈ C be given. Then for all b ∈ SM (a) the stability estimate (S) holds with
k = (1 +M2)1/2:

|(b − a) grad ua|L2 ≤ (1 +M2)1/2|b( grad ub − grad ua)|L2 . (4.10)
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Hence the directions b − a, with b ∈ SM (a) are those from which the parameter a can be recovered within C
with a stability constant (1+M2)1/2. We investigate now the shape of SM (a). The set SM (a) is the intersection
of C with a wedge having its vertex at a. Clearly a ∈ SM (a). If a is in the E–interior of C, SM (a) also contains
parameters of the form b = a+ tγ(ua) for t small enough, where γ is any regular function. In fact, in this case
the gradients of b − a and ua are collinear so that P⊥((b − a) grad ua) = 0 (see (4.14) below), and hence (S)
holds with M = 0 and k = 1.

Proposition 4.2. Let a ∈ C be identifiable in E. Then⋃
M>0

SM (a) = C. (4.11)

Proof. Let b ∈ C with b 6= a. As a is identifiable it follows from Proposition 3.2 that P ((b − a) grad ua) 6= 0.
Hence b ∈ SM (a) for M sufficiently large. �

We next interpret the quantities which enter the definition of SM (a).

Lemma 4.1. For every a ∈ C and h ∈ E we have

‖ div (h grad ua)‖H−1 ≤ |P (h grad ua)|L2 ≤ |h grad ua|L2 , (4.12)

‖ ~rot h grad ua‖W∗ = |P⊥(h grad ua)|L2

≤ min{CW | ~rot h · grad ua|, |h grad ua|}, (4.13)

where CW is the Poincare constant in W .

Proof. From Proposition 3.1 we have

|P (h grad ua)|L2 = | grad ϕ|L2 = sup{( grad ϕ, ~q′) : ~q′ ∈ L
2, |~q′|L2 = 1}·

But ~q′ = grad v + ~rot w with v ∈ V and w ∈ W , so that

|P (h grad ua)|L2 = sup {(gradϕ, grad v + ~rot w) :
v ∈ V,w ∈W, | grad v|2 + | ~rot w|2 = 1}

= sup {(gradϕ, grad v) : v ∈ V, | grad v| = 1}

and

|P (h grad ua)|L2 = sup
{∫

Ω

h grad ua · gradv : v ∈ V, | grad v| = 1
}
·

These estimates imply by the Cauchy–Schwartz the second inequality in (4.12). The first follows from H1
0 (Ω)

⊂ V . From Proposition 3.1 we obtain as well that

|P⊥(h grad ua)|L2 = sup
{∫

Ω

h grad ua · ~rot w : w ∈W, | grad w| = 1
}
· (4.14)

By Green’s formula we find:∫
Ω

h grad ua · ~rot w =
∫

Ω

rot (h grad ua)w −
∫

∂Ω

h
∂ua

∂τ
w. (4.15)
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Since ua = 0 on ΓD and ua = const on each Γi, we have ∂ua

∂τ = 0 on ΓD and on Γi, i = 1, · · · , N , and w = 0
on ΓN . Thus all boundary terms vanish. From (4.14, 4.15) and the fact that rot(h grad ua) = ~rot h · grad ua

we find

|P⊥(h grad ua)|L2 = sup
w∈W, | grad w|=1

∫
Ω

( ~rot h · grad ua)w,

which, by Poincaré inequality in W shows that

|P⊥(h grad ua)|L2 = | ~rot h · grad ua|W∗ ≤ CW | ~rot h · grad ua|L2 .

Combining (4.14) and the last estimate implies (4.13) and the lemma is proved. �
Lemma 4.1 implies that SM (a) contains all b ∈ C such that h = b− a satisfies

CW | ~rot h grad ua| ≤M | div (h grad ua)|H−1 .

Hence we see that the perturbations from which a can be stably recovered are, speaking loosely those whose
gradient tends to be mostly oriented along the flow lines of ua at each point x ∈ Ω. In particular, a cannot be
recovered stably from perturbations h such that div(h grad ua) = 0. When ua is harmonic (e.g. if f = 0 and
a = const), these unstable perturbations are such that grad h· grad ua = 0. This corresponds to the intuition
that the observation of the pressure field grad ua gives little information on the diffusion parameter a orthogonal
to flow lines.

We next show that if a can be recovered stably from b it can also be recovered stably, but with a larger
constant, from all c ∈ C in some L2– neighborhood of b:

Theorem 4.1. Let a ∈ C be identifiable in E, b ∈ C, b 6= a be given, and define:

0 ≤M =
|P⊥((b− a) grad ua)|L2

|P ((b− a) grad ua)|L2
<∞.

Then for every M ′ > M there exists ε > 0 such that

SM ′(a) ⊃ C ∩ {c ∈ L2(Ω): |c− b|L2 ≤ ε} · (4.16)

Proof. The mappings Λ(h) = P (h grad ua) and Λ⊥(h) = P⊥(h∇ua) are continuous from L
2(Ω) into itself.

Hence we get for |c− b|L2 ≤ ε

|P⊥((c− a) grad ua)| ≤ |P⊥((b− a) grad ua)| + ‖Λ⊥‖ε,

|P ((c− a) grad ua)| ≥ |P ((b− a) grad ua)| − ‖Λ‖ε.

Since a is identifiable we have P ((b − a) grad ua) 6= 0. Hence for M ′ > M there exists ε > 0 such that
|P⊥((c − a) grad ua)| |P ((c − a) grad ua|−1 ≤ M ′ as soon as |c− b| ≤ ε. This implies (4.16). Of course c = a
cannot belong to this neighborhood of b! �

At this point the question arises whether it is possible for the stability estimate (S), or (4.10) to hold uniformly
for some k = (1 +M2)1/2 for all a, b ∈ C. In other terms we search for C satisfying (2.6, 2.7) and

a, b ∈ C implies b ∈ SM (a). (4.17)

We give a negative answer in the sense that there is no infinite dimensionalC with nonempty E-interior satisfying
the specified properties.
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Suppose that such a C exists, and let a be an element of the E-interior of C. Further let B denote a ball
with center a and radius ε contained in C. Then (4.17) would imply that B ⊂ SM (a) and hence as SM (a) is
the intersection of C with a wedge, that

|P⊥(h grad ua)|L2 ≤M |P (h grad ua)|L2 for all h ∈ E . (4.18)

We show on a simple example that (4.18) cannot be true in general. For this purpose consider (Q) with Ω the
unit square in R

2, f = 0, g = 0 on top and bottom, g = −1, on the left and g = 1 on the right lateral boundary,
and no internal sources and sinks. The solution corresponding to a = 1 is given by ua(x, y) = x− 1

2 .

• We check that a = 1 is identifiable in E . For every h ∈ E we have from Lemma 2.2 that for v = hua

a ∈ V∫
Ω

h grad ua grad v =
1
2

∫
Ω

h2 +
1
2

∫
ΓN

h2u g.

Since u g ≥ 0 on ∂Ω we see that∫
Ω

h grad ua grad v = 0 for all v ∈ V implies h = 0,

and thus by Lemma 2.1 a is identifiable in E .
• Next we consider parameter perturbations which are orthogonal to the flow lines. This results in choosing

(x, y denote the coordinates in R
2)

h(x, y) = h(y).

We shall require that

h ∈ C0,1(0, 1),
∫ 1

0

h = 0 and h(0) = h(1) = 0. (4.19)

Under these conditions we estimate lower and upper bounds to |P⊥(h grad ua)| and |P (h grad ua)|.

(i) From Lemma 4.1 we have

|P⊥(h grad ua)| = ‖ rot h grad ua‖W∗ = ‖h′‖W∗ ,

and by (4.19)

‖h′‖W∗ = sup
{∫

Ω

h
∂w

∂y
: w ∈W, | grad w| = 1

}
· (4.20)

Let H be the primitive of h:

H(y) =
∫ y

0

h(τ)dτ

and note that H(0) = H(1) = 0. We define

w̃(x, y) = x(1 − x)H(y),

so that w̃ = 0 on ∂Ω = ΓN , and hence w̃ ∈W , with

| grad w̃|2 = 1
3 (|H |2 + 1

10 |h|2).
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Choosing w = ew

| grad ew| in (4.20) gives

‖h′‖W∗ ≥
√

3|h|2
6
√
|H |2 + 1

10 |h|2
·

Since |H |2 ≤ 1
2 |h|2 we obtain

|P⊥(h grad ua)| ≥ 2
3 |h|. (4.21)

(ii) From the proof of Lemma 4.1 we get

|P (h grad ua)| = sup
{∫

Ω

h
∂v

∂x
: v ∈ V, | grad v| = 1

}
,

and, integrating by parts with respect to x,

|P (h grad ua)| = sup
{∫ 1

0

h(y)(v(1, y) − v(0, y))dy : v ∈ V, |grad v| = 1
}
·

Let γ = ∂Ω ∪ {x = 1}, the right lateral boundary of Ω, and denote by c the continuity constant from V to
H1/2(γ). Then | grad v| = 1 implies ‖v|γ‖H1/2(γ) ≤ c, so that by symmetry

|P (h grad ua)| ≤ 2 sup
{∫ 1

0

h ξ : ξ ∈ H1/2(γ), ‖ξ‖H1/2(γ) ≤ c

}
·

Associating to h a function H ∈ H1/2(γ) satisfying

((H, ξ))H1/2(γ) =
∫ 1

0

h ξ, for all ξ ∈ H1/2(γ), (4.22)

we have

|P (h grad ua)| ≤ 2 sup
‖ξ‖

H1/2(γ)
≤c

((H, ξ))H1/2 = 2c‖H‖H1/2 . (4.23)

From (4.21, 4.23) we see that (4.18) would imply that

|h| ≤ 3Mc ‖H‖H1/2(γ), (4.24)

for all h ∈ E satisfying (4.19). But we can choose a sequence of functions hn satisfying

hn ∈ C0,1(0, 1),
∫ 1

0

hn = 0, hn(0) = hn(1) = 0,

and

|hn|L2 = const , |hn|H−1/2(γ) → 0 for n→ ∞.

From (4.22) we see that ‖Hn‖H1/2(γ) → 0 for n → ∞. This contradicts (4.24) and consequently (4.18) as
well. �
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It is hence impossible to find an infinite dimensional set C with nonempty interior on which the stability
estimate holds uniformly. This motivates the reduction to finite dimensional parameter sets in the remaining
sections.

5. Finite dimensional stability estimates

We turn to the finite dimensional setting of Section 2 with E0 ⊂ E1 ⊂ · · · ⊂ E satisfying (2.11). We recall the
definition Cn = C ∩En and suppose throughout this section that (H) holds. Identifiability of a in En implies by
Proposition 3.2 that for all a, b ∈ Cn with b 6= a we have

P ((b− a) grad ua) 6= 0. (5.1)

Hence we can define for each n ∈ N

Mn = sup
a,b∈Cn

a6=b

|P⊥((b − a) grad ua)|L2

|P ((b − a) grad ua)|L2
· (5.2)

From Proposition 3.2 we know that (5.1) holds with b− a replaced by any h ∈ En, h 6= 0, and hence

Mn ≤ sup
a∈Cn

sup
h∈En,‖h‖E=1

|P⊥(h grad ua)|L2

|P (h grad ua)|L2
· (5.3)

As the fraction in (5.3) is a continuous function of h and a, and the suprema are taken on compact sets it
follows that Mn is finite for each n. Since E0 consists of constant functions M0 = 0 by Lemma 4.1. Moreover
since En ⊂ En+1, for all n, we have

0 = M0 ≤M1 ≤ · · · ≤Mn · · · <∞. (5.4)

From the example at the end of the previous section we can generally expect that lim
n→∞Mn = ∞.

Proposition 4.1 implies the following stability estimates:

Theorem 5.1. Let (2.5–2.7, 2.10, 2.11) and (H) hold. Then for every n ∈ N

|(b − a) grad ua|L2 ≤ (1 +M2
n)1/2 |b(grad ub − grad ua)|L2 ,

for all a, b ∈ Cn, where Mn is defined in (5.2).

This theorem gives a rigorous justification to the numerical observation [12,13,16] that the sensitivity of the
inversion of the a → ua mapping is a decreasing function of the scale at which the parameter is estimated.
This observation together with the analysis of the nonlinearity of the mapping a→ ua, to be given in the next
section, has motivated the introduction of successful multiscale approaches to parameter estimation [9, 16].

We close the section with an estimate of Mn in the case where (H) is satisfied by virtue of Theorem 2.1.

Theorem 5.2. Let (2.5–2.7, 2.10, 2.11) hold, and suppose that the hypotheses of Theorem 2.1 are satisfied.
Then

Mn ≤ sup
a∈Cn

sup
h∈En,h 6=0

Mn(a, h),

where, for a ∈ Cn and h ∈ En, h 6= 0:

Mn(a, h) = 2
(
aM

am

)1/2 | grad (h
a )ua|

|ha grad ua|
min

{
1, CW

| ~rot h grad ua|
|h grad ua|

}
· (5.5)
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Proof. Choosing v = hua

a | grad (hua

a )|−1
L2 on the right hand side of the equality above (4.14) we obtain by

Theorem 2.1 and Lemma 2.2

|P (h grad ua)|L2 ≥ 1
2

| h
a1/2 grad ua|2L2

|grad (hua

a )|L2

and hence

|P (h grad ua)|L2 ≥ a
1/2
m

2a1/2
M

|ha grad ua| |h grad ua|
|grad (h

aua)
·

Combining this estimate with (4.13) of Lemma 4.1 and (5.3) implies the theorem. �
For a, b ∈ Cn the stability constant Mn(a, b− a) of (5.5) allows the following interpretation:
• the first factor is related to the size of Cn;
• the second factor tends to infinity when the dimension of En goes to infinity. It does not depend on the

relative orientations of grad h and grad ua;
• the third factor is bounded by 1 and tends to zero as grad h becomes collinear with grad ua.

6. Finite dimensional sensitivity, deflection and curvature estimates

In this section we analyze the geometric quantities associated to the parameter-to-solution mapping a→ ua

defined by (Q). Knowledge of these quantities will be required in the next section to prove that the output
set Dn is strictly quasiconvex, and hence the OLS-identifiability of a.

For a0, a1 ∈ Cn and t ∈ [0, 1] we set

h = a1 − a0, (6.1)

a = (1 − t)a0 + t a1. (6.2)

The geometric quantities are related to the curve t ∈ [0, 1] → ∇ua ∈ L
2(Ω) in the range of the mapping

a → ∇ua. We denote by η the velocity and ξ the acceleration, i.e. the first and second derivatives of ua with
respect to t. The equations characterizing η ∈ V and ξ ∈ V are found to be:∫

Ω

a grad η · grad v = −
∫

Ω

h grad ua grad v, for all v ∈ V, (6.3)∫
Ω

a grad ξ · grad v = −2
∫

Ω

h grad η grad v, for all v ∈ V. (6.4)

For given n ∈ N the objective is to find 0 < αm ≤ αM , Θ ≥ 0 and R > 0 such that the following inequalities
hold uniformly for all a0, a1 ∈ Cn and t ∈ [0, 1]:

αm|h|L2 ≤ |grad η|L2 ≤ αM |h|L2 , (6.5)

|grad ξ|L2 ≤ Θ|grad η|L2 , (6.6)

|grad ξ|L2 ≤ 1
R
|grad η|2

L2 . (6.7)

These inequalities can be interpreted as follows:
• αm and αM are lower and upper bounds to the first derivative of a → ∇ua. They are referred to as

minimal and maximal sensitivity;



OLS IDENTIFICATION OF DIFFUSION COEFFICIENT IN A 2-D ELLIPTIC EQUATION 437

• Θ is an upper bound to the deflection along the curve t→ ∇ua (i.e. to the angle between the tangents at
two points of the curve);

• 1
R is an upper bound to the curvature along the curve.

Theorem 6.1. Let (2.5–2.7, 2.10, 2.11) and (H) hold. Then, for every n ∈ N, a0, a1 ∈ Cn and t ∈ [0, 1],
(6.5–6.7) hold with

αm =
γm,n

aM (1 +M2
n)1/2

, αM =
γM

am
, (6.8)

Θ = 2
diam ∞(Cn)

am
, (6.9)

1
R

= 2 Kn
(1 +M2

n)1/2

γm,n

aM

am
, (6.10)

where γM is defined in (2.8), and

γm,n = inf
a∈Cn

inf
h∈En, |h|L2=1

|h grad ua|L2 > 0, (6.11)

Kn = sup
h∈En,|h|L2=1

|h|L∞ . (6.12)

Proof. Let t + dt ∈ [0, 1] and denote by at and at+dt the corresponding values of a given by (6.2). Choosing
a = at and b = at+dt in Theorem 5.1 and letting dt tend to zero implies that

|h grad ua|L2 ≤ (1 +M2
n)1/2 |a grad η|L2 . (6.13)

Hence the left inequality of (6.5) is satisfied with αm defined by (6.8, 6.11). The strict positivity of γm,n follows
from (H) which ensures that the argument of the inf is strictly positive, and hence the inf itself is strictly
positive as it is taken over a compact set. The right inequality of (6.5) is obtained by choosing v = η in (6.3)
and using (2.9). Setting v = ξ in (6.4) gives

|a1/2 grad ξ|L2 ≤ 2 | h√
a
|L∞ |grad η|,

which implies (6.9), and also (6.10) using (6.11–6.13). �
Notice first that γm,n can be understood as a lower bound to the local mean value of |gradua| at scale n.

In general ua will have stationary points where grad ua(x) = 0, in which case one expects that γm,n → 0 for
n → ∞. In special cases, as for instance the example of Section 4, see also [15, 17] for further examples, it can
happen that |grad ua(x)| ≥ γm > 0 for all a ∈ C and x ∈ Ω, in which case γm,n ≥ γm > 0 for all n.

Let us now discuss the behavior of the constants αm, αM , Θ and R as n tends to infinity. In case (H) is
satisfied through the assumptions of Theorem 2.1 an upper bound to Mn can obtained by Theorem 5.2:

Mn ≤ 2
(
aM

am

)1/2
(

1 +
uM

γm,n
sup

a∈Cn

sup
h∈En,|h

a |L2=1

∣∣∣∣grad
h

a

∣∣∣∣
)

· (6.14)

In case the finite dimensional spaces En are obtained from a regular family of triangulations of Ω by elements of
size ∆x, the right hand side of (6.14) is of the order 1

∆x for n→ ∞. In this situation the continuity constant Kn

of the L2 → L∞ injection (for h ∈ En) is also of the order 1
∆x as n → ∞. These considerations imply the

following
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Corollary 6.1. Under the conditions of Theorem 6.1, as the scale parameter n→ ∞ we have
• the minimal sensitivity αm → 0;
• the maximal sensitivity αM remains bounded;
• the deflection Θ remains bounded;
• the curvature 1

R → ∞.
In case (H) is satisfied through the assumption of Theorem 2.1 and En is constructed based on a regular trian-
gulation of Ω by elements characterized by meshsize ∆x, one has

• αm ≥ const ∆x γm,n;
• 1

R ≤ const/(∆x2 γm,n).

7. Output least squares identifiability of a

We study in this section the structure of the nonlinear least squares problem (P ). We have seen in Section 4
that there is no hope for (P ) itself to be quadratically wellposed, or equivalently for a to be OLS – identifiable
on C. Therefore we choose finite dimensional subspaces En satisfying (2.10, 2.11) and consider for each n ∈ N

the finite dimensional estimation problems

(Pn) minimize
1
2
|grad ua − z|2

L2 over Cn.

Using the results of [3,4] and the geometric estimates of Section 6, one sees that the output sets Dn = {grad ua

∈ L
2(Ω): a ∈ Cn} are strictly quasiconvex as soon as Θ ≤ π

2 . They are also closed because of the finite dimen-
sion of the closed and bounded sets Cn, and the properties of closed and strictly quasiconvex sets imply that
the projection on Dn is Q-wellposed in the sense of Definition 2.1.

Hence the following theorem holds:

Theorem 7.1. Let (2.5–2.7, 2.10, 2.11) and (H) hold and suppose that C satisfies

Θ =
2
am

diam∞C ≤ π

2
· (7.1)

Then (Pn) is quadratically wellposed on

Vn =
{
~q ∈ L

2(Ω): dist (~q,Dn) < Rn =
γm,n

2Kn(1 +M2
n)1/2

}
(7.2)

for all n ∈ N, that is
1. for every z ∈ Vn, (Pn) has a unique solution ân;
2. for every z ∈ Vn, the function a→ 1

2 | gradua − z|2
L2 has no local minima;

3. the mapping z → ân is Lipschitz continuous: for all z0, z1 ∈ Vn satisfying |z0 − z1|L2 + max
j=0,1

d(zj , Dn)

≤ dn < Rn,

αm|ân,0 − ân,1|L2 ≤ L ≤
(

1 − dn

Rn

)−1

|z0 − z1|L2 ,

where L is the arc length in L
2(Ω) of the curve t ∈ [0, 1] → gradua ∈ L

2(Ω) with a = (1 − t)ân,0 + tân,1;
4. every minimizing sequence of (Pn) converges to ân.

The above results are to be compared with the numerical observations made in [16] about the behavior of
the gradient algorithms for the solution of (Pn) when a multiscale optimization is performed: at coarse scales,
the gradient algorithms were found to converge quickly toward a global minimum; this correspond to the case
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where, in the above theorem, the data z belongs at these coarse scales to the neighborhood Vn on which (Pn) is
wellposed - in particular, the objective function has no local minima other than the global one, so the gradient
algorithm, if it converges, has to converge to the global minimum. When the scale at which the parameter is
searched for is refined, the size of the neighborhood Vn shrinks, until the data z ends up outside of Vn. The
gradient algorithm will then in general converge to a local minimum only. But it is reasonable to expect that,
because of the good initial guess obtained at coarser scales, this local minimum is not too far from the global
one, as it was observed in [16] – but this still needs to be proved.

Remark. In the 1–D case [5], the mapping b = 1
a → ub is “quasilinear”. So the question arises of using b = 1

a
in place of a as optimization variable. Additional motivations are given by the facts that b→ ub is affine when b
is constant and that a→ 1

a , which is in some sense contained in a→ ua, is not twice differentiable on L2(Ω).
In order to see whether b→ ub is less non-linear and its inverse is less illposed than a→ ua, one can carry the

analysis of the previous sections, with the appropriate modifications, which leads to new sensitivity, deflection
and curvature constants α̃m, Θ̃, 1/R̃ (the details can be found in the preprint [8]). The results are as follows:

• the two parameterizations have the same behavior with respect to sensitivity:
α̃m and αm → 0 at similar rates when n→ ∞, α̃M and αM are both bounded with respect to n;

• at coarse scales, the b–parameterization is advantageous for deflection and curvature:
Θ̃ and 1/R̃→ 0 for n→ 0.

This reflects the fact that the problem becomes “less nonlinear” for the b-parameterization as the scale
gets coarser.

• At fine scales the a–parameterization is advantageous as
Θ remains bounded, whereas Θ̃ goes to infinity with n (for fixed value of diam∞C),
1/R does not go to infinity as fast as 1/R̃.

The fact that Θ̃ → ∞ with n is a big drawback as this will require to reduce the size of C̃n when n→ ∞, if one
wants to ensure the Q-well posedness over C̃n for the b-parameterization. Of course, Θ̃ is only an upper bound
to the maximum deflection. We do not know if the maximum deflection over C̃n actually tends to infinity with
the scale n.

Appendix

Proof of Proposition 3.1.

Step 1. Following [11], Chapter 1 we define

H =
{
~q ∈ L

2(Ω): div ~q = 0, ~q · n|ΓN = 0,
∫

Γi

~q · n = 0
}
,

where div is understood in the variational sense. As in [11] one argues that H is a closed subspace of L
2(Ω),

and hence we have the decomposition

L
2(Ω) = H ⊕H⊥. (A.1)

Step 2. We argue that H⊥ = G. Since G is closed in L
2(Ω) it suffices to show that H = G⊥. For this purpose

choose and fix ~q ∈ H arbitrarily. Then for every ϕ ∈ V we have (~q,∇ϕ) =
∑N

i=1 ϕi

∫
Γi

~q · n = 0 and hence

~q ∈ G⊥. Conversely if ~q ∈ G⊥, then (~q,∇ϕ) = 0 for all ϕ ∈ V , in particular for all ϕ ∈ D(Ω) and hence div

~q = 0. Choosing ϕ ∈ V implies ~q · n|ΓN = 0 and
∫

Γi

~q · n = 0, for i = 1, · · · , N . Hence ~q ∈ H and H⊥ = G.
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Step 3. We show that H = { ~rot ψ : ψ ∈ W}. For ψ ∈ W we have div ~rot ψ in the variational sense and∫
Γi

~rot ψ · n =
∫

Γi

∇ψ · τ = 0, where τ denotes the tangent to Γi. Moreover ~rot ψ · n = ∇ψ · τ = 0 on ΓN and

hence ~rot ψ ∈ H . Conversely, if ~q ∈ H , then by the arguments in [11], (p. 36) there exists ψ ∈ H1(Ω) such
that ~rot ψ = ~q. Since ~q · n = ~rot ψ · n = ∇ψ · τ = 0 on ΓN it follows that ψ = const a.e. on ΓN and without
loss of generality we may take this constant to be 0. Hence ~rot ψ = ~q with ψ ∈W .

Step 4. Let ~q ∈ L
2(Ω). Then the elliptic problem

(grad ϕ, grad v) = (~q, grad v) for all v ∈ V (A.2)

has a unique solution in V . Consider ~q − grad ϕ ∈ L
2(Ω), and note that div (~q − grad ϕ) = 0. Moreover

(~q − grad ϕ) · n|ΓN = 0 and
∫

Γi

(~q − grad ϕ) · n = 0, for i = 1, · · · ,M . It follows that ~q − grad ϕ ∈ H and

hence there exists ψ ∈W such that ~rot ψ = ~q − grad ϕ in H . Consequently

( ~rot ψ, ~rot v) = (~q − grad ϕ, ~rot v) for all v ∈W,

and utilizing div ϕ = 0 and boundary conditions for v and ϕ

( ~rot ψ, ~rot v) = (~q, ~rot v), for all v ∈W. (A.3)

The authors thank Victor Isakov for hinting at Alessandrini and Magnanini’s paper, which helped to improve Theorem 2.1.
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